1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "simplifycfg"
55
56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
58 // To catch this, we need to fold a compare and a select, hence '2' being the
59 // minimum reasonable default.
60 static cl::opt<unsigned>
61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
62 cl::desc("Control the amount of phi node folding to perform (default = 2)"));
63
64 static cl::opt<bool>
65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
66 cl::desc("Duplicate return instructions into unconditional branches"));
67
68 static cl::opt<bool>
69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
70 cl::desc("Sink common instructions down to the end block"));
71
72 static cl::opt<bool> HoistCondStores(
73 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
74 cl::desc("Hoist conditional stores if an unconditional store precedes"));
75
76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
82 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
83
84 namespace {
85 // The first field contains the value that the switch produces when a certain
86 // case group is selected, and the second field is a vector containing the cases
87 // composing the case group.
88 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
89 SwitchCaseResultVectorTy;
90 // The first field contains the phi node that generates a result of the switch
91 // and the second field contains the value generated for a certain case in the switch
92 // for that PHI.
93 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
94
95 /// ValueEqualityComparisonCase - Represents a case of a switch.
96 struct ValueEqualityComparisonCase {
97 ConstantInt *Value;
98 BasicBlock *Dest;
99
ValueEqualityComparisonCase__anonfb6897ed0111::ValueEqualityComparisonCase100 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
101 : Value(Value), Dest(Dest) {}
102
operator <__anonfb6897ed0111::ValueEqualityComparisonCase103 bool operator<(ValueEqualityComparisonCase RHS) const {
104 // Comparing pointers is ok as we only rely on the order for uniquing.
105 return Value < RHS.Value;
106 }
107
operator ==__anonfb6897ed0111::ValueEqualityComparisonCase108 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
109 };
110
111 class SimplifyCFGOpt {
112 const TargetTransformInfo &TTI;
113 const DataLayout &DL;
114 unsigned BonusInstThreshold;
115 AssumptionCache *AC;
116 Value *isValueEqualityComparison(TerminatorInst *TI);
117 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
118 std::vector<ValueEqualityComparisonCase> &Cases);
119 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
120 BasicBlock *Pred,
121 IRBuilder<> &Builder);
122 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
123 IRBuilder<> &Builder);
124
125 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
126 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
127 bool SimplifyUnreachable(UnreachableInst *UI);
128 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
129 bool SimplifyIndirectBr(IndirectBrInst *IBI);
130 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
131 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
132
133 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout & DL,unsigned BonusInstThreshold,AssumptionCache * AC)134 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
135 unsigned BonusInstThreshold, AssumptionCache *AC)
136 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
137 bool run(BasicBlock *BB);
138 };
139 }
140
141 /// SafeToMergeTerminators - Return true if it is safe to merge these two
142 /// terminator instructions together.
143 ///
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
145 if (SI1 == SI2) return false; // Can't merge with self!
146
147 // It is not safe to merge these two switch instructions if they have a common
148 // successor, and if that successor has a PHI node, and if *that* PHI node has
149 // conflicting incoming values from the two switch blocks.
150 BasicBlock *SI1BB = SI1->getParent();
151 BasicBlock *SI2BB = SI2->getParent();
152 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
153
154 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
155 if (SI1Succs.count(*I))
156 for (BasicBlock::iterator BBI = (*I)->begin();
157 isa<PHINode>(BBI); ++BBI) {
158 PHINode *PN = cast<PHINode>(BBI);
159 if (PN->getIncomingValueForBlock(SI1BB) !=
160 PN->getIncomingValueForBlock(SI2BB))
161 return false;
162 }
163
164 return true;
165 }
166
167 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
168 /// to merge these two terminator instructions together, where SI1 is an
169 /// unconditional branch. PhiNodes will store all PHI nodes in common
170 /// successors.
171 ///
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)172 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
173 BranchInst *SI2,
174 Instruction *Cond,
175 SmallVectorImpl<PHINode*> &PhiNodes) {
176 if (SI1 == SI2) return false; // Can't merge with self!
177 assert(SI1->isUnconditional() && SI2->isConditional());
178
179 // We fold the unconditional branch if we can easily update all PHI nodes in
180 // common successors:
181 // 1> We have a constant incoming value for the conditional branch;
182 // 2> We have "Cond" as the incoming value for the unconditional branch;
183 // 3> SI2->getCondition() and Cond have same operands.
184 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
185 if (!Ci2) return false;
186 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
187 Cond->getOperand(1) == Ci2->getOperand(1)) &&
188 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
189 Cond->getOperand(1) == Ci2->getOperand(0)))
190 return false;
191
192 BasicBlock *SI1BB = SI1->getParent();
193 BasicBlock *SI2BB = SI2->getParent();
194 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
195 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
196 if (SI1Succs.count(*I))
197 for (BasicBlock::iterator BBI = (*I)->begin();
198 isa<PHINode>(BBI); ++BBI) {
199 PHINode *PN = cast<PHINode>(BBI);
200 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
201 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
202 return false;
203 PhiNodes.push_back(PN);
204 }
205 return true;
206 }
207
208 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
209 /// now be entries in it from the 'NewPred' block. The values that will be
210 /// flowing into the PHI nodes will be the same as those coming in from
211 /// ExistPred, an existing predecessor of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)212 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
213 BasicBlock *ExistPred) {
214 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
215
216 PHINode *PN;
217 for (BasicBlock::iterator I = Succ->begin();
218 (PN = dyn_cast<PHINode>(I)); ++I)
219 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
220 }
221
222 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
223 /// given instruction, which is assumed to be safe to speculate. TCC_Free means
224 /// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively
225 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)226 static unsigned ComputeSpeculationCost(const User *I,
227 const TargetTransformInfo &TTI) {
228 assert(isSafeToSpeculativelyExecute(I) &&
229 "Instruction is not safe to speculatively execute!");
230 return TTI.getUserCost(I);
231 }
232 /// DominatesMergePoint - If we have a merge point of an "if condition" as
233 /// accepted above, return true if the specified value dominates the block. We
234 /// don't handle the true generality of domination here, just a special case
235 /// which works well enough for us.
236 ///
237 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
238 /// see if V (which must be an instruction) and its recursive operands
239 /// that do not dominate BB have a combined cost lower than CostRemaining and
240 /// are non-trapping. If both are true, the instruction is inserted into the
241 /// set and true is returned.
242 ///
243 /// The cost for most non-trapping instructions is defined as 1 except for
244 /// Select whose cost is 2.
245 ///
246 /// After this function returns, CostRemaining is decreased by the cost of
247 /// V plus its non-dominating operands. If that cost is greater than
248 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > * AggressiveInsts,unsigned & CostRemaining,const TargetTransformInfo & TTI)249 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
250 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
251 unsigned &CostRemaining,
252 const TargetTransformInfo &TTI) {
253 Instruction *I = dyn_cast<Instruction>(V);
254 if (!I) {
255 // Non-instructions all dominate instructions, but not all constantexprs
256 // can be executed unconditionally.
257 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
258 if (C->canTrap())
259 return false;
260 return true;
261 }
262 BasicBlock *PBB = I->getParent();
263
264 // We don't want to allow weird loops that might have the "if condition" in
265 // the bottom of this block.
266 if (PBB == BB) return false;
267
268 // If this instruction is defined in a block that contains an unconditional
269 // branch to BB, then it must be in the 'conditional' part of the "if
270 // statement". If not, it definitely dominates the region.
271 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
272 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
273 return true;
274
275 // If we aren't allowing aggressive promotion anymore, then don't consider
276 // instructions in the 'if region'.
277 if (!AggressiveInsts) return false;
278
279 // If we have seen this instruction before, don't count it again.
280 if (AggressiveInsts->count(I)) return true;
281
282 // Okay, it looks like the instruction IS in the "condition". Check to
283 // see if it's a cheap instruction to unconditionally compute, and if it
284 // only uses stuff defined outside of the condition. If so, hoist it out.
285 if (!isSafeToSpeculativelyExecute(I))
286 return false;
287
288 unsigned Cost = ComputeSpeculationCost(I, TTI);
289
290 if (Cost > CostRemaining)
291 return false;
292
293 CostRemaining -= Cost;
294
295 // Okay, we can only really hoist these out if their operands do
296 // not take us over the cost threshold.
297 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
298 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
299 return false;
300 // Okay, it's safe to do this! Remember this instruction.
301 AggressiveInsts->insert(I);
302 return true;
303 }
304
305 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
306 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)307 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
308 // Normal constant int.
309 ConstantInt *CI = dyn_cast<ConstantInt>(V);
310 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
311 return CI;
312
313 // This is some kind of pointer constant. Turn it into a pointer-sized
314 // ConstantInt if possible.
315 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
316
317 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
318 if (isa<ConstantPointerNull>(V))
319 return ConstantInt::get(PtrTy, 0);
320
321 // IntToPtr const int.
322 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
323 if (CE->getOpcode() == Instruction::IntToPtr)
324 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
325 // The constant is very likely to have the right type already.
326 if (CI->getType() == PtrTy)
327 return CI;
328 else
329 return cast<ConstantInt>
330 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
331 }
332 return nullptr;
333 }
334
335 namespace {
336
337 /// Given a chain of or (||) or and (&&) comparison of a value against a
338 /// constant, this will try to recover the information required for a switch
339 /// structure.
340 /// It will depth-first traverse the chain of comparison, seeking for patterns
341 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
342 /// representing the different cases for the switch.
343 /// Note that if the chain is composed of '||' it will build the set of elements
344 /// that matches the comparisons (i.e. any of this value validate the chain)
345 /// while for a chain of '&&' it will build the set elements that make the test
346 /// fail.
347 struct ConstantComparesGatherer {
348 const DataLayout &DL;
349 Value *CompValue; /// Value found for the switch comparison
350 Value *Extra; /// Extra clause to be checked before the switch
351 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
352 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
353
354 /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anonfb6897ed0211::ConstantComparesGatherer355 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
356 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
357 gather(Cond);
358 }
359
360 /// Prevent copy
361 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
362 ConstantComparesGatherer &
363 operator=(const ConstantComparesGatherer &) = delete;
364
365 private:
366
367 /// Try to set the current value used for the comparison, it succeeds only if
368 /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anonfb6897ed0211::ConstantComparesGatherer369 bool setValueOnce(Value *NewVal) {
370 if(CompValue && CompValue != NewVal) return false;
371 CompValue = NewVal;
372 return (CompValue != nullptr);
373 }
374
375 /// Try to match Instruction "I" as a comparison against a constant and
376 /// populates the array Vals with the set of values that match (or do not
377 /// match depending on isEQ).
378 /// Return false on failure. On success, the Value the comparison matched
379 /// against is placed in CompValue.
380 /// If CompValue is already set, the function is expected to fail if a match
381 /// is found but the value compared to is different.
matchInstruction__anonfb6897ed0211::ConstantComparesGatherer382 bool matchInstruction(Instruction *I, bool isEQ) {
383 // If this is an icmp against a constant, handle this as one of the cases.
384 ICmpInst *ICI;
385 ConstantInt *C;
386 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
387 (C = GetConstantInt(I->getOperand(1), DL)))) {
388 return false;
389 }
390
391 Value *RHSVal;
392 ConstantInt *RHSC;
393
394 // Pattern match a special case
395 // (x & ~2^x) == y --> x == y || x == y|2^x
396 // This undoes a transformation done by instcombine to fuse 2 compares.
397 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
398 if (match(ICI->getOperand(0),
399 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
400 APInt Not = ~RHSC->getValue();
401 if (Not.isPowerOf2()) {
402 // If we already have a value for the switch, it has to match!
403 if(!setValueOnce(RHSVal))
404 return false;
405
406 Vals.push_back(C);
407 Vals.push_back(ConstantInt::get(C->getContext(),
408 C->getValue() | Not));
409 UsedICmps++;
410 return true;
411 }
412 }
413
414 // If we already have a value for the switch, it has to match!
415 if(!setValueOnce(ICI->getOperand(0)))
416 return false;
417
418 UsedICmps++;
419 Vals.push_back(C);
420 return ICI->getOperand(0);
421 }
422
423 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
424 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
425 ICI->getPredicate(), C->getValue());
426
427 // Shift the range if the compare is fed by an add. This is the range
428 // compare idiom as emitted by instcombine.
429 Value *CandidateVal = I->getOperand(0);
430 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
431 Span = Span.subtract(RHSC->getValue());
432 CandidateVal = RHSVal;
433 }
434
435 // If this is an and/!= check, then we are looking to build the set of
436 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
437 // x != 0 && x != 1.
438 if (!isEQ)
439 Span = Span.inverse();
440
441 // If there are a ton of values, we don't want to make a ginormous switch.
442 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
443 return false;
444 }
445
446 // If we already have a value for the switch, it has to match!
447 if(!setValueOnce(CandidateVal))
448 return false;
449
450 // Add all values from the range to the set
451 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
452 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
453
454 UsedICmps++;
455 return true;
456
457 }
458
459 /// gather - Given a potentially 'or'd or 'and'd together collection of icmp
460 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
461 /// the value being compared, and stick the list constants into the Vals
462 /// vector.
463 /// One "Extra" case is allowed to differ from the other.
gather__anonfb6897ed0211::ConstantComparesGatherer464 void gather(Value *V) {
465 Instruction *I = dyn_cast<Instruction>(V);
466 bool isEQ = (I->getOpcode() == Instruction::Or);
467
468 // Keep a stack (SmallVector for efficiency) for depth-first traversal
469 SmallVector<Value *, 8> DFT;
470
471 // Initialize
472 DFT.push_back(V);
473
474 while(!DFT.empty()) {
475 V = DFT.pop_back_val();
476
477 if (Instruction *I = dyn_cast<Instruction>(V)) {
478 // If it is a || (or && depending on isEQ), process the operands.
479 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
480 DFT.push_back(I->getOperand(1));
481 DFT.push_back(I->getOperand(0));
482 continue;
483 }
484
485 // Try to match the current instruction
486 if (matchInstruction(I, isEQ))
487 // Match succeed, continue the loop
488 continue;
489 }
490
491 // One element of the sequence of || (or &&) could not be match as a
492 // comparison against the same value as the others.
493 // We allow only one "Extra" case to be checked before the switch
494 if (!Extra) {
495 Extra = V;
496 continue;
497 }
498 // Failed to parse a proper sequence, abort now
499 CompValue = nullptr;
500 break;
501 }
502 }
503 };
504
505 }
506
EraseTerminatorInstAndDCECond(TerminatorInst * TI)507 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
508 Instruction *Cond = nullptr;
509 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
510 Cond = dyn_cast<Instruction>(SI->getCondition());
511 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
512 if (BI->isConditional())
513 Cond = dyn_cast<Instruction>(BI->getCondition());
514 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
515 Cond = dyn_cast<Instruction>(IBI->getAddress());
516 }
517
518 TI->eraseFromParent();
519 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
520 }
521
522 /// isValueEqualityComparison - Return true if the specified terminator checks
523 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)524 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
525 Value *CV = nullptr;
526 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
527 // Do not permit merging of large switch instructions into their
528 // predecessors unless there is only one predecessor.
529 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
530 pred_end(SI->getParent())) <= 128)
531 CV = SI->getCondition();
532 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
533 if (BI->isConditional() && BI->getCondition()->hasOneUse())
534 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
535 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
536 CV = ICI->getOperand(0);
537 }
538
539 // Unwrap any lossless ptrtoint cast.
540 if (CV) {
541 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
542 Value *Ptr = PTII->getPointerOperand();
543 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
544 CV = Ptr;
545 }
546 }
547 return CV;
548 }
549
550 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
551 /// decode all of the 'cases' that it represents and return the 'default' block.
552 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)553 GetValueEqualityComparisonCases(TerminatorInst *TI,
554 std::vector<ValueEqualityComparisonCase>
555 &Cases) {
556 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
557 Cases.reserve(SI->getNumCases());
558 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
559 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
560 i.getCaseSuccessor()));
561 return SI->getDefaultDest();
562 }
563
564 BranchInst *BI = cast<BranchInst>(TI);
565 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
566 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
567 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
568 DL),
569 Succ));
570 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
571 }
572
573
574 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
575 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)576 static void EliminateBlockCases(BasicBlock *BB,
577 std::vector<ValueEqualityComparisonCase> &Cases) {
578 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
579 }
580
581 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
582 /// well.
583 static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)584 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
585 std::vector<ValueEqualityComparisonCase > &C2) {
586 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
587
588 // Make V1 be smaller than V2.
589 if (V1->size() > V2->size())
590 std::swap(V1, V2);
591
592 if (V1->size() == 0) return false;
593 if (V1->size() == 1) {
594 // Just scan V2.
595 ConstantInt *TheVal = (*V1)[0].Value;
596 for (unsigned i = 0, e = V2->size(); i != e; ++i)
597 if (TheVal == (*V2)[i].Value)
598 return true;
599 }
600
601 // Otherwise, just sort both lists and compare element by element.
602 array_pod_sort(V1->begin(), V1->end());
603 array_pod_sort(V2->begin(), V2->end());
604 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
605 while (i1 != e1 && i2 != e2) {
606 if ((*V1)[i1].Value == (*V2)[i2].Value)
607 return true;
608 if ((*V1)[i1].Value < (*V2)[i2].Value)
609 ++i1;
610 else
611 ++i2;
612 }
613 return false;
614 }
615
616 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
617 /// terminator instruction and its block is known to only have a single
618 /// predecessor block, check to see if that predecessor is also a value
619 /// comparison with the same value, and if that comparison determines the
620 /// outcome of this comparison. If so, simplify TI. This does a very limited
621 /// form of jump threading.
622 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)623 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
624 BasicBlock *Pred,
625 IRBuilder<> &Builder) {
626 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
627 if (!PredVal) return false; // Not a value comparison in predecessor.
628
629 Value *ThisVal = isValueEqualityComparison(TI);
630 assert(ThisVal && "This isn't a value comparison!!");
631 if (ThisVal != PredVal) return false; // Different predicates.
632
633 // TODO: Preserve branch weight metadata, similarly to how
634 // FoldValueComparisonIntoPredecessors preserves it.
635
636 // Find out information about when control will move from Pred to TI's block.
637 std::vector<ValueEqualityComparisonCase> PredCases;
638 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
639 PredCases);
640 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
641
642 // Find information about how control leaves this block.
643 std::vector<ValueEqualityComparisonCase> ThisCases;
644 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
645 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
646
647 // If TI's block is the default block from Pred's comparison, potentially
648 // simplify TI based on this knowledge.
649 if (PredDef == TI->getParent()) {
650 // If we are here, we know that the value is none of those cases listed in
651 // PredCases. If there are any cases in ThisCases that are in PredCases, we
652 // can simplify TI.
653 if (!ValuesOverlap(PredCases, ThisCases))
654 return false;
655
656 if (isa<BranchInst>(TI)) {
657 // Okay, one of the successors of this condbr is dead. Convert it to a
658 // uncond br.
659 assert(ThisCases.size() == 1 && "Branch can only have one case!");
660 // Insert the new branch.
661 Instruction *NI = Builder.CreateBr(ThisDef);
662 (void) NI;
663
664 // Remove PHI node entries for the dead edge.
665 ThisCases[0].Dest->removePredecessor(TI->getParent());
666
667 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
669
670 EraseTerminatorInstAndDCECond(TI);
671 return true;
672 }
673
674 SwitchInst *SI = cast<SwitchInst>(TI);
675 // Okay, TI has cases that are statically dead, prune them away.
676 SmallPtrSet<Constant*, 16> DeadCases;
677 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
678 DeadCases.insert(PredCases[i].Value);
679
680 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
681 << "Through successor TI: " << *TI);
682
683 // Collect branch weights into a vector.
684 SmallVector<uint32_t, 8> Weights;
685 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
686 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
687 if (HasWeight)
688 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
689 ++MD_i) {
690 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
691 Weights.push_back(CI->getValue().getZExtValue());
692 }
693 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
694 --i;
695 if (DeadCases.count(i.getCaseValue())) {
696 if (HasWeight) {
697 std::swap(Weights[i.getCaseIndex()+1], Weights.back());
698 Weights.pop_back();
699 }
700 i.getCaseSuccessor()->removePredecessor(TI->getParent());
701 SI->removeCase(i);
702 }
703 }
704 if (HasWeight && Weights.size() >= 2)
705 SI->setMetadata(LLVMContext::MD_prof,
706 MDBuilder(SI->getParent()->getContext()).
707 createBranchWeights(Weights));
708
709 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
710 return true;
711 }
712
713 // Otherwise, TI's block must correspond to some matched value. Find out
714 // which value (or set of values) this is.
715 ConstantInt *TIV = nullptr;
716 BasicBlock *TIBB = TI->getParent();
717 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
718 if (PredCases[i].Dest == TIBB) {
719 if (TIV)
720 return false; // Cannot handle multiple values coming to this block.
721 TIV = PredCases[i].Value;
722 }
723 assert(TIV && "No edge from pred to succ?");
724
725 // Okay, we found the one constant that our value can be if we get into TI's
726 // BB. Find out which successor will unconditionally be branched to.
727 BasicBlock *TheRealDest = nullptr;
728 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
729 if (ThisCases[i].Value == TIV) {
730 TheRealDest = ThisCases[i].Dest;
731 break;
732 }
733
734 // If not handled by any explicit cases, it is handled by the default case.
735 if (!TheRealDest) TheRealDest = ThisDef;
736
737 // Remove PHI node entries for dead edges.
738 BasicBlock *CheckEdge = TheRealDest;
739 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
740 if (*SI != CheckEdge)
741 (*SI)->removePredecessor(TIBB);
742 else
743 CheckEdge = nullptr;
744
745 // Insert the new branch.
746 Instruction *NI = Builder.CreateBr(TheRealDest);
747 (void) NI;
748
749 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
750 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
751
752 EraseTerminatorInstAndDCECond(TI);
753 return true;
754 }
755
756 namespace {
757 /// ConstantIntOrdering - This class implements a stable ordering of constant
758 /// integers that does not depend on their address. This is important for
759 /// applications that sort ConstantInt's to ensure uniqueness.
760 struct ConstantIntOrdering {
operator ()__anonfb6897ed0311::ConstantIntOrdering761 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
762 return LHS->getValue().ult(RHS->getValue());
763 }
764 };
765 }
766
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)767 static int ConstantIntSortPredicate(ConstantInt *const *P1,
768 ConstantInt *const *P2) {
769 const ConstantInt *LHS = *P1;
770 const ConstantInt *RHS = *P2;
771 if (LHS->getValue().ult(RHS->getValue()))
772 return 1;
773 if (LHS->getValue() == RHS->getValue())
774 return 0;
775 return -1;
776 }
777
HasBranchWeights(const Instruction * I)778 static inline bool HasBranchWeights(const Instruction* I) {
779 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
780 if (ProfMD && ProfMD->getOperand(0))
781 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
782 return MDS->getString().equals("branch_weights");
783
784 return false;
785 }
786
787 /// Get Weights of a given TerminatorInst, the default weight is at the front
788 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
789 /// metadata.
GetBranchWeights(TerminatorInst * TI,SmallVectorImpl<uint64_t> & Weights)790 static void GetBranchWeights(TerminatorInst *TI,
791 SmallVectorImpl<uint64_t> &Weights) {
792 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
793 assert(MD);
794 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
795 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
796 Weights.push_back(CI->getValue().getZExtValue());
797 }
798
799 // If TI is a conditional eq, the default case is the false case,
800 // and the corresponding branch-weight data is at index 2. We swap the
801 // default weight to be the first entry.
802 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
803 assert(Weights.size() == 2);
804 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
805 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
806 std::swap(Weights.front(), Weights.back());
807 }
808 }
809
810 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)811 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
812 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
813 if (Max > UINT_MAX) {
814 unsigned Offset = 32 - countLeadingZeros(Max);
815 for (uint64_t &I : Weights)
816 I >>= Offset;
817 }
818 }
819
820 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
821 /// equality comparison instruction (either a switch or a branch on "X == c").
822 /// See if any of the predecessors of the terminator block are value comparisons
823 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)824 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
825 IRBuilder<> &Builder) {
826 BasicBlock *BB = TI->getParent();
827 Value *CV = isValueEqualityComparison(TI); // CondVal
828 assert(CV && "Not a comparison?");
829 bool Changed = false;
830
831 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
832 while (!Preds.empty()) {
833 BasicBlock *Pred = Preds.pop_back_val();
834
835 // See if the predecessor is a comparison with the same value.
836 TerminatorInst *PTI = Pred->getTerminator();
837 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
838
839 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
840 // Figure out which 'cases' to copy from SI to PSI.
841 std::vector<ValueEqualityComparisonCase> BBCases;
842 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
843
844 std::vector<ValueEqualityComparisonCase> PredCases;
845 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
846
847 // Based on whether the default edge from PTI goes to BB or not, fill in
848 // PredCases and PredDefault with the new switch cases we would like to
849 // build.
850 SmallVector<BasicBlock*, 8> NewSuccessors;
851
852 // Update the branch weight metadata along the way
853 SmallVector<uint64_t, 8> Weights;
854 bool PredHasWeights = HasBranchWeights(PTI);
855 bool SuccHasWeights = HasBranchWeights(TI);
856
857 if (PredHasWeights) {
858 GetBranchWeights(PTI, Weights);
859 // branch-weight metadata is inconsistent here.
860 if (Weights.size() != 1 + PredCases.size())
861 PredHasWeights = SuccHasWeights = false;
862 } else if (SuccHasWeights)
863 // If there are no predecessor weights but there are successor weights,
864 // populate Weights with 1, which will later be scaled to the sum of
865 // successor's weights
866 Weights.assign(1 + PredCases.size(), 1);
867
868 SmallVector<uint64_t, 8> SuccWeights;
869 if (SuccHasWeights) {
870 GetBranchWeights(TI, SuccWeights);
871 // branch-weight metadata is inconsistent here.
872 if (SuccWeights.size() != 1 + BBCases.size())
873 PredHasWeights = SuccHasWeights = false;
874 } else if (PredHasWeights)
875 SuccWeights.assign(1 + BBCases.size(), 1);
876
877 if (PredDefault == BB) {
878 // If this is the default destination from PTI, only the edges in TI
879 // that don't occur in PTI, or that branch to BB will be activated.
880 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
881 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
882 if (PredCases[i].Dest != BB)
883 PTIHandled.insert(PredCases[i].Value);
884 else {
885 // The default destination is BB, we don't need explicit targets.
886 std::swap(PredCases[i], PredCases.back());
887
888 if (PredHasWeights || SuccHasWeights) {
889 // Increase weight for the default case.
890 Weights[0] += Weights[i+1];
891 std::swap(Weights[i+1], Weights.back());
892 Weights.pop_back();
893 }
894
895 PredCases.pop_back();
896 --i; --e;
897 }
898
899 // Reconstruct the new switch statement we will be building.
900 if (PredDefault != BBDefault) {
901 PredDefault->removePredecessor(Pred);
902 PredDefault = BBDefault;
903 NewSuccessors.push_back(BBDefault);
904 }
905
906 unsigned CasesFromPred = Weights.size();
907 uint64_t ValidTotalSuccWeight = 0;
908 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
909 if (!PTIHandled.count(BBCases[i].Value) &&
910 BBCases[i].Dest != BBDefault) {
911 PredCases.push_back(BBCases[i]);
912 NewSuccessors.push_back(BBCases[i].Dest);
913 if (SuccHasWeights || PredHasWeights) {
914 // The default weight is at index 0, so weight for the ith case
915 // should be at index i+1. Scale the cases from successor by
916 // PredDefaultWeight (Weights[0]).
917 Weights.push_back(Weights[0] * SuccWeights[i+1]);
918 ValidTotalSuccWeight += SuccWeights[i+1];
919 }
920 }
921
922 if (SuccHasWeights || PredHasWeights) {
923 ValidTotalSuccWeight += SuccWeights[0];
924 // Scale the cases from predecessor by ValidTotalSuccWeight.
925 for (unsigned i = 1; i < CasesFromPred; ++i)
926 Weights[i] *= ValidTotalSuccWeight;
927 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
928 Weights[0] *= SuccWeights[0];
929 }
930 } else {
931 // If this is not the default destination from PSI, only the edges
932 // in SI that occur in PSI with a destination of BB will be
933 // activated.
934 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
935 std::map<ConstantInt*, uint64_t> WeightsForHandled;
936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937 if (PredCases[i].Dest == BB) {
938 PTIHandled.insert(PredCases[i].Value);
939
940 if (PredHasWeights || SuccHasWeights) {
941 WeightsForHandled[PredCases[i].Value] = Weights[i+1];
942 std::swap(Weights[i+1], Weights.back());
943 Weights.pop_back();
944 }
945
946 std::swap(PredCases[i], PredCases.back());
947 PredCases.pop_back();
948 --i; --e;
949 }
950
951 // Okay, now we know which constants were sent to BB from the
952 // predecessor. Figure out where they will all go now.
953 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
954 if (PTIHandled.count(BBCases[i].Value)) {
955 // If this is one we are capable of getting...
956 if (PredHasWeights || SuccHasWeights)
957 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
958 PredCases.push_back(BBCases[i]);
959 NewSuccessors.push_back(BBCases[i].Dest);
960 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
961 }
962
963 // If there are any constants vectored to BB that TI doesn't handle,
964 // they must go to the default destination of TI.
965 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
966 PTIHandled.begin(),
967 E = PTIHandled.end(); I != E; ++I) {
968 if (PredHasWeights || SuccHasWeights)
969 Weights.push_back(WeightsForHandled[*I]);
970 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
971 NewSuccessors.push_back(BBDefault);
972 }
973 }
974
975 // Okay, at this point, we know which new successor Pred will get. Make
976 // sure we update the number of entries in the PHI nodes for these
977 // successors.
978 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
979 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
980
981 Builder.SetInsertPoint(PTI);
982 // Convert pointer to int before we switch.
983 if (CV->getType()->isPointerTy()) {
984 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
985 "magicptr");
986 }
987
988 // Now that the successors are updated, create the new Switch instruction.
989 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
990 PredCases.size());
991 NewSI->setDebugLoc(PTI->getDebugLoc());
992 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
993 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
994
995 if (PredHasWeights || SuccHasWeights) {
996 // Halve the weights if any of them cannot fit in an uint32_t
997 FitWeights(Weights);
998
999 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1000
1001 NewSI->setMetadata(LLVMContext::MD_prof,
1002 MDBuilder(BB->getContext()).
1003 createBranchWeights(MDWeights));
1004 }
1005
1006 EraseTerminatorInstAndDCECond(PTI);
1007
1008 // Okay, last check. If BB is still a successor of PSI, then we must
1009 // have an infinite loop case. If so, add an infinitely looping block
1010 // to handle the case to preserve the behavior of the code.
1011 BasicBlock *InfLoopBlock = nullptr;
1012 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1013 if (NewSI->getSuccessor(i) == BB) {
1014 if (!InfLoopBlock) {
1015 // Insert it at the end of the function, because it's either code,
1016 // or it won't matter if it's hot. :)
1017 InfLoopBlock = BasicBlock::Create(BB->getContext(),
1018 "infloop", BB->getParent());
1019 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1020 }
1021 NewSI->setSuccessor(i, InfLoopBlock);
1022 }
1023
1024 Changed = true;
1025 }
1026 }
1027 return Changed;
1028 }
1029
1030 // isSafeToHoistInvoke - If we would need to insert a select that uses the
1031 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
1032 // would need to do this), we can't hoist the invoke, as there is nowhere
1033 // to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1034 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1035 Instruction *I1, Instruction *I2) {
1036 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1037 PHINode *PN;
1038 for (BasicBlock::iterator BBI = SI->begin();
1039 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1040 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1041 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1042 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1043 return false;
1044 }
1045 }
1046 }
1047 return true;
1048 }
1049
1050 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1051
1052 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1053 /// BB2, hoist any common code in the two blocks up into the branch block. The
1054 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1055 static bool HoistThenElseCodeToIf(BranchInst *BI,
1056 const TargetTransformInfo &TTI) {
1057 // This does very trivial matching, with limited scanning, to find identical
1058 // instructions in the two blocks. In particular, we don't want to get into
1059 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1060 // such, we currently just scan for obviously identical instructions in an
1061 // identical order.
1062 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1063 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1064
1065 BasicBlock::iterator BB1_Itr = BB1->begin();
1066 BasicBlock::iterator BB2_Itr = BB2->begin();
1067
1068 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1069 // Skip debug info if it is not identical.
1070 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1071 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1072 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1073 while (isa<DbgInfoIntrinsic>(I1))
1074 I1 = BB1_Itr++;
1075 while (isa<DbgInfoIntrinsic>(I2))
1076 I2 = BB2_Itr++;
1077 }
1078 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1079 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1080 return false;
1081
1082 BasicBlock *BIParent = BI->getParent();
1083
1084 bool Changed = false;
1085 do {
1086 // If we are hoisting the terminator instruction, don't move one (making a
1087 // broken BB), instead clone it, and remove BI.
1088 if (isa<TerminatorInst>(I1))
1089 goto HoistTerminator;
1090
1091 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1092 return Changed;
1093
1094 // For a normal instruction, we just move one to right before the branch,
1095 // then replace all uses of the other with the first. Finally, we remove
1096 // the now redundant second instruction.
1097 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1098 if (!I2->use_empty())
1099 I2->replaceAllUsesWith(I1);
1100 I1->intersectOptionalDataWith(I2);
1101 unsigned KnownIDs[] = {
1102 LLVMContext::MD_tbaa,
1103 LLVMContext::MD_range,
1104 LLVMContext::MD_fpmath,
1105 LLVMContext::MD_invariant_load,
1106 LLVMContext::MD_nonnull
1107 };
1108 combineMetadata(I1, I2, KnownIDs);
1109 I2->eraseFromParent();
1110 Changed = true;
1111
1112 I1 = BB1_Itr++;
1113 I2 = BB2_Itr++;
1114 // Skip debug info if it is not identical.
1115 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1116 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1117 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1118 while (isa<DbgInfoIntrinsic>(I1))
1119 I1 = BB1_Itr++;
1120 while (isa<DbgInfoIntrinsic>(I2))
1121 I2 = BB2_Itr++;
1122 }
1123 } while (I1->isIdenticalToWhenDefined(I2));
1124
1125 return true;
1126
1127 HoistTerminator:
1128 // It may not be possible to hoist an invoke.
1129 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1130 return Changed;
1131
1132 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1133 PHINode *PN;
1134 for (BasicBlock::iterator BBI = SI->begin();
1135 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1136 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1137 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1138 if (BB1V == BB2V)
1139 continue;
1140
1141 // Check for passingValueIsAlwaysUndefined here because we would rather
1142 // eliminate undefined control flow then converting it to a select.
1143 if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1144 passingValueIsAlwaysUndefined(BB2V, PN))
1145 return Changed;
1146
1147 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1148 return Changed;
1149 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1150 return Changed;
1151 }
1152 }
1153
1154 // Okay, it is safe to hoist the terminator.
1155 Instruction *NT = I1->clone();
1156 BIParent->getInstList().insert(BI, NT);
1157 if (!NT->getType()->isVoidTy()) {
1158 I1->replaceAllUsesWith(NT);
1159 I2->replaceAllUsesWith(NT);
1160 NT->takeName(I1);
1161 }
1162
1163 IRBuilder<true, NoFolder> Builder(NT);
1164 // Hoisting one of the terminators from our successor is a great thing.
1165 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1166 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1167 // nodes, so we insert select instruction to compute the final result.
1168 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1169 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1170 PHINode *PN;
1171 for (BasicBlock::iterator BBI = SI->begin();
1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175 if (BB1V == BB2V) continue;
1176
1177 // These values do not agree. Insert a select instruction before NT
1178 // that determines the right value.
1179 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1180 if (!SI)
1181 SI = cast<SelectInst>
1182 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1183 BB1V->getName()+"."+BB2V->getName()));
1184
1185 // Make the PHI node use the select for all incoming values for BB1/BB2
1186 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1187 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1188 PN->setIncomingValue(i, SI);
1189 }
1190 }
1191
1192 // Update any PHI nodes in our new successors.
1193 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1194 AddPredecessorToBlock(*SI, BIParent, BB1);
1195
1196 EraseTerminatorInstAndDCECond(BI);
1197 return true;
1198 }
1199
1200 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1201 /// check whether BBEnd has only two predecessors and the other predecessor
1202 /// ends with an unconditional branch. If it is true, sink any common code
1203 /// in the two predecessors to BBEnd.
SinkThenElseCodeToEnd(BranchInst * BI1)1204 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1205 assert(BI1->isUnconditional());
1206 BasicBlock *BB1 = BI1->getParent();
1207 BasicBlock *BBEnd = BI1->getSuccessor(0);
1208
1209 // Check that BBEnd has two predecessors and the other predecessor ends with
1210 // an unconditional branch.
1211 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1212 BasicBlock *Pred0 = *PI++;
1213 if (PI == PE) // Only one predecessor.
1214 return false;
1215 BasicBlock *Pred1 = *PI++;
1216 if (PI != PE) // More than two predecessors.
1217 return false;
1218 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1219 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1220 if (!BI2 || !BI2->isUnconditional())
1221 return false;
1222
1223 // Gather the PHI nodes in BBEnd.
1224 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1225 Instruction *FirstNonPhiInBBEnd = nullptr;
1226 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1227 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1228 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1229 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1230 JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1231 } else {
1232 FirstNonPhiInBBEnd = &*I;
1233 break;
1234 }
1235 }
1236 if (!FirstNonPhiInBBEnd)
1237 return false;
1238
1239 // This does very trivial matching, with limited scanning, to find identical
1240 // instructions in the two blocks. We scan backward for obviously identical
1241 // instructions in an identical order.
1242 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1243 RE1 = BB1->getInstList().rend(),
1244 RI2 = BB2->getInstList().rbegin(),
1245 RE2 = BB2->getInstList().rend();
1246 // Skip debug info.
1247 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1248 if (RI1 == RE1)
1249 return false;
1250 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1251 if (RI2 == RE2)
1252 return false;
1253 // Skip the unconditional branches.
1254 ++RI1;
1255 ++RI2;
1256
1257 bool Changed = false;
1258 while (RI1 != RE1 && RI2 != RE2) {
1259 // Skip debug info.
1260 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1261 if (RI1 == RE1)
1262 return Changed;
1263 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1264 if (RI2 == RE2)
1265 return Changed;
1266
1267 Instruction *I1 = &*RI1, *I2 = &*RI2;
1268 auto InstPair = std::make_pair(I1, I2);
1269 // I1 and I2 should have a single use in the same PHI node, and they
1270 // perform the same operation.
1271 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1272 if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1273 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1274 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1275 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1276 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1277 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1278 !I1->hasOneUse() || !I2->hasOneUse() ||
1279 !JointValueMap.count(InstPair))
1280 return Changed;
1281
1282 // Check whether we should swap the operands of ICmpInst.
1283 // TODO: Add support of communativity.
1284 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1285 bool SwapOpnds = false;
1286 if (ICmp1 && ICmp2 &&
1287 ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1288 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1289 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1290 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1291 ICmp2->swapOperands();
1292 SwapOpnds = true;
1293 }
1294 if (!I1->isSameOperationAs(I2)) {
1295 if (SwapOpnds)
1296 ICmp2->swapOperands();
1297 return Changed;
1298 }
1299
1300 // The operands should be either the same or they need to be generated
1301 // with a PHI node after sinking. We only handle the case where there is
1302 // a single pair of different operands.
1303 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1304 unsigned Op1Idx = ~0U;
1305 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1306 if (I1->getOperand(I) == I2->getOperand(I))
1307 continue;
1308 // Early exit if we have more-than one pair of different operands or if
1309 // we need a PHI node to replace a constant.
1310 if (Op1Idx != ~0U ||
1311 isa<Constant>(I1->getOperand(I)) ||
1312 isa<Constant>(I2->getOperand(I))) {
1313 // If we can't sink the instructions, undo the swapping.
1314 if (SwapOpnds)
1315 ICmp2->swapOperands();
1316 return Changed;
1317 }
1318 DifferentOp1 = I1->getOperand(I);
1319 Op1Idx = I;
1320 DifferentOp2 = I2->getOperand(I);
1321 }
1322
1323 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1324 DEBUG(dbgs() << " " << *I2 << "\n");
1325
1326 // We insert the pair of different operands to JointValueMap and
1327 // remove (I1, I2) from JointValueMap.
1328 if (Op1Idx != ~0U) {
1329 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1330 if (!NewPN) {
1331 NewPN =
1332 PHINode::Create(DifferentOp1->getType(), 2,
1333 DifferentOp1->getName() + ".sink", BBEnd->begin());
1334 NewPN->addIncoming(DifferentOp1, BB1);
1335 NewPN->addIncoming(DifferentOp2, BB2);
1336 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1337 }
1338 // I1 should use NewPN instead of DifferentOp1.
1339 I1->setOperand(Op1Idx, NewPN);
1340 }
1341 PHINode *OldPN = JointValueMap[InstPair];
1342 JointValueMap.erase(InstPair);
1343
1344 // We need to update RE1 and RE2 if we are going to sink the first
1345 // instruction in the basic block down.
1346 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1347 // Sink the instruction.
1348 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1349 if (!OldPN->use_empty())
1350 OldPN->replaceAllUsesWith(I1);
1351 OldPN->eraseFromParent();
1352
1353 if (!I2->use_empty())
1354 I2->replaceAllUsesWith(I1);
1355 I1->intersectOptionalDataWith(I2);
1356 // TODO: Use combineMetadata here to preserve what metadata we can
1357 // (analogous to the hoisting case above).
1358 I2->eraseFromParent();
1359
1360 if (UpdateRE1)
1361 RE1 = BB1->getInstList().rend();
1362 if (UpdateRE2)
1363 RE2 = BB2->getInstList().rend();
1364 FirstNonPhiInBBEnd = I1;
1365 NumSinkCommons++;
1366 Changed = true;
1367 }
1368 return Changed;
1369 }
1370
1371 /// \brief Determine if we can hoist sink a sole store instruction out of a
1372 /// conditional block.
1373 ///
1374 /// We are looking for code like the following:
1375 /// BrBB:
1376 /// store i32 %add, i32* %arrayidx2
1377 /// ... // No other stores or function calls (we could be calling a memory
1378 /// ... // function).
1379 /// %cmp = icmp ult %x, %y
1380 /// br i1 %cmp, label %EndBB, label %ThenBB
1381 /// ThenBB:
1382 /// store i32 %add5, i32* %arrayidx2
1383 /// br label EndBB
1384 /// EndBB:
1385 /// ...
1386 /// We are going to transform this into:
1387 /// BrBB:
1388 /// store i32 %add, i32* %arrayidx2
1389 /// ... //
1390 /// %cmp = icmp ult %x, %y
1391 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1392 /// store i32 %add.add5, i32* %arrayidx2
1393 /// ...
1394 ///
1395 /// \return The pointer to the value of the previous store if the store can be
1396 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1397 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1398 BasicBlock *StoreBB, BasicBlock *EndBB) {
1399 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1400 if (!StoreToHoist)
1401 return nullptr;
1402
1403 // Volatile or atomic.
1404 if (!StoreToHoist->isSimple())
1405 return nullptr;
1406
1407 Value *StorePtr = StoreToHoist->getPointerOperand();
1408
1409 // Look for a store to the same pointer in BrBB.
1410 unsigned MaxNumInstToLookAt = 10;
1411 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1412 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1413 Instruction *CurI = &*RI;
1414
1415 // Could be calling an instruction that effects memory like free().
1416 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1417 return nullptr;
1418
1419 StoreInst *SI = dyn_cast<StoreInst>(CurI);
1420 // Found the previous store make sure it stores to the same location.
1421 if (SI && SI->getPointerOperand() == StorePtr)
1422 // Found the previous store, return its value operand.
1423 return SI->getValueOperand();
1424 else if (SI)
1425 return nullptr; // Unknown store.
1426 }
1427
1428 return nullptr;
1429 }
1430
1431 /// \brief Speculate a conditional basic block flattening the CFG.
1432 ///
1433 /// Note that this is a very risky transform currently. Speculating
1434 /// instructions like this is most often not desirable. Instead, there is an MI
1435 /// pass which can do it with full awareness of the resource constraints.
1436 /// However, some cases are "obvious" and we should do directly. An example of
1437 /// this is speculating a single, reasonably cheap instruction.
1438 ///
1439 /// There is only one distinct advantage to flattening the CFG at the IR level:
1440 /// it makes very common but simplistic optimizations such as are common in
1441 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1442 /// modeling their effects with easier to reason about SSA value graphs.
1443 ///
1444 ///
1445 /// An illustration of this transform is turning this IR:
1446 /// \code
1447 /// BB:
1448 /// %cmp = icmp ult %x, %y
1449 /// br i1 %cmp, label %EndBB, label %ThenBB
1450 /// ThenBB:
1451 /// %sub = sub %x, %y
1452 /// br label BB2
1453 /// EndBB:
1454 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1455 /// ...
1456 /// \endcode
1457 ///
1458 /// Into this IR:
1459 /// \code
1460 /// BB:
1461 /// %cmp = icmp ult %x, %y
1462 /// %sub = sub %x, %y
1463 /// %cond = select i1 %cmp, 0, %sub
1464 /// ...
1465 /// \endcode
1466 ///
1467 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)1468 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1469 const TargetTransformInfo &TTI) {
1470 // Be conservative for now. FP select instruction can often be expensive.
1471 Value *BrCond = BI->getCondition();
1472 if (isa<FCmpInst>(BrCond))
1473 return false;
1474
1475 BasicBlock *BB = BI->getParent();
1476 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1477
1478 // If ThenBB is actually on the false edge of the conditional branch, remember
1479 // to swap the select operands later.
1480 bool Invert = false;
1481 if (ThenBB != BI->getSuccessor(0)) {
1482 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1483 Invert = true;
1484 }
1485 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1486
1487 // Keep a count of how many times instructions are used within CondBB when
1488 // they are candidates for sinking into CondBB. Specifically:
1489 // - They are defined in BB, and
1490 // - They have no side effects, and
1491 // - All of their uses are in CondBB.
1492 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1493
1494 unsigned SpeculationCost = 0;
1495 Value *SpeculatedStoreValue = nullptr;
1496 StoreInst *SpeculatedStore = nullptr;
1497 for (BasicBlock::iterator BBI = ThenBB->begin(),
1498 BBE = std::prev(ThenBB->end());
1499 BBI != BBE; ++BBI) {
1500 Instruction *I = BBI;
1501 // Skip debug info.
1502 if (isa<DbgInfoIntrinsic>(I))
1503 continue;
1504
1505 // Only speculatively execute a single instruction (not counting the
1506 // terminator) for now.
1507 ++SpeculationCost;
1508 if (SpeculationCost > 1)
1509 return false;
1510
1511 // Don't hoist the instruction if it's unsafe or expensive.
1512 if (!isSafeToSpeculativelyExecute(I) &&
1513 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1514 I, BB, ThenBB, EndBB))))
1515 return false;
1516 if (!SpeculatedStoreValue &&
1517 ComputeSpeculationCost(I, TTI) >
1518 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1519 return false;
1520
1521 // Store the store speculation candidate.
1522 if (SpeculatedStoreValue)
1523 SpeculatedStore = cast<StoreInst>(I);
1524
1525 // Do not hoist the instruction if any of its operands are defined but not
1526 // used in BB. The transformation will prevent the operand from
1527 // being sunk into the use block.
1528 for (User::op_iterator i = I->op_begin(), e = I->op_end();
1529 i != e; ++i) {
1530 Instruction *OpI = dyn_cast<Instruction>(*i);
1531 if (!OpI || OpI->getParent() != BB ||
1532 OpI->mayHaveSideEffects())
1533 continue; // Not a candidate for sinking.
1534
1535 ++SinkCandidateUseCounts[OpI];
1536 }
1537 }
1538
1539 // Consider any sink candidates which are only used in CondBB as costs for
1540 // speculation. Note, while we iterate over a DenseMap here, we are summing
1541 // and so iteration order isn't significant.
1542 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1543 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1544 I != E; ++I)
1545 if (I->first->getNumUses() == I->second) {
1546 ++SpeculationCost;
1547 if (SpeculationCost > 1)
1548 return false;
1549 }
1550
1551 // Check that the PHI nodes can be converted to selects.
1552 bool HaveRewritablePHIs = false;
1553 for (BasicBlock::iterator I = EndBB->begin();
1554 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1555 Value *OrigV = PN->getIncomingValueForBlock(BB);
1556 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1557
1558 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1559 // Skip PHIs which are trivial.
1560 if (ThenV == OrigV)
1561 continue;
1562
1563 // Don't convert to selects if we could remove undefined behavior instead.
1564 if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1565 passingValueIsAlwaysUndefined(ThenV, PN))
1566 return false;
1567
1568 HaveRewritablePHIs = true;
1569 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1570 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1571 if (!OrigCE && !ThenCE)
1572 continue; // Known safe and cheap.
1573
1574 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1575 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1576 return false;
1577 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1578 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1579 unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1580 TargetTransformInfo::TCC_Basic;
1581 if (OrigCost + ThenCost > MaxCost)
1582 return false;
1583
1584 // Account for the cost of an unfolded ConstantExpr which could end up
1585 // getting expanded into Instructions.
1586 // FIXME: This doesn't account for how many operations are combined in the
1587 // constant expression.
1588 ++SpeculationCost;
1589 if (SpeculationCost > 1)
1590 return false;
1591 }
1592
1593 // If there are no PHIs to process, bail early. This helps ensure idempotence
1594 // as well.
1595 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1596 return false;
1597
1598 // If we get here, we can hoist the instruction and if-convert.
1599 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1600
1601 // Insert a select of the value of the speculated store.
1602 if (SpeculatedStoreValue) {
1603 IRBuilder<true, NoFolder> Builder(BI);
1604 Value *TrueV = SpeculatedStore->getValueOperand();
1605 Value *FalseV = SpeculatedStoreValue;
1606 if (Invert)
1607 std::swap(TrueV, FalseV);
1608 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1609 "." + FalseV->getName());
1610 SpeculatedStore->setOperand(0, S);
1611 }
1612
1613 // Hoist the instructions.
1614 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1615 std::prev(ThenBB->end()));
1616
1617 // Insert selects and rewrite the PHI operands.
1618 IRBuilder<true, NoFolder> Builder(BI);
1619 for (BasicBlock::iterator I = EndBB->begin();
1620 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1621 unsigned OrigI = PN->getBasicBlockIndex(BB);
1622 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1623 Value *OrigV = PN->getIncomingValue(OrigI);
1624 Value *ThenV = PN->getIncomingValue(ThenI);
1625
1626 // Skip PHIs which are trivial.
1627 if (OrigV == ThenV)
1628 continue;
1629
1630 // Create a select whose true value is the speculatively executed value and
1631 // false value is the preexisting value. Swap them if the branch
1632 // destinations were inverted.
1633 Value *TrueV = ThenV, *FalseV = OrigV;
1634 if (Invert)
1635 std::swap(TrueV, FalseV);
1636 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1637 TrueV->getName() + "." + FalseV->getName());
1638 PN->setIncomingValue(OrigI, V);
1639 PN->setIncomingValue(ThenI, V);
1640 }
1641
1642 ++NumSpeculations;
1643 return true;
1644 }
1645
1646 /// \returns True if this block contains a CallInst with the NoDuplicate
1647 /// attribute.
HasNoDuplicateCall(const BasicBlock * BB)1648 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1649 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1650 const CallInst *CI = dyn_cast<CallInst>(I);
1651 if (!CI)
1652 continue;
1653 if (CI->cannotDuplicate())
1654 return true;
1655 }
1656 return false;
1657 }
1658
1659 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1660 /// across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1661 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1662 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1663 unsigned Size = 0;
1664
1665 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1666 if (isa<DbgInfoIntrinsic>(BBI))
1667 continue;
1668 if (Size > 10) return false; // Don't clone large BB's.
1669 ++Size;
1670
1671 // We can only support instructions that do not define values that are
1672 // live outside of the current basic block.
1673 for (User *U : BBI->users()) {
1674 Instruction *UI = cast<Instruction>(U);
1675 if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1676 }
1677
1678 // Looks ok, continue checking.
1679 }
1680
1681 return true;
1682 }
1683
1684 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1685 /// that is defined in the same block as the branch and if any PHI entries are
1686 /// constants, thread edges corresponding to that entry to be branches to their
1687 /// ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout & DL)1688 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1689 BasicBlock *BB = BI->getParent();
1690 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1691 // NOTE: we currently cannot transform this case if the PHI node is used
1692 // outside of the block.
1693 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1694 return false;
1695
1696 // Degenerate case of a single entry PHI.
1697 if (PN->getNumIncomingValues() == 1) {
1698 FoldSingleEntryPHINodes(PN->getParent());
1699 return true;
1700 }
1701
1702 // Now we know that this block has multiple preds and two succs.
1703 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1704
1705 if (HasNoDuplicateCall(BB)) return false;
1706
1707 // Okay, this is a simple enough basic block. See if any phi values are
1708 // constants.
1709 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1710 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1711 if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1712
1713 // Okay, we now know that all edges from PredBB should be revectored to
1714 // branch to RealDest.
1715 BasicBlock *PredBB = PN->getIncomingBlock(i);
1716 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1717
1718 if (RealDest == BB) continue; // Skip self loops.
1719 // Skip if the predecessor's terminator is an indirect branch.
1720 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1721
1722 // The dest block might have PHI nodes, other predecessors and other
1723 // difficult cases. Instead of being smart about this, just insert a new
1724 // block that jumps to the destination block, effectively splitting
1725 // the edge we are about to create.
1726 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1727 RealDest->getName()+".critedge",
1728 RealDest->getParent(), RealDest);
1729 BranchInst::Create(RealDest, EdgeBB);
1730
1731 // Update PHI nodes.
1732 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1733
1734 // BB may have instructions that are being threaded over. Clone these
1735 // instructions into EdgeBB. We know that there will be no uses of the
1736 // cloned instructions outside of EdgeBB.
1737 BasicBlock::iterator InsertPt = EdgeBB->begin();
1738 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1739 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1740 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1741 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1742 continue;
1743 }
1744 // Clone the instruction.
1745 Instruction *N = BBI->clone();
1746 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1747
1748 // Update operands due to translation.
1749 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1750 i != e; ++i) {
1751 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1752 if (PI != TranslateMap.end())
1753 *i = PI->second;
1754 }
1755
1756 // Check for trivial simplification.
1757 if (Value *V = SimplifyInstruction(N, DL)) {
1758 TranslateMap[BBI] = V;
1759 delete N; // Instruction folded away, don't need actual inst
1760 } else {
1761 // Insert the new instruction into its new home.
1762 EdgeBB->getInstList().insert(InsertPt, N);
1763 if (!BBI->use_empty())
1764 TranslateMap[BBI] = N;
1765 }
1766 }
1767
1768 // Loop over all of the edges from PredBB to BB, changing them to branch
1769 // to EdgeBB instead.
1770 TerminatorInst *PredBBTI = PredBB->getTerminator();
1771 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1772 if (PredBBTI->getSuccessor(i) == BB) {
1773 BB->removePredecessor(PredBB);
1774 PredBBTI->setSuccessor(i, EdgeBB);
1775 }
1776
1777 // Recurse, simplifying any other constants.
1778 return FoldCondBranchOnPHI(BI, DL) | true;
1779 }
1780
1781 return false;
1782 }
1783
1784 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1785 /// PHI node, see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,const DataLayout & DL)1786 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1787 const DataLayout &DL) {
1788 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1789 // statement", which has a very simple dominance structure. Basically, we
1790 // are trying to find the condition that is being branched on, which
1791 // subsequently causes this merge to happen. We really want control
1792 // dependence information for this check, but simplifycfg can't keep it up
1793 // to date, and this catches most of the cases we care about anyway.
1794 BasicBlock *BB = PN->getParent();
1795 BasicBlock *IfTrue, *IfFalse;
1796 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1797 if (!IfCond ||
1798 // Don't bother if the branch will be constant folded trivially.
1799 isa<ConstantInt>(IfCond))
1800 return false;
1801
1802 // Okay, we found that we can merge this two-entry phi node into a select.
1803 // Doing so would require us to fold *all* two entry phi nodes in this block.
1804 // At some point this becomes non-profitable (particularly if the target
1805 // doesn't support cmov's). Only do this transformation if there are two or
1806 // fewer PHI nodes in this block.
1807 unsigned NumPhis = 0;
1808 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1809 if (NumPhis > 2)
1810 return false;
1811
1812 // Loop over the PHI's seeing if we can promote them all to select
1813 // instructions. While we are at it, keep track of the instructions
1814 // that need to be moved to the dominating block.
1815 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1816 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1817 MaxCostVal1 = PHINodeFoldingThreshold;
1818 MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1819 MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1820
1821 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1822 PHINode *PN = cast<PHINode>(II++);
1823 if (Value *V = SimplifyInstruction(PN, DL)) {
1824 PN->replaceAllUsesWith(V);
1825 PN->eraseFromParent();
1826 continue;
1827 }
1828
1829 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1830 MaxCostVal0, TTI) ||
1831 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1832 MaxCostVal1, TTI))
1833 return false;
1834 }
1835
1836 // If we folded the first phi, PN dangles at this point. Refresh it. If
1837 // we ran out of PHIs then we simplified them all.
1838 PN = dyn_cast<PHINode>(BB->begin());
1839 if (!PN) return true;
1840
1841 // Don't fold i1 branches on PHIs which contain binary operators. These can
1842 // often be turned into switches and other things.
1843 if (PN->getType()->isIntegerTy(1) &&
1844 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1845 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1846 isa<BinaryOperator>(IfCond)))
1847 return false;
1848
1849 // If we all PHI nodes are promotable, check to make sure that all
1850 // instructions in the predecessor blocks can be promoted as well. If
1851 // not, we won't be able to get rid of the control flow, so it's not
1852 // worth promoting to select instructions.
1853 BasicBlock *DomBlock = nullptr;
1854 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1855 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1856 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1857 IfBlock1 = nullptr;
1858 } else {
1859 DomBlock = *pred_begin(IfBlock1);
1860 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1861 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1862 // This is not an aggressive instruction that we can promote.
1863 // Because of this, we won't be able to get rid of the control
1864 // flow, so the xform is not worth it.
1865 return false;
1866 }
1867 }
1868
1869 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1870 IfBlock2 = nullptr;
1871 } else {
1872 DomBlock = *pred_begin(IfBlock2);
1873 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1874 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1875 // This is not an aggressive instruction that we can promote.
1876 // Because of this, we won't be able to get rid of the control
1877 // flow, so the xform is not worth it.
1878 return false;
1879 }
1880 }
1881
1882 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1883 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1884
1885 // If we can still promote the PHI nodes after this gauntlet of tests,
1886 // do all of the PHI's now.
1887 Instruction *InsertPt = DomBlock->getTerminator();
1888 IRBuilder<true, NoFolder> Builder(InsertPt);
1889
1890 // Move all 'aggressive' instructions, which are defined in the
1891 // conditional parts of the if's up to the dominating block.
1892 if (IfBlock1)
1893 DomBlock->getInstList().splice(InsertPt,
1894 IfBlock1->getInstList(), IfBlock1->begin(),
1895 IfBlock1->getTerminator());
1896 if (IfBlock2)
1897 DomBlock->getInstList().splice(InsertPt,
1898 IfBlock2->getInstList(), IfBlock2->begin(),
1899 IfBlock2->getTerminator());
1900
1901 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1902 // Change the PHI node into a select instruction.
1903 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1904 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1905
1906 SelectInst *NV =
1907 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1908 PN->replaceAllUsesWith(NV);
1909 NV->takeName(PN);
1910 PN->eraseFromParent();
1911 }
1912
1913 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1914 // has been flattened. Change DomBlock to jump directly to our new block to
1915 // avoid other simplifycfg's kicking in on the diamond.
1916 TerminatorInst *OldTI = DomBlock->getTerminator();
1917 Builder.SetInsertPoint(OldTI);
1918 Builder.CreateBr(BB);
1919 OldTI->eraseFromParent();
1920 return true;
1921 }
1922
1923 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1924 /// to two returning blocks, try to merge them together into one return,
1925 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1926 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1927 IRBuilder<> &Builder) {
1928 assert(BI->isConditional() && "Must be a conditional branch");
1929 BasicBlock *TrueSucc = BI->getSuccessor(0);
1930 BasicBlock *FalseSucc = BI->getSuccessor(1);
1931 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1932 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1933
1934 // Check to ensure both blocks are empty (just a return) or optionally empty
1935 // with PHI nodes. If there are other instructions, merging would cause extra
1936 // computation on one path or the other.
1937 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1938 return false;
1939 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1940 return false;
1941
1942 Builder.SetInsertPoint(BI);
1943 // Okay, we found a branch that is going to two return nodes. If
1944 // there is no return value for this function, just change the
1945 // branch into a return.
1946 if (FalseRet->getNumOperands() == 0) {
1947 TrueSucc->removePredecessor(BI->getParent());
1948 FalseSucc->removePredecessor(BI->getParent());
1949 Builder.CreateRetVoid();
1950 EraseTerminatorInstAndDCECond(BI);
1951 return true;
1952 }
1953
1954 // Otherwise, figure out what the true and false return values are
1955 // so we can insert a new select instruction.
1956 Value *TrueValue = TrueRet->getReturnValue();
1957 Value *FalseValue = FalseRet->getReturnValue();
1958
1959 // Unwrap any PHI nodes in the return blocks.
1960 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1961 if (TVPN->getParent() == TrueSucc)
1962 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1963 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1964 if (FVPN->getParent() == FalseSucc)
1965 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1966
1967 // In order for this transformation to be safe, we must be able to
1968 // unconditionally execute both operands to the return. This is
1969 // normally the case, but we could have a potentially-trapping
1970 // constant expression that prevents this transformation from being
1971 // safe.
1972 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1973 if (TCV->canTrap())
1974 return false;
1975 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1976 if (FCV->canTrap())
1977 return false;
1978
1979 // Okay, we collected all the mapped values and checked them for sanity, and
1980 // defined to really do this transformation. First, update the CFG.
1981 TrueSucc->removePredecessor(BI->getParent());
1982 FalseSucc->removePredecessor(BI->getParent());
1983
1984 // Insert select instructions where needed.
1985 Value *BrCond = BI->getCondition();
1986 if (TrueValue) {
1987 // Insert a select if the results differ.
1988 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1989 } else if (isa<UndefValue>(TrueValue)) {
1990 TrueValue = FalseValue;
1991 } else {
1992 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1993 FalseValue, "retval");
1994 }
1995 }
1996
1997 Value *RI = !TrueValue ?
1998 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1999
2000 (void) RI;
2001
2002 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2003 << "\n " << *BI << "NewRet = " << *RI
2004 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2005
2006 EraseTerminatorInstAndDCECond(BI);
2007
2008 return true;
2009 }
2010
2011 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
2012 /// probabilities of the branch taking each edge. Fills in the two APInt
2013 /// parameters and return true, or returns false if no or invalid metadata was
2014 /// found.
ExtractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)2015 static bool ExtractBranchMetadata(BranchInst *BI,
2016 uint64_t &ProbTrue, uint64_t &ProbFalse) {
2017 assert(BI->isConditional() &&
2018 "Looking for probabilities on unconditional branch?");
2019 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2020 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2021 ConstantInt *CITrue =
2022 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2023 ConstantInt *CIFalse =
2024 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2025 if (!CITrue || !CIFalse) return false;
2026 ProbTrue = CITrue->getValue().getZExtValue();
2027 ProbFalse = CIFalse->getValue().getZExtValue();
2028 return true;
2029 }
2030
2031 /// checkCSEInPredecessor - Return true if the given instruction is available
2032 /// in its predecessor block. If yes, the instruction will be removed.
2033 ///
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)2034 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2035 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2036 return false;
2037 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2038 Instruction *PBI = &*I;
2039 // Check whether Inst and PBI generate the same value.
2040 if (Inst->isIdenticalTo(PBI)) {
2041 Inst->replaceAllUsesWith(PBI);
2042 Inst->eraseFromParent();
2043 return true;
2044 }
2045 }
2046 return false;
2047 }
2048
2049 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
2050 /// predecessor branches to us and one of our successors, fold the block into
2051 /// the predecessor and use logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,unsigned BonusInstThreshold)2052 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2053 BasicBlock *BB = BI->getParent();
2054
2055 Instruction *Cond = nullptr;
2056 if (BI->isConditional())
2057 Cond = dyn_cast<Instruction>(BI->getCondition());
2058 else {
2059 // For unconditional branch, check for a simple CFG pattern, where
2060 // BB has a single predecessor and BB's successor is also its predecessor's
2061 // successor. If such pattern exisits, check for CSE between BB and its
2062 // predecessor.
2063 if (BasicBlock *PB = BB->getSinglePredecessor())
2064 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2065 if (PBI->isConditional() &&
2066 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2067 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2068 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2069 I != E; ) {
2070 Instruction *Curr = I++;
2071 if (isa<CmpInst>(Curr)) {
2072 Cond = Curr;
2073 break;
2074 }
2075 // Quit if we can't remove this instruction.
2076 if (!checkCSEInPredecessor(Curr, PB))
2077 return false;
2078 }
2079 }
2080
2081 if (!Cond)
2082 return false;
2083 }
2084
2085 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2086 Cond->getParent() != BB || !Cond->hasOneUse())
2087 return false;
2088
2089 // Make sure the instruction after the condition is the cond branch.
2090 BasicBlock::iterator CondIt = Cond; ++CondIt;
2091
2092 // Ignore dbg intrinsics.
2093 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2094
2095 if (&*CondIt != BI)
2096 return false;
2097
2098 // Only allow this transformation if computing the condition doesn't involve
2099 // too many instructions and these involved instructions can be executed
2100 // unconditionally. We denote all involved instructions except the condition
2101 // as "bonus instructions", and only allow this transformation when the
2102 // number of the bonus instructions does not exceed a certain threshold.
2103 unsigned NumBonusInsts = 0;
2104 for (auto I = BB->begin(); Cond != I; ++I) {
2105 // Ignore dbg intrinsics.
2106 if (isa<DbgInfoIntrinsic>(I))
2107 continue;
2108 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
2109 return false;
2110 // I has only one use and can be executed unconditionally.
2111 Instruction *User = dyn_cast<Instruction>(I->user_back());
2112 if (User == nullptr || User->getParent() != BB)
2113 return false;
2114 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2115 // to use any other instruction, User must be an instruction between next(I)
2116 // and Cond.
2117 ++NumBonusInsts;
2118 // Early exits once we reach the limit.
2119 if (NumBonusInsts > BonusInstThreshold)
2120 return false;
2121 }
2122
2123 // Cond is known to be a compare or binary operator. Check to make sure that
2124 // neither operand is a potentially-trapping constant expression.
2125 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2126 if (CE->canTrap())
2127 return false;
2128 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2129 if (CE->canTrap())
2130 return false;
2131
2132 // Finally, don't infinitely unroll conditional loops.
2133 BasicBlock *TrueDest = BI->getSuccessor(0);
2134 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2135 if (TrueDest == BB || FalseDest == BB)
2136 return false;
2137
2138 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2139 BasicBlock *PredBlock = *PI;
2140 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2141
2142 // Check that we have two conditional branches. If there is a PHI node in
2143 // the common successor, verify that the same value flows in from both
2144 // blocks.
2145 SmallVector<PHINode*, 4> PHIs;
2146 if (!PBI || PBI->isUnconditional() ||
2147 (BI->isConditional() &&
2148 !SafeToMergeTerminators(BI, PBI)) ||
2149 (!BI->isConditional() &&
2150 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2151 continue;
2152
2153 // Determine if the two branches share a common destination.
2154 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2155 bool InvertPredCond = false;
2156
2157 if (BI->isConditional()) {
2158 if (PBI->getSuccessor(0) == TrueDest)
2159 Opc = Instruction::Or;
2160 else if (PBI->getSuccessor(1) == FalseDest)
2161 Opc = Instruction::And;
2162 else if (PBI->getSuccessor(0) == FalseDest)
2163 Opc = Instruction::And, InvertPredCond = true;
2164 else if (PBI->getSuccessor(1) == TrueDest)
2165 Opc = Instruction::Or, InvertPredCond = true;
2166 else
2167 continue;
2168 } else {
2169 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2170 continue;
2171 }
2172
2173 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2174 IRBuilder<> Builder(PBI);
2175
2176 // If we need to invert the condition in the pred block to match, do so now.
2177 if (InvertPredCond) {
2178 Value *NewCond = PBI->getCondition();
2179
2180 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2181 CmpInst *CI = cast<CmpInst>(NewCond);
2182 CI->setPredicate(CI->getInversePredicate());
2183 } else {
2184 NewCond = Builder.CreateNot(NewCond,
2185 PBI->getCondition()->getName()+".not");
2186 }
2187
2188 PBI->setCondition(NewCond);
2189 PBI->swapSuccessors();
2190 }
2191
2192 // If we have bonus instructions, clone them into the predecessor block.
2193 // Note that there may be mutliple predecessor blocks, so we cannot move
2194 // bonus instructions to a predecessor block.
2195 ValueToValueMapTy VMap; // maps original values to cloned values
2196 // We already make sure Cond is the last instruction before BI. Therefore,
2197 // every instructions before Cond other than DbgInfoIntrinsic are bonus
2198 // instructions.
2199 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2200 if (isa<DbgInfoIntrinsic>(BonusInst))
2201 continue;
2202 Instruction *NewBonusInst = BonusInst->clone();
2203 RemapInstruction(NewBonusInst, VMap,
2204 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2205 VMap[BonusInst] = NewBonusInst;
2206
2207 // If we moved a load, we cannot any longer claim any knowledge about
2208 // its potential value. The previous information might have been valid
2209 // only given the branch precondition.
2210 // For an analogous reason, we must also drop all the metadata whose
2211 // semantics we don't understand.
2212 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
2213
2214 PredBlock->getInstList().insert(PBI, NewBonusInst);
2215 NewBonusInst->takeName(BonusInst);
2216 BonusInst->setName(BonusInst->getName() + ".old");
2217 }
2218
2219 // Clone Cond into the predecessor basic block, and or/and the
2220 // two conditions together.
2221 Instruction *New = Cond->clone();
2222 RemapInstruction(New, VMap,
2223 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2224 PredBlock->getInstList().insert(PBI, New);
2225 New->takeName(Cond);
2226 Cond->setName(New->getName() + ".old");
2227
2228 if (BI->isConditional()) {
2229 Instruction *NewCond =
2230 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2231 New, "or.cond"));
2232 PBI->setCondition(NewCond);
2233
2234 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2235 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2236 PredFalseWeight);
2237 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2238 SuccFalseWeight);
2239 SmallVector<uint64_t, 8> NewWeights;
2240
2241 if (PBI->getSuccessor(0) == BB) {
2242 if (PredHasWeights && SuccHasWeights) {
2243 // PBI: br i1 %x, BB, FalseDest
2244 // BI: br i1 %y, TrueDest, FalseDest
2245 //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2246 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2247 //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2248 // TrueWeight for PBI * FalseWeight for BI.
2249 // We assume that total weights of a BranchInst can fit into 32 bits.
2250 // Therefore, we will not have overflow using 64-bit arithmetic.
2251 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2252 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2253 }
2254 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2255 PBI->setSuccessor(0, TrueDest);
2256 }
2257 if (PBI->getSuccessor(1) == BB) {
2258 if (PredHasWeights && SuccHasWeights) {
2259 // PBI: br i1 %x, TrueDest, BB
2260 // BI: br i1 %y, TrueDest, FalseDest
2261 //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2262 // FalseWeight for PBI * TrueWeight for BI.
2263 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2264 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2265 //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2266 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2267 }
2268 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2269 PBI->setSuccessor(1, FalseDest);
2270 }
2271 if (NewWeights.size() == 2) {
2272 // Halve the weights if any of them cannot fit in an uint32_t
2273 FitWeights(NewWeights);
2274
2275 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2276 PBI->setMetadata(LLVMContext::MD_prof,
2277 MDBuilder(BI->getContext()).
2278 createBranchWeights(MDWeights));
2279 } else
2280 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2281 } else {
2282 // Update PHI nodes in the common successors.
2283 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2284 ConstantInt *PBI_C = cast<ConstantInt>(
2285 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2286 assert(PBI_C->getType()->isIntegerTy(1));
2287 Instruction *MergedCond = nullptr;
2288 if (PBI->getSuccessor(0) == TrueDest) {
2289 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2290 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2291 // is false: !PBI_Cond and BI_Value
2292 Instruction *NotCond =
2293 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2294 "not.cond"));
2295 MergedCond =
2296 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2297 NotCond, New,
2298 "and.cond"));
2299 if (PBI_C->isOne())
2300 MergedCond =
2301 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2302 PBI->getCondition(), MergedCond,
2303 "or.cond"));
2304 } else {
2305 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2306 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2307 // is false: PBI_Cond and BI_Value
2308 MergedCond =
2309 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2310 PBI->getCondition(), New,
2311 "and.cond"));
2312 if (PBI_C->isOne()) {
2313 Instruction *NotCond =
2314 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2315 "not.cond"));
2316 MergedCond =
2317 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2318 NotCond, MergedCond,
2319 "or.cond"));
2320 }
2321 }
2322 // Update PHI Node.
2323 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2324 MergedCond);
2325 }
2326 // Change PBI from Conditional to Unconditional.
2327 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2328 EraseTerminatorInstAndDCECond(PBI);
2329 PBI = New_PBI;
2330 }
2331
2332 // TODO: If BB is reachable from all paths through PredBlock, then we
2333 // could replace PBI's branch probabilities with BI's.
2334
2335 // Copy any debug value intrinsics into the end of PredBlock.
2336 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2337 if (isa<DbgInfoIntrinsic>(*I))
2338 I->clone()->insertBefore(PBI);
2339
2340 return true;
2341 }
2342 return false;
2343 }
2344
2345 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2346 /// predecessor of another block, this function tries to simplify it. We know
2347 /// that PBI and BI are both conditional branches, and BI is in one of the
2348 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)2349 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2350 assert(PBI->isConditional() && BI->isConditional());
2351 BasicBlock *BB = BI->getParent();
2352
2353 // If this block ends with a branch instruction, and if there is a
2354 // predecessor that ends on a branch of the same condition, make
2355 // this conditional branch redundant.
2356 if (PBI->getCondition() == BI->getCondition() &&
2357 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2358 // Okay, the outcome of this conditional branch is statically
2359 // knowable. If this block had a single pred, handle specially.
2360 if (BB->getSinglePredecessor()) {
2361 // Turn this into a branch on constant.
2362 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2363 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2364 CondIsTrue));
2365 return true; // Nuke the branch on constant.
2366 }
2367
2368 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2369 // in the constant and simplify the block result. Subsequent passes of
2370 // simplifycfg will thread the block.
2371 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2372 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2373 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2374 std::distance(PB, PE),
2375 BI->getCondition()->getName() + ".pr",
2376 BB->begin());
2377 // Okay, we're going to insert the PHI node. Since PBI is not the only
2378 // predecessor, compute the PHI'd conditional value for all of the preds.
2379 // Any predecessor where the condition is not computable we keep symbolic.
2380 for (pred_iterator PI = PB; PI != PE; ++PI) {
2381 BasicBlock *P = *PI;
2382 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2383 PBI != BI && PBI->isConditional() &&
2384 PBI->getCondition() == BI->getCondition() &&
2385 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2386 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2387 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2388 CondIsTrue), P);
2389 } else {
2390 NewPN->addIncoming(BI->getCondition(), P);
2391 }
2392 }
2393
2394 BI->setCondition(NewPN);
2395 return true;
2396 }
2397 }
2398
2399 // If this is a conditional branch in an empty block, and if any
2400 // predecessors are a conditional branch to one of our destinations,
2401 // fold the conditions into logical ops and one cond br.
2402 BasicBlock::iterator BBI = BB->begin();
2403 // Ignore dbg intrinsics.
2404 while (isa<DbgInfoIntrinsic>(BBI))
2405 ++BBI;
2406 if (&*BBI != BI)
2407 return false;
2408
2409
2410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2411 if (CE->canTrap())
2412 return false;
2413
2414 int PBIOp, BIOp;
2415 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2416 PBIOp = BIOp = 0;
2417 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2418 PBIOp = 0, BIOp = 1;
2419 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2420 PBIOp = 1, BIOp = 0;
2421 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2422 PBIOp = BIOp = 1;
2423 else
2424 return false;
2425
2426 // Check to make sure that the other destination of this branch
2427 // isn't BB itself. If so, this is an infinite loop that will
2428 // keep getting unwound.
2429 if (PBI->getSuccessor(PBIOp) == BB)
2430 return false;
2431
2432 // Do not perform this transformation if it would require
2433 // insertion of a large number of select instructions. For targets
2434 // without predication/cmovs, this is a big pessimization.
2435
2436 // Also do not perform this transformation if any phi node in the common
2437 // destination block can trap when reached by BB or PBB (PR17073). In that
2438 // case, it would be unsafe to hoist the operation into a select instruction.
2439
2440 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2441 unsigned NumPhis = 0;
2442 for (BasicBlock::iterator II = CommonDest->begin();
2443 isa<PHINode>(II); ++II, ++NumPhis) {
2444 if (NumPhis > 2) // Disable this xform.
2445 return false;
2446
2447 PHINode *PN = cast<PHINode>(II);
2448 Value *BIV = PN->getIncomingValueForBlock(BB);
2449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2450 if (CE->canTrap())
2451 return false;
2452
2453 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2454 Value *PBIV = PN->getIncomingValue(PBBIdx);
2455 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2456 if (CE->canTrap())
2457 return false;
2458 }
2459
2460 // Finally, if everything is ok, fold the branches to logical ops.
2461 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2462
2463 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2464 << "AND: " << *BI->getParent());
2465
2466
2467 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2468 // branch in it, where one edge (OtherDest) goes back to itself but the other
2469 // exits. We don't *know* that the program avoids the infinite loop
2470 // (even though that seems likely). If we do this xform naively, we'll end up
2471 // recursively unpeeling the loop. Since we know that (after the xform is
2472 // done) that the block *is* infinite if reached, we just make it an obviously
2473 // infinite loop with no cond branch.
2474 if (OtherDest == BB) {
2475 // Insert it at the end of the function, because it's either code,
2476 // or it won't matter if it's hot. :)
2477 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2478 "infloop", BB->getParent());
2479 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2480 OtherDest = InfLoopBlock;
2481 }
2482
2483 DEBUG(dbgs() << *PBI->getParent()->getParent());
2484
2485 // BI may have other predecessors. Because of this, we leave
2486 // it alone, but modify PBI.
2487
2488 // Make sure we get to CommonDest on True&True directions.
2489 Value *PBICond = PBI->getCondition();
2490 IRBuilder<true, NoFolder> Builder(PBI);
2491 if (PBIOp)
2492 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2493
2494 Value *BICond = BI->getCondition();
2495 if (BIOp)
2496 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2497
2498 // Merge the conditions.
2499 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2500
2501 // Modify PBI to branch on the new condition to the new dests.
2502 PBI->setCondition(Cond);
2503 PBI->setSuccessor(0, CommonDest);
2504 PBI->setSuccessor(1, OtherDest);
2505
2506 // Update branch weight for PBI.
2507 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2508 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2509 PredFalseWeight);
2510 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2511 SuccFalseWeight);
2512 if (PredHasWeights && SuccHasWeights) {
2513 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2514 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2515 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2516 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2517 // The weight to CommonDest should be PredCommon * SuccTotal +
2518 // PredOther * SuccCommon.
2519 // The weight to OtherDest should be PredOther * SuccOther.
2520 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2521 PredOther * SuccCommon,
2522 PredOther * SuccOther};
2523 // Halve the weights if any of them cannot fit in an uint32_t
2524 FitWeights(NewWeights);
2525
2526 PBI->setMetadata(LLVMContext::MD_prof,
2527 MDBuilder(BI->getContext())
2528 .createBranchWeights(NewWeights[0], NewWeights[1]));
2529 }
2530
2531 // OtherDest may have phi nodes. If so, add an entry from PBI's
2532 // block that are identical to the entries for BI's block.
2533 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2534
2535 // We know that the CommonDest already had an edge from PBI to
2536 // it. If it has PHIs though, the PHIs may have different
2537 // entries for BB and PBI's BB. If so, insert a select to make
2538 // them agree.
2539 PHINode *PN;
2540 for (BasicBlock::iterator II = CommonDest->begin();
2541 (PN = dyn_cast<PHINode>(II)); ++II) {
2542 Value *BIV = PN->getIncomingValueForBlock(BB);
2543 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2544 Value *PBIV = PN->getIncomingValue(PBBIdx);
2545 if (BIV != PBIV) {
2546 // Insert a select in PBI to pick the right value.
2547 Value *NV = cast<SelectInst>
2548 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2549 PN->setIncomingValue(PBBIdx, NV);
2550 }
2551 }
2552
2553 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2554 DEBUG(dbgs() << *PBI->getParent()->getParent());
2555
2556 // This basic block is probably dead. We know it has at least
2557 // one fewer predecessor.
2558 return true;
2559 }
2560
2561 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2562 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2563 // Takes care of updating the successors and removing the old terminator.
2564 // Also makes sure not to introduce new successors by assuming that edges to
2565 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)2566 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2567 BasicBlock *TrueBB, BasicBlock *FalseBB,
2568 uint32_t TrueWeight,
2569 uint32_t FalseWeight){
2570 // Remove any superfluous successor edges from the CFG.
2571 // First, figure out which successors to preserve.
2572 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2573 // successor.
2574 BasicBlock *KeepEdge1 = TrueBB;
2575 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2576
2577 // Then remove the rest.
2578 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2579 BasicBlock *Succ = OldTerm->getSuccessor(I);
2580 // Make sure only to keep exactly one copy of each edge.
2581 if (Succ == KeepEdge1)
2582 KeepEdge1 = nullptr;
2583 else if (Succ == KeepEdge2)
2584 KeepEdge2 = nullptr;
2585 else
2586 Succ->removePredecessor(OldTerm->getParent());
2587 }
2588
2589 IRBuilder<> Builder(OldTerm);
2590 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2591
2592 // Insert an appropriate new terminator.
2593 if (!KeepEdge1 && !KeepEdge2) {
2594 if (TrueBB == FalseBB)
2595 // We were only looking for one successor, and it was present.
2596 // Create an unconditional branch to it.
2597 Builder.CreateBr(TrueBB);
2598 else {
2599 // We found both of the successors we were looking for.
2600 // Create a conditional branch sharing the condition of the select.
2601 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2602 if (TrueWeight != FalseWeight)
2603 NewBI->setMetadata(LLVMContext::MD_prof,
2604 MDBuilder(OldTerm->getContext()).
2605 createBranchWeights(TrueWeight, FalseWeight));
2606 }
2607 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2608 // Neither of the selected blocks were successors, so this
2609 // terminator must be unreachable.
2610 new UnreachableInst(OldTerm->getContext(), OldTerm);
2611 } else {
2612 // One of the selected values was a successor, but the other wasn't.
2613 // Insert an unconditional branch to the one that was found;
2614 // the edge to the one that wasn't must be unreachable.
2615 if (!KeepEdge1)
2616 // Only TrueBB was found.
2617 Builder.CreateBr(TrueBB);
2618 else
2619 // Only FalseBB was found.
2620 Builder.CreateBr(FalseBB);
2621 }
2622
2623 EraseTerminatorInstAndDCECond(OldTerm);
2624 return true;
2625 }
2626
2627 // SimplifySwitchOnSelect - Replaces
2628 // (switch (select cond, X, Y)) on constant X, Y
2629 // with a branch - conditional if X and Y lead to distinct BBs,
2630 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)2631 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2632 // Check for constant integer values in the select.
2633 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2634 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2635 if (!TrueVal || !FalseVal)
2636 return false;
2637
2638 // Find the relevant condition and destinations.
2639 Value *Condition = Select->getCondition();
2640 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2641 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2642
2643 // Get weight for TrueBB and FalseBB.
2644 uint32_t TrueWeight = 0, FalseWeight = 0;
2645 SmallVector<uint64_t, 8> Weights;
2646 bool HasWeights = HasBranchWeights(SI);
2647 if (HasWeights) {
2648 GetBranchWeights(SI, Weights);
2649 if (Weights.size() == 1 + SI->getNumCases()) {
2650 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2651 getSuccessorIndex()];
2652 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2653 getSuccessorIndex()];
2654 }
2655 }
2656
2657 // Perform the actual simplification.
2658 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2659 TrueWeight, FalseWeight);
2660 }
2661
2662 // SimplifyIndirectBrOnSelect - Replaces
2663 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2664 // blockaddress(@fn, BlockB)))
2665 // with
2666 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)2667 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2668 // Check that both operands of the select are block addresses.
2669 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2670 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2671 if (!TBA || !FBA)
2672 return false;
2673
2674 // Extract the actual blocks.
2675 BasicBlock *TrueBB = TBA->getBasicBlock();
2676 BasicBlock *FalseBB = FBA->getBasicBlock();
2677
2678 // Perform the actual simplification.
2679 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2680 0, 0);
2681 }
2682
2683 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2684 /// instruction (a seteq/setne with a constant) as the only instruction in a
2685 /// block that ends with an uncond branch. We are looking for a very specific
2686 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2687 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2688 /// default value goes to an uncond block with a seteq in it, we get something
2689 /// like:
2690 ///
2691 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2692 /// DEFAULT:
2693 /// %tmp = icmp eq i8 %A, 92
2694 /// br label %end
2695 /// end:
2696 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2697 ///
2698 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2699 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)2700 static bool TryToSimplifyUncondBranchWithICmpInIt(
2701 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
2702 const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
2703 AssumptionCache *AC) {
2704 BasicBlock *BB = ICI->getParent();
2705
2706 // If the block has any PHIs in it or the icmp has multiple uses, it is too
2707 // complex.
2708 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2709
2710 Value *V = ICI->getOperand(0);
2711 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2712
2713 // The pattern we're looking for is where our only predecessor is a switch on
2714 // 'V' and this block is the default case for the switch. In this case we can
2715 // fold the compared value into the switch to simplify things.
2716 BasicBlock *Pred = BB->getSinglePredecessor();
2717 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2718
2719 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2720 if (SI->getCondition() != V)
2721 return false;
2722
2723 // If BB is reachable on a non-default case, then we simply know the value of
2724 // V in this block. Substitute it and constant fold the icmp instruction
2725 // away.
2726 if (SI->getDefaultDest() != BB) {
2727 ConstantInt *VVal = SI->findCaseDest(BB);
2728 assert(VVal && "Should have a unique destination value");
2729 ICI->setOperand(0, VVal);
2730
2731 if (Value *V = SimplifyInstruction(ICI, DL)) {
2732 ICI->replaceAllUsesWith(V);
2733 ICI->eraseFromParent();
2734 }
2735 // BB is now empty, so it is likely to simplify away.
2736 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2737 }
2738
2739 // Ok, the block is reachable from the default dest. If the constant we're
2740 // comparing exists in one of the other edges, then we can constant fold ICI
2741 // and zap it.
2742 if (SI->findCaseValue(Cst) != SI->case_default()) {
2743 Value *V;
2744 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2745 V = ConstantInt::getFalse(BB->getContext());
2746 else
2747 V = ConstantInt::getTrue(BB->getContext());
2748
2749 ICI->replaceAllUsesWith(V);
2750 ICI->eraseFromParent();
2751 // BB is now empty, so it is likely to simplify away.
2752 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2753 }
2754
2755 // The use of the icmp has to be in the 'end' block, by the only PHI node in
2756 // the block.
2757 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2758 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2759 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2760 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2761 return false;
2762
2763 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2764 // true in the PHI.
2765 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2766 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2767
2768 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2769 std::swap(DefaultCst, NewCst);
2770
2771 // Replace ICI (which is used by the PHI for the default value) with true or
2772 // false depending on if it is EQ or NE.
2773 ICI->replaceAllUsesWith(DefaultCst);
2774 ICI->eraseFromParent();
2775
2776 // Okay, the switch goes to this block on a default value. Add an edge from
2777 // the switch to the merge point on the compared value.
2778 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2779 BB->getParent(), BB);
2780 SmallVector<uint64_t, 8> Weights;
2781 bool HasWeights = HasBranchWeights(SI);
2782 if (HasWeights) {
2783 GetBranchWeights(SI, Weights);
2784 if (Weights.size() == 1 + SI->getNumCases()) {
2785 // Split weight for default case to case for "Cst".
2786 Weights[0] = (Weights[0]+1) >> 1;
2787 Weights.push_back(Weights[0]);
2788
2789 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2790 SI->setMetadata(LLVMContext::MD_prof,
2791 MDBuilder(SI->getContext()).
2792 createBranchWeights(MDWeights));
2793 }
2794 }
2795 SI->addCase(Cst, NewBB);
2796
2797 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2798 Builder.SetInsertPoint(NewBB);
2799 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2800 Builder.CreateBr(SuccBlock);
2801 PHIUse->addIncoming(NewCst, NewBB);
2802 return true;
2803 }
2804
2805 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2806 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2807 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)2808 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
2809 const DataLayout &DL) {
2810 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2811 if (!Cond) return false;
2812
2813 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2814 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2815 // 'setne's and'ed together, collect them.
2816
2817 // Try to gather values from a chain of and/or to be turned into a switch
2818 ConstantComparesGatherer ConstantCompare(Cond, DL);
2819 // Unpack the result
2820 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
2821 Value *CompVal = ConstantCompare.CompValue;
2822 unsigned UsedICmps = ConstantCompare.UsedICmps;
2823 Value *ExtraCase = ConstantCompare.Extra;
2824
2825 // If we didn't have a multiply compared value, fail.
2826 if (!CompVal) return false;
2827
2828 // Avoid turning single icmps into a switch.
2829 if (UsedICmps <= 1)
2830 return false;
2831
2832 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
2833
2834 // There might be duplicate constants in the list, which the switch
2835 // instruction can't handle, remove them now.
2836 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2837 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2838
2839 // If Extra was used, we require at least two switch values to do the
2840 // transformation. A switch with one value is just an cond branch.
2841 if (ExtraCase && Values.size() < 2) return false;
2842
2843 // TODO: Preserve branch weight metadata, similarly to how
2844 // FoldValueComparisonIntoPredecessors preserves it.
2845
2846 // Figure out which block is which destination.
2847 BasicBlock *DefaultBB = BI->getSuccessor(1);
2848 BasicBlock *EdgeBB = BI->getSuccessor(0);
2849 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2850
2851 BasicBlock *BB = BI->getParent();
2852
2853 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2854 << " cases into SWITCH. BB is:\n" << *BB);
2855
2856 // If there are any extra values that couldn't be folded into the switch
2857 // then we evaluate them with an explicit branch first. Split the block
2858 // right before the condbr to handle it.
2859 if (ExtraCase) {
2860 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2861 // Remove the uncond branch added to the old block.
2862 TerminatorInst *OldTI = BB->getTerminator();
2863 Builder.SetInsertPoint(OldTI);
2864
2865 if (TrueWhenEqual)
2866 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2867 else
2868 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2869
2870 OldTI->eraseFromParent();
2871
2872 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2873 // for the edge we just added.
2874 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2875
2876 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2877 << "\nEXTRABB = " << *BB);
2878 BB = NewBB;
2879 }
2880
2881 Builder.SetInsertPoint(BI);
2882 // Convert pointer to int before we switch.
2883 if (CompVal->getType()->isPointerTy()) {
2884 CompVal = Builder.CreatePtrToInt(
2885 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
2886 }
2887
2888 // Create the new switch instruction now.
2889 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2890
2891 // Add all of the 'cases' to the switch instruction.
2892 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2893 New->addCase(Values[i], EdgeBB);
2894
2895 // We added edges from PI to the EdgeBB. As such, if there were any
2896 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2897 // the number of edges added.
2898 for (BasicBlock::iterator BBI = EdgeBB->begin();
2899 isa<PHINode>(BBI); ++BBI) {
2900 PHINode *PN = cast<PHINode>(BBI);
2901 Value *InVal = PN->getIncomingValueForBlock(BB);
2902 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2903 PN->addIncoming(InVal, BB);
2904 }
2905
2906 // Erase the old branch instruction.
2907 EraseTerminatorInstAndDCECond(BI);
2908
2909 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2910 return true;
2911 }
2912
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)2913 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2914 // If this is a trivial landing pad that just continues unwinding the caught
2915 // exception then zap the landing pad, turning its invokes into calls.
2916 BasicBlock *BB = RI->getParent();
2917 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2918 if (RI->getValue() != LPInst)
2919 // Not a landing pad, or the resume is not unwinding the exception that
2920 // caused control to branch here.
2921 return false;
2922
2923 // Check that there are no other instructions except for debug intrinsics.
2924 BasicBlock::iterator I = LPInst, E = RI;
2925 while (++I != E)
2926 if (!isa<DbgInfoIntrinsic>(I))
2927 return false;
2928
2929 // Turn all invokes that unwind here into calls and delete the basic block.
2930 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2931 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2932 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2933 // Insert a call instruction before the invoke.
2934 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2935 Call->takeName(II);
2936 Call->setCallingConv(II->getCallingConv());
2937 Call->setAttributes(II->getAttributes());
2938 Call->setDebugLoc(II->getDebugLoc());
2939
2940 // Anything that used the value produced by the invoke instruction now uses
2941 // the value produced by the call instruction. Note that we do this even
2942 // for void functions and calls with no uses so that the callgraph edge is
2943 // updated.
2944 II->replaceAllUsesWith(Call);
2945 BB->removePredecessor(II->getParent());
2946
2947 // Insert a branch to the normal destination right before the invoke.
2948 BranchInst::Create(II->getNormalDest(), II);
2949
2950 // Finally, delete the invoke instruction!
2951 II->eraseFromParent();
2952 }
2953
2954 // The landingpad is now unreachable. Zap it.
2955 BB->eraseFromParent();
2956 return true;
2957 }
2958
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)2959 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2960 BasicBlock *BB = RI->getParent();
2961 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2962
2963 // Find predecessors that end with branches.
2964 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2965 SmallVector<BranchInst*, 8> CondBranchPreds;
2966 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2967 BasicBlock *P = *PI;
2968 TerminatorInst *PTI = P->getTerminator();
2969 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2970 if (BI->isUnconditional())
2971 UncondBranchPreds.push_back(P);
2972 else
2973 CondBranchPreds.push_back(BI);
2974 }
2975 }
2976
2977 // If we found some, do the transformation!
2978 if (!UncondBranchPreds.empty() && DupRet) {
2979 while (!UncondBranchPreds.empty()) {
2980 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2981 DEBUG(dbgs() << "FOLDING: " << *BB
2982 << "INTO UNCOND BRANCH PRED: " << *Pred);
2983 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2984 }
2985
2986 // If we eliminated all predecessors of the block, delete the block now.
2987 if (pred_empty(BB))
2988 // We know there are no successors, so just nuke the block.
2989 BB->eraseFromParent();
2990
2991 return true;
2992 }
2993
2994 // Check out all of the conditional branches going to this return
2995 // instruction. If any of them just select between returns, change the
2996 // branch itself into a select/return pair.
2997 while (!CondBranchPreds.empty()) {
2998 BranchInst *BI = CondBranchPreds.pop_back_val();
2999
3000 // Check to see if the non-BB successor is also a return block.
3001 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3002 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3003 SimplifyCondBranchToTwoReturns(BI, Builder))
3004 return true;
3005 }
3006 return false;
3007 }
3008
SimplifyUnreachable(UnreachableInst * UI)3009 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3010 BasicBlock *BB = UI->getParent();
3011
3012 bool Changed = false;
3013
3014 // If there are any instructions immediately before the unreachable that can
3015 // be removed, do so.
3016 while (UI != BB->begin()) {
3017 BasicBlock::iterator BBI = UI;
3018 --BBI;
3019 // Do not delete instructions that can have side effects which might cause
3020 // the unreachable to not be reachable; specifically, calls and volatile
3021 // operations may have this effect.
3022 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3023
3024 if (BBI->mayHaveSideEffects()) {
3025 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3026 if (SI->isVolatile())
3027 break;
3028 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3029 if (LI->isVolatile())
3030 break;
3031 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3032 if (RMWI->isVolatile())
3033 break;
3034 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3035 if (CXI->isVolatile())
3036 break;
3037 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3038 !isa<LandingPadInst>(BBI)) {
3039 break;
3040 }
3041 // Note that deleting LandingPad's here is in fact okay, although it
3042 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3043 // all the predecessors of this block will be the unwind edges of Invokes,
3044 // and we can therefore guarantee this block will be erased.
3045 }
3046
3047 // Delete this instruction (any uses are guaranteed to be dead)
3048 if (!BBI->use_empty())
3049 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3050 BBI->eraseFromParent();
3051 Changed = true;
3052 }
3053
3054 // If the unreachable instruction is the first in the block, take a gander
3055 // at all of the predecessors of this instruction, and simplify them.
3056 if (&BB->front() != UI) return Changed;
3057
3058 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3059 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3060 TerminatorInst *TI = Preds[i]->getTerminator();
3061 IRBuilder<> Builder(TI);
3062 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3063 if (BI->isUnconditional()) {
3064 if (BI->getSuccessor(0) == BB) {
3065 new UnreachableInst(TI->getContext(), TI);
3066 TI->eraseFromParent();
3067 Changed = true;
3068 }
3069 } else {
3070 if (BI->getSuccessor(0) == BB) {
3071 Builder.CreateBr(BI->getSuccessor(1));
3072 EraseTerminatorInstAndDCECond(BI);
3073 } else if (BI->getSuccessor(1) == BB) {
3074 Builder.CreateBr(BI->getSuccessor(0));
3075 EraseTerminatorInstAndDCECond(BI);
3076 Changed = true;
3077 }
3078 }
3079 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3080 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3081 i != e; ++i)
3082 if (i.getCaseSuccessor() == BB) {
3083 BB->removePredecessor(SI->getParent());
3084 SI->removeCase(i);
3085 --i; --e;
3086 Changed = true;
3087 }
3088 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3089 if (II->getUnwindDest() == BB) {
3090 // Convert the invoke to a call instruction. This would be a good
3091 // place to note that the call does not throw though.
3092 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3093 II->removeFromParent(); // Take out of symbol table
3094
3095 // Insert the call now...
3096 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3097 Builder.SetInsertPoint(BI);
3098 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3099 Args, II->getName());
3100 CI->setCallingConv(II->getCallingConv());
3101 CI->setAttributes(II->getAttributes());
3102 // If the invoke produced a value, the call does now instead.
3103 II->replaceAllUsesWith(CI);
3104 delete II;
3105 Changed = true;
3106 }
3107 }
3108 }
3109
3110 // If this block is now dead, remove it.
3111 if (pred_empty(BB) &&
3112 BB != &BB->getParent()->getEntryBlock()) {
3113 // We know there are no successors, so just nuke the block.
3114 BB->eraseFromParent();
3115 return true;
3116 }
3117
3118 return Changed;
3119 }
3120
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)3121 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3122 assert(Cases.size() >= 1);
3123
3124 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3125 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3126 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3127 return false;
3128 }
3129 return true;
3130 }
3131
3132 /// Turn a switch with two reachable destinations into an integer range
3133 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)3134 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3135 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3136
3137 bool HasDefault =
3138 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3139
3140 // Partition the cases into two sets with different destinations.
3141 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3142 BasicBlock *DestB = nullptr;
3143 SmallVector <ConstantInt *, 16> CasesA;
3144 SmallVector <ConstantInt *, 16> CasesB;
3145
3146 for (SwitchInst::CaseIt I : SI->cases()) {
3147 BasicBlock *Dest = I.getCaseSuccessor();
3148 if (!DestA) DestA = Dest;
3149 if (Dest == DestA) {
3150 CasesA.push_back(I.getCaseValue());
3151 continue;
3152 }
3153 if (!DestB) DestB = Dest;
3154 if (Dest == DestB) {
3155 CasesB.push_back(I.getCaseValue());
3156 continue;
3157 }
3158 return false; // More than two destinations.
3159 }
3160
3161 assert(DestA && DestB && "Single-destination switch should have been folded.");
3162 assert(DestA != DestB);
3163 assert(DestB != SI->getDefaultDest());
3164 assert(!CasesB.empty() && "There must be non-default cases.");
3165 assert(!CasesA.empty() || HasDefault);
3166
3167 // Figure out if one of the sets of cases form a contiguous range.
3168 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3169 BasicBlock *ContiguousDest = nullptr;
3170 BasicBlock *OtherDest = nullptr;
3171 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3172 ContiguousCases = &CasesA;
3173 ContiguousDest = DestA;
3174 OtherDest = DestB;
3175 } else if (CasesAreContiguous(CasesB)) {
3176 ContiguousCases = &CasesB;
3177 ContiguousDest = DestB;
3178 OtherDest = DestA;
3179 } else
3180 return false;
3181
3182 // Start building the compare and branch.
3183
3184 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3185 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3186
3187 Value *Sub = SI->getCondition();
3188 if (!Offset->isNullValue())
3189 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3190
3191 Value *Cmp;
3192 // If NumCases overflowed, then all possible values jump to the successor.
3193 if (NumCases->isNullValue() && !ContiguousCases->empty())
3194 Cmp = ConstantInt::getTrue(SI->getContext());
3195 else
3196 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3197 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3198
3199 // Update weight for the newly-created conditional branch.
3200 if (HasBranchWeights(SI)) {
3201 SmallVector<uint64_t, 8> Weights;
3202 GetBranchWeights(SI, Weights);
3203 if (Weights.size() == 1 + SI->getNumCases()) {
3204 uint64_t TrueWeight = 0;
3205 uint64_t FalseWeight = 0;
3206 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3207 if (SI->getSuccessor(I) == ContiguousDest)
3208 TrueWeight += Weights[I];
3209 else
3210 FalseWeight += Weights[I];
3211 }
3212 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3213 TrueWeight /= 2;
3214 FalseWeight /= 2;
3215 }
3216 NewBI->setMetadata(LLVMContext::MD_prof,
3217 MDBuilder(SI->getContext()).createBranchWeights(
3218 (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3219 }
3220 }
3221
3222 // Prune obsolete incoming values off the successors' PHI nodes.
3223 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3224 unsigned PreviousEdges = ContiguousCases->size();
3225 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3226 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3227 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3228 }
3229 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3230 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3231 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3232 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3233 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3234 }
3235
3236 // Drop the switch.
3237 SI->eraseFromParent();
3238
3239 return true;
3240 }
3241
3242 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3243 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI,AssumptionCache * AC,const DataLayout & DL)3244 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3245 const DataLayout &DL) {
3246 Value *Cond = SI->getCondition();
3247 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3248 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3249 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3250
3251 // Gather dead cases.
3252 SmallVector<ConstantInt*, 8> DeadCases;
3253 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3254 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3255 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3256 DeadCases.push_back(I.getCaseValue());
3257 DEBUG(dbgs() << "SimplifyCFG: switch case '"
3258 << I.getCaseValue() << "' is dead.\n");
3259 }
3260 }
3261
3262 SmallVector<uint64_t, 8> Weights;
3263 bool HasWeight = HasBranchWeights(SI);
3264 if (HasWeight) {
3265 GetBranchWeights(SI, Weights);
3266 HasWeight = (Weights.size() == 1 + SI->getNumCases());
3267 }
3268
3269 // Remove dead cases from the switch.
3270 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3271 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3272 assert(Case != SI->case_default() &&
3273 "Case was not found. Probably mistake in DeadCases forming.");
3274 if (HasWeight) {
3275 std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3276 Weights.pop_back();
3277 }
3278
3279 // Prune unused values from PHI nodes.
3280 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3281 SI->removeCase(Case);
3282 }
3283 if (HasWeight && Weights.size() >= 2) {
3284 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3285 SI->setMetadata(LLVMContext::MD_prof,
3286 MDBuilder(SI->getParent()->getContext()).
3287 createBranchWeights(MDWeights));
3288 }
3289
3290 return !DeadCases.empty();
3291 }
3292
3293 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3294 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3295 /// by an unconditional branch), look at the phi node for BB in the successor
3296 /// block and see if the incoming value is equal to CaseValue. If so, return
3297 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)3298 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3299 BasicBlock *BB,
3300 int *PhiIndex) {
3301 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3302 return nullptr; // BB must be empty to be a candidate for simplification.
3303 if (!BB->getSinglePredecessor())
3304 return nullptr; // BB must be dominated by the switch.
3305
3306 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3307 if (!Branch || !Branch->isUnconditional())
3308 return nullptr; // Terminator must be unconditional branch.
3309
3310 BasicBlock *Succ = Branch->getSuccessor(0);
3311
3312 BasicBlock::iterator I = Succ->begin();
3313 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3314 int Idx = PHI->getBasicBlockIndex(BB);
3315 assert(Idx >= 0 && "PHI has no entry for predecessor?");
3316
3317 Value *InValue = PHI->getIncomingValue(Idx);
3318 if (InValue != CaseValue) continue;
3319
3320 *PhiIndex = Idx;
3321 return PHI;
3322 }
3323
3324 return nullptr;
3325 }
3326
3327 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3328 /// instruction to a phi node dominated by the switch, if that would mean that
3329 /// some of the destination blocks of the switch can be folded away.
3330 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)3331 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3332 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3333 ForwardingNodesMap ForwardingNodes;
3334
3335 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3336 ConstantInt *CaseValue = I.getCaseValue();
3337 BasicBlock *CaseDest = I.getCaseSuccessor();
3338
3339 int PhiIndex;
3340 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3341 &PhiIndex);
3342 if (!PHI) continue;
3343
3344 ForwardingNodes[PHI].push_back(PhiIndex);
3345 }
3346
3347 bool Changed = false;
3348
3349 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3350 E = ForwardingNodes.end(); I != E; ++I) {
3351 PHINode *Phi = I->first;
3352 SmallVectorImpl<int> &Indexes = I->second;
3353
3354 if (Indexes.size() < 2) continue;
3355
3356 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3357 Phi->setIncomingValue(Indexes[I], SI->getCondition());
3358 Changed = true;
3359 }
3360
3361 return Changed;
3362 }
3363
3364 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3365 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)3366 static bool ValidLookupTableConstant(Constant *C) {
3367 if (C->isThreadDependent())
3368 return false;
3369 if (C->isDLLImportDependent())
3370 return false;
3371
3372 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3373 return CE->isGEPWithNoNotionalOverIndexing();
3374
3375 return isa<ConstantFP>(C) ||
3376 isa<ConstantInt>(C) ||
3377 isa<ConstantPointerNull>(C) ||
3378 isa<GlobalValue>(C) ||
3379 isa<UndefValue>(C);
3380 }
3381
3382 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3383 /// its constant value in ConstantPool, returning 0 if it's not there.
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)3384 static Constant *LookupConstant(Value *V,
3385 const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3386 if (Constant *C = dyn_cast<Constant>(V))
3387 return C;
3388 return ConstantPool.lookup(V);
3389 }
3390
3391 /// ConstantFold - Try to fold instruction I into a constant. This works for
3392 /// simple instructions such as binary operations where both operands are
3393 /// constant or can be replaced by constants from the ConstantPool. Returns the
3394 /// resulting constant on success, 0 otherwise.
3395 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)3396 ConstantFold(Instruction *I, const DataLayout &DL,
3397 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
3398 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3399 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3400 if (!A)
3401 return nullptr;
3402 if (A->isAllOnesValue())
3403 return LookupConstant(Select->getTrueValue(), ConstantPool);
3404 if (A->isNullValue())
3405 return LookupConstant(Select->getFalseValue(), ConstantPool);
3406 return nullptr;
3407 }
3408
3409 SmallVector<Constant *, 4> COps;
3410 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3411 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3412 COps.push_back(A);
3413 else
3414 return nullptr;
3415 }
3416
3417 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3418 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3419 COps[1], DL);
3420 }
3421
3422 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3423 }
3424
3425 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
3426 /// at the common destination basic block, *CommonDest, for one of the case
3427 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3428 /// case), of a switch instruction SI.
3429 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL)3430 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
3431 BasicBlock **CommonDest,
3432 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
3433 const DataLayout &DL) {
3434 // The block from which we enter the common destination.
3435 BasicBlock *Pred = SI->getParent();
3436
3437 // If CaseDest is empty except for some side-effect free instructions through
3438 // which we can constant-propagate the CaseVal, continue to its successor.
3439 SmallDenseMap<Value*, Constant*> ConstantPool;
3440 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3441 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3442 ++I) {
3443 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3444 // If the terminator is a simple branch, continue to the next block.
3445 if (T->getNumSuccessors() != 1)
3446 return false;
3447 Pred = CaseDest;
3448 CaseDest = T->getSuccessor(0);
3449 } else if (isa<DbgInfoIntrinsic>(I)) {
3450 // Skip debug intrinsic.
3451 continue;
3452 } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
3453 // Instruction is side-effect free and constant.
3454
3455 // If the instruction has uses outside this block or a phi node slot for
3456 // the block, it is not safe to bypass the instruction since it would then
3457 // no longer dominate all its uses.
3458 for (auto &Use : I->uses()) {
3459 User *User = Use.getUser();
3460 if (Instruction *I = dyn_cast<Instruction>(User))
3461 if (I->getParent() == CaseDest)
3462 continue;
3463 if (PHINode *Phi = dyn_cast<PHINode>(User))
3464 if (Phi->getIncomingBlock(Use) == CaseDest)
3465 continue;
3466 return false;
3467 }
3468
3469 ConstantPool.insert(std::make_pair(I, C));
3470 } else {
3471 break;
3472 }
3473 }
3474
3475 // If we did not have a CommonDest before, use the current one.
3476 if (!*CommonDest)
3477 *CommonDest = CaseDest;
3478 // If the destination isn't the common one, abort.
3479 if (CaseDest != *CommonDest)
3480 return false;
3481
3482 // Get the values for this case from phi nodes in the destination block.
3483 BasicBlock::iterator I = (*CommonDest)->begin();
3484 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3485 int Idx = PHI->getBasicBlockIndex(Pred);
3486 if (Idx == -1)
3487 continue;
3488
3489 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3490 ConstantPool);
3491 if (!ConstVal)
3492 return false;
3493
3494 // Be conservative about which kinds of constants we support.
3495 if (!ValidLookupTableConstant(ConstVal))
3496 return false;
3497
3498 Res.push_back(std::make_pair(PHI, ConstVal));
3499 }
3500
3501 return Res.size() > 0;
3502 }
3503
3504 // MapCaseToResult - Helper function used to
3505 // add CaseVal to the list of cases that generate Result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)3506 static void MapCaseToResult(ConstantInt *CaseVal,
3507 SwitchCaseResultVectorTy &UniqueResults,
3508 Constant *Result) {
3509 for (auto &I : UniqueResults) {
3510 if (I.first == Result) {
3511 I.second.push_back(CaseVal);
3512 return;
3513 }
3514 }
3515 UniqueResults.push_back(std::make_pair(Result,
3516 SmallVector<ConstantInt*, 4>(1, CaseVal)));
3517 }
3518
3519 // InitializeUniqueCases - Helper function that initializes a map containing
3520 // results for the PHI node of the common destination block for a switch
3521 // instruction. Returns false if multiple PHI nodes have been found or if
3522 // there is not a common destination block for the switch.
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL)3523 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
3524 BasicBlock *&CommonDest,
3525 SwitchCaseResultVectorTy &UniqueResults,
3526 Constant *&DefaultResult,
3527 const DataLayout &DL) {
3528 for (auto &I : SI->cases()) {
3529 ConstantInt *CaseVal = I.getCaseValue();
3530
3531 // Resulting value at phi nodes for this case value.
3532 SwitchCaseResultsTy Results;
3533 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3534 DL))
3535 return false;
3536
3537 // Only one value per case is permitted
3538 if (Results.size() > 1)
3539 return false;
3540 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3541
3542 // Check the PHI consistency.
3543 if (!PHI)
3544 PHI = Results[0].first;
3545 else if (PHI != Results[0].first)
3546 return false;
3547 }
3548 // Find the default result value.
3549 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3550 BasicBlock *DefaultDest = SI->getDefaultDest();
3551 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3552 DL);
3553 // If the default value is not found abort unless the default destination
3554 // is unreachable.
3555 DefaultResult =
3556 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3557 if ((!DefaultResult &&
3558 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
3559 return false;
3560
3561 return true;
3562 }
3563
3564 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to
3565 // transform a switch with only two cases (or two cases + default)
3566 // that produces a result into a value select.
3567 // Example:
3568 // switch (a) {
3569 // case 10: %0 = icmp eq i32 %a, 10
3570 // return 10; %1 = select i1 %0, i32 10, i32 4
3571 // case 20: ----> %2 = icmp eq i32 %a, 20
3572 // return 2; %3 = select i1 %2, i32 2, i32 %1
3573 // default:
3574 // return 4;
3575 // }
3576 static Value *
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)3577 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
3578 Constant *DefaultResult, Value *Condition,
3579 IRBuilder<> &Builder) {
3580 assert(ResultVector.size() == 2 &&
3581 "We should have exactly two unique results at this point");
3582 // If we are selecting between only two cases transform into a simple
3583 // select or a two-way select if default is possible.
3584 if (ResultVector[0].second.size() == 1 &&
3585 ResultVector[1].second.size() == 1) {
3586 ConstantInt *const FirstCase = ResultVector[0].second[0];
3587 ConstantInt *const SecondCase = ResultVector[1].second[0];
3588
3589 bool DefaultCanTrigger = DefaultResult;
3590 Value *SelectValue = ResultVector[1].first;
3591 if (DefaultCanTrigger) {
3592 Value *const ValueCompare =
3593 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
3594 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
3595 DefaultResult, "switch.select");
3596 }
3597 Value *const ValueCompare =
3598 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
3599 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
3600 "switch.select");
3601 }
3602
3603 return nullptr;
3604 }
3605
3606 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch
3607 // instruction that has been converted into a select, fixing up PHI nodes and
3608 // basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder)3609 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
3610 Value *SelectValue,
3611 IRBuilder<> &Builder) {
3612 BasicBlock *SelectBB = SI->getParent();
3613 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
3614 PHI->removeIncomingValue(SelectBB);
3615 PHI->addIncoming(SelectValue, SelectBB);
3616
3617 Builder.CreateBr(PHI->getParent());
3618
3619 // Remove the switch.
3620 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3621 BasicBlock *Succ = SI->getSuccessor(i);
3622
3623 if (Succ == PHI->getParent())
3624 continue;
3625 Succ->removePredecessor(SelectBB);
3626 }
3627 SI->eraseFromParent();
3628 }
3629
3630 /// SwitchToSelect - If the switch is only used to initialize one or more
3631 /// phi nodes in a common successor block with only two different
3632 /// constant values, replace the switch with select.
SwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,AssumptionCache * AC,const DataLayout & DL)3633 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
3634 AssumptionCache *AC, const DataLayout &DL) {
3635 Value *const Cond = SI->getCondition();
3636 PHINode *PHI = nullptr;
3637 BasicBlock *CommonDest = nullptr;
3638 Constant *DefaultResult;
3639 SwitchCaseResultVectorTy UniqueResults;
3640 // Collect all the cases that will deliver the same value from the switch.
3641 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
3642 DL))
3643 return false;
3644 // Selects choose between maximum two values.
3645 if (UniqueResults.size() != 2)
3646 return false;
3647 assert(PHI != nullptr && "PHI for value select not found");
3648
3649 Builder.SetInsertPoint(SI);
3650 Value *SelectValue = ConvertTwoCaseSwitch(
3651 UniqueResults,
3652 DefaultResult, Cond, Builder);
3653 if (SelectValue) {
3654 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
3655 return true;
3656 }
3657 // The switch couldn't be converted into a select.
3658 return false;
3659 }
3660
3661 namespace {
3662 /// SwitchLookupTable - This class represents a lookup table that can be used
3663 /// to replace a switch.
3664 class SwitchLookupTable {
3665 public:
3666 /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3667 /// with the contents of Values, using DefaultValue to fill any holes in the
3668 /// table.
3669 SwitchLookupTable(
3670 Module &M, uint64_t TableSize, ConstantInt *Offset,
3671 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3672 Constant *DefaultValue, const DataLayout &DL);
3673
3674 /// BuildLookup - Build instructions with Builder to retrieve the value at
3675 /// the position given by Index in the lookup table.
3676 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3677
3678 /// WouldFitInRegister - Return true if a table with TableSize elements of
3679 /// type ElementType would fit in a target-legal register.
3680 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
3681 const Type *ElementType);
3682
3683 private:
3684 // Depending on the contents of the table, it can be represented in
3685 // different ways.
3686 enum {
3687 // For tables where each element contains the same value, we just have to
3688 // store that single value and return it for each lookup.
3689 SingleValueKind,
3690
3691 // For tables where there is a linear relationship between table index
3692 // and values. We calculate the result with a simple multiplication
3693 // and addition instead of a table lookup.
3694 LinearMapKind,
3695
3696 // For small tables with integer elements, we can pack them into a bitmap
3697 // that fits into a target-legal register. Values are retrieved by
3698 // shift and mask operations.
3699 BitMapKind,
3700
3701 // The table is stored as an array of values. Values are retrieved by load
3702 // instructions from the table.
3703 ArrayKind
3704 } Kind;
3705
3706 // For SingleValueKind, this is the single value.
3707 Constant *SingleValue;
3708
3709 // For BitMapKind, this is the bitmap.
3710 ConstantInt *BitMap;
3711 IntegerType *BitMapElementTy;
3712
3713 // For LinearMapKind, these are the constants used to derive the value.
3714 ConstantInt *LinearOffset;
3715 ConstantInt *LinearMultiplier;
3716
3717 // For ArrayKind, this is the array.
3718 GlobalVariable *Array;
3719 };
3720 }
3721
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL)3722 SwitchLookupTable::SwitchLookupTable(
3723 Module &M, uint64_t TableSize, ConstantInt *Offset,
3724 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3725 Constant *DefaultValue, const DataLayout &DL)
3726 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3727 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
3728 assert(Values.size() && "Can't build lookup table without values!");
3729 assert(TableSize >= Values.size() && "Can't fit values in table!");
3730
3731 // If all values in the table are equal, this is that value.
3732 SingleValue = Values.begin()->second;
3733
3734 Type *ValueType = Values.begin()->second->getType();
3735
3736 // Build up the table contents.
3737 SmallVector<Constant*, 64> TableContents(TableSize);
3738 for (size_t I = 0, E = Values.size(); I != E; ++I) {
3739 ConstantInt *CaseVal = Values[I].first;
3740 Constant *CaseRes = Values[I].second;
3741 assert(CaseRes->getType() == ValueType);
3742
3743 uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3744 .getLimitedValue();
3745 TableContents[Idx] = CaseRes;
3746
3747 if (CaseRes != SingleValue)
3748 SingleValue = nullptr;
3749 }
3750
3751 // Fill in any holes in the table with the default result.
3752 if (Values.size() < TableSize) {
3753 assert(DefaultValue &&
3754 "Need a default value to fill the lookup table holes.");
3755 assert(DefaultValue->getType() == ValueType);
3756 for (uint64_t I = 0; I < TableSize; ++I) {
3757 if (!TableContents[I])
3758 TableContents[I] = DefaultValue;
3759 }
3760
3761 if (DefaultValue != SingleValue)
3762 SingleValue = nullptr;
3763 }
3764
3765 // If each element in the table contains the same value, we only need to store
3766 // that single value.
3767 if (SingleValue) {
3768 Kind = SingleValueKind;
3769 return;
3770 }
3771
3772 // Check if we can derive the value with a linear transformation from the
3773 // table index.
3774 if (isa<IntegerType>(ValueType)) {
3775 bool LinearMappingPossible = true;
3776 APInt PrevVal;
3777 APInt DistToPrev;
3778 assert(TableSize >= 2 && "Should be a SingleValue table.");
3779 // Check if there is the same distance between two consecutive values.
3780 for (uint64_t I = 0; I < TableSize; ++I) {
3781 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
3782 if (!ConstVal) {
3783 // This is an undef. We could deal with it, but undefs in lookup tables
3784 // are very seldom. It's probably not worth the additional complexity.
3785 LinearMappingPossible = false;
3786 break;
3787 }
3788 APInt Val = ConstVal->getValue();
3789 if (I != 0) {
3790 APInt Dist = Val - PrevVal;
3791 if (I == 1) {
3792 DistToPrev = Dist;
3793 } else if (Dist != DistToPrev) {
3794 LinearMappingPossible = false;
3795 break;
3796 }
3797 }
3798 PrevVal = Val;
3799 }
3800 if (LinearMappingPossible) {
3801 LinearOffset = cast<ConstantInt>(TableContents[0]);
3802 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
3803 Kind = LinearMapKind;
3804 ++NumLinearMaps;
3805 return;
3806 }
3807 }
3808
3809 // If the type is integer and the table fits in a register, build a bitmap.
3810 if (WouldFitInRegister(DL, TableSize, ValueType)) {
3811 IntegerType *IT = cast<IntegerType>(ValueType);
3812 APInt TableInt(TableSize * IT->getBitWidth(), 0);
3813 for (uint64_t I = TableSize; I > 0; --I) {
3814 TableInt <<= IT->getBitWidth();
3815 // Insert values into the bitmap. Undef values are set to zero.
3816 if (!isa<UndefValue>(TableContents[I - 1])) {
3817 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3818 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3819 }
3820 }
3821 BitMap = ConstantInt::get(M.getContext(), TableInt);
3822 BitMapElementTy = IT;
3823 Kind = BitMapKind;
3824 ++NumBitMaps;
3825 return;
3826 }
3827
3828 // Store the table in an array.
3829 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3830 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3831
3832 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3833 GlobalVariable::PrivateLinkage,
3834 Initializer,
3835 "switch.table");
3836 Array->setUnnamedAddr(true);
3837 Kind = ArrayKind;
3838 }
3839
BuildLookup(Value * Index,IRBuilder<> & Builder)3840 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3841 switch (Kind) {
3842 case SingleValueKind:
3843 return SingleValue;
3844 case LinearMapKind: {
3845 // Derive the result value from the input value.
3846 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
3847 false, "switch.idx.cast");
3848 if (!LinearMultiplier->isOne())
3849 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
3850 if (!LinearOffset->isZero())
3851 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
3852 return Result;
3853 }
3854 case BitMapKind: {
3855 // Type of the bitmap (e.g. i59).
3856 IntegerType *MapTy = BitMap->getType();
3857
3858 // Cast Index to the same type as the bitmap.
3859 // Note: The Index is <= the number of elements in the table, so
3860 // truncating it to the width of the bitmask is safe.
3861 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3862
3863 // Multiply the shift amount by the element width.
3864 ShiftAmt = Builder.CreateMul(ShiftAmt,
3865 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3866 "switch.shiftamt");
3867
3868 // Shift down.
3869 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3870 "switch.downshift");
3871 // Mask off.
3872 return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3873 "switch.masked");
3874 }
3875 case ArrayKind: {
3876 // Make sure the table index will not overflow when treated as signed.
3877 IntegerType *IT = cast<IntegerType>(Index->getType());
3878 uint64_t TableSize = Array->getInitializer()->getType()
3879 ->getArrayNumElements();
3880 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
3881 Index = Builder.CreateZExt(Index,
3882 IntegerType::get(IT->getContext(),
3883 IT->getBitWidth() + 1),
3884 "switch.tableidx.zext");
3885
3886 Value *GEPIndices[] = { Builder.getInt32(0), Index };
3887 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
3888 GEPIndices, "switch.gep");
3889 return Builder.CreateLoad(GEP, "switch.load");
3890 }
3891 }
3892 llvm_unreachable("Unknown lookup table kind!");
3893 }
3894
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,const Type * ElementType)3895 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
3896 uint64_t TableSize,
3897 const Type *ElementType) {
3898 const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3899 if (!IT)
3900 return false;
3901 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3902 // are <= 15, we could try to narrow the type.
3903
3904 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3905 if (TableSize >= UINT_MAX/IT->getBitWidth())
3906 return false;
3907 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
3908 }
3909
3910 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
3911 /// for this switch, based on the number of cases, size of the table and the
3912 /// types of the results.
3913 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)3914 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
3915 const TargetTransformInfo &TTI, const DataLayout &DL,
3916 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
3917 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3918 return false; // TableSize overflowed, or mul below might overflow.
3919
3920 bool AllTablesFitInRegister = true;
3921 bool HasIllegalType = false;
3922 for (const auto &I : ResultTypes) {
3923 Type *Ty = I.second;
3924
3925 // Saturate this flag to true.
3926 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3927
3928 // Saturate this flag to false.
3929 AllTablesFitInRegister = AllTablesFitInRegister &&
3930 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
3931
3932 // If both flags saturate, we're done. NOTE: This *only* works with
3933 // saturating flags, and all flags have to saturate first due to the
3934 // non-deterministic behavior of iterating over a dense map.
3935 if (HasIllegalType && !AllTablesFitInRegister)
3936 break;
3937 }
3938
3939 // If each table would fit in a register, we should build it anyway.
3940 if (AllTablesFitInRegister)
3941 return true;
3942
3943 // Don't build a table that doesn't fit in-register if it has illegal types.
3944 if (HasIllegalType)
3945 return false;
3946
3947 // The table density should be at least 40%. This is the same criterion as for
3948 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3949 // FIXME: Find the best cut-off.
3950 return SI->getNumCases() * 10 >= TableSize * 4;
3951 }
3952
3953 /// Try to reuse the switch table index compare. Following pattern:
3954 /// \code
3955 /// if (idx < tablesize)
3956 /// r = table[idx]; // table does not contain default_value
3957 /// else
3958 /// r = default_value;
3959 /// if (r != default_value)
3960 /// ...
3961 /// \endcode
3962 /// Is optimized to:
3963 /// \code
3964 /// cond = idx < tablesize;
3965 /// if (cond)
3966 /// r = table[idx];
3967 /// else
3968 /// r = default_value;
3969 /// if (cond)
3970 /// ...
3971 /// \endcode
3972 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)3973 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
3974 BranchInst *RangeCheckBranch, Constant *DefaultValue,
3975 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
3976
3977 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
3978 if (!CmpInst)
3979 return;
3980
3981 // We require that the compare is in the same block as the phi so that jump
3982 // threading can do its work afterwards.
3983 if (CmpInst->getParent() != PhiBlock)
3984 return;
3985
3986 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
3987 if (!CmpOp1)
3988 return;
3989
3990 Value *RangeCmp = RangeCheckBranch->getCondition();
3991 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
3992 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
3993
3994 // Check if the compare with the default value is constant true or false.
3995 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
3996 DefaultValue, CmpOp1, true);
3997 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
3998 return;
3999
4000 // Check if the compare with the case values is distinct from the default
4001 // compare result.
4002 for (auto ValuePair : Values) {
4003 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4004 ValuePair.second, CmpOp1, true);
4005 if (!CaseConst || CaseConst == DefaultConst)
4006 return;
4007 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4008 "Expect true or false as compare result.");
4009 }
4010
4011 // Check if the branch instruction dominates the phi node. It's a simple
4012 // dominance check, but sufficient for our needs.
4013 // Although this check is invariant in the calling loops, it's better to do it
4014 // at this late stage. Practically we do it at most once for a switch.
4015 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4016 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4017 BasicBlock *Pred = *PI;
4018 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4019 return;
4020 }
4021
4022 if (DefaultConst == FalseConst) {
4023 // The compare yields the same result. We can replace it.
4024 CmpInst->replaceAllUsesWith(RangeCmp);
4025 ++NumTableCmpReuses;
4026 } else {
4027 // The compare yields the same result, just inverted. We can replace it.
4028 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4029 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4030 RangeCheckBranch);
4031 CmpInst->replaceAllUsesWith(InvertedTableCmp);
4032 ++NumTableCmpReuses;
4033 }
4034 }
4035
4036 /// SwitchToLookupTable - If the switch is only used to initialize one or more
4037 /// phi nodes in a common successor block with different constant values,
4038 /// replace the switch with lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)4039 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4040 const DataLayout &DL,
4041 const TargetTransformInfo &TTI) {
4042 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4043
4044 // Only build lookup table when we have a target that supports it.
4045 if (!TTI.shouldBuildLookupTables())
4046 return false;
4047
4048 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4049 // split off a dense part and build a lookup table for that.
4050
4051 // FIXME: This creates arrays of GEPs to constant strings, which means each
4052 // GEP needs a runtime relocation in PIC code. We should just build one big
4053 // string and lookup indices into that.
4054
4055 // Ignore switches with less than three cases. Lookup tables will not make them
4056 // faster, so we don't analyze them.
4057 if (SI->getNumCases() < 3)
4058 return false;
4059
4060 // Figure out the corresponding result for each case value and phi node in the
4061 // common destination, as well as the the min and max case values.
4062 assert(SI->case_begin() != SI->case_end());
4063 SwitchInst::CaseIt CI = SI->case_begin();
4064 ConstantInt *MinCaseVal = CI.getCaseValue();
4065 ConstantInt *MaxCaseVal = CI.getCaseValue();
4066
4067 BasicBlock *CommonDest = nullptr;
4068 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4069 SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4070 SmallDenseMap<PHINode*, Constant*> DefaultResults;
4071 SmallDenseMap<PHINode*, Type*> ResultTypes;
4072 SmallVector<PHINode*, 4> PHIs;
4073
4074 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4075 ConstantInt *CaseVal = CI.getCaseValue();
4076 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4077 MinCaseVal = CaseVal;
4078 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4079 MaxCaseVal = CaseVal;
4080
4081 // Resulting value at phi nodes for this case value.
4082 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4083 ResultsTy Results;
4084 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4085 Results, DL))
4086 return false;
4087
4088 // Append the result from this case to the list for each phi.
4089 for (const auto &I : Results) {
4090 PHINode *PHI = I.first;
4091 Constant *Value = I.second;
4092 if (!ResultLists.count(PHI))
4093 PHIs.push_back(PHI);
4094 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4095 }
4096 }
4097
4098 // Keep track of the result types.
4099 for (PHINode *PHI : PHIs) {
4100 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4101 }
4102
4103 uint64_t NumResults = ResultLists[PHIs[0]].size();
4104 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4105 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4106 bool TableHasHoles = (NumResults < TableSize);
4107
4108 // If the table has holes, we need a constant result for the default case
4109 // or a bitmask that fits in a register.
4110 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4111 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4112 &CommonDest, DefaultResultsList, DL);
4113
4114 bool NeedMask = (TableHasHoles && !HasDefaultResults);
4115 if (NeedMask) {
4116 // As an extra penalty for the validity test we require more cases.
4117 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4118 return false;
4119 if (!DL.fitsInLegalInteger(TableSize))
4120 return false;
4121 }
4122
4123 for (const auto &I : DefaultResultsList) {
4124 PHINode *PHI = I.first;
4125 Constant *Result = I.second;
4126 DefaultResults[PHI] = Result;
4127 }
4128
4129 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4130 return false;
4131
4132 // Create the BB that does the lookups.
4133 Module &Mod = *CommonDest->getParent()->getParent();
4134 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4135 "switch.lookup",
4136 CommonDest->getParent(),
4137 CommonDest);
4138
4139 // Compute the table index value.
4140 Builder.SetInsertPoint(SI);
4141 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4142 "switch.tableidx");
4143
4144 // Compute the maximum table size representable by the integer type we are
4145 // switching upon.
4146 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4147 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4148 assert(MaxTableSize >= TableSize &&
4149 "It is impossible for a switch to have more entries than the max "
4150 "representable value of its input integer type's size.");
4151
4152 // If the default destination is unreachable, or if the lookup table covers
4153 // all values of the conditional variable, branch directly to the lookup table
4154 // BB. Otherwise, check that the condition is within the case range.
4155 const bool DefaultIsReachable =
4156 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4157 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4158 BranchInst *RangeCheckBranch = nullptr;
4159
4160 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4161 Builder.CreateBr(LookupBB);
4162 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4163 // do not delete PHINodes here.
4164 SI->getDefaultDest()->removePredecessor(SI->getParent(),
4165 /*DontDeleteUselessPHIs=*/true);
4166 } else {
4167 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4168 MinCaseVal->getType(), TableSize));
4169 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4170 }
4171
4172 // Populate the BB that does the lookups.
4173 Builder.SetInsertPoint(LookupBB);
4174
4175 if (NeedMask) {
4176 // Before doing the lookup we do the hole check.
4177 // The LookupBB is therefore re-purposed to do the hole check
4178 // and we create a new LookupBB.
4179 BasicBlock *MaskBB = LookupBB;
4180 MaskBB->setName("switch.hole_check");
4181 LookupBB = BasicBlock::Create(Mod.getContext(),
4182 "switch.lookup",
4183 CommonDest->getParent(),
4184 CommonDest);
4185
4186 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4187 // unnecessary illegal types.
4188 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4189 APInt MaskInt(TableSizePowOf2, 0);
4190 APInt One(TableSizePowOf2, 1);
4191 // Build bitmask; fill in a 1 bit for every case.
4192 const ResultListTy &ResultList = ResultLists[PHIs[0]];
4193 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4194 uint64_t Idx = (ResultList[I].first->getValue() -
4195 MinCaseVal->getValue()).getLimitedValue();
4196 MaskInt |= One << Idx;
4197 }
4198 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4199
4200 // Get the TableIndex'th bit of the bitmask.
4201 // If this bit is 0 (meaning hole) jump to the default destination,
4202 // else continue with table lookup.
4203 IntegerType *MapTy = TableMask->getType();
4204 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4205 "switch.maskindex");
4206 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4207 "switch.shifted");
4208 Value *LoBit = Builder.CreateTrunc(Shifted,
4209 Type::getInt1Ty(Mod.getContext()),
4210 "switch.lobit");
4211 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4212
4213 Builder.SetInsertPoint(LookupBB);
4214 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4215 }
4216
4217 bool ReturnedEarly = false;
4218 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4219 PHINode *PHI = PHIs[I];
4220 const ResultListTy &ResultList = ResultLists[PHI];
4221
4222 // If using a bitmask, use any value to fill the lookup table holes.
4223 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4224 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4225
4226 Value *Result = Table.BuildLookup(TableIndex, Builder);
4227
4228 // If the result is used to return immediately from the function, we want to
4229 // do that right here.
4230 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4231 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4232 Builder.CreateRet(Result);
4233 ReturnedEarly = true;
4234 break;
4235 }
4236
4237 // Do a small peephole optimization: re-use the switch table compare if
4238 // possible.
4239 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4240 BasicBlock *PhiBlock = PHI->getParent();
4241 // Search for compare instructions which use the phi.
4242 for (auto *User : PHI->users()) {
4243 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4244 }
4245 }
4246
4247 PHI->addIncoming(Result, LookupBB);
4248 }
4249
4250 if (!ReturnedEarly)
4251 Builder.CreateBr(CommonDest);
4252
4253 // Remove the switch.
4254 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4255 BasicBlock *Succ = SI->getSuccessor(i);
4256
4257 if (Succ == SI->getDefaultDest())
4258 continue;
4259 Succ->removePredecessor(SI->getParent());
4260 }
4261 SI->eraseFromParent();
4262
4263 ++NumLookupTables;
4264 if (NeedMask)
4265 ++NumLookupTablesHoles;
4266 return true;
4267 }
4268
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)4269 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4270 BasicBlock *BB = SI->getParent();
4271
4272 if (isValueEqualityComparison(SI)) {
4273 // If we only have one predecessor, and if it is a branch on this value,
4274 // see if that predecessor totally determines the outcome of this switch.
4275 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4276 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4277 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4278
4279 Value *Cond = SI->getCondition();
4280 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4281 if (SimplifySwitchOnSelect(SI, Select))
4282 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4283
4284 // If the block only contains the switch, see if we can fold the block
4285 // away into any preds.
4286 BasicBlock::iterator BBI = BB->begin();
4287 // Ignore dbg intrinsics.
4288 while (isa<DbgInfoIntrinsic>(BBI))
4289 ++BBI;
4290 if (SI == &*BBI)
4291 if (FoldValueComparisonIntoPredecessors(SI, Builder))
4292 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4293 }
4294
4295 // Try to transform the switch into an icmp and a branch.
4296 if (TurnSwitchRangeIntoICmp(SI, Builder))
4297 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4298
4299 // Remove unreachable cases.
4300 if (EliminateDeadSwitchCases(SI, AC, DL))
4301 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4302
4303 if (SwitchToSelect(SI, Builder, AC, DL))
4304 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4305
4306 if (ForwardSwitchConditionToPHI(SI))
4307 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4308
4309 if (SwitchToLookupTable(SI, Builder, DL, TTI))
4310 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4311
4312 return false;
4313 }
4314
SimplifyIndirectBr(IndirectBrInst * IBI)4315 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4316 BasicBlock *BB = IBI->getParent();
4317 bool Changed = false;
4318
4319 // Eliminate redundant destinations.
4320 SmallPtrSet<Value *, 8> Succs;
4321 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4322 BasicBlock *Dest = IBI->getDestination(i);
4323 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4324 Dest->removePredecessor(BB);
4325 IBI->removeDestination(i);
4326 --i; --e;
4327 Changed = true;
4328 }
4329 }
4330
4331 if (IBI->getNumDestinations() == 0) {
4332 // If the indirectbr has no successors, change it to unreachable.
4333 new UnreachableInst(IBI->getContext(), IBI);
4334 EraseTerminatorInstAndDCECond(IBI);
4335 return true;
4336 }
4337
4338 if (IBI->getNumDestinations() == 1) {
4339 // If the indirectbr has one successor, change it to a direct branch.
4340 BranchInst::Create(IBI->getDestination(0), IBI);
4341 EraseTerminatorInstAndDCECond(IBI);
4342 return true;
4343 }
4344
4345 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4346 if (SimplifyIndirectBrOnSelect(IBI, SI))
4347 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4348 }
4349 return Changed;
4350 }
4351
4352 /// Given an block with only a single landing pad and a unconditional branch
4353 /// try to find another basic block which this one can be merged with. This
4354 /// handles cases where we have multiple invokes with unique landing pads, but
4355 /// a shared handler.
4356 ///
4357 /// We specifically choose to not worry about merging non-empty blocks
4358 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
4359 /// practice, the optimizer produces empty landing pad blocks quite frequently
4360 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
4361 /// sinking in this file)
4362 ///
4363 /// This is primarily a code size optimization. We need to avoid performing
4364 /// any transform which might inhibit optimization (such as our ability to
4365 /// specialize a particular handler via tail commoning). We do this by not
4366 /// merging any blocks which require us to introduce a phi. Since the same
4367 /// values are flowing through both blocks, we don't loose any ability to
4368 /// specialize. If anything, we make such specialization more likely.
4369 ///
4370 /// TODO - This transformation could remove entries from a phi in the target
4371 /// block when the inputs in the phi are the same for the two blocks being
4372 /// merged. In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB)4373 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
4374 BasicBlock *BB) {
4375 auto Succ = BB->getUniqueSuccessor();
4376 assert(Succ);
4377 // If there's a phi in the successor block, we'd likely have to introduce
4378 // a phi into the merged landing pad block.
4379 if (isa<PHINode>(*Succ->begin()))
4380 return false;
4381
4382 for (BasicBlock *OtherPred : predecessors(Succ)) {
4383 if (BB == OtherPred)
4384 continue;
4385 BasicBlock::iterator I = OtherPred->begin();
4386 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
4387 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
4388 continue;
4389 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4390 BranchInst *BI2 = dyn_cast<BranchInst>(I);
4391 if (!BI2 || !BI2->isIdenticalTo(BI))
4392 continue;
4393
4394 // We've found an identical block. Update our predeccessors to take that
4395 // path instead and make ourselves dead.
4396 SmallSet<BasicBlock *, 16> Preds;
4397 Preds.insert(pred_begin(BB), pred_end(BB));
4398 for (BasicBlock *Pred : Preds) {
4399 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
4400 assert(II->getNormalDest() != BB &&
4401 II->getUnwindDest() == BB && "unexpected successor");
4402 II->setUnwindDest(OtherPred);
4403 }
4404
4405 // The debug info in OtherPred doesn't cover the merged control flow that
4406 // used to go through BB. We need to delete it or update it.
4407 for (auto I = OtherPred->begin(), E = OtherPred->end();
4408 I != E;) {
4409 Instruction &Inst = *I; I++;
4410 if (isa<DbgInfoIntrinsic>(Inst))
4411 Inst.eraseFromParent();
4412 }
4413
4414 SmallSet<BasicBlock *, 16> Succs;
4415 Succs.insert(succ_begin(BB), succ_end(BB));
4416 for (BasicBlock *Succ : Succs) {
4417 Succ->removePredecessor(BB);
4418 }
4419
4420 IRBuilder<> Builder(BI);
4421 Builder.CreateUnreachable();
4422 BI->eraseFromParent();
4423 return true;
4424 }
4425 return false;
4426 }
4427
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)4428 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4429 BasicBlock *BB = BI->getParent();
4430
4431 if (SinkCommon && SinkThenElseCodeToEnd(BI))
4432 return true;
4433
4434 // If the Terminator is the only non-phi instruction, simplify the block.
4435 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
4436 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4437 TryToSimplifyUncondBranchFromEmptyBlock(BB))
4438 return true;
4439
4440 // If the only instruction in the block is a seteq/setne comparison
4441 // against a constant, try to simplify the block.
4442 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4443 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4444 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4445 ;
4446 if (I->isTerminator() &&
4447 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
4448 BonusInstThreshold, AC))
4449 return true;
4450 }
4451
4452 // See if we can merge an empty landing pad block with another which is
4453 // equivalent.
4454 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
4455 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4456 if (I->isTerminator() &&
4457 TryToMergeLandingPad(LPad, BI, BB))
4458 return true;
4459 }
4460
4461 // If this basic block is ONLY a compare and a branch, and if a predecessor
4462 // branches to us and our successor, fold the comparison into the
4463 // predecessor and use logical operations to update the incoming value
4464 // for PHI nodes in common successor.
4465 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4466 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4467 return false;
4468 }
4469
4470
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)4471 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4472 BasicBlock *BB = BI->getParent();
4473
4474 // Conditional branch
4475 if (isValueEqualityComparison(BI)) {
4476 // If we only have one predecessor, and if it is a branch on this value,
4477 // see if that predecessor totally determines the outcome of this
4478 // switch.
4479 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4480 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4481 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4482
4483 // This block must be empty, except for the setcond inst, if it exists.
4484 // Ignore dbg intrinsics.
4485 BasicBlock::iterator I = BB->begin();
4486 // Ignore dbg intrinsics.
4487 while (isa<DbgInfoIntrinsic>(I))
4488 ++I;
4489 if (&*I == BI) {
4490 if (FoldValueComparisonIntoPredecessors(BI, Builder))
4491 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4492 } else if (&*I == cast<Instruction>(BI->getCondition())){
4493 ++I;
4494 // Ignore dbg intrinsics.
4495 while (isa<DbgInfoIntrinsic>(I))
4496 ++I;
4497 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4498 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4499 }
4500 }
4501
4502 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4503 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
4504 return true;
4505
4506 // If this basic block is ONLY a compare and a branch, and if a predecessor
4507 // branches to us and one of our successors, fold the comparison into the
4508 // predecessor and use logical operations to pick the right destination.
4509 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4510 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4511
4512 // We have a conditional branch to two blocks that are only reachable
4513 // from BI. We know that the condbr dominates the two blocks, so see if
4514 // there is any identical code in the "then" and "else" blocks. If so, we
4515 // can hoist it up to the branching block.
4516 if (BI->getSuccessor(0)->getSinglePredecessor()) {
4517 if (BI->getSuccessor(1)->getSinglePredecessor()) {
4518 if (HoistThenElseCodeToIf(BI, TTI))
4519 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4520 } else {
4521 // If Successor #1 has multiple preds, we may be able to conditionally
4522 // execute Successor #0 if it branches to Successor #1.
4523 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4524 if (Succ0TI->getNumSuccessors() == 1 &&
4525 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4526 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
4527 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4528 }
4529 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4530 // If Successor #0 has multiple preds, we may be able to conditionally
4531 // execute Successor #1 if it branches to Successor #0.
4532 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4533 if (Succ1TI->getNumSuccessors() == 1 &&
4534 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4535 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
4536 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4537 }
4538
4539 // If this is a branch on a phi node in the current block, thread control
4540 // through this block if any PHI node entries are constants.
4541 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4542 if (PN->getParent() == BI->getParent())
4543 if (FoldCondBranchOnPHI(BI, DL))
4544 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4545
4546 // Scan predecessor blocks for conditional branches.
4547 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4548 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4549 if (PBI != BI && PBI->isConditional())
4550 if (SimplifyCondBranchToCondBranch(PBI, BI))
4551 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4552
4553 return false;
4554 }
4555
4556 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)4557 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4558 Constant *C = dyn_cast<Constant>(V);
4559 if (!C)
4560 return false;
4561
4562 if (I->use_empty())
4563 return false;
4564
4565 if (C->isNullValue()) {
4566 // Only look at the first use, avoid hurting compile time with long uselists
4567 User *Use = *I->user_begin();
4568
4569 // Now make sure that there are no instructions in between that can alter
4570 // control flow (eg. calls)
4571 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4572 if (i == I->getParent()->end() || i->mayHaveSideEffects())
4573 return false;
4574
4575 // Look through GEPs. A load from a GEP derived from NULL is still undefined
4576 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4577 if (GEP->getPointerOperand() == I)
4578 return passingValueIsAlwaysUndefined(V, GEP);
4579
4580 // Look through bitcasts.
4581 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4582 return passingValueIsAlwaysUndefined(V, BC);
4583
4584 // Load from null is undefined.
4585 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4586 if (!LI->isVolatile())
4587 return LI->getPointerAddressSpace() == 0;
4588
4589 // Store to null is undefined.
4590 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4591 if (!SI->isVolatile())
4592 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4593 }
4594 return false;
4595 }
4596
4597 /// If BB has an incoming value that will always trigger undefined behavior
4598 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)4599 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4600 for (BasicBlock::iterator i = BB->begin();
4601 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4602 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4603 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4604 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4605 IRBuilder<> Builder(T);
4606 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4607 BB->removePredecessor(PHI->getIncomingBlock(i));
4608 // Turn uncoditional branches into unreachables and remove the dead
4609 // destination from conditional branches.
4610 if (BI->isUnconditional())
4611 Builder.CreateUnreachable();
4612 else
4613 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4614 BI->getSuccessor(0));
4615 BI->eraseFromParent();
4616 return true;
4617 }
4618 // TODO: SwitchInst.
4619 }
4620
4621 return false;
4622 }
4623
run(BasicBlock * BB)4624 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4625 bool Changed = false;
4626
4627 assert(BB && BB->getParent() && "Block not embedded in function!");
4628 assert(BB->getTerminator() && "Degenerate basic block encountered!");
4629
4630 // Remove basic blocks that have no predecessors (except the entry block)...
4631 // or that just have themself as a predecessor. These are unreachable.
4632 if ((pred_empty(BB) &&
4633 BB != &BB->getParent()->getEntryBlock()) ||
4634 BB->getSinglePredecessor() == BB) {
4635 DEBUG(dbgs() << "Removing BB: \n" << *BB);
4636 DeleteDeadBlock(BB);
4637 return true;
4638 }
4639
4640 // Check to see if we can constant propagate this terminator instruction
4641 // away...
4642 Changed |= ConstantFoldTerminator(BB, true);
4643
4644 // Check for and eliminate duplicate PHI nodes in this block.
4645 Changed |= EliminateDuplicatePHINodes(BB);
4646
4647 // Check for and remove branches that will always cause undefined behavior.
4648 Changed |= removeUndefIntroducingPredecessor(BB);
4649
4650 // Merge basic blocks into their predecessor if there is only one distinct
4651 // pred, and if there is only one distinct successor of the predecessor, and
4652 // if there are no PHI nodes.
4653 //
4654 if (MergeBlockIntoPredecessor(BB))
4655 return true;
4656
4657 IRBuilder<> Builder(BB);
4658
4659 // If there is a trivial two-entry PHI node in this basic block, and we can
4660 // eliminate it, do so now.
4661 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4662 if (PN->getNumIncomingValues() == 2)
4663 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
4664
4665 Builder.SetInsertPoint(BB->getTerminator());
4666 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4667 if (BI->isUnconditional()) {
4668 if (SimplifyUncondBranch(BI, Builder)) return true;
4669 } else {
4670 if (SimplifyCondBranch(BI, Builder)) return true;
4671 }
4672 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4673 if (SimplifyReturn(RI, Builder)) return true;
4674 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4675 if (SimplifyResume(RI, Builder)) return true;
4676 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4677 if (SimplifySwitch(SI, Builder)) return true;
4678 } else if (UnreachableInst *UI =
4679 dyn_cast<UnreachableInst>(BB->getTerminator())) {
4680 if (SimplifyUnreachable(UI)) return true;
4681 } else if (IndirectBrInst *IBI =
4682 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4683 if (SimplifyIndirectBr(IBI)) return true;
4684 }
4685
4686 return Changed;
4687 }
4688
4689 /// SimplifyCFG - This function is used to do simplification of a CFG. For
4690 /// example, it adjusts branches to branches to eliminate the extra hop, it
4691 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4692 /// of the CFG. It returns true if a modification was made.
4693 ///
SimplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)4694 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4695 unsigned BonusInstThreshold, AssumptionCache *AC) {
4696 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
4697 BonusInstThreshold, AC).run(BB);
4698 }
4699