1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53 
54 #define DEBUG_TYPE "simplifycfg"
55 
56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
58 // To catch this, we need to fold a compare and a select, hence '2' being the
59 // minimum reasonable default.
60 static cl::opt<unsigned>
61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
62    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
63 
64 static cl::opt<bool>
65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
66        cl::desc("Duplicate return instructions into unconditional branches"));
67 
68 static cl::opt<bool>
69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
70        cl::desc("Sink common instructions down to the end block"));
71 
72 static cl::opt<bool> HoistCondStores(
73     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
74     cl::desc("Hoist conditional stores if an unconditional store precedes"));
75 
76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
82 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
83 
84 namespace {
85   // The first field contains the value that the switch produces when a certain
86   // case group is selected, and the second field is a vector containing the cases
87   // composing the case group.
88   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
89     SwitchCaseResultVectorTy;
90   // The first field contains the phi node that generates a result of the switch
91   // and the second field contains the value generated for a certain case in the switch
92   // for that PHI.
93   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
94 
95   /// ValueEqualityComparisonCase - Represents a case of a switch.
96   struct ValueEqualityComparisonCase {
97     ConstantInt *Value;
98     BasicBlock *Dest;
99 
ValueEqualityComparisonCase__anonfb6897ed0111::ValueEqualityComparisonCase100     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
101       : Value(Value), Dest(Dest) {}
102 
operator <__anonfb6897ed0111::ValueEqualityComparisonCase103     bool operator<(ValueEqualityComparisonCase RHS) const {
104       // Comparing pointers is ok as we only rely on the order for uniquing.
105       return Value < RHS.Value;
106     }
107 
operator ==__anonfb6897ed0111::ValueEqualityComparisonCase108     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
109   };
110 
111 class SimplifyCFGOpt {
112   const TargetTransformInfo &TTI;
113   const DataLayout &DL;
114   unsigned BonusInstThreshold;
115   AssumptionCache *AC;
116   Value *isValueEqualityComparison(TerminatorInst *TI);
117   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
118                                std::vector<ValueEqualityComparisonCase> &Cases);
119   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
120                                                      BasicBlock *Pred,
121                                                      IRBuilder<> &Builder);
122   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
123                                            IRBuilder<> &Builder);
124 
125   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
126   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
127   bool SimplifyUnreachable(UnreachableInst *UI);
128   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
129   bool SimplifyIndirectBr(IndirectBrInst *IBI);
130   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
131   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
132 
133 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout & DL,unsigned BonusInstThreshold,AssumptionCache * AC)134   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
135                  unsigned BonusInstThreshold, AssumptionCache *AC)
136       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
137   bool run(BasicBlock *BB);
138 };
139 }
140 
141 /// SafeToMergeTerminators - Return true if it is safe to merge these two
142 /// terminator instructions together.
143 ///
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
145   if (SI1 == SI2) return false;  // Can't merge with self!
146 
147   // It is not safe to merge these two switch instructions if they have a common
148   // successor, and if that successor has a PHI node, and if *that* PHI node has
149   // conflicting incoming values from the two switch blocks.
150   BasicBlock *SI1BB = SI1->getParent();
151   BasicBlock *SI2BB = SI2->getParent();
152   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
153 
154   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
155     if (SI1Succs.count(*I))
156       for (BasicBlock::iterator BBI = (*I)->begin();
157            isa<PHINode>(BBI); ++BBI) {
158         PHINode *PN = cast<PHINode>(BBI);
159         if (PN->getIncomingValueForBlock(SI1BB) !=
160             PN->getIncomingValueForBlock(SI2BB))
161           return false;
162       }
163 
164   return true;
165 }
166 
167 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
168 /// to merge these two terminator instructions together, where SI1 is an
169 /// unconditional branch. PhiNodes will store all PHI nodes in common
170 /// successors.
171 ///
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)172 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
173                                           BranchInst *SI2,
174                                           Instruction *Cond,
175                                           SmallVectorImpl<PHINode*> &PhiNodes) {
176   if (SI1 == SI2) return false;  // Can't merge with self!
177   assert(SI1->isUnconditional() && SI2->isConditional());
178 
179   // We fold the unconditional branch if we can easily update all PHI nodes in
180   // common successors:
181   // 1> We have a constant incoming value for the conditional branch;
182   // 2> We have "Cond" as the incoming value for the unconditional branch;
183   // 3> SI2->getCondition() and Cond have same operands.
184   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
185   if (!Ci2) return false;
186   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
187         Cond->getOperand(1) == Ci2->getOperand(1)) &&
188       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
189         Cond->getOperand(1) == Ci2->getOperand(0)))
190     return false;
191 
192   BasicBlock *SI1BB = SI1->getParent();
193   BasicBlock *SI2BB = SI2->getParent();
194   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
195   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
196     if (SI1Succs.count(*I))
197       for (BasicBlock::iterator BBI = (*I)->begin();
198            isa<PHINode>(BBI); ++BBI) {
199         PHINode *PN = cast<PHINode>(BBI);
200         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
201             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
202           return false;
203         PhiNodes.push_back(PN);
204       }
205   return true;
206 }
207 
208 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
209 /// now be entries in it from the 'NewPred' block.  The values that will be
210 /// flowing into the PHI nodes will be the same as those coming in from
211 /// ExistPred, an existing predecessor of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)212 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
213                                   BasicBlock *ExistPred) {
214   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
215 
216   PHINode *PN;
217   for (BasicBlock::iterator I = Succ->begin();
218        (PN = dyn_cast<PHINode>(I)); ++I)
219     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
220 }
221 
222 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
223 /// given instruction, which is assumed to be safe to speculate. TCC_Free means
224 /// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively
225 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)226 static unsigned ComputeSpeculationCost(const User *I,
227                                        const TargetTransformInfo &TTI) {
228   assert(isSafeToSpeculativelyExecute(I) &&
229          "Instruction is not safe to speculatively execute!");
230   return TTI.getUserCost(I);
231 }
232 /// DominatesMergePoint - If we have a merge point of an "if condition" as
233 /// accepted above, return true if the specified value dominates the block.  We
234 /// don't handle the true generality of domination here, just a special case
235 /// which works well enough for us.
236 ///
237 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
238 /// see if V (which must be an instruction) and its recursive operands
239 /// that do not dominate BB have a combined cost lower than CostRemaining and
240 /// are non-trapping.  If both are true, the instruction is inserted into the
241 /// set and true is returned.
242 ///
243 /// The cost for most non-trapping instructions is defined as 1 except for
244 /// Select whose cost is 2.
245 ///
246 /// After this function returns, CostRemaining is decreased by the cost of
247 /// V plus its non-dominating operands.  If that cost is greater than
248 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > * AggressiveInsts,unsigned & CostRemaining,const TargetTransformInfo & TTI)249 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
250                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
251                                 unsigned &CostRemaining,
252                                 const TargetTransformInfo &TTI) {
253   Instruction *I = dyn_cast<Instruction>(V);
254   if (!I) {
255     // Non-instructions all dominate instructions, but not all constantexprs
256     // can be executed unconditionally.
257     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
258       if (C->canTrap())
259         return false;
260     return true;
261   }
262   BasicBlock *PBB = I->getParent();
263 
264   // We don't want to allow weird loops that might have the "if condition" in
265   // the bottom of this block.
266   if (PBB == BB) return false;
267 
268   // If this instruction is defined in a block that contains an unconditional
269   // branch to BB, then it must be in the 'conditional' part of the "if
270   // statement".  If not, it definitely dominates the region.
271   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
272   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
273     return true;
274 
275   // If we aren't allowing aggressive promotion anymore, then don't consider
276   // instructions in the 'if region'.
277   if (!AggressiveInsts) return false;
278 
279   // If we have seen this instruction before, don't count it again.
280   if (AggressiveInsts->count(I)) return true;
281 
282   // Okay, it looks like the instruction IS in the "condition".  Check to
283   // see if it's a cheap instruction to unconditionally compute, and if it
284   // only uses stuff defined outside of the condition.  If so, hoist it out.
285   if (!isSafeToSpeculativelyExecute(I))
286     return false;
287 
288   unsigned Cost = ComputeSpeculationCost(I, TTI);
289 
290   if (Cost > CostRemaining)
291     return false;
292 
293   CostRemaining -= Cost;
294 
295   // Okay, we can only really hoist these out if their operands do
296   // not take us over the cost threshold.
297   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
298     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
299       return false;
300   // Okay, it's safe to do this!  Remember this instruction.
301   AggressiveInsts->insert(I);
302   return true;
303 }
304 
305 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
306 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)307 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
308   // Normal constant int.
309   ConstantInt *CI = dyn_cast<ConstantInt>(V);
310   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
311     return CI;
312 
313   // This is some kind of pointer constant. Turn it into a pointer-sized
314   // ConstantInt if possible.
315   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
316 
317   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
318   if (isa<ConstantPointerNull>(V))
319     return ConstantInt::get(PtrTy, 0);
320 
321   // IntToPtr const int.
322   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
323     if (CE->getOpcode() == Instruction::IntToPtr)
324       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
325         // The constant is very likely to have the right type already.
326         if (CI->getType() == PtrTy)
327           return CI;
328         else
329           return cast<ConstantInt>
330             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
331       }
332   return nullptr;
333 }
334 
335 namespace {
336 
337 /// Given a chain of or (||) or and (&&) comparison of a value against a
338 /// constant, this will try to recover the information required for a switch
339 /// structure.
340 /// It will depth-first traverse the chain of comparison, seeking for patterns
341 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
342 /// representing the different cases for the switch.
343 /// Note that if the chain is composed of '||' it will build the set of elements
344 /// that matches the comparisons (i.e. any of this value validate the chain)
345 /// while for a chain of '&&' it will build the set elements that make the test
346 /// fail.
347 struct ConstantComparesGatherer {
348   const DataLayout &DL;
349   Value *CompValue; /// Value found for the switch comparison
350   Value *Extra;     /// Extra clause to be checked before the switch
351   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
352   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
353 
354   /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anonfb6897ed0211::ConstantComparesGatherer355   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
356       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
357     gather(Cond);
358   }
359 
360   /// Prevent copy
361   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
362   ConstantComparesGatherer &
363   operator=(const ConstantComparesGatherer &) = delete;
364 
365 private:
366 
367   /// Try to set the current value used for the comparison, it succeeds only if
368   /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anonfb6897ed0211::ConstantComparesGatherer369   bool setValueOnce(Value *NewVal) {
370     if(CompValue && CompValue != NewVal) return false;
371     CompValue = NewVal;
372     return (CompValue != nullptr);
373   }
374 
375   /// Try to match Instruction "I" as a comparison against a constant and
376   /// populates the array Vals with the set of values that match (or do not
377   /// match depending on isEQ).
378   /// Return false on failure. On success, the Value the comparison matched
379   /// against is placed in CompValue.
380   /// If CompValue is already set, the function is expected to fail if a match
381   /// is found but the value compared to is different.
matchInstruction__anonfb6897ed0211::ConstantComparesGatherer382   bool matchInstruction(Instruction *I, bool isEQ) {
383     // If this is an icmp against a constant, handle this as one of the cases.
384     ICmpInst *ICI;
385     ConstantInt *C;
386     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
387              (C = GetConstantInt(I->getOperand(1), DL)))) {
388       return false;
389     }
390 
391     Value *RHSVal;
392     ConstantInt *RHSC;
393 
394     // Pattern match a special case
395     // (x & ~2^x) == y --> x == y || x == y|2^x
396     // This undoes a transformation done by instcombine to fuse 2 compares.
397     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
398       if (match(ICI->getOperand(0),
399                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
400         APInt Not = ~RHSC->getValue();
401         if (Not.isPowerOf2()) {
402           // If we already have a value for the switch, it has to match!
403           if(!setValueOnce(RHSVal))
404             return false;
405 
406           Vals.push_back(C);
407           Vals.push_back(ConstantInt::get(C->getContext(),
408                                           C->getValue() | Not));
409           UsedICmps++;
410           return true;
411         }
412       }
413 
414       // If we already have a value for the switch, it has to match!
415       if(!setValueOnce(ICI->getOperand(0)))
416         return false;
417 
418       UsedICmps++;
419       Vals.push_back(C);
420       return ICI->getOperand(0);
421     }
422 
423     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
424     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
425         ICI->getPredicate(), C->getValue());
426 
427     // Shift the range if the compare is fed by an add. This is the range
428     // compare idiom as emitted by instcombine.
429     Value *CandidateVal = I->getOperand(0);
430     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
431       Span = Span.subtract(RHSC->getValue());
432       CandidateVal = RHSVal;
433     }
434 
435     // If this is an and/!= check, then we are looking to build the set of
436     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
437     // x != 0 && x != 1.
438     if (!isEQ)
439       Span = Span.inverse();
440 
441     // If there are a ton of values, we don't want to make a ginormous switch.
442     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
443       return false;
444     }
445 
446     // If we already have a value for the switch, it has to match!
447     if(!setValueOnce(CandidateVal))
448       return false;
449 
450     // Add all values from the range to the set
451     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
452       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
453 
454     UsedICmps++;
455     return true;
456 
457   }
458 
459   /// gather - Given a potentially 'or'd or 'and'd together collection of icmp
460   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
461   /// the value being compared, and stick the list constants into the Vals
462   /// vector.
463   /// One "Extra" case is allowed to differ from the other.
gather__anonfb6897ed0211::ConstantComparesGatherer464   void gather(Value *V) {
465     Instruction *I = dyn_cast<Instruction>(V);
466     bool isEQ = (I->getOpcode() == Instruction::Or);
467 
468     // Keep a stack (SmallVector for efficiency) for depth-first traversal
469     SmallVector<Value *, 8> DFT;
470 
471     // Initialize
472     DFT.push_back(V);
473 
474     while(!DFT.empty()) {
475       V = DFT.pop_back_val();
476 
477       if (Instruction *I = dyn_cast<Instruction>(V)) {
478         // If it is a || (or && depending on isEQ), process the operands.
479         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
480           DFT.push_back(I->getOperand(1));
481           DFT.push_back(I->getOperand(0));
482           continue;
483         }
484 
485         // Try to match the current instruction
486         if (matchInstruction(I, isEQ))
487           // Match succeed, continue the loop
488           continue;
489       }
490 
491       // One element of the sequence of || (or &&) could not be match as a
492       // comparison against the same value as the others.
493       // We allow only one "Extra" case to be checked before the switch
494       if (!Extra) {
495         Extra = V;
496         continue;
497       }
498       // Failed to parse a proper sequence, abort now
499       CompValue = nullptr;
500       break;
501     }
502   }
503 };
504 
505 }
506 
EraseTerminatorInstAndDCECond(TerminatorInst * TI)507 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
508   Instruction *Cond = nullptr;
509   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
510     Cond = dyn_cast<Instruction>(SI->getCondition());
511   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
512     if (BI->isConditional())
513       Cond = dyn_cast<Instruction>(BI->getCondition());
514   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
515     Cond = dyn_cast<Instruction>(IBI->getAddress());
516   }
517 
518   TI->eraseFromParent();
519   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
520 }
521 
522 /// isValueEqualityComparison - Return true if the specified terminator checks
523 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)524 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
525   Value *CV = nullptr;
526   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
527     // Do not permit merging of large switch instructions into their
528     // predecessors unless there is only one predecessor.
529     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
530                                              pred_end(SI->getParent())) <= 128)
531       CV = SI->getCondition();
532   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
533     if (BI->isConditional() && BI->getCondition()->hasOneUse())
534       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
535         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
536           CV = ICI->getOperand(0);
537       }
538 
539   // Unwrap any lossless ptrtoint cast.
540   if (CV) {
541     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
542       Value *Ptr = PTII->getPointerOperand();
543       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
544         CV = Ptr;
545     }
546   }
547   return CV;
548 }
549 
550 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
551 /// decode all of the 'cases' that it represents and return the 'default' block.
552 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)553 GetValueEqualityComparisonCases(TerminatorInst *TI,
554                                 std::vector<ValueEqualityComparisonCase>
555                                                                        &Cases) {
556   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
557     Cases.reserve(SI->getNumCases());
558     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
559       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
560                                                   i.getCaseSuccessor()));
561     return SI->getDefaultDest();
562   }
563 
564   BranchInst *BI = cast<BranchInst>(TI);
565   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
566   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
567   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
568                                                              DL),
569                                               Succ));
570   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
571 }
572 
573 
574 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
575 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)576 static void EliminateBlockCases(BasicBlock *BB,
577                               std::vector<ValueEqualityComparisonCase> &Cases) {
578   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
579 }
580 
581 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
582 /// well.
583 static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)584 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
585               std::vector<ValueEqualityComparisonCase > &C2) {
586   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
587 
588   // Make V1 be smaller than V2.
589   if (V1->size() > V2->size())
590     std::swap(V1, V2);
591 
592   if (V1->size() == 0) return false;
593   if (V1->size() == 1) {
594     // Just scan V2.
595     ConstantInt *TheVal = (*V1)[0].Value;
596     for (unsigned i = 0, e = V2->size(); i != e; ++i)
597       if (TheVal == (*V2)[i].Value)
598         return true;
599   }
600 
601   // Otherwise, just sort both lists and compare element by element.
602   array_pod_sort(V1->begin(), V1->end());
603   array_pod_sort(V2->begin(), V2->end());
604   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
605   while (i1 != e1 && i2 != e2) {
606     if ((*V1)[i1].Value == (*V2)[i2].Value)
607       return true;
608     if ((*V1)[i1].Value < (*V2)[i2].Value)
609       ++i1;
610     else
611       ++i2;
612   }
613   return false;
614 }
615 
616 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
617 /// terminator instruction and its block is known to only have a single
618 /// predecessor block, check to see if that predecessor is also a value
619 /// comparison with the same value, and if that comparison determines the
620 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
621 /// form of jump threading.
622 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)623 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
624                                               BasicBlock *Pred,
625                                               IRBuilder<> &Builder) {
626   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
627   if (!PredVal) return false;  // Not a value comparison in predecessor.
628 
629   Value *ThisVal = isValueEqualityComparison(TI);
630   assert(ThisVal && "This isn't a value comparison!!");
631   if (ThisVal != PredVal) return false;  // Different predicates.
632 
633   // TODO: Preserve branch weight metadata, similarly to how
634   // FoldValueComparisonIntoPredecessors preserves it.
635 
636   // Find out information about when control will move from Pred to TI's block.
637   std::vector<ValueEqualityComparisonCase> PredCases;
638   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
639                                                         PredCases);
640   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
641 
642   // Find information about how control leaves this block.
643   std::vector<ValueEqualityComparisonCase> ThisCases;
644   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
645   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
646 
647   // If TI's block is the default block from Pred's comparison, potentially
648   // simplify TI based on this knowledge.
649   if (PredDef == TI->getParent()) {
650     // If we are here, we know that the value is none of those cases listed in
651     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
652     // can simplify TI.
653     if (!ValuesOverlap(PredCases, ThisCases))
654       return false;
655 
656     if (isa<BranchInst>(TI)) {
657       // Okay, one of the successors of this condbr is dead.  Convert it to a
658       // uncond br.
659       assert(ThisCases.size() == 1 && "Branch can only have one case!");
660       // Insert the new branch.
661       Instruction *NI = Builder.CreateBr(ThisDef);
662       (void) NI;
663 
664       // Remove PHI node entries for the dead edge.
665       ThisCases[0].Dest->removePredecessor(TI->getParent());
666 
667       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
669 
670       EraseTerminatorInstAndDCECond(TI);
671       return true;
672     }
673 
674     SwitchInst *SI = cast<SwitchInst>(TI);
675     // Okay, TI has cases that are statically dead, prune them away.
676     SmallPtrSet<Constant*, 16> DeadCases;
677     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
678       DeadCases.insert(PredCases[i].Value);
679 
680     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
681                  << "Through successor TI: " << *TI);
682 
683     // Collect branch weights into a vector.
684     SmallVector<uint32_t, 8> Weights;
685     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
686     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
687     if (HasWeight)
688       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
689            ++MD_i) {
690         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
691         Weights.push_back(CI->getValue().getZExtValue());
692       }
693     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
694       --i;
695       if (DeadCases.count(i.getCaseValue())) {
696         if (HasWeight) {
697           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
698           Weights.pop_back();
699         }
700         i.getCaseSuccessor()->removePredecessor(TI->getParent());
701         SI->removeCase(i);
702       }
703     }
704     if (HasWeight && Weights.size() >= 2)
705       SI->setMetadata(LLVMContext::MD_prof,
706                       MDBuilder(SI->getParent()->getContext()).
707                       createBranchWeights(Weights));
708 
709     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
710     return true;
711   }
712 
713   // Otherwise, TI's block must correspond to some matched value.  Find out
714   // which value (or set of values) this is.
715   ConstantInt *TIV = nullptr;
716   BasicBlock *TIBB = TI->getParent();
717   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
718     if (PredCases[i].Dest == TIBB) {
719       if (TIV)
720         return false;  // Cannot handle multiple values coming to this block.
721       TIV = PredCases[i].Value;
722     }
723   assert(TIV && "No edge from pred to succ?");
724 
725   // Okay, we found the one constant that our value can be if we get into TI's
726   // BB.  Find out which successor will unconditionally be branched to.
727   BasicBlock *TheRealDest = nullptr;
728   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
729     if (ThisCases[i].Value == TIV) {
730       TheRealDest = ThisCases[i].Dest;
731       break;
732     }
733 
734   // If not handled by any explicit cases, it is handled by the default case.
735   if (!TheRealDest) TheRealDest = ThisDef;
736 
737   // Remove PHI node entries for dead edges.
738   BasicBlock *CheckEdge = TheRealDest;
739   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
740     if (*SI != CheckEdge)
741       (*SI)->removePredecessor(TIBB);
742     else
743       CheckEdge = nullptr;
744 
745   // Insert the new branch.
746   Instruction *NI = Builder.CreateBr(TheRealDest);
747   (void) NI;
748 
749   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
750             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
751 
752   EraseTerminatorInstAndDCECond(TI);
753   return true;
754 }
755 
756 namespace {
757   /// ConstantIntOrdering - This class implements a stable ordering of constant
758   /// integers that does not depend on their address.  This is important for
759   /// applications that sort ConstantInt's to ensure uniqueness.
760   struct ConstantIntOrdering {
operator ()__anonfb6897ed0311::ConstantIntOrdering761     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
762       return LHS->getValue().ult(RHS->getValue());
763     }
764   };
765 }
766 
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)767 static int ConstantIntSortPredicate(ConstantInt *const *P1,
768                                     ConstantInt *const *P2) {
769   const ConstantInt *LHS = *P1;
770   const ConstantInt *RHS = *P2;
771   if (LHS->getValue().ult(RHS->getValue()))
772     return 1;
773   if (LHS->getValue() == RHS->getValue())
774     return 0;
775   return -1;
776 }
777 
HasBranchWeights(const Instruction * I)778 static inline bool HasBranchWeights(const Instruction* I) {
779   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
780   if (ProfMD && ProfMD->getOperand(0))
781     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
782       return MDS->getString().equals("branch_weights");
783 
784   return false;
785 }
786 
787 /// Get Weights of a given TerminatorInst, the default weight is at the front
788 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
789 /// metadata.
GetBranchWeights(TerminatorInst * TI,SmallVectorImpl<uint64_t> & Weights)790 static void GetBranchWeights(TerminatorInst *TI,
791                              SmallVectorImpl<uint64_t> &Weights) {
792   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
793   assert(MD);
794   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
795     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
796     Weights.push_back(CI->getValue().getZExtValue());
797   }
798 
799   // If TI is a conditional eq, the default case is the false case,
800   // and the corresponding branch-weight data is at index 2. We swap the
801   // default weight to be the first entry.
802   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
803     assert(Weights.size() == 2);
804     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
805     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
806       std::swap(Weights.front(), Weights.back());
807   }
808 }
809 
810 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)811 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
812   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
813   if (Max > UINT_MAX) {
814     unsigned Offset = 32 - countLeadingZeros(Max);
815     for (uint64_t &I : Weights)
816       I >>= Offset;
817   }
818 }
819 
820 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
821 /// equality comparison instruction (either a switch or a branch on "X == c").
822 /// See if any of the predecessors of the terminator block are value comparisons
823 /// on the same value.  If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)824 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
825                                                          IRBuilder<> &Builder) {
826   BasicBlock *BB = TI->getParent();
827   Value *CV = isValueEqualityComparison(TI);  // CondVal
828   assert(CV && "Not a comparison?");
829   bool Changed = false;
830 
831   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
832   while (!Preds.empty()) {
833     BasicBlock *Pred = Preds.pop_back_val();
834 
835     // See if the predecessor is a comparison with the same value.
836     TerminatorInst *PTI = Pred->getTerminator();
837     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
838 
839     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
840       // Figure out which 'cases' to copy from SI to PSI.
841       std::vector<ValueEqualityComparisonCase> BBCases;
842       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
843 
844       std::vector<ValueEqualityComparisonCase> PredCases;
845       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
846 
847       // Based on whether the default edge from PTI goes to BB or not, fill in
848       // PredCases and PredDefault with the new switch cases we would like to
849       // build.
850       SmallVector<BasicBlock*, 8> NewSuccessors;
851 
852       // Update the branch weight metadata along the way
853       SmallVector<uint64_t, 8> Weights;
854       bool PredHasWeights = HasBranchWeights(PTI);
855       bool SuccHasWeights = HasBranchWeights(TI);
856 
857       if (PredHasWeights) {
858         GetBranchWeights(PTI, Weights);
859         // branch-weight metadata is inconsistent here.
860         if (Weights.size() != 1 + PredCases.size())
861           PredHasWeights = SuccHasWeights = false;
862       } else if (SuccHasWeights)
863         // If there are no predecessor weights but there are successor weights,
864         // populate Weights with 1, which will later be scaled to the sum of
865         // successor's weights
866         Weights.assign(1 + PredCases.size(), 1);
867 
868       SmallVector<uint64_t, 8> SuccWeights;
869       if (SuccHasWeights) {
870         GetBranchWeights(TI, SuccWeights);
871         // branch-weight metadata is inconsistent here.
872         if (SuccWeights.size() != 1 + BBCases.size())
873           PredHasWeights = SuccHasWeights = false;
874       } else if (PredHasWeights)
875         SuccWeights.assign(1 + BBCases.size(), 1);
876 
877       if (PredDefault == BB) {
878         // If this is the default destination from PTI, only the edges in TI
879         // that don't occur in PTI, or that branch to BB will be activated.
880         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
881         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
882           if (PredCases[i].Dest != BB)
883             PTIHandled.insert(PredCases[i].Value);
884           else {
885             // The default destination is BB, we don't need explicit targets.
886             std::swap(PredCases[i], PredCases.back());
887 
888             if (PredHasWeights || SuccHasWeights) {
889               // Increase weight for the default case.
890               Weights[0] += Weights[i+1];
891               std::swap(Weights[i+1], Weights.back());
892               Weights.pop_back();
893             }
894 
895             PredCases.pop_back();
896             --i; --e;
897           }
898 
899         // Reconstruct the new switch statement we will be building.
900         if (PredDefault != BBDefault) {
901           PredDefault->removePredecessor(Pred);
902           PredDefault = BBDefault;
903           NewSuccessors.push_back(BBDefault);
904         }
905 
906         unsigned CasesFromPred = Weights.size();
907         uint64_t ValidTotalSuccWeight = 0;
908         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
909           if (!PTIHandled.count(BBCases[i].Value) &&
910               BBCases[i].Dest != BBDefault) {
911             PredCases.push_back(BBCases[i]);
912             NewSuccessors.push_back(BBCases[i].Dest);
913             if (SuccHasWeights || PredHasWeights) {
914               // The default weight is at index 0, so weight for the ith case
915               // should be at index i+1. Scale the cases from successor by
916               // PredDefaultWeight (Weights[0]).
917               Weights.push_back(Weights[0] * SuccWeights[i+1]);
918               ValidTotalSuccWeight += SuccWeights[i+1];
919             }
920           }
921 
922         if (SuccHasWeights || PredHasWeights) {
923           ValidTotalSuccWeight += SuccWeights[0];
924           // Scale the cases from predecessor by ValidTotalSuccWeight.
925           for (unsigned i = 1; i < CasesFromPred; ++i)
926             Weights[i] *= ValidTotalSuccWeight;
927           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
928           Weights[0] *= SuccWeights[0];
929         }
930       } else {
931         // If this is not the default destination from PSI, only the edges
932         // in SI that occur in PSI with a destination of BB will be
933         // activated.
934         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
935         std::map<ConstantInt*, uint64_t> WeightsForHandled;
936         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937           if (PredCases[i].Dest == BB) {
938             PTIHandled.insert(PredCases[i].Value);
939 
940             if (PredHasWeights || SuccHasWeights) {
941               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
942               std::swap(Weights[i+1], Weights.back());
943               Weights.pop_back();
944             }
945 
946             std::swap(PredCases[i], PredCases.back());
947             PredCases.pop_back();
948             --i; --e;
949           }
950 
951         // Okay, now we know which constants were sent to BB from the
952         // predecessor.  Figure out where they will all go now.
953         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
954           if (PTIHandled.count(BBCases[i].Value)) {
955             // If this is one we are capable of getting...
956             if (PredHasWeights || SuccHasWeights)
957               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
958             PredCases.push_back(BBCases[i]);
959             NewSuccessors.push_back(BBCases[i].Dest);
960             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
961           }
962 
963         // If there are any constants vectored to BB that TI doesn't handle,
964         // they must go to the default destination of TI.
965         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
966                                     PTIHandled.begin(),
967                E = PTIHandled.end(); I != E; ++I) {
968           if (PredHasWeights || SuccHasWeights)
969             Weights.push_back(WeightsForHandled[*I]);
970           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
971           NewSuccessors.push_back(BBDefault);
972         }
973       }
974 
975       // Okay, at this point, we know which new successor Pred will get.  Make
976       // sure we update the number of entries in the PHI nodes for these
977       // successors.
978       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
979         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
980 
981       Builder.SetInsertPoint(PTI);
982       // Convert pointer to int before we switch.
983       if (CV->getType()->isPointerTy()) {
984         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
985                                     "magicptr");
986       }
987 
988       // Now that the successors are updated, create the new Switch instruction.
989       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
990                                                PredCases.size());
991       NewSI->setDebugLoc(PTI->getDebugLoc());
992       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
993         NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
994 
995       if (PredHasWeights || SuccHasWeights) {
996         // Halve the weights if any of them cannot fit in an uint32_t
997         FitWeights(Weights);
998 
999         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1000 
1001         NewSI->setMetadata(LLVMContext::MD_prof,
1002                            MDBuilder(BB->getContext()).
1003                            createBranchWeights(MDWeights));
1004       }
1005 
1006       EraseTerminatorInstAndDCECond(PTI);
1007 
1008       // Okay, last check.  If BB is still a successor of PSI, then we must
1009       // have an infinite loop case.  If so, add an infinitely looping block
1010       // to handle the case to preserve the behavior of the code.
1011       BasicBlock *InfLoopBlock = nullptr;
1012       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1013         if (NewSI->getSuccessor(i) == BB) {
1014           if (!InfLoopBlock) {
1015             // Insert it at the end of the function, because it's either code,
1016             // or it won't matter if it's hot. :)
1017             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1018                                               "infloop", BB->getParent());
1019             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1020           }
1021           NewSI->setSuccessor(i, InfLoopBlock);
1022         }
1023 
1024       Changed = true;
1025     }
1026   }
1027   return Changed;
1028 }
1029 
1030 // isSafeToHoistInvoke - If we would need to insert a select that uses the
1031 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
1032 // would need to do this), we can't hoist the invoke, as there is nowhere
1033 // to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1034 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1035                                 Instruction *I1, Instruction *I2) {
1036   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1037     PHINode *PN;
1038     for (BasicBlock::iterator BBI = SI->begin();
1039          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1040       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1041       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1042       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1043         return false;
1044       }
1045     }
1046   }
1047   return true;
1048 }
1049 
1050 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1051 
1052 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1053 /// BB2, hoist any common code in the two blocks up into the branch block.  The
1054 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1055 static bool HoistThenElseCodeToIf(BranchInst *BI,
1056                                   const TargetTransformInfo &TTI) {
1057   // This does very trivial matching, with limited scanning, to find identical
1058   // instructions in the two blocks.  In particular, we don't want to get into
1059   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1060   // such, we currently just scan for obviously identical instructions in an
1061   // identical order.
1062   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1063   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1064 
1065   BasicBlock::iterator BB1_Itr = BB1->begin();
1066   BasicBlock::iterator BB2_Itr = BB2->begin();
1067 
1068   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1069   // Skip debug info if it is not identical.
1070   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1071   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1072   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1073     while (isa<DbgInfoIntrinsic>(I1))
1074       I1 = BB1_Itr++;
1075     while (isa<DbgInfoIntrinsic>(I2))
1076       I2 = BB2_Itr++;
1077   }
1078   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1079       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1080     return false;
1081 
1082   BasicBlock *BIParent = BI->getParent();
1083 
1084   bool Changed = false;
1085   do {
1086     // If we are hoisting the terminator instruction, don't move one (making a
1087     // broken BB), instead clone it, and remove BI.
1088     if (isa<TerminatorInst>(I1))
1089       goto HoistTerminator;
1090 
1091     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1092       return Changed;
1093 
1094     // For a normal instruction, we just move one to right before the branch,
1095     // then replace all uses of the other with the first.  Finally, we remove
1096     // the now redundant second instruction.
1097     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1098     if (!I2->use_empty())
1099       I2->replaceAllUsesWith(I1);
1100     I1->intersectOptionalDataWith(I2);
1101     unsigned KnownIDs[] = {
1102       LLVMContext::MD_tbaa,
1103       LLVMContext::MD_range,
1104       LLVMContext::MD_fpmath,
1105       LLVMContext::MD_invariant_load,
1106       LLVMContext::MD_nonnull
1107     };
1108     combineMetadata(I1, I2, KnownIDs);
1109     I2->eraseFromParent();
1110     Changed = true;
1111 
1112     I1 = BB1_Itr++;
1113     I2 = BB2_Itr++;
1114     // Skip debug info if it is not identical.
1115     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1116     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1117     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1118       while (isa<DbgInfoIntrinsic>(I1))
1119         I1 = BB1_Itr++;
1120       while (isa<DbgInfoIntrinsic>(I2))
1121         I2 = BB2_Itr++;
1122     }
1123   } while (I1->isIdenticalToWhenDefined(I2));
1124 
1125   return true;
1126 
1127 HoistTerminator:
1128   // It may not be possible to hoist an invoke.
1129   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1130     return Changed;
1131 
1132   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1133     PHINode *PN;
1134     for (BasicBlock::iterator BBI = SI->begin();
1135          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1136       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1137       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1138       if (BB1V == BB2V)
1139         continue;
1140 
1141       // Check for passingValueIsAlwaysUndefined here because we would rather
1142       // eliminate undefined control flow then converting it to a select.
1143       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1144           passingValueIsAlwaysUndefined(BB2V, PN))
1145        return Changed;
1146 
1147       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1148         return Changed;
1149       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1150         return Changed;
1151     }
1152   }
1153 
1154   // Okay, it is safe to hoist the terminator.
1155   Instruction *NT = I1->clone();
1156   BIParent->getInstList().insert(BI, NT);
1157   if (!NT->getType()->isVoidTy()) {
1158     I1->replaceAllUsesWith(NT);
1159     I2->replaceAllUsesWith(NT);
1160     NT->takeName(I1);
1161   }
1162 
1163   IRBuilder<true, NoFolder> Builder(NT);
1164   // Hoisting one of the terminators from our successor is a great thing.
1165   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1166   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1167   // nodes, so we insert select instruction to compute the final result.
1168   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1169   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1170     PHINode *PN;
1171     for (BasicBlock::iterator BBI = SI->begin();
1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175       if (BB1V == BB2V) continue;
1176 
1177       // These values do not agree.  Insert a select instruction before NT
1178       // that determines the right value.
1179       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1180       if (!SI)
1181         SI = cast<SelectInst>
1182           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1183                                 BB1V->getName()+"."+BB2V->getName()));
1184 
1185       // Make the PHI node use the select for all incoming values for BB1/BB2
1186       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1187         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1188           PN->setIncomingValue(i, SI);
1189     }
1190   }
1191 
1192   // Update any PHI nodes in our new successors.
1193   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1194     AddPredecessorToBlock(*SI, BIParent, BB1);
1195 
1196   EraseTerminatorInstAndDCECond(BI);
1197   return true;
1198 }
1199 
1200 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1201 /// check whether BBEnd has only two predecessors and the other predecessor
1202 /// ends with an unconditional branch. If it is true, sink any common code
1203 /// in the two predecessors to BBEnd.
SinkThenElseCodeToEnd(BranchInst * BI1)1204 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1205   assert(BI1->isUnconditional());
1206   BasicBlock *BB1 = BI1->getParent();
1207   BasicBlock *BBEnd = BI1->getSuccessor(0);
1208 
1209   // Check that BBEnd has two predecessors and the other predecessor ends with
1210   // an unconditional branch.
1211   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1212   BasicBlock *Pred0 = *PI++;
1213   if (PI == PE) // Only one predecessor.
1214     return false;
1215   BasicBlock *Pred1 = *PI++;
1216   if (PI != PE) // More than two predecessors.
1217     return false;
1218   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1219   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1220   if (!BI2 || !BI2->isUnconditional())
1221     return false;
1222 
1223   // Gather the PHI nodes in BBEnd.
1224   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1225   Instruction *FirstNonPhiInBBEnd = nullptr;
1226   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1227     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1228       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1229       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1230       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1231     } else {
1232       FirstNonPhiInBBEnd = &*I;
1233       break;
1234     }
1235   }
1236   if (!FirstNonPhiInBBEnd)
1237     return false;
1238 
1239   // This does very trivial matching, with limited scanning, to find identical
1240   // instructions in the two blocks.  We scan backward for obviously identical
1241   // instructions in an identical order.
1242   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1243                                              RE1 = BB1->getInstList().rend(),
1244                                              RI2 = BB2->getInstList().rbegin(),
1245                                              RE2 = BB2->getInstList().rend();
1246   // Skip debug info.
1247   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1248   if (RI1 == RE1)
1249     return false;
1250   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1251   if (RI2 == RE2)
1252     return false;
1253   // Skip the unconditional branches.
1254   ++RI1;
1255   ++RI2;
1256 
1257   bool Changed = false;
1258   while (RI1 != RE1 && RI2 != RE2) {
1259     // Skip debug info.
1260     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1261     if (RI1 == RE1)
1262       return Changed;
1263     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1264     if (RI2 == RE2)
1265       return Changed;
1266 
1267     Instruction *I1 = &*RI1, *I2 = &*RI2;
1268     auto InstPair = std::make_pair(I1, I2);
1269     // I1 and I2 should have a single use in the same PHI node, and they
1270     // perform the same operation.
1271     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1272     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1273         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1274         isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1275         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1276         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1277         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1278         !I1->hasOneUse() || !I2->hasOneUse() ||
1279         !JointValueMap.count(InstPair))
1280       return Changed;
1281 
1282     // Check whether we should swap the operands of ICmpInst.
1283     // TODO: Add support of communativity.
1284     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1285     bool SwapOpnds = false;
1286     if (ICmp1 && ICmp2 &&
1287         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1288         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1289         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1290          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1291       ICmp2->swapOperands();
1292       SwapOpnds = true;
1293     }
1294     if (!I1->isSameOperationAs(I2)) {
1295       if (SwapOpnds)
1296         ICmp2->swapOperands();
1297       return Changed;
1298     }
1299 
1300     // The operands should be either the same or they need to be generated
1301     // with a PHI node after sinking. We only handle the case where there is
1302     // a single pair of different operands.
1303     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1304     unsigned Op1Idx = ~0U;
1305     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1306       if (I1->getOperand(I) == I2->getOperand(I))
1307         continue;
1308       // Early exit if we have more-than one pair of different operands or if
1309       // we need a PHI node to replace a constant.
1310       if (Op1Idx != ~0U ||
1311           isa<Constant>(I1->getOperand(I)) ||
1312           isa<Constant>(I2->getOperand(I))) {
1313         // If we can't sink the instructions, undo the swapping.
1314         if (SwapOpnds)
1315           ICmp2->swapOperands();
1316         return Changed;
1317       }
1318       DifferentOp1 = I1->getOperand(I);
1319       Op1Idx = I;
1320       DifferentOp2 = I2->getOperand(I);
1321     }
1322 
1323     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1324     DEBUG(dbgs() << "                         " << *I2 << "\n");
1325 
1326     // We insert the pair of different operands to JointValueMap and
1327     // remove (I1, I2) from JointValueMap.
1328     if (Op1Idx != ~0U) {
1329       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1330       if (!NewPN) {
1331         NewPN =
1332             PHINode::Create(DifferentOp1->getType(), 2,
1333                             DifferentOp1->getName() + ".sink", BBEnd->begin());
1334         NewPN->addIncoming(DifferentOp1, BB1);
1335         NewPN->addIncoming(DifferentOp2, BB2);
1336         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1337       }
1338       // I1 should use NewPN instead of DifferentOp1.
1339       I1->setOperand(Op1Idx, NewPN);
1340     }
1341     PHINode *OldPN = JointValueMap[InstPair];
1342     JointValueMap.erase(InstPair);
1343 
1344     // We need to update RE1 and RE2 if we are going to sink the first
1345     // instruction in the basic block down.
1346     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1347     // Sink the instruction.
1348     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1349     if (!OldPN->use_empty())
1350       OldPN->replaceAllUsesWith(I1);
1351     OldPN->eraseFromParent();
1352 
1353     if (!I2->use_empty())
1354       I2->replaceAllUsesWith(I1);
1355     I1->intersectOptionalDataWith(I2);
1356     // TODO: Use combineMetadata here to preserve what metadata we can
1357     // (analogous to the hoisting case above).
1358     I2->eraseFromParent();
1359 
1360     if (UpdateRE1)
1361       RE1 = BB1->getInstList().rend();
1362     if (UpdateRE2)
1363       RE2 = BB2->getInstList().rend();
1364     FirstNonPhiInBBEnd = I1;
1365     NumSinkCommons++;
1366     Changed = true;
1367   }
1368   return Changed;
1369 }
1370 
1371 /// \brief Determine if we can hoist sink a sole store instruction out of a
1372 /// conditional block.
1373 ///
1374 /// We are looking for code like the following:
1375 ///   BrBB:
1376 ///     store i32 %add, i32* %arrayidx2
1377 ///     ... // No other stores or function calls (we could be calling a memory
1378 ///     ... // function).
1379 ///     %cmp = icmp ult %x, %y
1380 ///     br i1 %cmp, label %EndBB, label %ThenBB
1381 ///   ThenBB:
1382 ///     store i32 %add5, i32* %arrayidx2
1383 ///     br label EndBB
1384 ///   EndBB:
1385 ///     ...
1386 ///   We are going to transform this into:
1387 ///   BrBB:
1388 ///     store i32 %add, i32* %arrayidx2
1389 ///     ... //
1390 ///     %cmp = icmp ult %x, %y
1391 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1392 ///     store i32 %add.add5, i32* %arrayidx2
1393 ///     ...
1394 ///
1395 /// \return The pointer to the value of the previous store if the store can be
1396 ///         hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1397 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1398                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1399   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1400   if (!StoreToHoist)
1401     return nullptr;
1402 
1403   // Volatile or atomic.
1404   if (!StoreToHoist->isSimple())
1405     return nullptr;
1406 
1407   Value *StorePtr = StoreToHoist->getPointerOperand();
1408 
1409   // Look for a store to the same pointer in BrBB.
1410   unsigned MaxNumInstToLookAt = 10;
1411   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1412        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1413     Instruction *CurI = &*RI;
1414 
1415     // Could be calling an instruction that effects memory like free().
1416     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1417       return nullptr;
1418 
1419     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1420     // Found the previous store make sure it stores to the same location.
1421     if (SI && SI->getPointerOperand() == StorePtr)
1422       // Found the previous store, return its value operand.
1423       return SI->getValueOperand();
1424     else if (SI)
1425       return nullptr; // Unknown store.
1426   }
1427 
1428   return nullptr;
1429 }
1430 
1431 /// \brief Speculate a conditional basic block flattening the CFG.
1432 ///
1433 /// Note that this is a very risky transform currently. Speculating
1434 /// instructions like this is most often not desirable. Instead, there is an MI
1435 /// pass which can do it with full awareness of the resource constraints.
1436 /// However, some cases are "obvious" and we should do directly. An example of
1437 /// this is speculating a single, reasonably cheap instruction.
1438 ///
1439 /// There is only one distinct advantage to flattening the CFG at the IR level:
1440 /// it makes very common but simplistic optimizations such as are common in
1441 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1442 /// modeling their effects with easier to reason about SSA value graphs.
1443 ///
1444 ///
1445 /// An illustration of this transform is turning this IR:
1446 /// \code
1447 ///   BB:
1448 ///     %cmp = icmp ult %x, %y
1449 ///     br i1 %cmp, label %EndBB, label %ThenBB
1450 ///   ThenBB:
1451 ///     %sub = sub %x, %y
1452 ///     br label BB2
1453 ///   EndBB:
1454 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1455 ///     ...
1456 /// \endcode
1457 ///
1458 /// Into this IR:
1459 /// \code
1460 ///   BB:
1461 ///     %cmp = icmp ult %x, %y
1462 ///     %sub = sub %x, %y
1463 ///     %cond = select i1 %cmp, 0, %sub
1464 ///     ...
1465 /// \endcode
1466 ///
1467 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)1468 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1469                                    const TargetTransformInfo &TTI) {
1470   // Be conservative for now. FP select instruction can often be expensive.
1471   Value *BrCond = BI->getCondition();
1472   if (isa<FCmpInst>(BrCond))
1473     return false;
1474 
1475   BasicBlock *BB = BI->getParent();
1476   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1477 
1478   // If ThenBB is actually on the false edge of the conditional branch, remember
1479   // to swap the select operands later.
1480   bool Invert = false;
1481   if (ThenBB != BI->getSuccessor(0)) {
1482     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1483     Invert = true;
1484   }
1485   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1486 
1487   // Keep a count of how many times instructions are used within CondBB when
1488   // they are candidates for sinking into CondBB. Specifically:
1489   // - They are defined in BB, and
1490   // - They have no side effects, and
1491   // - All of their uses are in CondBB.
1492   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1493 
1494   unsigned SpeculationCost = 0;
1495   Value *SpeculatedStoreValue = nullptr;
1496   StoreInst *SpeculatedStore = nullptr;
1497   for (BasicBlock::iterator BBI = ThenBB->begin(),
1498                             BBE = std::prev(ThenBB->end());
1499        BBI != BBE; ++BBI) {
1500     Instruction *I = BBI;
1501     // Skip debug info.
1502     if (isa<DbgInfoIntrinsic>(I))
1503       continue;
1504 
1505     // Only speculatively execute a single instruction (not counting the
1506     // terminator) for now.
1507     ++SpeculationCost;
1508     if (SpeculationCost > 1)
1509       return false;
1510 
1511     // Don't hoist the instruction if it's unsafe or expensive.
1512     if (!isSafeToSpeculativelyExecute(I) &&
1513         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1514                                   I, BB, ThenBB, EndBB))))
1515       return false;
1516     if (!SpeculatedStoreValue &&
1517         ComputeSpeculationCost(I, TTI) >
1518             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1519       return false;
1520 
1521     // Store the store speculation candidate.
1522     if (SpeculatedStoreValue)
1523       SpeculatedStore = cast<StoreInst>(I);
1524 
1525     // Do not hoist the instruction if any of its operands are defined but not
1526     // used in BB. The transformation will prevent the operand from
1527     // being sunk into the use block.
1528     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1529          i != e; ++i) {
1530       Instruction *OpI = dyn_cast<Instruction>(*i);
1531       if (!OpI || OpI->getParent() != BB ||
1532           OpI->mayHaveSideEffects())
1533         continue; // Not a candidate for sinking.
1534 
1535       ++SinkCandidateUseCounts[OpI];
1536     }
1537   }
1538 
1539   // Consider any sink candidates which are only used in CondBB as costs for
1540   // speculation. Note, while we iterate over a DenseMap here, we are summing
1541   // and so iteration order isn't significant.
1542   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1543            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1544        I != E; ++I)
1545     if (I->first->getNumUses() == I->second) {
1546       ++SpeculationCost;
1547       if (SpeculationCost > 1)
1548         return false;
1549     }
1550 
1551   // Check that the PHI nodes can be converted to selects.
1552   bool HaveRewritablePHIs = false;
1553   for (BasicBlock::iterator I = EndBB->begin();
1554        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1555     Value *OrigV = PN->getIncomingValueForBlock(BB);
1556     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1557 
1558     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1559     // Skip PHIs which are trivial.
1560     if (ThenV == OrigV)
1561       continue;
1562 
1563     // Don't convert to selects if we could remove undefined behavior instead.
1564     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1565         passingValueIsAlwaysUndefined(ThenV, PN))
1566       return false;
1567 
1568     HaveRewritablePHIs = true;
1569     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1570     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1571     if (!OrigCE && !ThenCE)
1572       continue; // Known safe and cheap.
1573 
1574     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1575         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1576       return false;
1577     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1578     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1579     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1580       TargetTransformInfo::TCC_Basic;
1581     if (OrigCost + ThenCost > MaxCost)
1582       return false;
1583 
1584     // Account for the cost of an unfolded ConstantExpr which could end up
1585     // getting expanded into Instructions.
1586     // FIXME: This doesn't account for how many operations are combined in the
1587     // constant expression.
1588     ++SpeculationCost;
1589     if (SpeculationCost > 1)
1590       return false;
1591   }
1592 
1593   // If there are no PHIs to process, bail early. This helps ensure idempotence
1594   // as well.
1595   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1596     return false;
1597 
1598   // If we get here, we can hoist the instruction and if-convert.
1599   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1600 
1601   // Insert a select of the value of the speculated store.
1602   if (SpeculatedStoreValue) {
1603     IRBuilder<true, NoFolder> Builder(BI);
1604     Value *TrueV = SpeculatedStore->getValueOperand();
1605     Value *FalseV = SpeculatedStoreValue;
1606     if (Invert)
1607       std::swap(TrueV, FalseV);
1608     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1609                                     "." + FalseV->getName());
1610     SpeculatedStore->setOperand(0, S);
1611   }
1612 
1613   // Hoist the instructions.
1614   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1615                            std::prev(ThenBB->end()));
1616 
1617   // Insert selects and rewrite the PHI operands.
1618   IRBuilder<true, NoFolder> Builder(BI);
1619   for (BasicBlock::iterator I = EndBB->begin();
1620        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1621     unsigned OrigI = PN->getBasicBlockIndex(BB);
1622     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1623     Value *OrigV = PN->getIncomingValue(OrigI);
1624     Value *ThenV = PN->getIncomingValue(ThenI);
1625 
1626     // Skip PHIs which are trivial.
1627     if (OrigV == ThenV)
1628       continue;
1629 
1630     // Create a select whose true value is the speculatively executed value and
1631     // false value is the preexisting value. Swap them if the branch
1632     // destinations were inverted.
1633     Value *TrueV = ThenV, *FalseV = OrigV;
1634     if (Invert)
1635       std::swap(TrueV, FalseV);
1636     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1637                                     TrueV->getName() + "." + FalseV->getName());
1638     PN->setIncomingValue(OrigI, V);
1639     PN->setIncomingValue(ThenI, V);
1640   }
1641 
1642   ++NumSpeculations;
1643   return true;
1644 }
1645 
1646 /// \returns True if this block contains a CallInst with the NoDuplicate
1647 /// attribute.
HasNoDuplicateCall(const BasicBlock * BB)1648 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1649   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1650     const CallInst *CI = dyn_cast<CallInst>(I);
1651     if (!CI)
1652       continue;
1653     if (CI->cannotDuplicate())
1654       return true;
1655   }
1656   return false;
1657 }
1658 
1659 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1660 /// across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1661 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1662   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1663   unsigned Size = 0;
1664 
1665   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1666     if (isa<DbgInfoIntrinsic>(BBI))
1667       continue;
1668     if (Size > 10) return false;  // Don't clone large BB's.
1669     ++Size;
1670 
1671     // We can only support instructions that do not define values that are
1672     // live outside of the current basic block.
1673     for (User *U : BBI->users()) {
1674       Instruction *UI = cast<Instruction>(U);
1675       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1676     }
1677 
1678     // Looks ok, continue checking.
1679   }
1680 
1681   return true;
1682 }
1683 
1684 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1685 /// that is defined in the same block as the branch and if any PHI entries are
1686 /// constants, thread edges corresponding to that entry to be branches to their
1687 /// ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout & DL)1688 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1689   BasicBlock *BB = BI->getParent();
1690   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1691   // NOTE: we currently cannot transform this case if the PHI node is used
1692   // outside of the block.
1693   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1694     return false;
1695 
1696   // Degenerate case of a single entry PHI.
1697   if (PN->getNumIncomingValues() == 1) {
1698     FoldSingleEntryPHINodes(PN->getParent());
1699     return true;
1700   }
1701 
1702   // Now we know that this block has multiple preds and two succs.
1703   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1704 
1705   if (HasNoDuplicateCall(BB)) return false;
1706 
1707   // Okay, this is a simple enough basic block.  See if any phi values are
1708   // constants.
1709   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1710     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1711     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1712 
1713     // Okay, we now know that all edges from PredBB should be revectored to
1714     // branch to RealDest.
1715     BasicBlock *PredBB = PN->getIncomingBlock(i);
1716     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1717 
1718     if (RealDest == BB) continue;  // Skip self loops.
1719     // Skip if the predecessor's terminator is an indirect branch.
1720     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1721 
1722     // The dest block might have PHI nodes, other predecessors and other
1723     // difficult cases.  Instead of being smart about this, just insert a new
1724     // block that jumps to the destination block, effectively splitting
1725     // the edge we are about to create.
1726     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1727                                             RealDest->getName()+".critedge",
1728                                             RealDest->getParent(), RealDest);
1729     BranchInst::Create(RealDest, EdgeBB);
1730 
1731     // Update PHI nodes.
1732     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1733 
1734     // BB may have instructions that are being threaded over.  Clone these
1735     // instructions into EdgeBB.  We know that there will be no uses of the
1736     // cloned instructions outside of EdgeBB.
1737     BasicBlock::iterator InsertPt = EdgeBB->begin();
1738     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1739     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1740       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1741         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1742         continue;
1743       }
1744       // Clone the instruction.
1745       Instruction *N = BBI->clone();
1746       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1747 
1748       // Update operands due to translation.
1749       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1750            i != e; ++i) {
1751         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1752         if (PI != TranslateMap.end())
1753           *i = PI->second;
1754       }
1755 
1756       // Check for trivial simplification.
1757       if (Value *V = SimplifyInstruction(N, DL)) {
1758         TranslateMap[BBI] = V;
1759         delete N;   // Instruction folded away, don't need actual inst
1760       } else {
1761         // Insert the new instruction into its new home.
1762         EdgeBB->getInstList().insert(InsertPt, N);
1763         if (!BBI->use_empty())
1764           TranslateMap[BBI] = N;
1765       }
1766     }
1767 
1768     // Loop over all of the edges from PredBB to BB, changing them to branch
1769     // to EdgeBB instead.
1770     TerminatorInst *PredBBTI = PredBB->getTerminator();
1771     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1772       if (PredBBTI->getSuccessor(i) == BB) {
1773         BB->removePredecessor(PredBB);
1774         PredBBTI->setSuccessor(i, EdgeBB);
1775       }
1776 
1777     // Recurse, simplifying any other constants.
1778     return FoldCondBranchOnPHI(BI, DL) | true;
1779   }
1780 
1781   return false;
1782 }
1783 
1784 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1785 /// PHI node, see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,const DataLayout & DL)1786 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1787                                 const DataLayout &DL) {
1788   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1789   // statement", which has a very simple dominance structure.  Basically, we
1790   // are trying to find the condition that is being branched on, which
1791   // subsequently causes this merge to happen.  We really want control
1792   // dependence information for this check, but simplifycfg can't keep it up
1793   // to date, and this catches most of the cases we care about anyway.
1794   BasicBlock *BB = PN->getParent();
1795   BasicBlock *IfTrue, *IfFalse;
1796   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1797   if (!IfCond ||
1798       // Don't bother if the branch will be constant folded trivially.
1799       isa<ConstantInt>(IfCond))
1800     return false;
1801 
1802   // Okay, we found that we can merge this two-entry phi node into a select.
1803   // Doing so would require us to fold *all* two entry phi nodes in this block.
1804   // At some point this becomes non-profitable (particularly if the target
1805   // doesn't support cmov's).  Only do this transformation if there are two or
1806   // fewer PHI nodes in this block.
1807   unsigned NumPhis = 0;
1808   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1809     if (NumPhis > 2)
1810       return false;
1811 
1812   // Loop over the PHI's seeing if we can promote them all to select
1813   // instructions.  While we are at it, keep track of the instructions
1814   // that need to be moved to the dominating block.
1815   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1816   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1817            MaxCostVal1 = PHINodeFoldingThreshold;
1818   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1819   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1820 
1821   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1822     PHINode *PN = cast<PHINode>(II++);
1823     if (Value *V = SimplifyInstruction(PN, DL)) {
1824       PN->replaceAllUsesWith(V);
1825       PN->eraseFromParent();
1826       continue;
1827     }
1828 
1829     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1830                              MaxCostVal0, TTI) ||
1831         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1832                              MaxCostVal1, TTI))
1833       return false;
1834   }
1835 
1836   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1837   // we ran out of PHIs then we simplified them all.
1838   PN = dyn_cast<PHINode>(BB->begin());
1839   if (!PN) return true;
1840 
1841   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1842   // often be turned into switches and other things.
1843   if (PN->getType()->isIntegerTy(1) &&
1844       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1845        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1846        isa<BinaryOperator>(IfCond)))
1847     return false;
1848 
1849   // If we all PHI nodes are promotable, check to make sure that all
1850   // instructions in the predecessor blocks can be promoted as well.  If
1851   // not, we won't be able to get rid of the control flow, so it's not
1852   // worth promoting to select instructions.
1853   BasicBlock *DomBlock = nullptr;
1854   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1855   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1856   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1857     IfBlock1 = nullptr;
1858   } else {
1859     DomBlock = *pred_begin(IfBlock1);
1860     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1861       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1862         // This is not an aggressive instruction that we can promote.
1863         // Because of this, we won't be able to get rid of the control
1864         // flow, so the xform is not worth it.
1865         return false;
1866       }
1867   }
1868 
1869   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1870     IfBlock2 = nullptr;
1871   } else {
1872     DomBlock = *pred_begin(IfBlock2);
1873     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1874       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1875         // This is not an aggressive instruction that we can promote.
1876         // Because of this, we won't be able to get rid of the control
1877         // flow, so the xform is not worth it.
1878         return false;
1879       }
1880   }
1881 
1882   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1883                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1884 
1885   // If we can still promote the PHI nodes after this gauntlet of tests,
1886   // do all of the PHI's now.
1887   Instruction *InsertPt = DomBlock->getTerminator();
1888   IRBuilder<true, NoFolder> Builder(InsertPt);
1889 
1890   // Move all 'aggressive' instructions, which are defined in the
1891   // conditional parts of the if's up to the dominating block.
1892   if (IfBlock1)
1893     DomBlock->getInstList().splice(InsertPt,
1894                                    IfBlock1->getInstList(), IfBlock1->begin(),
1895                                    IfBlock1->getTerminator());
1896   if (IfBlock2)
1897     DomBlock->getInstList().splice(InsertPt,
1898                                    IfBlock2->getInstList(), IfBlock2->begin(),
1899                                    IfBlock2->getTerminator());
1900 
1901   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1902     // Change the PHI node into a select instruction.
1903     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1904     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1905 
1906     SelectInst *NV =
1907       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1908     PN->replaceAllUsesWith(NV);
1909     NV->takeName(PN);
1910     PN->eraseFromParent();
1911   }
1912 
1913   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1914   // has been flattened.  Change DomBlock to jump directly to our new block to
1915   // avoid other simplifycfg's kicking in on the diamond.
1916   TerminatorInst *OldTI = DomBlock->getTerminator();
1917   Builder.SetInsertPoint(OldTI);
1918   Builder.CreateBr(BB);
1919   OldTI->eraseFromParent();
1920   return true;
1921 }
1922 
1923 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1924 /// to two returning blocks, try to merge them together into one return,
1925 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1926 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1927                                            IRBuilder<> &Builder) {
1928   assert(BI->isConditional() && "Must be a conditional branch");
1929   BasicBlock *TrueSucc = BI->getSuccessor(0);
1930   BasicBlock *FalseSucc = BI->getSuccessor(1);
1931   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1932   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1933 
1934   // Check to ensure both blocks are empty (just a return) or optionally empty
1935   // with PHI nodes.  If there are other instructions, merging would cause extra
1936   // computation on one path or the other.
1937   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1938     return false;
1939   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1940     return false;
1941 
1942   Builder.SetInsertPoint(BI);
1943   // Okay, we found a branch that is going to two return nodes.  If
1944   // there is no return value for this function, just change the
1945   // branch into a return.
1946   if (FalseRet->getNumOperands() == 0) {
1947     TrueSucc->removePredecessor(BI->getParent());
1948     FalseSucc->removePredecessor(BI->getParent());
1949     Builder.CreateRetVoid();
1950     EraseTerminatorInstAndDCECond(BI);
1951     return true;
1952   }
1953 
1954   // Otherwise, figure out what the true and false return values are
1955   // so we can insert a new select instruction.
1956   Value *TrueValue = TrueRet->getReturnValue();
1957   Value *FalseValue = FalseRet->getReturnValue();
1958 
1959   // Unwrap any PHI nodes in the return blocks.
1960   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1961     if (TVPN->getParent() == TrueSucc)
1962       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1963   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1964     if (FVPN->getParent() == FalseSucc)
1965       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1966 
1967   // In order for this transformation to be safe, we must be able to
1968   // unconditionally execute both operands to the return.  This is
1969   // normally the case, but we could have a potentially-trapping
1970   // constant expression that prevents this transformation from being
1971   // safe.
1972   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1973     if (TCV->canTrap())
1974       return false;
1975   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1976     if (FCV->canTrap())
1977       return false;
1978 
1979   // Okay, we collected all the mapped values and checked them for sanity, and
1980   // defined to really do this transformation.  First, update the CFG.
1981   TrueSucc->removePredecessor(BI->getParent());
1982   FalseSucc->removePredecessor(BI->getParent());
1983 
1984   // Insert select instructions where needed.
1985   Value *BrCond = BI->getCondition();
1986   if (TrueValue) {
1987     // Insert a select if the results differ.
1988     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1989     } else if (isa<UndefValue>(TrueValue)) {
1990       TrueValue = FalseValue;
1991     } else {
1992       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1993                                        FalseValue, "retval");
1994     }
1995   }
1996 
1997   Value *RI = !TrueValue ?
1998     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1999 
2000   (void) RI;
2001 
2002   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2003                << "\n  " << *BI << "NewRet = " << *RI
2004                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2005 
2006   EraseTerminatorInstAndDCECond(BI);
2007 
2008   return true;
2009 }
2010 
2011 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
2012 /// probabilities of the branch taking each edge. Fills in the two APInt
2013 /// parameters and return true, or returns false if no or invalid metadata was
2014 /// found.
ExtractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)2015 static bool ExtractBranchMetadata(BranchInst *BI,
2016                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
2017   assert(BI->isConditional() &&
2018          "Looking for probabilities on unconditional branch?");
2019   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2020   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2021   ConstantInt *CITrue =
2022       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2023   ConstantInt *CIFalse =
2024       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2025   if (!CITrue || !CIFalse) return false;
2026   ProbTrue = CITrue->getValue().getZExtValue();
2027   ProbFalse = CIFalse->getValue().getZExtValue();
2028   return true;
2029 }
2030 
2031 /// checkCSEInPredecessor - Return true if the given instruction is available
2032 /// in its predecessor block. If yes, the instruction will be removed.
2033 ///
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)2034 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2035   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2036     return false;
2037   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2038     Instruction *PBI = &*I;
2039     // Check whether Inst and PBI generate the same value.
2040     if (Inst->isIdenticalTo(PBI)) {
2041       Inst->replaceAllUsesWith(PBI);
2042       Inst->eraseFromParent();
2043       return true;
2044     }
2045   }
2046   return false;
2047 }
2048 
2049 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
2050 /// predecessor branches to us and one of our successors, fold the block into
2051 /// the predecessor and use logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,unsigned BonusInstThreshold)2052 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2053   BasicBlock *BB = BI->getParent();
2054 
2055   Instruction *Cond = nullptr;
2056   if (BI->isConditional())
2057     Cond = dyn_cast<Instruction>(BI->getCondition());
2058   else {
2059     // For unconditional branch, check for a simple CFG pattern, where
2060     // BB has a single predecessor and BB's successor is also its predecessor's
2061     // successor. If such pattern exisits, check for CSE between BB and its
2062     // predecessor.
2063     if (BasicBlock *PB = BB->getSinglePredecessor())
2064       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2065         if (PBI->isConditional() &&
2066             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2067              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2068           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2069                I != E; ) {
2070             Instruction *Curr = I++;
2071             if (isa<CmpInst>(Curr)) {
2072               Cond = Curr;
2073               break;
2074             }
2075             // Quit if we can't remove this instruction.
2076             if (!checkCSEInPredecessor(Curr, PB))
2077               return false;
2078           }
2079         }
2080 
2081     if (!Cond)
2082       return false;
2083   }
2084 
2085   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2086       Cond->getParent() != BB || !Cond->hasOneUse())
2087   return false;
2088 
2089   // Make sure the instruction after the condition is the cond branch.
2090   BasicBlock::iterator CondIt = Cond; ++CondIt;
2091 
2092   // Ignore dbg intrinsics.
2093   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2094 
2095   if (&*CondIt != BI)
2096     return false;
2097 
2098   // Only allow this transformation if computing the condition doesn't involve
2099   // too many instructions and these involved instructions can be executed
2100   // unconditionally. We denote all involved instructions except the condition
2101   // as "bonus instructions", and only allow this transformation when the
2102   // number of the bonus instructions does not exceed a certain threshold.
2103   unsigned NumBonusInsts = 0;
2104   for (auto I = BB->begin(); Cond != I; ++I) {
2105     // Ignore dbg intrinsics.
2106     if (isa<DbgInfoIntrinsic>(I))
2107       continue;
2108     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
2109       return false;
2110     // I has only one use and can be executed unconditionally.
2111     Instruction *User = dyn_cast<Instruction>(I->user_back());
2112     if (User == nullptr || User->getParent() != BB)
2113       return false;
2114     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2115     // to use any other instruction, User must be an instruction between next(I)
2116     // and Cond.
2117     ++NumBonusInsts;
2118     // Early exits once we reach the limit.
2119     if (NumBonusInsts > BonusInstThreshold)
2120       return false;
2121   }
2122 
2123   // Cond is known to be a compare or binary operator.  Check to make sure that
2124   // neither operand is a potentially-trapping constant expression.
2125   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2126     if (CE->canTrap())
2127       return false;
2128   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2129     if (CE->canTrap())
2130       return false;
2131 
2132   // Finally, don't infinitely unroll conditional loops.
2133   BasicBlock *TrueDest  = BI->getSuccessor(0);
2134   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2135   if (TrueDest == BB || FalseDest == BB)
2136     return false;
2137 
2138   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2139     BasicBlock *PredBlock = *PI;
2140     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2141 
2142     // Check that we have two conditional branches.  If there is a PHI node in
2143     // the common successor, verify that the same value flows in from both
2144     // blocks.
2145     SmallVector<PHINode*, 4> PHIs;
2146     if (!PBI || PBI->isUnconditional() ||
2147         (BI->isConditional() &&
2148          !SafeToMergeTerminators(BI, PBI)) ||
2149         (!BI->isConditional() &&
2150          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2151       continue;
2152 
2153     // Determine if the two branches share a common destination.
2154     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2155     bool InvertPredCond = false;
2156 
2157     if (BI->isConditional()) {
2158       if (PBI->getSuccessor(0) == TrueDest)
2159         Opc = Instruction::Or;
2160       else if (PBI->getSuccessor(1) == FalseDest)
2161         Opc = Instruction::And;
2162       else if (PBI->getSuccessor(0) == FalseDest)
2163         Opc = Instruction::And, InvertPredCond = true;
2164       else if (PBI->getSuccessor(1) == TrueDest)
2165         Opc = Instruction::Or, InvertPredCond = true;
2166       else
2167         continue;
2168     } else {
2169       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2170         continue;
2171     }
2172 
2173     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2174     IRBuilder<> Builder(PBI);
2175 
2176     // If we need to invert the condition in the pred block to match, do so now.
2177     if (InvertPredCond) {
2178       Value *NewCond = PBI->getCondition();
2179 
2180       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2181         CmpInst *CI = cast<CmpInst>(NewCond);
2182         CI->setPredicate(CI->getInversePredicate());
2183       } else {
2184         NewCond = Builder.CreateNot(NewCond,
2185                                     PBI->getCondition()->getName()+".not");
2186       }
2187 
2188       PBI->setCondition(NewCond);
2189       PBI->swapSuccessors();
2190     }
2191 
2192     // If we have bonus instructions, clone them into the predecessor block.
2193     // Note that there may be mutliple predecessor blocks, so we cannot move
2194     // bonus instructions to a predecessor block.
2195     ValueToValueMapTy VMap; // maps original values to cloned values
2196     // We already make sure Cond is the last instruction before BI. Therefore,
2197     // every instructions before Cond other than DbgInfoIntrinsic are bonus
2198     // instructions.
2199     for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2200       if (isa<DbgInfoIntrinsic>(BonusInst))
2201         continue;
2202       Instruction *NewBonusInst = BonusInst->clone();
2203       RemapInstruction(NewBonusInst, VMap,
2204                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2205       VMap[BonusInst] = NewBonusInst;
2206 
2207       // If we moved a load, we cannot any longer claim any knowledge about
2208       // its potential value. The previous information might have been valid
2209       // only given the branch precondition.
2210       // For an analogous reason, we must also drop all the metadata whose
2211       // semantics we don't understand.
2212       NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
2213 
2214       PredBlock->getInstList().insert(PBI, NewBonusInst);
2215       NewBonusInst->takeName(BonusInst);
2216       BonusInst->setName(BonusInst->getName() + ".old");
2217     }
2218 
2219     // Clone Cond into the predecessor basic block, and or/and the
2220     // two conditions together.
2221     Instruction *New = Cond->clone();
2222     RemapInstruction(New, VMap,
2223                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2224     PredBlock->getInstList().insert(PBI, New);
2225     New->takeName(Cond);
2226     Cond->setName(New->getName() + ".old");
2227 
2228     if (BI->isConditional()) {
2229       Instruction *NewCond =
2230         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2231                                             New, "or.cond"));
2232       PBI->setCondition(NewCond);
2233 
2234       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2235       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2236                                                   PredFalseWeight);
2237       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2238                                                   SuccFalseWeight);
2239       SmallVector<uint64_t, 8> NewWeights;
2240 
2241       if (PBI->getSuccessor(0) == BB) {
2242         if (PredHasWeights && SuccHasWeights) {
2243           // PBI: br i1 %x, BB, FalseDest
2244           // BI:  br i1 %y, TrueDest, FalseDest
2245           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2246           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2247           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2248           //               TrueWeight for PBI * FalseWeight for BI.
2249           // We assume that total weights of a BranchInst can fit into 32 bits.
2250           // Therefore, we will not have overflow using 64-bit arithmetic.
2251           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2252                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2253         }
2254         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2255         PBI->setSuccessor(0, TrueDest);
2256       }
2257       if (PBI->getSuccessor(1) == BB) {
2258         if (PredHasWeights && SuccHasWeights) {
2259           // PBI: br i1 %x, TrueDest, BB
2260           // BI:  br i1 %y, TrueDest, FalseDest
2261           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2262           //              FalseWeight for PBI * TrueWeight for BI.
2263           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2264               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2265           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2266           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2267         }
2268         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2269         PBI->setSuccessor(1, FalseDest);
2270       }
2271       if (NewWeights.size() == 2) {
2272         // Halve the weights if any of them cannot fit in an uint32_t
2273         FitWeights(NewWeights);
2274 
2275         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2276         PBI->setMetadata(LLVMContext::MD_prof,
2277                          MDBuilder(BI->getContext()).
2278                          createBranchWeights(MDWeights));
2279       } else
2280         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2281     } else {
2282       // Update PHI nodes in the common successors.
2283       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2284         ConstantInt *PBI_C = cast<ConstantInt>(
2285           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2286         assert(PBI_C->getType()->isIntegerTy(1));
2287         Instruction *MergedCond = nullptr;
2288         if (PBI->getSuccessor(0) == TrueDest) {
2289           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2290           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2291           //       is false: !PBI_Cond and BI_Value
2292           Instruction *NotCond =
2293             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2294                                 "not.cond"));
2295           MergedCond =
2296             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2297                                 NotCond, New,
2298                                 "and.cond"));
2299           if (PBI_C->isOne())
2300             MergedCond =
2301               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2302                                   PBI->getCondition(), MergedCond,
2303                                   "or.cond"));
2304         } else {
2305           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2306           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2307           //       is false: PBI_Cond and BI_Value
2308           MergedCond =
2309             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2310                                 PBI->getCondition(), New,
2311                                 "and.cond"));
2312           if (PBI_C->isOne()) {
2313             Instruction *NotCond =
2314               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2315                                   "not.cond"));
2316             MergedCond =
2317               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2318                                   NotCond, MergedCond,
2319                                   "or.cond"));
2320           }
2321         }
2322         // Update PHI Node.
2323         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2324                                   MergedCond);
2325       }
2326       // Change PBI from Conditional to Unconditional.
2327       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2328       EraseTerminatorInstAndDCECond(PBI);
2329       PBI = New_PBI;
2330     }
2331 
2332     // TODO: If BB is reachable from all paths through PredBlock, then we
2333     // could replace PBI's branch probabilities with BI's.
2334 
2335     // Copy any debug value intrinsics into the end of PredBlock.
2336     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2337       if (isa<DbgInfoIntrinsic>(*I))
2338         I->clone()->insertBefore(PBI);
2339 
2340     return true;
2341   }
2342   return false;
2343 }
2344 
2345 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2346 /// predecessor of another block, this function tries to simplify it.  We know
2347 /// that PBI and BI are both conditional branches, and BI is in one of the
2348 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)2349 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2350   assert(PBI->isConditional() && BI->isConditional());
2351   BasicBlock *BB = BI->getParent();
2352 
2353   // If this block ends with a branch instruction, and if there is a
2354   // predecessor that ends on a branch of the same condition, make
2355   // this conditional branch redundant.
2356   if (PBI->getCondition() == BI->getCondition() &&
2357       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2358     // Okay, the outcome of this conditional branch is statically
2359     // knowable.  If this block had a single pred, handle specially.
2360     if (BB->getSinglePredecessor()) {
2361       // Turn this into a branch on constant.
2362       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2363       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2364                                         CondIsTrue));
2365       return true;  // Nuke the branch on constant.
2366     }
2367 
2368     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2369     // in the constant and simplify the block result.  Subsequent passes of
2370     // simplifycfg will thread the block.
2371     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2372       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2373       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2374                                        std::distance(PB, PE),
2375                                        BI->getCondition()->getName() + ".pr",
2376                                        BB->begin());
2377       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2378       // predecessor, compute the PHI'd conditional value for all of the preds.
2379       // Any predecessor where the condition is not computable we keep symbolic.
2380       for (pred_iterator PI = PB; PI != PE; ++PI) {
2381         BasicBlock *P = *PI;
2382         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2383             PBI != BI && PBI->isConditional() &&
2384             PBI->getCondition() == BI->getCondition() &&
2385             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2386           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2387           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2388                                               CondIsTrue), P);
2389         } else {
2390           NewPN->addIncoming(BI->getCondition(), P);
2391         }
2392       }
2393 
2394       BI->setCondition(NewPN);
2395       return true;
2396     }
2397   }
2398 
2399   // If this is a conditional branch in an empty block, and if any
2400   // predecessors are a conditional branch to one of our destinations,
2401   // fold the conditions into logical ops and one cond br.
2402   BasicBlock::iterator BBI = BB->begin();
2403   // Ignore dbg intrinsics.
2404   while (isa<DbgInfoIntrinsic>(BBI))
2405     ++BBI;
2406   if (&*BBI != BI)
2407     return false;
2408 
2409 
2410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2411     if (CE->canTrap())
2412       return false;
2413 
2414   int PBIOp, BIOp;
2415   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2416     PBIOp = BIOp = 0;
2417   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2418     PBIOp = 0, BIOp = 1;
2419   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2420     PBIOp = 1, BIOp = 0;
2421   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2422     PBIOp = BIOp = 1;
2423   else
2424     return false;
2425 
2426   // Check to make sure that the other destination of this branch
2427   // isn't BB itself.  If so, this is an infinite loop that will
2428   // keep getting unwound.
2429   if (PBI->getSuccessor(PBIOp) == BB)
2430     return false;
2431 
2432   // Do not perform this transformation if it would require
2433   // insertion of a large number of select instructions. For targets
2434   // without predication/cmovs, this is a big pessimization.
2435 
2436   // Also do not perform this transformation if any phi node in the common
2437   // destination block can trap when reached by BB or PBB (PR17073). In that
2438   // case, it would be unsafe to hoist the operation into a select instruction.
2439 
2440   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2441   unsigned NumPhis = 0;
2442   for (BasicBlock::iterator II = CommonDest->begin();
2443        isa<PHINode>(II); ++II, ++NumPhis) {
2444     if (NumPhis > 2) // Disable this xform.
2445       return false;
2446 
2447     PHINode *PN = cast<PHINode>(II);
2448     Value *BIV = PN->getIncomingValueForBlock(BB);
2449     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2450       if (CE->canTrap())
2451         return false;
2452 
2453     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2454     Value *PBIV = PN->getIncomingValue(PBBIdx);
2455     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2456       if (CE->canTrap())
2457         return false;
2458   }
2459 
2460   // Finally, if everything is ok, fold the branches to logical ops.
2461   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2462 
2463   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2464                << "AND: " << *BI->getParent());
2465 
2466 
2467   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2468   // branch in it, where one edge (OtherDest) goes back to itself but the other
2469   // exits.  We don't *know* that the program avoids the infinite loop
2470   // (even though that seems likely).  If we do this xform naively, we'll end up
2471   // recursively unpeeling the loop.  Since we know that (after the xform is
2472   // done) that the block *is* infinite if reached, we just make it an obviously
2473   // infinite loop with no cond branch.
2474   if (OtherDest == BB) {
2475     // Insert it at the end of the function, because it's either code,
2476     // or it won't matter if it's hot. :)
2477     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2478                                                   "infloop", BB->getParent());
2479     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2480     OtherDest = InfLoopBlock;
2481   }
2482 
2483   DEBUG(dbgs() << *PBI->getParent()->getParent());
2484 
2485   // BI may have other predecessors.  Because of this, we leave
2486   // it alone, but modify PBI.
2487 
2488   // Make sure we get to CommonDest on True&True directions.
2489   Value *PBICond = PBI->getCondition();
2490   IRBuilder<true, NoFolder> Builder(PBI);
2491   if (PBIOp)
2492     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2493 
2494   Value *BICond = BI->getCondition();
2495   if (BIOp)
2496     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2497 
2498   // Merge the conditions.
2499   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2500 
2501   // Modify PBI to branch on the new condition to the new dests.
2502   PBI->setCondition(Cond);
2503   PBI->setSuccessor(0, CommonDest);
2504   PBI->setSuccessor(1, OtherDest);
2505 
2506   // Update branch weight for PBI.
2507   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2508   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2509                                               PredFalseWeight);
2510   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2511                                               SuccFalseWeight);
2512   if (PredHasWeights && SuccHasWeights) {
2513     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2514     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2515     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2516     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2517     // The weight to CommonDest should be PredCommon * SuccTotal +
2518     //                                    PredOther * SuccCommon.
2519     // The weight to OtherDest should be PredOther * SuccOther.
2520     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2521                                   PredOther * SuccCommon,
2522                               PredOther * SuccOther};
2523     // Halve the weights if any of them cannot fit in an uint32_t
2524     FitWeights(NewWeights);
2525 
2526     PBI->setMetadata(LLVMContext::MD_prof,
2527                      MDBuilder(BI->getContext())
2528                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2529   }
2530 
2531   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2532   // block that are identical to the entries for BI's block.
2533   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2534 
2535   // We know that the CommonDest already had an edge from PBI to
2536   // it.  If it has PHIs though, the PHIs may have different
2537   // entries for BB and PBI's BB.  If so, insert a select to make
2538   // them agree.
2539   PHINode *PN;
2540   for (BasicBlock::iterator II = CommonDest->begin();
2541        (PN = dyn_cast<PHINode>(II)); ++II) {
2542     Value *BIV = PN->getIncomingValueForBlock(BB);
2543     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2544     Value *PBIV = PN->getIncomingValue(PBBIdx);
2545     if (BIV != PBIV) {
2546       // Insert a select in PBI to pick the right value.
2547       Value *NV = cast<SelectInst>
2548         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2549       PN->setIncomingValue(PBBIdx, NV);
2550     }
2551   }
2552 
2553   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2554   DEBUG(dbgs() << *PBI->getParent()->getParent());
2555 
2556   // This basic block is probably dead.  We know it has at least
2557   // one fewer predecessor.
2558   return true;
2559 }
2560 
2561 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2562 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2563 // Takes care of updating the successors and removing the old terminator.
2564 // Also makes sure not to introduce new successors by assuming that edges to
2565 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)2566 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2567                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2568                                        uint32_t TrueWeight,
2569                                        uint32_t FalseWeight){
2570   // Remove any superfluous successor edges from the CFG.
2571   // First, figure out which successors to preserve.
2572   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2573   // successor.
2574   BasicBlock *KeepEdge1 = TrueBB;
2575   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2576 
2577   // Then remove the rest.
2578   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2579     BasicBlock *Succ = OldTerm->getSuccessor(I);
2580     // Make sure only to keep exactly one copy of each edge.
2581     if (Succ == KeepEdge1)
2582       KeepEdge1 = nullptr;
2583     else if (Succ == KeepEdge2)
2584       KeepEdge2 = nullptr;
2585     else
2586       Succ->removePredecessor(OldTerm->getParent());
2587   }
2588 
2589   IRBuilder<> Builder(OldTerm);
2590   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2591 
2592   // Insert an appropriate new terminator.
2593   if (!KeepEdge1 && !KeepEdge2) {
2594     if (TrueBB == FalseBB)
2595       // We were only looking for one successor, and it was present.
2596       // Create an unconditional branch to it.
2597       Builder.CreateBr(TrueBB);
2598     else {
2599       // We found both of the successors we were looking for.
2600       // Create a conditional branch sharing the condition of the select.
2601       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2602       if (TrueWeight != FalseWeight)
2603         NewBI->setMetadata(LLVMContext::MD_prof,
2604                            MDBuilder(OldTerm->getContext()).
2605                            createBranchWeights(TrueWeight, FalseWeight));
2606     }
2607   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2608     // Neither of the selected blocks were successors, so this
2609     // terminator must be unreachable.
2610     new UnreachableInst(OldTerm->getContext(), OldTerm);
2611   } else {
2612     // One of the selected values was a successor, but the other wasn't.
2613     // Insert an unconditional branch to the one that was found;
2614     // the edge to the one that wasn't must be unreachable.
2615     if (!KeepEdge1)
2616       // Only TrueBB was found.
2617       Builder.CreateBr(TrueBB);
2618     else
2619       // Only FalseBB was found.
2620       Builder.CreateBr(FalseBB);
2621   }
2622 
2623   EraseTerminatorInstAndDCECond(OldTerm);
2624   return true;
2625 }
2626 
2627 // SimplifySwitchOnSelect - Replaces
2628 //   (switch (select cond, X, Y)) on constant X, Y
2629 // with a branch - conditional if X and Y lead to distinct BBs,
2630 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)2631 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2632   // Check for constant integer values in the select.
2633   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2634   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2635   if (!TrueVal || !FalseVal)
2636     return false;
2637 
2638   // Find the relevant condition and destinations.
2639   Value *Condition = Select->getCondition();
2640   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2641   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2642 
2643   // Get weight for TrueBB and FalseBB.
2644   uint32_t TrueWeight = 0, FalseWeight = 0;
2645   SmallVector<uint64_t, 8> Weights;
2646   bool HasWeights = HasBranchWeights(SI);
2647   if (HasWeights) {
2648     GetBranchWeights(SI, Weights);
2649     if (Weights.size() == 1 + SI->getNumCases()) {
2650       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2651                                      getSuccessorIndex()];
2652       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2653                                       getSuccessorIndex()];
2654     }
2655   }
2656 
2657   // Perform the actual simplification.
2658   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2659                                     TrueWeight, FalseWeight);
2660 }
2661 
2662 // SimplifyIndirectBrOnSelect - Replaces
2663 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
2664 //                             blockaddress(@fn, BlockB)))
2665 // with
2666 //   (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)2667 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2668   // Check that both operands of the select are block addresses.
2669   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2670   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2671   if (!TBA || !FBA)
2672     return false;
2673 
2674   // Extract the actual blocks.
2675   BasicBlock *TrueBB = TBA->getBasicBlock();
2676   BasicBlock *FalseBB = FBA->getBasicBlock();
2677 
2678   // Perform the actual simplification.
2679   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2680                                     0, 0);
2681 }
2682 
2683 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2684 /// instruction (a seteq/setne with a constant) as the only instruction in a
2685 /// block that ends with an uncond branch.  We are looking for a very specific
2686 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2687 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2688 /// default value goes to an uncond block with a seteq in it, we get something
2689 /// like:
2690 ///
2691 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2692 /// DEFAULT:
2693 ///   %tmp = icmp eq i8 %A, 92
2694 ///   br label %end
2695 /// end:
2696 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2697 ///
2698 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2699 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)2700 static bool TryToSimplifyUncondBranchWithICmpInIt(
2701     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
2702     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
2703     AssumptionCache *AC) {
2704   BasicBlock *BB = ICI->getParent();
2705 
2706   // If the block has any PHIs in it or the icmp has multiple uses, it is too
2707   // complex.
2708   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2709 
2710   Value *V = ICI->getOperand(0);
2711   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2712 
2713   // The pattern we're looking for is where our only predecessor is a switch on
2714   // 'V' and this block is the default case for the switch.  In this case we can
2715   // fold the compared value into the switch to simplify things.
2716   BasicBlock *Pred = BB->getSinglePredecessor();
2717   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2718 
2719   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2720   if (SI->getCondition() != V)
2721     return false;
2722 
2723   // If BB is reachable on a non-default case, then we simply know the value of
2724   // V in this block.  Substitute it and constant fold the icmp instruction
2725   // away.
2726   if (SI->getDefaultDest() != BB) {
2727     ConstantInt *VVal = SI->findCaseDest(BB);
2728     assert(VVal && "Should have a unique destination value");
2729     ICI->setOperand(0, VVal);
2730 
2731     if (Value *V = SimplifyInstruction(ICI, DL)) {
2732       ICI->replaceAllUsesWith(V);
2733       ICI->eraseFromParent();
2734     }
2735     // BB is now empty, so it is likely to simplify away.
2736     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2737   }
2738 
2739   // Ok, the block is reachable from the default dest.  If the constant we're
2740   // comparing exists in one of the other edges, then we can constant fold ICI
2741   // and zap it.
2742   if (SI->findCaseValue(Cst) != SI->case_default()) {
2743     Value *V;
2744     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2745       V = ConstantInt::getFalse(BB->getContext());
2746     else
2747       V = ConstantInt::getTrue(BB->getContext());
2748 
2749     ICI->replaceAllUsesWith(V);
2750     ICI->eraseFromParent();
2751     // BB is now empty, so it is likely to simplify away.
2752     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2753   }
2754 
2755   // The use of the icmp has to be in the 'end' block, by the only PHI node in
2756   // the block.
2757   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2758   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2759   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2760       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2761     return false;
2762 
2763   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2764   // true in the PHI.
2765   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2766   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2767 
2768   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2769     std::swap(DefaultCst, NewCst);
2770 
2771   // Replace ICI (which is used by the PHI for the default value) with true or
2772   // false depending on if it is EQ or NE.
2773   ICI->replaceAllUsesWith(DefaultCst);
2774   ICI->eraseFromParent();
2775 
2776   // Okay, the switch goes to this block on a default value.  Add an edge from
2777   // the switch to the merge point on the compared value.
2778   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2779                                          BB->getParent(), BB);
2780   SmallVector<uint64_t, 8> Weights;
2781   bool HasWeights = HasBranchWeights(SI);
2782   if (HasWeights) {
2783     GetBranchWeights(SI, Weights);
2784     if (Weights.size() == 1 + SI->getNumCases()) {
2785       // Split weight for default case to case for "Cst".
2786       Weights[0] = (Weights[0]+1) >> 1;
2787       Weights.push_back(Weights[0]);
2788 
2789       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2790       SI->setMetadata(LLVMContext::MD_prof,
2791                       MDBuilder(SI->getContext()).
2792                       createBranchWeights(MDWeights));
2793     }
2794   }
2795   SI->addCase(Cst, NewBB);
2796 
2797   // NewBB branches to the phi block, add the uncond branch and the phi entry.
2798   Builder.SetInsertPoint(NewBB);
2799   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2800   Builder.CreateBr(SuccBlock);
2801   PHIUse->addIncoming(NewCst, NewBB);
2802   return true;
2803 }
2804 
2805 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2806 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2807 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)2808 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
2809                                       const DataLayout &DL) {
2810   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2811   if (!Cond) return false;
2812 
2813   // Change br (X == 0 | X == 1), T, F into a switch instruction.
2814   // If this is a bunch of seteq's or'd together, or if it's a bunch of
2815   // 'setne's and'ed together, collect them.
2816 
2817   // Try to gather values from a chain of and/or to be turned into a switch
2818   ConstantComparesGatherer ConstantCompare(Cond, DL);
2819   // Unpack the result
2820   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
2821   Value *CompVal = ConstantCompare.CompValue;
2822   unsigned UsedICmps = ConstantCompare.UsedICmps;
2823   Value *ExtraCase = ConstantCompare.Extra;
2824 
2825   // If we didn't have a multiply compared value, fail.
2826   if (!CompVal) return false;
2827 
2828   // Avoid turning single icmps into a switch.
2829   if (UsedICmps <= 1)
2830     return false;
2831 
2832   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
2833 
2834   // There might be duplicate constants in the list, which the switch
2835   // instruction can't handle, remove them now.
2836   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2837   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2838 
2839   // If Extra was used, we require at least two switch values to do the
2840   // transformation.  A switch with one value is just an cond branch.
2841   if (ExtraCase && Values.size() < 2) return false;
2842 
2843   // TODO: Preserve branch weight metadata, similarly to how
2844   // FoldValueComparisonIntoPredecessors preserves it.
2845 
2846   // Figure out which block is which destination.
2847   BasicBlock *DefaultBB = BI->getSuccessor(1);
2848   BasicBlock *EdgeBB    = BI->getSuccessor(0);
2849   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2850 
2851   BasicBlock *BB = BI->getParent();
2852 
2853   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2854                << " cases into SWITCH.  BB is:\n" << *BB);
2855 
2856   // If there are any extra values that couldn't be folded into the switch
2857   // then we evaluate them with an explicit branch first.  Split the block
2858   // right before the condbr to handle it.
2859   if (ExtraCase) {
2860     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2861     // Remove the uncond branch added to the old block.
2862     TerminatorInst *OldTI = BB->getTerminator();
2863     Builder.SetInsertPoint(OldTI);
2864 
2865     if (TrueWhenEqual)
2866       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2867     else
2868       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2869 
2870     OldTI->eraseFromParent();
2871 
2872     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2873     // for the edge we just added.
2874     AddPredecessorToBlock(EdgeBB, BB, NewBB);
2875 
2876     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2877           << "\nEXTRABB = " << *BB);
2878     BB = NewBB;
2879   }
2880 
2881   Builder.SetInsertPoint(BI);
2882   // Convert pointer to int before we switch.
2883   if (CompVal->getType()->isPointerTy()) {
2884     CompVal = Builder.CreatePtrToInt(
2885         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
2886   }
2887 
2888   // Create the new switch instruction now.
2889   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2890 
2891   // Add all of the 'cases' to the switch instruction.
2892   for (unsigned i = 0, e = Values.size(); i != e; ++i)
2893     New->addCase(Values[i], EdgeBB);
2894 
2895   // We added edges from PI to the EdgeBB.  As such, if there were any
2896   // PHI nodes in EdgeBB, they need entries to be added corresponding to
2897   // the number of edges added.
2898   for (BasicBlock::iterator BBI = EdgeBB->begin();
2899        isa<PHINode>(BBI); ++BBI) {
2900     PHINode *PN = cast<PHINode>(BBI);
2901     Value *InVal = PN->getIncomingValueForBlock(BB);
2902     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2903       PN->addIncoming(InVal, BB);
2904   }
2905 
2906   // Erase the old branch instruction.
2907   EraseTerminatorInstAndDCECond(BI);
2908 
2909   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2910   return true;
2911 }
2912 
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)2913 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2914   // If this is a trivial landing pad that just continues unwinding the caught
2915   // exception then zap the landing pad, turning its invokes into calls.
2916   BasicBlock *BB = RI->getParent();
2917   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2918   if (RI->getValue() != LPInst)
2919     // Not a landing pad, or the resume is not unwinding the exception that
2920     // caused control to branch here.
2921     return false;
2922 
2923   // Check that there are no other instructions except for debug intrinsics.
2924   BasicBlock::iterator I = LPInst, E = RI;
2925   while (++I != E)
2926     if (!isa<DbgInfoIntrinsic>(I))
2927       return false;
2928 
2929   // Turn all invokes that unwind here into calls and delete the basic block.
2930   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2931     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2932     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2933     // Insert a call instruction before the invoke.
2934     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2935     Call->takeName(II);
2936     Call->setCallingConv(II->getCallingConv());
2937     Call->setAttributes(II->getAttributes());
2938     Call->setDebugLoc(II->getDebugLoc());
2939 
2940     // Anything that used the value produced by the invoke instruction now uses
2941     // the value produced by the call instruction.  Note that we do this even
2942     // for void functions and calls with no uses so that the callgraph edge is
2943     // updated.
2944     II->replaceAllUsesWith(Call);
2945     BB->removePredecessor(II->getParent());
2946 
2947     // Insert a branch to the normal destination right before the invoke.
2948     BranchInst::Create(II->getNormalDest(), II);
2949 
2950     // Finally, delete the invoke instruction!
2951     II->eraseFromParent();
2952   }
2953 
2954   // The landingpad is now unreachable.  Zap it.
2955   BB->eraseFromParent();
2956   return true;
2957 }
2958 
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)2959 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2960   BasicBlock *BB = RI->getParent();
2961   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2962 
2963   // Find predecessors that end with branches.
2964   SmallVector<BasicBlock*, 8> UncondBranchPreds;
2965   SmallVector<BranchInst*, 8> CondBranchPreds;
2966   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2967     BasicBlock *P = *PI;
2968     TerminatorInst *PTI = P->getTerminator();
2969     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2970       if (BI->isUnconditional())
2971         UncondBranchPreds.push_back(P);
2972       else
2973         CondBranchPreds.push_back(BI);
2974     }
2975   }
2976 
2977   // If we found some, do the transformation!
2978   if (!UncondBranchPreds.empty() && DupRet) {
2979     while (!UncondBranchPreds.empty()) {
2980       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2981       DEBUG(dbgs() << "FOLDING: " << *BB
2982             << "INTO UNCOND BRANCH PRED: " << *Pred);
2983       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2984     }
2985 
2986     // If we eliminated all predecessors of the block, delete the block now.
2987     if (pred_empty(BB))
2988       // We know there are no successors, so just nuke the block.
2989       BB->eraseFromParent();
2990 
2991     return true;
2992   }
2993 
2994   // Check out all of the conditional branches going to this return
2995   // instruction.  If any of them just select between returns, change the
2996   // branch itself into a select/return pair.
2997   while (!CondBranchPreds.empty()) {
2998     BranchInst *BI = CondBranchPreds.pop_back_val();
2999 
3000     // Check to see if the non-BB successor is also a return block.
3001     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3002         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3003         SimplifyCondBranchToTwoReturns(BI, Builder))
3004       return true;
3005   }
3006   return false;
3007 }
3008 
SimplifyUnreachable(UnreachableInst * UI)3009 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3010   BasicBlock *BB = UI->getParent();
3011 
3012   bool Changed = false;
3013 
3014   // If there are any instructions immediately before the unreachable that can
3015   // be removed, do so.
3016   while (UI != BB->begin()) {
3017     BasicBlock::iterator BBI = UI;
3018     --BBI;
3019     // Do not delete instructions that can have side effects which might cause
3020     // the unreachable to not be reachable; specifically, calls and volatile
3021     // operations may have this effect.
3022     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3023 
3024     if (BBI->mayHaveSideEffects()) {
3025       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3026         if (SI->isVolatile())
3027           break;
3028       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3029         if (LI->isVolatile())
3030           break;
3031       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3032         if (RMWI->isVolatile())
3033           break;
3034       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3035         if (CXI->isVolatile())
3036           break;
3037       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3038                  !isa<LandingPadInst>(BBI)) {
3039         break;
3040       }
3041       // Note that deleting LandingPad's here is in fact okay, although it
3042       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3043       // all the predecessors of this block will be the unwind edges of Invokes,
3044       // and we can therefore guarantee this block will be erased.
3045     }
3046 
3047     // Delete this instruction (any uses are guaranteed to be dead)
3048     if (!BBI->use_empty())
3049       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3050     BBI->eraseFromParent();
3051     Changed = true;
3052   }
3053 
3054   // If the unreachable instruction is the first in the block, take a gander
3055   // at all of the predecessors of this instruction, and simplify them.
3056   if (&BB->front() != UI) return Changed;
3057 
3058   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3059   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3060     TerminatorInst *TI = Preds[i]->getTerminator();
3061     IRBuilder<> Builder(TI);
3062     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3063       if (BI->isUnconditional()) {
3064         if (BI->getSuccessor(0) == BB) {
3065           new UnreachableInst(TI->getContext(), TI);
3066           TI->eraseFromParent();
3067           Changed = true;
3068         }
3069       } else {
3070         if (BI->getSuccessor(0) == BB) {
3071           Builder.CreateBr(BI->getSuccessor(1));
3072           EraseTerminatorInstAndDCECond(BI);
3073         } else if (BI->getSuccessor(1) == BB) {
3074           Builder.CreateBr(BI->getSuccessor(0));
3075           EraseTerminatorInstAndDCECond(BI);
3076           Changed = true;
3077         }
3078       }
3079     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3080       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3081            i != e; ++i)
3082         if (i.getCaseSuccessor() == BB) {
3083           BB->removePredecessor(SI->getParent());
3084           SI->removeCase(i);
3085           --i; --e;
3086           Changed = true;
3087         }
3088     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3089       if (II->getUnwindDest() == BB) {
3090         // Convert the invoke to a call instruction.  This would be a good
3091         // place to note that the call does not throw though.
3092         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3093         II->removeFromParent();   // Take out of symbol table
3094 
3095         // Insert the call now...
3096         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3097         Builder.SetInsertPoint(BI);
3098         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3099                                           Args, II->getName());
3100         CI->setCallingConv(II->getCallingConv());
3101         CI->setAttributes(II->getAttributes());
3102         // If the invoke produced a value, the call does now instead.
3103         II->replaceAllUsesWith(CI);
3104         delete II;
3105         Changed = true;
3106       }
3107     }
3108   }
3109 
3110   // If this block is now dead, remove it.
3111   if (pred_empty(BB) &&
3112       BB != &BB->getParent()->getEntryBlock()) {
3113     // We know there are no successors, so just nuke the block.
3114     BB->eraseFromParent();
3115     return true;
3116   }
3117 
3118   return Changed;
3119 }
3120 
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)3121 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3122   assert(Cases.size() >= 1);
3123 
3124   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3125   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3126     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3127       return false;
3128   }
3129   return true;
3130 }
3131 
3132 /// Turn a switch with two reachable destinations into an integer range
3133 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)3134 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3135   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3136 
3137   bool HasDefault =
3138       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3139 
3140   // Partition the cases into two sets with different destinations.
3141   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3142   BasicBlock *DestB = nullptr;
3143   SmallVector <ConstantInt *, 16> CasesA;
3144   SmallVector <ConstantInt *, 16> CasesB;
3145 
3146   for (SwitchInst::CaseIt I : SI->cases()) {
3147     BasicBlock *Dest = I.getCaseSuccessor();
3148     if (!DestA) DestA = Dest;
3149     if (Dest == DestA) {
3150       CasesA.push_back(I.getCaseValue());
3151       continue;
3152     }
3153     if (!DestB) DestB = Dest;
3154     if (Dest == DestB) {
3155       CasesB.push_back(I.getCaseValue());
3156       continue;
3157     }
3158     return false;  // More than two destinations.
3159   }
3160 
3161   assert(DestA && DestB && "Single-destination switch should have been folded.");
3162   assert(DestA != DestB);
3163   assert(DestB != SI->getDefaultDest());
3164   assert(!CasesB.empty() && "There must be non-default cases.");
3165   assert(!CasesA.empty() || HasDefault);
3166 
3167   // Figure out if one of the sets of cases form a contiguous range.
3168   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3169   BasicBlock *ContiguousDest = nullptr;
3170   BasicBlock *OtherDest = nullptr;
3171   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3172     ContiguousCases = &CasesA;
3173     ContiguousDest = DestA;
3174     OtherDest = DestB;
3175   } else if (CasesAreContiguous(CasesB)) {
3176     ContiguousCases = &CasesB;
3177     ContiguousDest = DestB;
3178     OtherDest = DestA;
3179   } else
3180     return false;
3181 
3182   // Start building the compare and branch.
3183 
3184   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3185   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3186 
3187   Value *Sub = SI->getCondition();
3188   if (!Offset->isNullValue())
3189     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3190 
3191   Value *Cmp;
3192   // If NumCases overflowed, then all possible values jump to the successor.
3193   if (NumCases->isNullValue() && !ContiguousCases->empty())
3194     Cmp = ConstantInt::getTrue(SI->getContext());
3195   else
3196     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3197   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3198 
3199   // Update weight for the newly-created conditional branch.
3200   if (HasBranchWeights(SI)) {
3201     SmallVector<uint64_t, 8> Weights;
3202     GetBranchWeights(SI, Weights);
3203     if (Weights.size() == 1 + SI->getNumCases()) {
3204       uint64_t TrueWeight = 0;
3205       uint64_t FalseWeight = 0;
3206       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3207         if (SI->getSuccessor(I) == ContiguousDest)
3208           TrueWeight += Weights[I];
3209         else
3210           FalseWeight += Weights[I];
3211       }
3212       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3213         TrueWeight /= 2;
3214         FalseWeight /= 2;
3215       }
3216       NewBI->setMetadata(LLVMContext::MD_prof,
3217                          MDBuilder(SI->getContext()).createBranchWeights(
3218                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3219     }
3220   }
3221 
3222   // Prune obsolete incoming values off the successors' PHI nodes.
3223   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3224     unsigned PreviousEdges = ContiguousCases->size();
3225     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3226     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3227       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3228   }
3229   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3230     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3231     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3232     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3233       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3234   }
3235 
3236   // Drop the switch.
3237   SI->eraseFromParent();
3238 
3239   return true;
3240 }
3241 
3242 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3243 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI,AssumptionCache * AC,const DataLayout & DL)3244 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3245                                      const DataLayout &DL) {
3246   Value *Cond = SI->getCondition();
3247   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3248   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3249   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3250 
3251   // Gather dead cases.
3252   SmallVector<ConstantInt*, 8> DeadCases;
3253   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3254     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3255         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3256       DeadCases.push_back(I.getCaseValue());
3257       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3258                    << I.getCaseValue() << "' is dead.\n");
3259     }
3260   }
3261 
3262   SmallVector<uint64_t, 8> Weights;
3263   bool HasWeight = HasBranchWeights(SI);
3264   if (HasWeight) {
3265     GetBranchWeights(SI, Weights);
3266     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3267   }
3268 
3269   // Remove dead cases from the switch.
3270   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3271     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3272     assert(Case != SI->case_default() &&
3273            "Case was not found. Probably mistake in DeadCases forming.");
3274     if (HasWeight) {
3275       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3276       Weights.pop_back();
3277     }
3278 
3279     // Prune unused values from PHI nodes.
3280     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3281     SI->removeCase(Case);
3282   }
3283   if (HasWeight && Weights.size() >= 2) {
3284     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3285     SI->setMetadata(LLVMContext::MD_prof,
3286                     MDBuilder(SI->getParent()->getContext()).
3287                     createBranchWeights(MDWeights));
3288   }
3289 
3290   return !DeadCases.empty();
3291 }
3292 
3293 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3294 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3295 /// by an unconditional branch), look at the phi node for BB in the successor
3296 /// block and see if the incoming value is equal to CaseValue. If so, return
3297 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)3298 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3299                                               BasicBlock *BB,
3300                                               int *PhiIndex) {
3301   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3302     return nullptr; // BB must be empty to be a candidate for simplification.
3303   if (!BB->getSinglePredecessor())
3304     return nullptr; // BB must be dominated by the switch.
3305 
3306   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3307   if (!Branch || !Branch->isUnconditional())
3308     return nullptr; // Terminator must be unconditional branch.
3309 
3310   BasicBlock *Succ = Branch->getSuccessor(0);
3311 
3312   BasicBlock::iterator I = Succ->begin();
3313   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3314     int Idx = PHI->getBasicBlockIndex(BB);
3315     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3316 
3317     Value *InValue = PHI->getIncomingValue(Idx);
3318     if (InValue != CaseValue) continue;
3319 
3320     *PhiIndex = Idx;
3321     return PHI;
3322   }
3323 
3324   return nullptr;
3325 }
3326 
3327 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3328 /// instruction to a phi node dominated by the switch, if that would mean that
3329 /// some of the destination blocks of the switch can be folded away.
3330 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)3331 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3332   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3333   ForwardingNodesMap ForwardingNodes;
3334 
3335   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3336     ConstantInt *CaseValue = I.getCaseValue();
3337     BasicBlock *CaseDest = I.getCaseSuccessor();
3338 
3339     int PhiIndex;
3340     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3341                                                  &PhiIndex);
3342     if (!PHI) continue;
3343 
3344     ForwardingNodes[PHI].push_back(PhiIndex);
3345   }
3346 
3347   bool Changed = false;
3348 
3349   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3350        E = ForwardingNodes.end(); I != E; ++I) {
3351     PHINode *Phi = I->first;
3352     SmallVectorImpl<int> &Indexes = I->second;
3353 
3354     if (Indexes.size() < 2) continue;
3355 
3356     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3357       Phi->setIncomingValue(Indexes[I], SI->getCondition());
3358     Changed = true;
3359   }
3360 
3361   return Changed;
3362 }
3363 
3364 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3365 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)3366 static bool ValidLookupTableConstant(Constant *C) {
3367   if (C->isThreadDependent())
3368     return false;
3369   if (C->isDLLImportDependent())
3370     return false;
3371 
3372   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3373     return CE->isGEPWithNoNotionalOverIndexing();
3374 
3375   return isa<ConstantFP>(C) ||
3376       isa<ConstantInt>(C) ||
3377       isa<ConstantPointerNull>(C) ||
3378       isa<GlobalValue>(C) ||
3379       isa<UndefValue>(C);
3380 }
3381 
3382 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3383 /// its constant value in ConstantPool, returning 0 if it's not there.
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)3384 static Constant *LookupConstant(Value *V,
3385                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3386   if (Constant *C = dyn_cast<Constant>(V))
3387     return C;
3388   return ConstantPool.lookup(V);
3389 }
3390 
3391 /// ConstantFold - Try to fold instruction I into a constant. This works for
3392 /// simple instructions such as binary operations where both operands are
3393 /// constant or can be replaced by constants from the ConstantPool. Returns the
3394 /// resulting constant on success, 0 otherwise.
3395 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)3396 ConstantFold(Instruction *I, const DataLayout &DL,
3397              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
3398   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3399     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3400     if (!A)
3401       return nullptr;
3402     if (A->isAllOnesValue())
3403       return LookupConstant(Select->getTrueValue(), ConstantPool);
3404     if (A->isNullValue())
3405       return LookupConstant(Select->getFalseValue(), ConstantPool);
3406     return nullptr;
3407   }
3408 
3409   SmallVector<Constant *, 4> COps;
3410   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3411     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3412       COps.push_back(A);
3413     else
3414       return nullptr;
3415   }
3416 
3417   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3418     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3419                                            COps[1], DL);
3420   }
3421 
3422   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3423 }
3424 
3425 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
3426 /// at the common destination basic block, *CommonDest, for one of the case
3427 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3428 /// case), of a switch instruction SI.
3429 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL)3430 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
3431                BasicBlock **CommonDest,
3432                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
3433                const DataLayout &DL) {
3434   // The block from which we enter the common destination.
3435   BasicBlock *Pred = SI->getParent();
3436 
3437   // If CaseDest is empty except for some side-effect free instructions through
3438   // which we can constant-propagate the CaseVal, continue to its successor.
3439   SmallDenseMap<Value*, Constant*> ConstantPool;
3440   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3441   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3442        ++I) {
3443     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3444       // If the terminator is a simple branch, continue to the next block.
3445       if (T->getNumSuccessors() != 1)
3446         return false;
3447       Pred = CaseDest;
3448       CaseDest = T->getSuccessor(0);
3449     } else if (isa<DbgInfoIntrinsic>(I)) {
3450       // Skip debug intrinsic.
3451       continue;
3452     } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
3453       // Instruction is side-effect free and constant.
3454 
3455       // If the instruction has uses outside this block or a phi node slot for
3456       // the block, it is not safe to bypass the instruction since it would then
3457       // no longer dominate all its uses.
3458       for (auto &Use : I->uses()) {
3459         User *User = Use.getUser();
3460         if (Instruction *I = dyn_cast<Instruction>(User))
3461           if (I->getParent() == CaseDest)
3462             continue;
3463         if (PHINode *Phi = dyn_cast<PHINode>(User))
3464           if (Phi->getIncomingBlock(Use) == CaseDest)
3465             continue;
3466         return false;
3467       }
3468 
3469       ConstantPool.insert(std::make_pair(I, C));
3470     } else {
3471       break;
3472     }
3473   }
3474 
3475   // If we did not have a CommonDest before, use the current one.
3476   if (!*CommonDest)
3477     *CommonDest = CaseDest;
3478   // If the destination isn't the common one, abort.
3479   if (CaseDest != *CommonDest)
3480     return false;
3481 
3482   // Get the values for this case from phi nodes in the destination block.
3483   BasicBlock::iterator I = (*CommonDest)->begin();
3484   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3485     int Idx = PHI->getBasicBlockIndex(Pred);
3486     if (Idx == -1)
3487       continue;
3488 
3489     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3490                                         ConstantPool);
3491     if (!ConstVal)
3492       return false;
3493 
3494     // Be conservative about which kinds of constants we support.
3495     if (!ValidLookupTableConstant(ConstVal))
3496       return false;
3497 
3498     Res.push_back(std::make_pair(PHI, ConstVal));
3499   }
3500 
3501   return Res.size() > 0;
3502 }
3503 
3504 // MapCaseToResult - Helper function used to
3505 // add CaseVal to the list of cases that generate Result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)3506 static void MapCaseToResult(ConstantInt *CaseVal,
3507     SwitchCaseResultVectorTy &UniqueResults,
3508     Constant *Result) {
3509   for (auto &I : UniqueResults) {
3510     if (I.first == Result) {
3511       I.second.push_back(CaseVal);
3512       return;
3513     }
3514   }
3515   UniqueResults.push_back(std::make_pair(Result,
3516         SmallVector<ConstantInt*, 4>(1, CaseVal)));
3517 }
3518 
3519 // InitializeUniqueCases - Helper function that initializes a map containing
3520 // results for the PHI node of the common destination block for a switch
3521 // instruction. Returns false if multiple PHI nodes have been found or if
3522 // there is not a common destination block for the switch.
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL)3523 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
3524                                   BasicBlock *&CommonDest,
3525                                   SwitchCaseResultVectorTy &UniqueResults,
3526                                   Constant *&DefaultResult,
3527                                   const DataLayout &DL) {
3528   for (auto &I : SI->cases()) {
3529     ConstantInt *CaseVal = I.getCaseValue();
3530 
3531     // Resulting value at phi nodes for this case value.
3532     SwitchCaseResultsTy Results;
3533     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3534                         DL))
3535       return false;
3536 
3537     // Only one value per case is permitted
3538     if (Results.size() > 1)
3539       return false;
3540     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3541 
3542     // Check the PHI consistency.
3543     if (!PHI)
3544       PHI = Results[0].first;
3545     else if (PHI != Results[0].first)
3546       return false;
3547   }
3548   // Find the default result value.
3549   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3550   BasicBlock *DefaultDest = SI->getDefaultDest();
3551   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3552                  DL);
3553   // If the default value is not found abort unless the default destination
3554   // is unreachable.
3555   DefaultResult =
3556       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3557   if ((!DefaultResult &&
3558         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
3559     return false;
3560 
3561   return true;
3562 }
3563 
3564 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to
3565 // transform a switch with only two cases (or two cases + default)
3566 // that produces a result into a value select.
3567 // Example:
3568 // switch (a) {
3569 //   case 10:                %0 = icmp eq i32 %a, 10
3570 //     return 10;            %1 = select i1 %0, i32 10, i32 4
3571 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
3572 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
3573 //   default:
3574 //     return 4;
3575 // }
3576 static Value *
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)3577 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
3578                      Constant *DefaultResult, Value *Condition,
3579                      IRBuilder<> &Builder) {
3580   assert(ResultVector.size() == 2 &&
3581       "We should have exactly two unique results at this point");
3582   // If we are selecting between only two cases transform into a simple
3583   // select or a two-way select if default is possible.
3584   if (ResultVector[0].second.size() == 1 &&
3585       ResultVector[1].second.size() == 1) {
3586     ConstantInt *const FirstCase = ResultVector[0].second[0];
3587     ConstantInt *const SecondCase = ResultVector[1].second[0];
3588 
3589     bool DefaultCanTrigger = DefaultResult;
3590     Value *SelectValue = ResultVector[1].first;
3591     if (DefaultCanTrigger) {
3592       Value *const ValueCompare =
3593           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
3594       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
3595                                          DefaultResult, "switch.select");
3596     }
3597     Value *const ValueCompare =
3598         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
3599     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
3600                                 "switch.select");
3601   }
3602 
3603   return nullptr;
3604 }
3605 
3606 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch
3607 // instruction that has been converted into a select, fixing up PHI nodes and
3608 // basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder)3609 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
3610                                               Value *SelectValue,
3611                                               IRBuilder<> &Builder) {
3612   BasicBlock *SelectBB = SI->getParent();
3613   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
3614     PHI->removeIncomingValue(SelectBB);
3615   PHI->addIncoming(SelectValue, SelectBB);
3616 
3617   Builder.CreateBr(PHI->getParent());
3618 
3619   // Remove the switch.
3620   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3621     BasicBlock *Succ = SI->getSuccessor(i);
3622 
3623     if (Succ == PHI->getParent())
3624       continue;
3625     Succ->removePredecessor(SelectBB);
3626   }
3627   SI->eraseFromParent();
3628 }
3629 
3630 /// SwitchToSelect - If the switch is only used to initialize one or more
3631 /// phi nodes in a common successor block with only two different
3632 /// constant values, replace the switch with select.
SwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,AssumptionCache * AC,const DataLayout & DL)3633 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
3634                            AssumptionCache *AC, const DataLayout &DL) {
3635   Value *const Cond = SI->getCondition();
3636   PHINode *PHI = nullptr;
3637   BasicBlock *CommonDest = nullptr;
3638   Constant *DefaultResult;
3639   SwitchCaseResultVectorTy UniqueResults;
3640   // Collect all the cases that will deliver the same value from the switch.
3641   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
3642                              DL))
3643     return false;
3644   // Selects choose between maximum two values.
3645   if (UniqueResults.size() != 2)
3646     return false;
3647   assert(PHI != nullptr && "PHI for value select not found");
3648 
3649   Builder.SetInsertPoint(SI);
3650   Value *SelectValue = ConvertTwoCaseSwitch(
3651       UniqueResults,
3652       DefaultResult, Cond, Builder);
3653   if (SelectValue) {
3654     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
3655     return true;
3656   }
3657   // The switch couldn't be converted into a select.
3658   return false;
3659 }
3660 
3661 namespace {
3662   /// SwitchLookupTable - This class represents a lookup table that can be used
3663   /// to replace a switch.
3664   class SwitchLookupTable {
3665   public:
3666     /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3667     /// with the contents of Values, using DefaultValue to fill any holes in the
3668     /// table.
3669     SwitchLookupTable(
3670         Module &M, uint64_t TableSize, ConstantInt *Offset,
3671         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3672         Constant *DefaultValue, const DataLayout &DL);
3673 
3674     /// BuildLookup - Build instructions with Builder to retrieve the value at
3675     /// the position given by Index in the lookup table.
3676     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3677 
3678     /// WouldFitInRegister - Return true if a table with TableSize elements of
3679     /// type ElementType would fit in a target-legal register.
3680     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
3681                                    const Type *ElementType);
3682 
3683   private:
3684     // Depending on the contents of the table, it can be represented in
3685     // different ways.
3686     enum {
3687       // For tables where each element contains the same value, we just have to
3688       // store that single value and return it for each lookup.
3689       SingleValueKind,
3690 
3691       // For tables where there is a linear relationship between table index
3692       // and values. We calculate the result with a simple multiplication
3693       // and addition instead of a table lookup.
3694       LinearMapKind,
3695 
3696       // For small tables with integer elements, we can pack them into a bitmap
3697       // that fits into a target-legal register. Values are retrieved by
3698       // shift and mask operations.
3699       BitMapKind,
3700 
3701       // The table is stored as an array of values. Values are retrieved by load
3702       // instructions from the table.
3703       ArrayKind
3704     } Kind;
3705 
3706     // For SingleValueKind, this is the single value.
3707     Constant *SingleValue;
3708 
3709     // For BitMapKind, this is the bitmap.
3710     ConstantInt *BitMap;
3711     IntegerType *BitMapElementTy;
3712 
3713     // For LinearMapKind, these are the constants used to derive the value.
3714     ConstantInt *LinearOffset;
3715     ConstantInt *LinearMultiplier;
3716 
3717     // For ArrayKind, this is the array.
3718     GlobalVariable *Array;
3719   };
3720 }
3721 
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL)3722 SwitchLookupTable::SwitchLookupTable(
3723     Module &M, uint64_t TableSize, ConstantInt *Offset,
3724     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3725     Constant *DefaultValue, const DataLayout &DL)
3726     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3727       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
3728   assert(Values.size() && "Can't build lookup table without values!");
3729   assert(TableSize >= Values.size() && "Can't fit values in table!");
3730 
3731   // If all values in the table are equal, this is that value.
3732   SingleValue = Values.begin()->second;
3733 
3734   Type *ValueType = Values.begin()->second->getType();
3735 
3736   // Build up the table contents.
3737   SmallVector<Constant*, 64> TableContents(TableSize);
3738   for (size_t I = 0, E = Values.size(); I != E; ++I) {
3739     ConstantInt *CaseVal = Values[I].first;
3740     Constant *CaseRes = Values[I].second;
3741     assert(CaseRes->getType() == ValueType);
3742 
3743     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3744                    .getLimitedValue();
3745     TableContents[Idx] = CaseRes;
3746 
3747     if (CaseRes != SingleValue)
3748       SingleValue = nullptr;
3749   }
3750 
3751   // Fill in any holes in the table with the default result.
3752   if (Values.size() < TableSize) {
3753     assert(DefaultValue &&
3754            "Need a default value to fill the lookup table holes.");
3755     assert(DefaultValue->getType() == ValueType);
3756     for (uint64_t I = 0; I < TableSize; ++I) {
3757       if (!TableContents[I])
3758         TableContents[I] = DefaultValue;
3759     }
3760 
3761     if (DefaultValue != SingleValue)
3762       SingleValue = nullptr;
3763   }
3764 
3765   // If each element in the table contains the same value, we only need to store
3766   // that single value.
3767   if (SingleValue) {
3768     Kind = SingleValueKind;
3769     return;
3770   }
3771 
3772   // Check if we can derive the value with a linear transformation from the
3773   // table index.
3774   if (isa<IntegerType>(ValueType)) {
3775     bool LinearMappingPossible = true;
3776     APInt PrevVal;
3777     APInt DistToPrev;
3778     assert(TableSize >= 2 && "Should be a SingleValue table.");
3779     // Check if there is the same distance between two consecutive values.
3780     for (uint64_t I = 0; I < TableSize; ++I) {
3781       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
3782       if (!ConstVal) {
3783         // This is an undef. We could deal with it, but undefs in lookup tables
3784         // are very seldom. It's probably not worth the additional complexity.
3785         LinearMappingPossible = false;
3786         break;
3787       }
3788       APInt Val = ConstVal->getValue();
3789       if (I != 0) {
3790         APInt Dist = Val - PrevVal;
3791         if (I == 1) {
3792           DistToPrev = Dist;
3793         } else if (Dist != DistToPrev) {
3794           LinearMappingPossible = false;
3795           break;
3796         }
3797       }
3798       PrevVal = Val;
3799     }
3800     if (LinearMappingPossible) {
3801       LinearOffset = cast<ConstantInt>(TableContents[0]);
3802       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
3803       Kind = LinearMapKind;
3804       ++NumLinearMaps;
3805       return;
3806     }
3807   }
3808 
3809   // If the type is integer and the table fits in a register, build a bitmap.
3810   if (WouldFitInRegister(DL, TableSize, ValueType)) {
3811     IntegerType *IT = cast<IntegerType>(ValueType);
3812     APInt TableInt(TableSize * IT->getBitWidth(), 0);
3813     for (uint64_t I = TableSize; I > 0; --I) {
3814       TableInt <<= IT->getBitWidth();
3815       // Insert values into the bitmap. Undef values are set to zero.
3816       if (!isa<UndefValue>(TableContents[I - 1])) {
3817         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3818         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3819       }
3820     }
3821     BitMap = ConstantInt::get(M.getContext(), TableInt);
3822     BitMapElementTy = IT;
3823     Kind = BitMapKind;
3824     ++NumBitMaps;
3825     return;
3826   }
3827 
3828   // Store the table in an array.
3829   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3830   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3831 
3832   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3833                              GlobalVariable::PrivateLinkage,
3834                              Initializer,
3835                              "switch.table");
3836   Array->setUnnamedAddr(true);
3837   Kind = ArrayKind;
3838 }
3839 
BuildLookup(Value * Index,IRBuilder<> & Builder)3840 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3841   switch (Kind) {
3842     case SingleValueKind:
3843       return SingleValue;
3844     case LinearMapKind: {
3845       // Derive the result value from the input value.
3846       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
3847                                             false, "switch.idx.cast");
3848       if (!LinearMultiplier->isOne())
3849         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
3850       if (!LinearOffset->isZero())
3851         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
3852       return Result;
3853     }
3854     case BitMapKind: {
3855       // Type of the bitmap (e.g. i59).
3856       IntegerType *MapTy = BitMap->getType();
3857 
3858       // Cast Index to the same type as the bitmap.
3859       // Note: The Index is <= the number of elements in the table, so
3860       // truncating it to the width of the bitmask is safe.
3861       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3862 
3863       // Multiply the shift amount by the element width.
3864       ShiftAmt = Builder.CreateMul(ShiftAmt,
3865                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3866                                    "switch.shiftamt");
3867 
3868       // Shift down.
3869       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3870                                               "switch.downshift");
3871       // Mask off.
3872       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3873                                  "switch.masked");
3874     }
3875     case ArrayKind: {
3876       // Make sure the table index will not overflow when treated as signed.
3877       IntegerType *IT = cast<IntegerType>(Index->getType());
3878       uint64_t TableSize = Array->getInitializer()->getType()
3879                                 ->getArrayNumElements();
3880       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
3881         Index = Builder.CreateZExt(Index,
3882                                    IntegerType::get(IT->getContext(),
3883                                                     IT->getBitWidth() + 1),
3884                                    "switch.tableidx.zext");
3885 
3886       Value *GEPIndices[] = { Builder.getInt32(0), Index };
3887       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
3888                                              GEPIndices, "switch.gep");
3889       return Builder.CreateLoad(GEP, "switch.load");
3890     }
3891   }
3892   llvm_unreachable("Unknown lookup table kind!");
3893 }
3894 
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,const Type * ElementType)3895 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
3896                                            uint64_t TableSize,
3897                                            const Type *ElementType) {
3898   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3899   if (!IT)
3900     return false;
3901   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3902   // are <= 15, we could try to narrow the type.
3903 
3904   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3905   if (TableSize >= UINT_MAX/IT->getBitWidth())
3906     return false;
3907   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
3908 }
3909 
3910 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
3911 /// for this switch, based on the number of cases, size of the table and the
3912 /// types of the results.
3913 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)3914 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
3915                        const TargetTransformInfo &TTI, const DataLayout &DL,
3916                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
3917   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3918     return false; // TableSize overflowed, or mul below might overflow.
3919 
3920   bool AllTablesFitInRegister = true;
3921   bool HasIllegalType = false;
3922   for (const auto &I : ResultTypes) {
3923     Type *Ty = I.second;
3924 
3925     // Saturate this flag to true.
3926     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3927 
3928     // Saturate this flag to false.
3929     AllTablesFitInRegister = AllTablesFitInRegister &&
3930       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
3931 
3932     // If both flags saturate, we're done. NOTE: This *only* works with
3933     // saturating flags, and all flags have to saturate first due to the
3934     // non-deterministic behavior of iterating over a dense map.
3935     if (HasIllegalType && !AllTablesFitInRegister)
3936       break;
3937   }
3938 
3939   // If each table would fit in a register, we should build it anyway.
3940   if (AllTablesFitInRegister)
3941     return true;
3942 
3943   // Don't build a table that doesn't fit in-register if it has illegal types.
3944   if (HasIllegalType)
3945     return false;
3946 
3947   // The table density should be at least 40%. This is the same criterion as for
3948   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3949   // FIXME: Find the best cut-off.
3950   return SI->getNumCases() * 10 >= TableSize * 4;
3951 }
3952 
3953 /// Try to reuse the switch table index compare. Following pattern:
3954 /// \code
3955 ///     if (idx < tablesize)
3956 ///        r = table[idx]; // table does not contain default_value
3957 ///     else
3958 ///        r = default_value;
3959 ///     if (r != default_value)
3960 ///        ...
3961 /// \endcode
3962 /// Is optimized to:
3963 /// \code
3964 ///     cond = idx < tablesize;
3965 ///     if (cond)
3966 ///        r = table[idx];
3967 ///     else
3968 ///        r = default_value;
3969 ///     if (cond)
3970 ///        ...
3971 /// \endcode
3972 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)3973 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
3974           BranchInst *RangeCheckBranch, Constant *DefaultValue,
3975           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
3976 
3977   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
3978   if (!CmpInst)
3979     return;
3980 
3981   // We require that the compare is in the same block as the phi so that jump
3982   // threading can do its work afterwards.
3983   if (CmpInst->getParent() != PhiBlock)
3984     return;
3985 
3986   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
3987   if (!CmpOp1)
3988     return;
3989 
3990   Value *RangeCmp = RangeCheckBranch->getCondition();
3991   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
3992   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
3993 
3994   // Check if the compare with the default value is constant true or false.
3995   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
3996                                                  DefaultValue, CmpOp1, true);
3997   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
3998     return;
3999 
4000   // Check if the compare with the case values is distinct from the default
4001   // compare result.
4002   for (auto ValuePair : Values) {
4003     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4004                               ValuePair.second, CmpOp1, true);
4005     if (!CaseConst || CaseConst == DefaultConst)
4006       return;
4007     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4008            "Expect true or false as compare result.");
4009   }
4010 
4011   // Check if the branch instruction dominates the phi node. It's a simple
4012   // dominance check, but sufficient for our needs.
4013   // Although this check is invariant in the calling loops, it's better to do it
4014   // at this late stage. Practically we do it at most once for a switch.
4015   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4016   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4017     BasicBlock *Pred = *PI;
4018     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4019       return;
4020   }
4021 
4022   if (DefaultConst == FalseConst) {
4023     // The compare yields the same result. We can replace it.
4024     CmpInst->replaceAllUsesWith(RangeCmp);
4025     ++NumTableCmpReuses;
4026   } else {
4027     // The compare yields the same result, just inverted. We can replace it.
4028     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4029                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4030                 RangeCheckBranch);
4031     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4032     ++NumTableCmpReuses;
4033   }
4034 }
4035 
4036 /// SwitchToLookupTable - If the switch is only used to initialize one or more
4037 /// phi nodes in a common successor block with different constant values,
4038 /// replace the switch with lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)4039 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4040                                 const DataLayout &DL,
4041                                 const TargetTransformInfo &TTI) {
4042   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4043 
4044   // Only build lookup table when we have a target that supports it.
4045   if (!TTI.shouldBuildLookupTables())
4046     return false;
4047 
4048   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4049   // split off a dense part and build a lookup table for that.
4050 
4051   // FIXME: This creates arrays of GEPs to constant strings, which means each
4052   // GEP needs a runtime relocation in PIC code. We should just build one big
4053   // string and lookup indices into that.
4054 
4055   // Ignore switches with less than three cases. Lookup tables will not make them
4056   // faster, so we don't analyze them.
4057   if (SI->getNumCases() < 3)
4058     return false;
4059 
4060   // Figure out the corresponding result for each case value and phi node in the
4061   // common destination, as well as the the min and max case values.
4062   assert(SI->case_begin() != SI->case_end());
4063   SwitchInst::CaseIt CI = SI->case_begin();
4064   ConstantInt *MinCaseVal = CI.getCaseValue();
4065   ConstantInt *MaxCaseVal = CI.getCaseValue();
4066 
4067   BasicBlock *CommonDest = nullptr;
4068   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4069   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4070   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4071   SmallDenseMap<PHINode*, Type*> ResultTypes;
4072   SmallVector<PHINode*, 4> PHIs;
4073 
4074   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4075     ConstantInt *CaseVal = CI.getCaseValue();
4076     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4077       MinCaseVal = CaseVal;
4078     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4079       MaxCaseVal = CaseVal;
4080 
4081     // Resulting value at phi nodes for this case value.
4082     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4083     ResultsTy Results;
4084     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4085                         Results, DL))
4086       return false;
4087 
4088     // Append the result from this case to the list for each phi.
4089     for (const auto &I : Results) {
4090       PHINode *PHI = I.first;
4091       Constant *Value = I.second;
4092       if (!ResultLists.count(PHI))
4093         PHIs.push_back(PHI);
4094       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4095     }
4096   }
4097 
4098   // Keep track of the result types.
4099   for (PHINode *PHI : PHIs) {
4100     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4101   }
4102 
4103   uint64_t NumResults = ResultLists[PHIs[0]].size();
4104   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4105   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4106   bool TableHasHoles = (NumResults < TableSize);
4107 
4108   // If the table has holes, we need a constant result for the default case
4109   // or a bitmask that fits in a register.
4110   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4111   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4112                                           &CommonDest, DefaultResultsList, DL);
4113 
4114   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4115   if (NeedMask) {
4116     // As an extra penalty for the validity test we require more cases.
4117     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4118       return false;
4119     if (!DL.fitsInLegalInteger(TableSize))
4120       return false;
4121   }
4122 
4123   for (const auto &I : DefaultResultsList) {
4124     PHINode *PHI = I.first;
4125     Constant *Result = I.second;
4126     DefaultResults[PHI] = Result;
4127   }
4128 
4129   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4130     return false;
4131 
4132   // Create the BB that does the lookups.
4133   Module &Mod = *CommonDest->getParent()->getParent();
4134   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4135                                             "switch.lookup",
4136                                             CommonDest->getParent(),
4137                                             CommonDest);
4138 
4139   // Compute the table index value.
4140   Builder.SetInsertPoint(SI);
4141   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4142                                         "switch.tableidx");
4143 
4144   // Compute the maximum table size representable by the integer type we are
4145   // switching upon.
4146   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4147   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4148   assert(MaxTableSize >= TableSize &&
4149          "It is impossible for a switch to have more entries than the max "
4150          "representable value of its input integer type's size.");
4151 
4152   // If the default destination is unreachable, or if the lookup table covers
4153   // all values of the conditional variable, branch directly to the lookup table
4154   // BB. Otherwise, check that the condition is within the case range.
4155   const bool DefaultIsReachable =
4156       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4157   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4158   BranchInst *RangeCheckBranch = nullptr;
4159 
4160   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4161     Builder.CreateBr(LookupBB);
4162     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4163     // do not delete PHINodes here.
4164     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4165                                             /*DontDeleteUselessPHIs=*/true);
4166   } else {
4167     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4168                                        MinCaseVal->getType(), TableSize));
4169     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4170   }
4171 
4172   // Populate the BB that does the lookups.
4173   Builder.SetInsertPoint(LookupBB);
4174 
4175   if (NeedMask) {
4176     // Before doing the lookup we do the hole check.
4177     // The LookupBB is therefore re-purposed to do the hole check
4178     // and we create a new LookupBB.
4179     BasicBlock *MaskBB = LookupBB;
4180     MaskBB->setName("switch.hole_check");
4181     LookupBB = BasicBlock::Create(Mod.getContext(),
4182                                   "switch.lookup",
4183                                   CommonDest->getParent(),
4184                                   CommonDest);
4185 
4186     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4187     // unnecessary illegal types.
4188     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4189     APInt MaskInt(TableSizePowOf2, 0);
4190     APInt One(TableSizePowOf2, 1);
4191     // Build bitmask; fill in a 1 bit for every case.
4192     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4193     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4194       uint64_t Idx = (ResultList[I].first->getValue() -
4195                       MinCaseVal->getValue()).getLimitedValue();
4196       MaskInt |= One << Idx;
4197     }
4198     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4199 
4200     // Get the TableIndex'th bit of the bitmask.
4201     // If this bit is 0 (meaning hole) jump to the default destination,
4202     // else continue with table lookup.
4203     IntegerType *MapTy = TableMask->getType();
4204     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4205                                                  "switch.maskindex");
4206     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4207                                         "switch.shifted");
4208     Value *LoBit = Builder.CreateTrunc(Shifted,
4209                                        Type::getInt1Ty(Mod.getContext()),
4210                                        "switch.lobit");
4211     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4212 
4213     Builder.SetInsertPoint(LookupBB);
4214     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4215   }
4216 
4217   bool ReturnedEarly = false;
4218   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4219     PHINode *PHI = PHIs[I];
4220     const ResultListTy &ResultList = ResultLists[PHI];
4221 
4222     // If using a bitmask, use any value to fill the lookup table holes.
4223     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4224     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4225 
4226     Value *Result = Table.BuildLookup(TableIndex, Builder);
4227 
4228     // If the result is used to return immediately from the function, we want to
4229     // do that right here.
4230     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4231         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4232       Builder.CreateRet(Result);
4233       ReturnedEarly = true;
4234       break;
4235     }
4236 
4237     // Do a small peephole optimization: re-use the switch table compare if
4238     // possible.
4239     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4240       BasicBlock *PhiBlock = PHI->getParent();
4241       // Search for compare instructions which use the phi.
4242       for (auto *User : PHI->users()) {
4243         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4244       }
4245     }
4246 
4247     PHI->addIncoming(Result, LookupBB);
4248   }
4249 
4250   if (!ReturnedEarly)
4251     Builder.CreateBr(CommonDest);
4252 
4253   // Remove the switch.
4254   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4255     BasicBlock *Succ = SI->getSuccessor(i);
4256 
4257     if (Succ == SI->getDefaultDest())
4258       continue;
4259     Succ->removePredecessor(SI->getParent());
4260   }
4261   SI->eraseFromParent();
4262 
4263   ++NumLookupTables;
4264   if (NeedMask)
4265     ++NumLookupTablesHoles;
4266   return true;
4267 }
4268 
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)4269 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4270   BasicBlock *BB = SI->getParent();
4271 
4272   if (isValueEqualityComparison(SI)) {
4273     // If we only have one predecessor, and if it is a branch on this value,
4274     // see if that predecessor totally determines the outcome of this switch.
4275     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4276       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4277         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4278 
4279     Value *Cond = SI->getCondition();
4280     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4281       if (SimplifySwitchOnSelect(SI, Select))
4282         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4283 
4284     // If the block only contains the switch, see if we can fold the block
4285     // away into any preds.
4286     BasicBlock::iterator BBI = BB->begin();
4287     // Ignore dbg intrinsics.
4288     while (isa<DbgInfoIntrinsic>(BBI))
4289       ++BBI;
4290     if (SI == &*BBI)
4291       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4292         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4293   }
4294 
4295   // Try to transform the switch into an icmp and a branch.
4296   if (TurnSwitchRangeIntoICmp(SI, Builder))
4297     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4298 
4299   // Remove unreachable cases.
4300   if (EliminateDeadSwitchCases(SI, AC, DL))
4301     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4302 
4303   if (SwitchToSelect(SI, Builder, AC, DL))
4304     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4305 
4306   if (ForwardSwitchConditionToPHI(SI))
4307     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4308 
4309   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4310     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4311 
4312   return false;
4313 }
4314 
SimplifyIndirectBr(IndirectBrInst * IBI)4315 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4316   BasicBlock *BB = IBI->getParent();
4317   bool Changed = false;
4318 
4319   // Eliminate redundant destinations.
4320   SmallPtrSet<Value *, 8> Succs;
4321   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4322     BasicBlock *Dest = IBI->getDestination(i);
4323     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4324       Dest->removePredecessor(BB);
4325       IBI->removeDestination(i);
4326       --i; --e;
4327       Changed = true;
4328     }
4329   }
4330 
4331   if (IBI->getNumDestinations() == 0) {
4332     // If the indirectbr has no successors, change it to unreachable.
4333     new UnreachableInst(IBI->getContext(), IBI);
4334     EraseTerminatorInstAndDCECond(IBI);
4335     return true;
4336   }
4337 
4338   if (IBI->getNumDestinations() == 1) {
4339     // If the indirectbr has one successor, change it to a direct branch.
4340     BranchInst::Create(IBI->getDestination(0), IBI);
4341     EraseTerminatorInstAndDCECond(IBI);
4342     return true;
4343   }
4344 
4345   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4346     if (SimplifyIndirectBrOnSelect(IBI, SI))
4347       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4348   }
4349   return Changed;
4350 }
4351 
4352 /// Given an block with only a single landing pad and a unconditional branch
4353 /// try to find another basic block which this one can be merged with.  This
4354 /// handles cases where we have multiple invokes with unique landing pads, but
4355 /// a shared handler.
4356 ///
4357 /// We specifically choose to not worry about merging non-empty blocks
4358 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
4359 /// practice, the optimizer produces empty landing pad blocks quite frequently
4360 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
4361 /// sinking in this file)
4362 ///
4363 /// This is primarily a code size optimization.  We need to avoid performing
4364 /// any transform which might inhibit optimization (such as our ability to
4365 /// specialize a particular handler via tail commoning).  We do this by not
4366 /// merging any blocks which require us to introduce a phi.  Since the same
4367 /// values are flowing through both blocks, we don't loose any ability to
4368 /// specialize.  If anything, we make such specialization more likely.
4369 ///
4370 /// TODO - This transformation could remove entries from a phi in the target
4371 /// block when the inputs in the phi are the same for the two blocks being
4372 /// merged.  In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB)4373 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
4374                                  BasicBlock *BB) {
4375   auto Succ = BB->getUniqueSuccessor();
4376   assert(Succ);
4377   // If there's a phi in the successor block, we'd likely have to introduce
4378   // a phi into the merged landing pad block.
4379   if (isa<PHINode>(*Succ->begin()))
4380     return false;
4381 
4382   for (BasicBlock *OtherPred : predecessors(Succ)) {
4383     if (BB == OtherPred)
4384       continue;
4385     BasicBlock::iterator I = OtherPred->begin();
4386     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
4387     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
4388       continue;
4389     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4390     BranchInst *BI2 = dyn_cast<BranchInst>(I);
4391     if (!BI2 || !BI2->isIdenticalTo(BI))
4392       continue;
4393 
4394     // We've found an identical block.  Update our predeccessors to take that
4395     // path instead and make ourselves dead.
4396     SmallSet<BasicBlock *, 16> Preds;
4397     Preds.insert(pred_begin(BB), pred_end(BB));
4398     for (BasicBlock *Pred : Preds) {
4399       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
4400       assert(II->getNormalDest() != BB &&
4401              II->getUnwindDest() == BB && "unexpected successor");
4402       II->setUnwindDest(OtherPred);
4403     }
4404 
4405     // The debug info in OtherPred doesn't cover the merged control flow that
4406     // used to go through BB.  We need to delete it or update it.
4407     for (auto I = OtherPred->begin(), E = OtherPred->end();
4408          I != E;) {
4409       Instruction &Inst = *I; I++;
4410       if (isa<DbgInfoIntrinsic>(Inst))
4411         Inst.eraseFromParent();
4412     }
4413 
4414     SmallSet<BasicBlock *, 16> Succs;
4415     Succs.insert(succ_begin(BB), succ_end(BB));
4416     for (BasicBlock *Succ : Succs) {
4417       Succ->removePredecessor(BB);
4418     }
4419 
4420     IRBuilder<> Builder(BI);
4421     Builder.CreateUnreachable();
4422     BI->eraseFromParent();
4423     return true;
4424   }
4425   return false;
4426 }
4427 
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)4428 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4429   BasicBlock *BB = BI->getParent();
4430 
4431   if (SinkCommon && SinkThenElseCodeToEnd(BI))
4432     return true;
4433 
4434   // If the Terminator is the only non-phi instruction, simplify the block.
4435   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
4436   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4437       TryToSimplifyUncondBranchFromEmptyBlock(BB))
4438     return true;
4439 
4440   // If the only instruction in the block is a seteq/setne comparison
4441   // against a constant, try to simplify the block.
4442   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4443     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4444       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4445         ;
4446       if (I->isTerminator() &&
4447           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
4448                                                 BonusInstThreshold, AC))
4449         return true;
4450     }
4451 
4452   // See if we can merge an empty landing pad block with another which is
4453   // equivalent.
4454   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
4455     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4456     if (I->isTerminator() &&
4457         TryToMergeLandingPad(LPad, BI, BB))
4458       return true;
4459   }
4460 
4461   // If this basic block is ONLY a compare and a branch, and if a predecessor
4462   // branches to us and our successor, fold the comparison into the
4463   // predecessor and use logical operations to update the incoming value
4464   // for PHI nodes in common successor.
4465   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4466     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4467   return false;
4468 }
4469 
4470 
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)4471 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4472   BasicBlock *BB = BI->getParent();
4473 
4474   // Conditional branch
4475   if (isValueEqualityComparison(BI)) {
4476     // If we only have one predecessor, and if it is a branch on this value,
4477     // see if that predecessor totally determines the outcome of this
4478     // switch.
4479     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4480       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4481         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4482 
4483     // This block must be empty, except for the setcond inst, if it exists.
4484     // Ignore dbg intrinsics.
4485     BasicBlock::iterator I = BB->begin();
4486     // Ignore dbg intrinsics.
4487     while (isa<DbgInfoIntrinsic>(I))
4488       ++I;
4489     if (&*I == BI) {
4490       if (FoldValueComparisonIntoPredecessors(BI, Builder))
4491         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4492     } else if (&*I == cast<Instruction>(BI->getCondition())){
4493       ++I;
4494       // Ignore dbg intrinsics.
4495       while (isa<DbgInfoIntrinsic>(I))
4496         ++I;
4497       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4498         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4499     }
4500   }
4501 
4502   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4503   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
4504     return true;
4505 
4506   // If this basic block is ONLY a compare and a branch, and if a predecessor
4507   // branches to us and one of our successors, fold the comparison into the
4508   // predecessor and use logical operations to pick the right destination.
4509   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4510     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4511 
4512   // We have a conditional branch to two blocks that are only reachable
4513   // from BI.  We know that the condbr dominates the two blocks, so see if
4514   // there is any identical code in the "then" and "else" blocks.  If so, we
4515   // can hoist it up to the branching block.
4516   if (BI->getSuccessor(0)->getSinglePredecessor()) {
4517     if (BI->getSuccessor(1)->getSinglePredecessor()) {
4518       if (HoistThenElseCodeToIf(BI, TTI))
4519         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4520     } else {
4521       // If Successor #1 has multiple preds, we may be able to conditionally
4522       // execute Successor #0 if it branches to Successor #1.
4523       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4524       if (Succ0TI->getNumSuccessors() == 1 &&
4525           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4526         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
4527           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4528     }
4529   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4530     // If Successor #0 has multiple preds, we may be able to conditionally
4531     // execute Successor #1 if it branches to Successor #0.
4532     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4533     if (Succ1TI->getNumSuccessors() == 1 &&
4534         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4535       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
4536         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4537   }
4538 
4539   // If this is a branch on a phi node in the current block, thread control
4540   // through this block if any PHI node entries are constants.
4541   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4542     if (PN->getParent() == BI->getParent())
4543       if (FoldCondBranchOnPHI(BI, DL))
4544         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4545 
4546   // Scan predecessor blocks for conditional branches.
4547   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4548     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4549       if (PBI != BI && PBI->isConditional())
4550         if (SimplifyCondBranchToCondBranch(PBI, BI))
4551           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4552 
4553   return false;
4554 }
4555 
4556 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)4557 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4558   Constant *C = dyn_cast<Constant>(V);
4559   if (!C)
4560     return false;
4561 
4562   if (I->use_empty())
4563     return false;
4564 
4565   if (C->isNullValue()) {
4566     // Only look at the first use, avoid hurting compile time with long uselists
4567     User *Use = *I->user_begin();
4568 
4569     // Now make sure that there are no instructions in between that can alter
4570     // control flow (eg. calls)
4571     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4572       if (i == I->getParent()->end() || i->mayHaveSideEffects())
4573         return false;
4574 
4575     // Look through GEPs. A load from a GEP derived from NULL is still undefined
4576     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4577       if (GEP->getPointerOperand() == I)
4578         return passingValueIsAlwaysUndefined(V, GEP);
4579 
4580     // Look through bitcasts.
4581     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4582       return passingValueIsAlwaysUndefined(V, BC);
4583 
4584     // Load from null is undefined.
4585     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4586       if (!LI->isVolatile())
4587         return LI->getPointerAddressSpace() == 0;
4588 
4589     // Store to null is undefined.
4590     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4591       if (!SI->isVolatile())
4592         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4593   }
4594   return false;
4595 }
4596 
4597 /// If BB has an incoming value that will always trigger undefined behavior
4598 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)4599 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4600   for (BasicBlock::iterator i = BB->begin();
4601        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4602     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4603       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4604         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4605         IRBuilder<> Builder(T);
4606         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4607           BB->removePredecessor(PHI->getIncomingBlock(i));
4608           // Turn uncoditional branches into unreachables and remove the dead
4609           // destination from conditional branches.
4610           if (BI->isUnconditional())
4611             Builder.CreateUnreachable();
4612           else
4613             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4614                                                          BI->getSuccessor(0));
4615           BI->eraseFromParent();
4616           return true;
4617         }
4618         // TODO: SwitchInst.
4619       }
4620 
4621   return false;
4622 }
4623 
run(BasicBlock * BB)4624 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4625   bool Changed = false;
4626 
4627   assert(BB && BB->getParent() && "Block not embedded in function!");
4628   assert(BB->getTerminator() && "Degenerate basic block encountered!");
4629 
4630   // Remove basic blocks that have no predecessors (except the entry block)...
4631   // or that just have themself as a predecessor.  These are unreachable.
4632   if ((pred_empty(BB) &&
4633        BB != &BB->getParent()->getEntryBlock()) ||
4634       BB->getSinglePredecessor() == BB) {
4635     DEBUG(dbgs() << "Removing BB: \n" << *BB);
4636     DeleteDeadBlock(BB);
4637     return true;
4638   }
4639 
4640   // Check to see if we can constant propagate this terminator instruction
4641   // away...
4642   Changed |= ConstantFoldTerminator(BB, true);
4643 
4644   // Check for and eliminate duplicate PHI nodes in this block.
4645   Changed |= EliminateDuplicatePHINodes(BB);
4646 
4647   // Check for and remove branches that will always cause undefined behavior.
4648   Changed |= removeUndefIntroducingPredecessor(BB);
4649 
4650   // Merge basic blocks into their predecessor if there is only one distinct
4651   // pred, and if there is only one distinct successor of the predecessor, and
4652   // if there are no PHI nodes.
4653   //
4654   if (MergeBlockIntoPredecessor(BB))
4655     return true;
4656 
4657   IRBuilder<> Builder(BB);
4658 
4659   // If there is a trivial two-entry PHI node in this basic block, and we can
4660   // eliminate it, do so now.
4661   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4662     if (PN->getNumIncomingValues() == 2)
4663       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
4664 
4665   Builder.SetInsertPoint(BB->getTerminator());
4666   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4667     if (BI->isUnconditional()) {
4668       if (SimplifyUncondBranch(BI, Builder)) return true;
4669     } else {
4670       if (SimplifyCondBranch(BI, Builder)) return true;
4671     }
4672   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4673     if (SimplifyReturn(RI, Builder)) return true;
4674   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4675     if (SimplifyResume(RI, Builder)) return true;
4676   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4677     if (SimplifySwitch(SI, Builder)) return true;
4678   } else if (UnreachableInst *UI =
4679                dyn_cast<UnreachableInst>(BB->getTerminator())) {
4680     if (SimplifyUnreachable(UI)) return true;
4681   } else if (IndirectBrInst *IBI =
4682                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4683     if (SimplifyIndirectBr(IBI)) return true;
4684   }
4685 
4686   return Changed;
4687 }
4688 
4689 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
4690 /// example, it adjusts branches to branches to eliminate the extra hop, it
4691 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4692 /// of the CFG.  It returns true if a modification was made.
4693 ///
SimplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)4694 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4695                        unsigned BonusInstThreshold, AssumptionCache *AC) {
4696   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
4697                         BonusInstThreshold, AC).run(BB);
4698 }
4699