1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
25 /// expression.  If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
DecomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29                                         uint64_t &Offset) {
30   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31     Offset = CI->getZExtValue();
32     Scale  = 0;
33     return ConstantInt::get(Val->getType(), 0);
34   }
35 
36   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37     // Cannot look past anything that might overflow.
38     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40       Scale = 1;
41       Offset = 0;
42       return Val;
43     }
44 
45     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46       if (I->getOpcode() == Instruction::Shl) {
47         // This is a value scaled by '1 << the shift amt'.
48         Scale = UINT64_C(1) << RHS->getZExtValue();
49         Offset = 0;
50         return I->getOperand(0);
51       }
52 
53       if (I->getOpcode() == Instruction::Mul) {
54         // This value is scaled by 'RHS'.
55         Scale = RHS->getZExtValue();
56         Offset = 0;
57         return I->getOperand(0);
58       }
59 
60       if (I->getOpcode() == Instruction::Add) {
61         // We have X+C.  Check to see if we really have (X*C2)+C1,
62         // where C1 is divisible by C2.
63         unsigned SubScale;
64         Value *SubVal =
65           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66         Offset += RHS->getZExtValue();
67         Scale = SubScale;
68         return SubVal;
69       }
70     }
71   }
72 
73   // Otherwise, we can't look past this.
74   Scale = 1;
75   Offset = 0;
76   return Val;
77 }
78 
79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
80 /// try to eliminate the cast by moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82                                                    AllocaInst &AI) {
83   PointerType *PTy = cast<PointerType>(CI.getType());
84 
85   BuilderTy AllocaBuilder(*Builder);
86   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
87 
88   // Get the type really allocated and the type casted to.
89   Type *AllocElTy = AI.getAllocatedType();
90   Type *CastElTy = PTy->getElementType();
91   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
92 
93   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
94   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
95   if (CastElTyAlign < AllocElTyAlign) return nullptr;
96 
97   // If the allocation has multiple uses, only promote it if we are strictly
98   // increasing the alignment of the resultant allocation.  If we keep it the
99   // same, we open the door to infinite loops of various kinds.
100   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
101 
102   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
103   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
104   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
105 
106   // If the allocation has multiple uses, only promote it if we're not
107   // shrinking the amount of memory being allocated.
108   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
109   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
110   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
111 
112   // See if we can satisfy the modulus by pulling a scale out of the array
113   // size argument.
114   unsigned ArraySizeScale;
115   uint64_t ArrayOffset;
116   Value *NumElements = // See if the array size is a decomposable linear expr.
117     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
118 
119   // If we can now satisfy the modulus, by using a non-1 scale, we really can
120   // do the xform.
121   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
122       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
123 
124   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
125   Value *Amt = nullptr;
126   if (Scale == 1) {
127     Amt = NumElements;
128   } else {
129     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
130     // Insert before the alloca, not before the cast.
131     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
132   }
133 
134   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
135     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
136                                   Offset, true);
137     Amt = AllocaBuilder.CreateAdd(Amt, Off);
138   }
139 
140   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
141   New->setAlignment(AI.getAlignment());
142   New->takeName(&AI);
143   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
144 
145   // If the allocation has multiple real uses, insert a cast and change all
146   // things that used it to use the new cast.  This will also hack on CI, but it
147   // will die soon.
148   if (!AI.hasOneUse()) {
149     // New is the allocation instruction, pointer typed. AI is the original
150     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152     ReplaceInstUsesWith(AI, NewCast);
153   }
154   return ReplaceInstUsesWith(CI, New);
155 }
156 
157 /// EvaluateInDifferentType - Given an expression that
158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
159 /// insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161                                              bool isSigned) {
162   if (Constant *C = dyn_cast<Constant>(V)) {
163     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164     // If we got a constantexpr back, try to simplify it with DL info.
165     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
166       C = ConstantFoldConstantExpression(CE, DL, TLI);
167     return C;
168   }
169 
170   // Otherwise, it must be an instruction.
171   Instruction *I = cast<Instruction>(V);
172   Instruction *Res = nullptr;
173   unsigned Opc = I->getOpcode();
174   switch (Opc) {
175   case Instruction::Add:
176   case Instruction::Sub:
177   case Instruction::Mul:
178   case Instruction::And:
179   case Instruction::Or:
180   case Instruction::Xor:
181   case Instruction::AShr:
182   case Instruction::LShr:
183   case Instruction::Shl:
184   case Instruction::UDiv:
185   case Instruction::URem: {
186     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189     break;
190   }
191   case Instruction::Trunc:
192   case Instruction::ZExt:
193   case Instruction::SExt:
194     // If the source type of the cast is the type we're trying for then we can
195     // just return the source.  There's no need to insert it because it is not
196     // new.
197     if (I->getOperand(0)->getType() == Ty)
198       return I->getOperand(0);
199 
200     // Otherwise, must be the same type of cast, so just reinsert a new one.
201     // This also handles the case of zext(trunc(x)) -> zext(x).
202     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203                                       Opc == Instruction::SExt);
204     break;
205   case Instruction::Select: {
206     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208     Res = SelectInst::Create(I->getOperand(0), True, False);
209     break;
210   }
211   case Instruction::PHI: {
212     PHINode *OPN = cast<PHINode>(I);
213     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215       Value *V =
216           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
217       NPN->addIncoming(V, OPN->getIncomingBlock(i));
218     }
219     Res = NPN;
220     break;
221   }
222   default:
223     // TODO: Can handle more cases here.
224     llvm_unreachable("Unreachable!");
225   }
226 
227   Res->takeName(I);
228   return InsertNewInstWith(Res, *I);
229 }
230 
231 
232 /// This function is a wrapper around CastInst::isEliminableCastPair. It
233 /// simply extracts arguments and returns what that function returns.
234 static Instruction::CastOps
isEliminableCastPair(const CastInst * CI,unsigned opcode,Type * DstTy,const DataLayout & DL)235 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
236                      unsigned opcode,    ///< Opcode for the second cast
237                      Type *DstTy,        ///< Target type for the second cast
238                      const DataLayout &DL) {
239   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
240   Type *MidTy = CI->getType();                  // B from above
241 
242   // Get the opcodes of the two Cast instructions
243   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
244   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
245   Type *SrcIntPtrTy =
246       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
247   Type *MidIntPtrTy =
248       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
249   Type *DstIntPtrTy =
250       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
251   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
252                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
253                                                 DstIntPtrTy);
254 
255   // We don't want to form an inttoptr or ptrtoint that converts to an integer
256   // type that differs from the pointer size.
257   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
258       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
259     Res = 0;
260 
261   return Instruction::CastOps(Res);
262 }
263 
264 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
265 /// results in any code being generated and is interesting to optimize out. If
266 /// the cast can be eliminated by some other simple transformation, we prefer
267 /// to do the simplification first.
ShouldOptimizeCast(Instruction::CastOps opc,const Value * V,Type * Ty)268 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
269                                       Type *Ty) {
270   // Noop casts and casts of constants should be eliminated trivially.
271   if (V->getType() == Ty || isa<Constant>(V)) return false;
272 
273   // If this is another cast that can be eliminated, we prefer to have it
274   // eliminated.
275   if (const CastInst *CI = dyn_cast<CastInst>(V))
276     if (isEliminableCastPair(CI, opc, Ty, DL))
277       return false;
278 
279   // If this is a vector sext from a compare, then we don't want to break the
280   // idiom where each element of the extended vector is either zero or all ones.
281   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
282     return false;
283 
284   return true;
285 }
286 
287 
288 /// @brief Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)289 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
290   Value *Src = CI.getOperand(0);
291 
292   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
293   // eliminate it now.
294   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
295     if (Instruction::CastOps opc =
296             isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
297       // The first cast (CSrc) is eliminable so we need to fix up or replace
298       // the second cast (CI). CSrc will then have a good chance of being dead.
299       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
300     }
301   }
302 
303   // If we are casting a select then fold the cast into the select
304   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
305     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
306       return NV;
307 
308   // If we are casting a PHI then fold the cast into the PHI
309   if (isa<PHINode>(Src)) {
310     // We don't do this if this would create a PHI node with an illegal type if
311     // it is currently legal.
312     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
313         ShouldChangeType(CI.getType(), Src->getType()))
314       if (Instruction *NV = FoldOpIntoPhi(CI))
315         return NV;
316   }
317 
318   return nullptr;
319 }
320 
321 /// CanEvaluateTruncated - Return true if we can evaluate the specified
322 /// expression tree as type Ty instead of its larger type, and arrive with the
323 /// same value.  This is used by code that tries to eliminate truncates.
324 ///
325 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
326 /// can be computed by computing V in the smaller type.  If V is an instruction,
327 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
328 /// makes sense if x and y can be efficiently truncated.
329 ///
330 /// This function works on both vectors and scalars.
331 ///
CanEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)332 static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
333                                  Instruction *CxtI) {
334   // We can always evaluate constants in another type.
335   if (isa<Constant>(V))
336     return true;
337 
338   Instruction *I = dyn_cast<Instruction>(V);
339   if (!I) return false;
340 
341   Type *OrigTy = V->getType();
342 
343   // If this is an extension from the dest type, we can eliminate it, even if it
344   // has multiple uses.
345   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
346       I->getOperand(0)->getType() == Ty)
347     return true;
348 
349   // We can't extend or shrink something that has multiple uses: doing so would
350   // require duplicating the instruction in general, which isn't profitable.
351   if (!I->hasOneUse()) return false;
352 
353   unsigned Opc = I->getOpcode();
354   switch (Opc) {
355   case Instruction::Add:
356   case Instruction::Sub:
357   case Instruction::Mul:
358   case Instruction::And:
359   case Instruction::Or:
360   case Instruction::Xor:
361     // These operators can all arbitrarily be extended or truncated.
362     return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363            CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
364 
365   case Instruction::UDiv:
366   case Instruction::URem: {
367     // UDiv and URem can be truncated if all the truncated bits are zero.
368     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369     uint32_t BitWidth = Ty->getScalarSizeInBits();
370     if (BitWidth < OrigBitWidth) {
371       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
372       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
374         return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375                CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
376       }
377     }
378     break;
379   }
380   case Instruction::Shl:
381     // If we are truncating the result of this SHL, and if it's a shift of a
382     // constant amount, we can always perform a SHL in a smaller type.
383     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
384       uint32_t BitWidth = Ty->getScalarSizeInBits();
385       if (CI->getLimitedValue(BitWidth) < BitWidth)
386         return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
387     }
388     break;
389   case Instruction::LShr:
390     // If this is a truncate of a logical shr, we can truncate it to a smaller
391     // lshr iff we know that the bits we would otherwise be shifting in are
392     // already zeros.
393     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
394       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
395       uint32_t BitWidth = Ty->getScalarSizeInBits();
396       if (IC.MaskedValueIsZero(I->getOperand(0),
397             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
398           CI->getLimitedValue(BitWidth) < BitWidth) {
399         return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
400       }
401     }
402     break;
403   case Instruction::Trunc:
404     // trunc(trunc(x)) -> trunc(x)
405     return true;
406   case Instruction::ZExt:
407   case Instruction::SExt:
408     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
409     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
410     return true;
411   case Instruction::Select: {
412     SelectInst *SI = cast<SelectInst>(I);
413     return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
414            CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
415   }
416   case Instruction::PHI: {
417     // We can change a phi if we can change all operands.  Note that we never
418     // get into trouble with cyclic PHIs here because we only consider
419     // instructions with a single use.
420     PHINode *PN = cast<PHINode>(I);
421     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
422       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI))
423         return false;
424     return true;
425   }
426   default:
427     // TODO: Can handle more cases here.
428     break;
429   }
430 
431   return false;
432 }
433 
visitTrunc(TruncInst & CI)434 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
435   if (Instruction *Result = commonCastTransforms(CI))
436     return Result;
437 
438   // See if we can simplify any instructions used by the input whose sole
439   // purpose is to compute bits we don't care about.
440   if (SimplifyDemandedInstructionBits(CI))
441     return &CI;
442 
443   Value *Src = CI.getOperand(0);
444   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
445 
446   // Attempt to truncate the entire input expression tree to the destination
447   // type.   Only do this if the dest type is a simple type, don't convert the
448   // expression tree to something weird like i93 unless the source is also
449   // strange.
450   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
451       CanEvaluateTruncated(Src, DestTy, *this, &CI)) {
452 
453     // If this cast is a truncate, evaluting in a different type always
454     // eliminates the cast, so it is always a win.
455     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
456           " to avoid cast: " << CI << '\n');
457     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
458     assert(Res->getType() == DestTy);
459     return ReplaceInstUsesWith(CI, Res);
460   }
461 
462   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
463   if (DestTy->getScalarSizeInBits() == 1) {
464     Constant *One = ConstantInt::get(Src->getType(), 1);
465     Src = Builder->CreateAnd(Src, One);
466     Value *Zero = Constant::getNullValue(Src->getType());
467     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
468   }
469 
470   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
471   Value *A = nullptr; ConstantInt *Cst = nullptr;
472   if (Src->hasOneUse() &&
473       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
474     // We have three types to worry about here, the type of A, the source of
475     // the truncate (MidSize), and the destination of the truncate. We know that
476     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
477     // between ASize and ResultSize.
478     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
479 
480     // If the shift amount is larger than the size of A, then the result is
481     // known to be zero because all the input bits got shifted out.
482     if (Cst->getZExtValue() >= ASize)
483       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
484 
485     // Since we're doing an lshr and a zero extend, and know that the shift
486     // amount is smaller than ASize, it is always safe to do the shift in A's
487     // type, then zero extend or truncate to the result.
488     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
489     Shift->takeName(Src);
490     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
491   }
492 
493   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
494   // type isn't non-native.
495   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
496       ShouldChangeType(Src->getType(), CI.getType()) &&
497       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
498     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
499     return BinaryOperator::CreateAnd(NewTrunc,
500                                      ConstantExpr::getTrunc(Cst, CI.getType()));
501   }
502 
503   return nullptr;
504 }
505 
506 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
507 /// in order to eliminate the icmp.
transformZExtICmp(ICmpInst * ICI,Instruction & CI,bool DoXform)508 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
509                                              bool DoXform) {
510   // If we are just checking for a icmp eq of a single bit and zext'ing it
511   // to an integer, then shift the bit to the appropriate place and then
512   // cast to integer to avoid the comparison.
513   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
514     const APInt &Op1CV = Op1C->getValue();
515 
516     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
517     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
518     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
519         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
520       if (!DoXform) return ICI;
521 
522       Value *In = ICI->getOperand(0);
523       Value *Sh = ConstantInt::get(In->getType(),
524                                    In->getType()->getScalarSizeInBits()-1);
525       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
526       if (In->getType() != CI.getType())
527         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
528 
529       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
530         Constant *One = ConstantInt::get(In->getType(), 1);
531         In = Builder->CreateXor(In, One, In->getName()+".not");
532       }
533 
534       return ReplaceInstUsesWith(CI, In);
535     }
536 
537     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
538     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
539     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
540     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
541     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
542     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
543     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
544     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
545     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
546         // This only works for EQ and NE
547         ICI->isEquality()) {
548       // If Op1C some other power of two, convert:
549       uint32_t BitWidth = Op1C->getType()->getBitWidth();
550       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
551       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
552 
553       APInt KnownZeroMask(~KnownZero);
554       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
555         if (!DoXform) return ICI;
556 
557         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
558         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
559           // (X&4) == 2 --> false
560           // (X&4) != 2 --> true
561           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
562                                            isNE);
563           Res = ConstantExpr::getZExt(Res, CI.getType());
564           return ReplaceInstUsesWith(CI, Res);
565         }
566 
567         uint32_t ShiftAmt = KnownZeroMask.logBase2();
568         Value *In = ICI->getOperand(0);
569         if (ShiftAmt) {
570           // Perform a logical shr by shiftamt.
571           // Insert the shift to put the result in the low bit.
572           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
573                                    In->getName()+".lobit");
574         }
575 
576         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
577           Constant *One = ConstantInt::get(In->getType(), 1);
578           In = Builder->CreateXor(In, One);
579         }
580 
581         if (CI.getType() == In->getType())
582           return ReplaceInstUsesWith(CI, In);
583         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
584       }
585     }
586   }
587 
588   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
589   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
590   // may lead to additional simplifications.
591   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
592     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
593       uint32_t BitWidth = ITy->getBitWidth();
594       Value *LHS = ICI->getOperand(0);
595       Value *RHS = ICI->getOperand(1);
596 
597       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
598       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
599       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
600       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
601 
602       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
603         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
604         APInt UnknownBit = ~KnownBits;
605         if (UnknownBit.countPopulation() == 1) {
606           if (!DoXform) return ICI;
607 
608           Value *Result = Builder->CreateXor(LHS, RHS);
609 
610           // Mask off any bits that are set and won't be shifted away.
611           if (KnownOneLHS.uge(UnknownBit))
612             Result = Builder->CreateAnd(Result,
613                                         ConstantInt::get(ITy, UnknownBit));
614 
615           // Shift the bit we're testing down to the lsb.
616           Result = Builder->CreateLShr(
617                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
618 
619           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
620             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
621           Result->takeName(ICI);
622           return ReplaceInstUsesWith(CI, Result);
623         }
624       }
625     }
626   }
627 
628   return nullptr;
629 }
630 
631 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
632 /// specified wider type and produce the same low bits.  If not, return false.
633 ///
634 /// If this function returns true, it can also return a non-zero number of bits
635 /// (in BitsToClear) which indicates that the value it computes is correct for
636 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
637 /// out.  For example, to promote something like:
638 ///
639 ///   %B = trunc i64 %A to i32
640 ///   %C = lshr i32 %B, 8
641 ///   %E = zext i32 %C to i64
642 ///
643 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
644 /// set to 8 to indicate that the promoted value needs to have bits 24-31
645 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
646 /// clear the top bits anyway, doing this has no extra cost.
647 ///
648 /// This function works on both vectors and scalars.
CanEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)649 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
650                              InstCombiner &IC, Instruction *CxtI) {
651   BitsToClear = 0;
652   if (isa<Constant>(V))
653     return true;
654 
655   Instruction *I = dyn_cast<Instruction>(V);
656   if (!I) return false;
657 
658   // If the input is a truncate from the destination type, we can trivially
659   // eliminate it.
660   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
661     return true;
662 
663   // We can't extend or shrink something that has multiple uses: doing so would
664   // require duplicating the instruction in general, which isn't profitable.
665   if (!I->hasOneUse()) return false;
666 
667   unsigned Opc = I->getOpcode(), Tmp;
668   switch (Opc) {
669   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
670   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
671   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
672     return true;
673   case Instruction::And:
674   case Instruction::Or:
675   case Instruction::Xor:
676   case Instruction::Add:
677   case Instruction::Sub:
678   case Instruction::Mul:
679     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
680         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
681       return false;
682     // These can all be promoted if neither operand has 'bits to clear'.
683     if (BitsToClear == 0 && Tmp == 0)
684       return true;
685 
686     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
687     // other side, BitsToClear is ok.
688     if (Tmp == 0 &&
689         (Opc == Instruction::And || Opc == Instruction::Or ||
690          Opc == Instruction::Xor)) {
691       // We use MaskedValueIsZero here for generality, but the case we care
692       // about the most is constant RHS.
693       unsigned VSize = V->getType()->getScalarSizeInBits();
694       if (IC.MaskedValueIsZero(I->getOperand(1),
695                                APInt::getHighBitsSet(VSize, BitsToClear),
696                                0, CxtI))
697         return true;
698     }
699 
700     // Otherwise, we don't know how to analyze this BitsToClear case yet.
701     return false;
702 
703   case Instruction::Shl:
704     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
705     // upper bits we can reduce BitsToClear by the shift amount.
706     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
707       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
708         return false;
709       uint64_t ShiftAmt = Amt->getZExtValue();
710       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
711       return true;
712     }
713     return false;
714   case Instruction::LShr:
715     // We can promote lshr(x, cst) if we can promote x.  This requires the
716     // ultimate 'and' to clear out the high zero bits we're clearing out though.
717     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
718       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
719         return false;
720       BitsToClear += Amt->getZExtValue();
721       if (BitsToClear > V->getType()->getScalarSizeInBits())
722         BitsToClear = V->getType()->getScalarSizeInBits();
723       return true;
724     }
725     // Cannot promote variable LSHR.
726     return false;
727   case Instruction::Select:
728     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
729         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
730         // TODO: If important, we could handle the case when the BitsToClear are
731         // known zero in the disagreeing side.
732         Tmp != BitsToClear)
733       return false;
734     return true;
735 
736   case Instruction::PHI: {
737     // We can change a phi if we can change all operands.  Note that we never
738     // get into trouble with cyclic PHIs here because we only consider
739     // instructions with a single use.
740     PHINode *PN = cast<PHINode>(I);
741     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
742       return false;
743     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
744       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
745           // TODO: If important, we could handle the case when the BitsToClear
746           // are known zero in the disagreeing input.
747           Tmp != BitsToClear)
748         return false;
749     return true;
750   }
751   default:
752     // TODO: Can handle more cases here.
753     return false;
754   }
755 }
756 
visitZExt(ZExtInst & CI)757 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
758   // If this zero extend is only used by a truncate, let the truncate be
759   // eliminated before we try to optimize this zext.
760   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
761     return nullptr;
762 
763   // If one of the common conversion will work, do it.
764   if (Instruction *Result = commonCastTransforms(CI))
765     return Result;
766 
767   // See if we can simplify any instructions used by the input whose sole
768   // purpose is to compute bits we don't care about.
769   if (SimplifyDemandedInstructionBits(CI))
770     return &CI;
771 
772   Value *Src = CI.getOperand(0);
773   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
774 
775   // Attempt to extend the entire input expression tree to the destination
776   // type.   Only do this if the dest type is a simple type, don't convert the
777   // expression tree to something weird like i93 unless the source is also
778   // strange.
779   unsigned BitsToClear;
780   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
781       CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
782     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
783            "Unreasonable BitsToClear");
784 
785     // Okay, we can transform this!  Insert the new expression now.
786     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
787           " to avoid zero extend: " << CI);
788     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
789     assert(Res->getType() == DestTy);
790 
791     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
792     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
793 
794     // If the high bits are already filled with zeros, just replace this
795     // cast with the result.
796     if (MaskedValueIsZero(Res,
797                           APInt::getHighBitsSet(DestBitSize,
798                                                 DestBitSize-SrcBitsKept),
799                              0, &CI))
800       return ReplaceInstUsesWith(CI, Res);
801 
802     // We need to emit an AND to clear the high bits.
803     Constant *C = ConstantInt::get(Res->getType(),
804                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
805     return BinaryOperator::CreateAnd(Res, C);
806   }
807 
808   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
809   // types and if the sizes are just right we can convert this into a logical
810   // 'and' which will be much cheaper than the pair of casts.
811   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
812     // TODO: Subsume this into EvaluateInDifferentType.
813 
814     // Get the sizes of the types involved.  We know that the intermediate type
815     // will be smaller than A or C, but don't know the relation between A and C.
816     Value *A = CSrc->getOperand(0);
817     unsigned SrcSize = A->getType()->getScalarSizeInBits();
818     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
819     unsigned DstSize = CI.getType()->getScalarSizeInBits();
820     // If we're actually extending zero bits, then if
821     // SrcSize <  DstSize: zext(a & mask)
822     // SrcSize == DstSize: a & mask
823     // SrcSize  > DstSize: trunc(a) & mask
824     if (SrcSize < DstSize) {
825       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
826       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
827       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
828       return new ZExtInst(And, CI.getType());
829     }
830 
831     if (SrcSize == DstSize) {
832       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
833       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
834                                                            AndValue));
835     }
836     if (SrcSize > DstSize) {
837       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
838       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
839       return BinaryOperator::CreateAnd(Trunc,
840                                        ConstantInt::get(Trunc->getType(),
841                                                         AndValue));
842     }
843   }
844 
845   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
846     return transformZExtICmp(ICI, CI);
847 
848   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
849   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
850     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
851     // of the (zext icmp) will be transformed.
852     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
853     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
854     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
855         (transformZExtICmp(LHS, CI, false) ||
856          transformZExtICmp(RHS, CI, false))) {
857       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
858       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
859       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
860     }
861   }
862 
863   // zext(trunc(X) & C) -> (X & zext(C)).
864   Constant *C;
865   Value *X;
866   if (SrcI &&
867       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
868       X->getType() == CI.getType())
869     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
870 
871   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
872   Value *And;
873   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
874       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
875       X->getType() == CI.getType()) {
876     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
877     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
878   }
879 
880   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
881   if (SrcI && SrcI->hasOneUse() &&
882       SrcI->getType()->getScalarType()->isIntegerTy(1) &&
883       match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
884     Value *New = Builder->CreateZExt(X, CI.getType());
885     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
886   }
887 
888   return nullptr;
889 }
890 
891 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
892 /// in order to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)893 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
894   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
895   ICmpInst::Predicate Pred = ICI->getPredicate();
896 
897   // Don't bother if Op1 isn't of vector or integer type.
898   if (!Op1->getType()->isIntOrIntVectorTy())
899     return nullptr;
900 
901   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
902     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
903     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
904     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
905         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
906 
907       Value *Sh = ConstantInt::get(Op0->getType(),
908                                    Op0->getType()->getScalarSizeInBits()-1);
909       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
910       if (In->getType() != CI.getType())
911         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
912 
913       if (Pred == ICmpInst::ICMP_SGT)
914         In = Builder->CreateNot(In, In->getName()+".not");
915       return ReplaceInstUsesWith(CI, In);
916     }
917   }
918 
919   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
920     // If we know that only one bit of the LHS of the icmp can be set and we
921     // have an equality comparison with zero or a power of 2, we can transform
922     // the icmp and sext into bitwise/integer operations.
923     if (ICI->hasOneUse() &&
924         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
925       unsigned BitWidth = Op1C->getType()->getBitWidth();
926       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
927       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
928 
929       APInt KnownZeroMask(~KnownZero);
930       if (KnownZeroMask.isPowerOf2()) {
931         Value *In = ICI->getOperand(0);
932 
933         // If the icmp tests for a known zero bit we can constant fold it.
934         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
935           Value *V = Pred == ICmpInst::ICMP_NE ?
936                        ConstantInt::getAllOnesValue(CI.getType()) :
937                        ConstantInt::getNullValue(CI.getType());
938           return ReplaceInstUsesWith(CI, V);
939         }
940 
941         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
942           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
943           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
944           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
945           // Perform a right shift to place the desired bit in the LSB.
946           if (ShiftAmt)
947             In = Builder->CreateLShr(In,
948                                      ConstantInt::get(In->getType(), ShiftAmt));
949 
950           // At this point "In" is either 1 or 0. Subtract 1 to turn
951           // {1, 0} -> {0, -1}.
952           In = Builder->CreateAdd(In,
953                                   ConstantInt::getAllOnesValue(In->getType()),
954                                   "sext");
955         } else {
956           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
957           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
958           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
959           // Perform a left shift to place the desired bit in the MSB.
960           if (ShiftAmt)
961             In = Builder->CreateShl(In,
962                                     ConstantInt::get(In->getType(), ShiftAmt));
963 
964           // Distribute the bit over the whole bit width.
965           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
966                                                         BitWidth - 1), "sext");
967         }
968 
969         if (CI.getType() == In->getType())
970           return ReplaceInstUsesWith(CI, In);
971         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
972       }
973     }
974   }
975 
976   return nullptr;
977 }
978 
979 /// CanEvaluateSExtd - Return true if we can take the specified value
980 /// and return it as type Ty without inserting any new casts and without
981 /// changing the value of the common low bits.  This is used by code that tries
982 /// to promote integer operations to a wider types will allow us to eliminate
983 /// the extension.
984 ///
985 /// This function works on both vectors and scalars.
986 ///
CanEvaluateSExtd(Value * V,Type * Ty)987 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
988   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
989          "Can't sign extend type to a smaller type");
990   // If this is a constant, it can be trivially promoted.
991   if (isa<Constant>(V))
992     return true;
993 
994   Instruction *I = dyn_cast<Instruction>(V);
995   if (!I) return false;
996 
997   // If this is a truncate from the dest type, we can trivially eliminate it.
998   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
999     return true;
1000 
1001   // We can't extend or shrink something that has multiple uses: doing so would
1002   // require duplicating the instruction in general, which isn't profitable.
1003   if (!I->hasOneUse()) return false;
1004 
1005   switch (I->getOpcode()) {
1006   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1007   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1008   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1009     return true;
1010   case Instruction::And:
1011   case Instruction::Or:
1012   case Instruction::Xor:
1013   case Instruction::Add:
1014   case Instruction::Sub:
1015   case Instruction::Mul:
1016     // These operators can all arbitrarily be extended if their inputs can.
1017     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1018            CanEvaluateSExtd(I->getOperand(1), Ty);
1019 
1020   //case Instruction::Shl:   TODO
1021   //case Instruction::LShr:  TODO
1022 
1023   case Instruction::Select:
1024     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1025            CanEvaluateSExtd(I->getOperand(2), Ty);
1026 
1027   case Instruction::PHI: {
1028     // We can change a phi if we can change all operands.  Note that we never
1029     // get into trouble with cyclic PHIs here because we only consider
1030     // instructions with a single use.
1031     PHINode *PN = cast<PHINode>(I);
1032     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1033       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1034     return true;
1035   }
1036   default:
1037     // TODO: Can handle more cases here.
1038     break;
1039   }
1040 
1041   return false;
1042 }
1043 
visitSExt(SExtInst & CI)1044 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1045   // If this sign extend is only used by a truncate, let the truncate be
1046   // eliminated before we try to optimize this sext.
1047   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1048     return nullptr;
1049 
1050   if (Instruction *I = commonCastTransforms(CI))
1051     return I;
1052 
1053   // See if we can simplify any instructions used by the input whose sole
1054   // purpose is to compute bits we don't care about.
1055   if (SimplifyDemandedInstructionBits(CI))
1056     return &CI;
1057 
1058   Value *Src = CI.getOperand(0);
1059   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1060 
1061   // If we know that the value being extended is positive, we can use a zext
1062   // instead.
1063   bool KnownZero, KnownOne;
1064   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1065   if (KnownZero) {
1066     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1067     return ReplaceInstUsesWith(CI, ZExt);
1068   }
1069 
1070   // Attempt to extend the entire input expression tree to the destination
1071   // type.   Only do this if the dest type is a simple type, don't convert the
1072   // expression tree to something weird like i93 unless the source is also
1073   // strange.
1074   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1075       CanEvaluateSExtd(Src, DestTy)) {
1076     // Okay, we can transform this!  Insert the new expression now.
1077     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1078           " to avoid sign extend: " << CI);
1079     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1080     assert(Res->getType() == DestTy);
1081 
1082     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1083     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1084 
1085     // If the high bits are already filled with sign bit, just replace this
1086     // cast with the result.
1087     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1088       return ReplaceInstUsesWith(CI, Res);
1089 
1090     // We need to emit a shl + ashr to do the sign extend.
1091     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1092     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1093                                       ShAmt);
1094   }
1095 
1096   // If this input is a trunc from our destination, then turn sext(trunc(x))
1097   // into shifts.
1098   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1099     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1100       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1101       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1102 
1103       // We need to emit a shl + ashr to do the sign extend.
1104       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1105       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1106       return BinaryOperator::CreateAShr(Res, ShAmt);
1107     }
1108 
1109   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1110     return transformSExtICmp(ICI, CI);
1111 
1112   // If the input is a shl/ashr pair of a same constant, then this is a sign
1113   // extension from a smaller value.  If we could trust arbitrary bitwidth
1114   // integers, we could turn this into a truncate to the smaller bit and then
1115   // use a sext for the whole extension.  Since we don't, look deeper and check
1116   // for a truncate.  If the source and dest are the same type, eliminate the
1117   // trunc and extend and just do shifts.  For example, turn:
1118   //   %a = trunc i32 %i to i8
1119   //   %b = shl i8 %a, 6
1120   //   %c = ashr i8 %b, 6
1121   //   %d = sext i8 %c to i32
1122   // into:
1123   //   %a = shl i32 %i, 30
1124   //   %d = ashr i32 %a, 30
1125   Value *A = nullptr;
1126   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1127   ConstantInt *BA = nullptr, *CA = nullptr;
1128   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1129                         m_ConstantInt(CA))) &&
1130       BA == CA && A->getType() == CI.getType()) {
1131     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1132     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1133     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1134     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1135     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1136     return BinaryOperator::CreateAShr(A, ShAmtV);
1137   }
1138 
1139   return nullptr;
1140 }
1141 
1142 
1143 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1144 /// in the specified FP type without changing its value.
FitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1145 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1146   bool losesInfo;
1147   APFloat F = CFP->getValueAPF();
1148   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1149   if (!losesInfo)
1150     return ConstantFP::get(CFP->getContext(), F);
1151   return nullptr;
1152 }
1153 
1154 /// LookThroughFPExtensions - If this is an fp extension instruction, look
1155 /// through it until we get the source value.
LookThroughFPExtensions(Value * V)1156 static Value *LookThroughFPExtensions(Value *V) {
1157   if (Instruction *I = dyn_cast<Instruction>(V))
1158     if (I->getOpcode() == Instruction::FPExt)
1159       return LookThroughFPExtensions(I->getOperand(0));
1160 
1161   // If this value is a constant, return the constant in the smallest FP type
1162   // that can accurately represent it.  This allows us to turn
1163   // (float)((double)X+2.0) into x+2.0f.
1164   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1165     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1166       return V;  // No constant folding of this.
1167     // See if the value can be truncated to half and then reextended.
1168     if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1169       return V;
1170     // See if the value can be truncated to float and then reextended.
1171     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1172       return V;
1173     if (CFP->getType()->isDoubleTy())
1174       return V;  // Won't shrink.
1175     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1176       return V;
1177     // Don't try to shrink to various long double types.
1178   }
1179 
1180   return V;
1181 }
1182 
visitFPTrunc(FPTruncInst & CI)1183 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1184   if (Instruction *I = commonCastTransforms(CI))
1185     return I;
1186   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1187   // simpilify this expression to avoid one or more of the trunc/extend
1188   // operations if we can do so without changing the numerical results.
1189   //
1190   // The exact manner in which the widths of the operands interact to limit
1191   // what we can and cannot do safely varies from operation to operation, and
1192   // is explained below in the various case statements.
1193   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1194   if (OpI && OpI->hasOneUse()) {
1195     Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1196     Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1197     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1198     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1199     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1200     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1201     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1202     switch (OpI->getOpcode()) {
1203       default: break;
1204       case Instruction::FAdd:
1205       case Instruction::FSub:
1206         // For addition and subtraction, the infinitely precise result can
1207         // essentially be arbitrarily wide; proving that double rounding
1208         // will not occur because the result of OpI is exact (as we will for
1209         // FMul, for example) is hopeless.  However, we *can* nonetheless
1210         // frequently know that double rounding cannot occur (or that it is
1211         // innocuous) by taking advantage of the specific structure of
1212         // infinitely-precise results that admit double rounding.
1213         //
1214         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1215         // to represent both sources, we can guarantee that the double
1216         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1217         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1218         // for proof of this fact).
1219         //
1220         // Note: Figueroa does not consider the case where DstFormat !=
1221         // SrcFormat.  It's possible (likely even!) that this analysis
1222         // could be tightened for those cases, but they are rare (the main
1223         // case of interest here is (float)((double)float + float)).
1224         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1225           if (LHSOrig->getType() != CI.getType())
1226             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1227           if (RHSOrig->getType() != CI.getType())
1228             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1229           Instruction *RI =
1230             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1231           RI->copyFastMathFlags(OpI);
1232           return RI;
1233         }
1234         break;
1235       case Instruction::FMul:
1236         // For multiplication, the infinitely precise result has at most
1237         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1238         // that such a value can be exactly represented, then no double
1239         // rounding can possibly occur; we can safely perform the operation
1240         // in the destination format if it can represent both sources.
1241         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1242           if (LHSOrig->getType() != CI.getType())
1243             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1244           if (RHSOrig->getType() != CI.getType())
1245             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1246           Instruction *RI =
1247             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1248           RI->copyFastMathFlags(OpI);
1249           return RI;
1250         }
1251         break;
1252       case Instruction::FDiv:
1253         // For division, we use again use the bound from Figueroa's
1254         // dissertation.  I am entirely certain that this bound can be
1255         // tightened in the unbalanced operand case by an analysis based on
1256         // the diophantine rational approximation bound, but the well-known
1257         // condition used here is a good conservative first pass.
1258         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1259         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1260           if (LHSOrig->getType() != CI.getType())
1261             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1262           if (RHSOrig->getType() != CI.getType())
1263             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1264           Instruction *RI =
1265             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1266           RI->copyFastMathFlags(OpI);
1267           return RI;
1268         }
1269         break;
1270       case Instruction::FRem:
1271         // Remainder is straightforward.  Remainder is always exact, so the
1272         // type of OpI doesn't enter into things at all.  We simply evaluate
1273         // in whichever source type is larger, then convert to the
1274         // destination type.
1275         if (SrcWidth == OpWidth)
1276           break;
1277         if (LHSWidth < SrcWidth)
1278           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1279         else if (RHSWidth <= SrcWidth)
1280           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1281         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1282           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1283           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1284             RI->copyFastMathFlags(OpI);
1285           return CastInst::CreateFPCast(ExactResult, CI.getType());
1286         }
1287     }
1288 
1289     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1290     if (BinaryOperator::isFNeg(OpI)) {
1291       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1292                                                  CI.getType());
1293       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1294       RI->copyFastMathFlags(OpI);
1295       return RI;
1296     }
1297   }
1298 
1299   // (fptrunc (select cond, R1, Cst)) -->
1300   // (select cond, (fptrunc R1), (fptrunc Cst))
1301   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1302   if (SI &&
1303       (isa<ConstantFP>(SI->getOperand(1)) ||
1304        isa<ConstantFP>(SI->getOperand(2)))) {
1305     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1306                                              CI.getType());
1307     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1308                                              CI.getType());
1309     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1310   }
1311 
1312   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1313   if (II) {
1314     switch (II->getIntrinsicID()) {
1315       default: break;
1316       case Intrinsic::fabs: {
1317         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1318         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1319                                                    CI.getType());
1320         Type *IntrinsicType[] = { CI.getType() };
1321         Function *Overload =
1322           Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1323                                     II->getIntrinsicID(), IntrinsicType);
1324 
1325         Value *Args[] = { InnerTrunc };
1326         return CallInst::Create(Overload, Args, II->getName());
1327       }
1328     }
1329   }
1330 
1331   return nullptr;
1332 }
1333 
visitFPExt(CastInst & CI)1334 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1335   return commonCastTransforms(CI);
1336 }
1337 
1338 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1339 // This is safe if the intermediate type has enough bits in its mantissa to
1340 // accurately represent all values of X.  For example, this won't work with
1341 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1342 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1343   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1344     return nullptr;
1345   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1346 
1347   Value *SrcI = OpI->getOperand(0);
1348   Type *FITy = FI.getType();
1349   Type *OpITy = OpI->getType();
1350   Type *SrcTy = SrcI->getType();
1351   bool IsInputSigned = isa<SIToFPInst>(OpI);
1352   bool IsOutputSigned = isa<FPToSIInst>(FI);
1353 
1354   // We can safely assume the conversion won't overflow the output range,
1355   // because (for example) (uint8_t)18293.f is undefined behavior.
1356 
1357   // Since we can assume the conversion won't overflow, our decision as to
1358   // whether the input will fit in the float should depend on the minimum
1359   // of the input range and output range.
1360 
1361   // This means this is also safe for a signed input and unsigned output, since
1362   // a negative input would lead to undefined behavior.
1363   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1364   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1365   int ActualSize = std::min(InputSize, OutputSize);
1366 
1367   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1368     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1369       if (IsInputSigned && IsOutputSigned)
1370         return new SExtInst(SrcI, FITy);
1371       return new ZExtInst(SrcI, FITy);
1372     }
1373     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1374       return new TruncInst(SrcI, FITy);
1375     if (SrcTy == FITy)
1376       return ReplaceInstUsesWith(FI, SrcI);
1377     return new BitCastInst(SrcI, FITy);
1378   }
1379   return nullptr;
1380 }
1381 
visitFPToUI(FPToUIInst & FI)1382 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1383   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1384   if (!OpI)
1385     return commonCastTransforms(FI);
1386 
1387   if (Instruction *I = FoldItoFPtoI(FI))
1388     return I;
1389 
1390   return commonCastTransforms(FI);
1391 }
1392 
visitFPToSI(FPToSIInst & FI)1393 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1394   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1395   if (!OpI)
1396     return commonCastTransforms(FI);
1397 
1398   if (Instruction *I = FoldItoFPtoI(FI))
1399     return I;
1400 
1401   return commonCastTransforms(FI);
1402 }
1403 
visitUIToFP(CastInst & CI)1404 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1405   return commonCastTransforms(CI);
1406 }
1407 
visitSIToFP(CastInst & CI)1408 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1409   return commonCastTransforms(CI);
1410 }
1411 
visitIntToPtr(IntToPtrInst & CI)1412 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1413   // If the source integer type is not the intptr_t type for this target, do a
1414   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1415   // cast to be exposed to other transforms.
1416   unsigned AS = CI.getAddressSpace();
1417   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1418       DL.getPointerSizeInBits(AS)) {
1419     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1420     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1421       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1422 
1423     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1424     return new IntToPtrInst(P, CI.getType());
1425   }
1426 
1427   if (Instruction *I = commonCastTransforms(CI))
1428     return I;
1429 
1430   return nullptr;
1431 }
1432 
1433 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1434 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1435   Value *Src = CI.getOperand(0);
1436 
1437   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1438     // If casting the result of a getelementptr instruction with no offset, turn
1439     // this into a cast of the original pointer!
1440     if (GEP->hasAllZeroIndices() &&
1441         // If CI is an addrspacecast and GEP changes the poiner type, merging
1442         // GEP into CI would undo canonicalizing addrspacecast with different
1443         // pointer types, causing infinite loops.
1444         (!isa<AddrSpaceCastInst>(CI) ||
1445           GEP->getType() == GEP->getPointerOperand()->getType())) {
1446       // Changing the cast operand is usually not a good idea but it is safe
1447       // here because the pointer operand is being replaced with another
1448       // pointer operand so the opcode doesn't need to change.
1449       Worklist.Add(GEP);
1450       CI.setOperand(0, GEP->getOperand(0));
1451       return &CI;
1452     }
1453   }
1454 
1455   return commonCastTransforms(CI);
1456 }
1457 
visitPtrToInt(PtrToIntInst & CI)1458 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1459   // If the destination integer type is not the intptr_t type for this target,
1460   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1461   // to be exposed to other transforms.
1462 
1463   Type *Ty = CI.getType();
1464   unsigned AS = CI.getPointerAddressSpace();
1465 
1466   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1467     return commonPointerCastTransforms(CI);
1468 
1469   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1470   if (Ty->isVectorTy()) // Handle vectors of pointers.
1471     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1472 
1473   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1474   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1475 }
1476 
1477 /// OptimizeVectorResize - This input value (which is known to have vector type)
1478 /// is being zero extended or truncated to the specified vector type.  Try to
1479 /// replace it with a shuffle (and vector/vector bitcast) if possible.
1480 ///
1481 /// The source and destination vector types may have different element types.
OptimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1482 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1483                                          InstCombiner &IC) {
1484   // We can only do this optimization if the output is a multiple of the input
1485   // element size, or the input is a multiple of the output element size.
1486   // Convert the input type to have the same element type as the output.
1487   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1488 
1489   if (SrcTy->getElementType() != DestTy->getElementType()) {
1490     // The input types don't need to be identical, but for now they must be the
1491     // same size.  There is no specific reason we couldn't handle things like
1492     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1493     // there yet.
1494     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1495         DestTy->getElementType()->getPrimitiveSizeInBits())
1496       return nullptr;
1497 
1498     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1499     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1500   }
1501 
1502   // Now that the element types match, get the shuffle mask and RHS of the
1503   // shuffle to use, which depends on whether we're increasing or decreasing the
1504   // size of the input.
1505   SmallVector<uint32_t, 16> ShuffleMask;
1506   Value *V2;
1507 
1508   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1509     // If we're shrinking the number of elements, just shuffle in the low
1510     // elements from the input and use undef as the second shuffle input.
1511     V2 = UndefValue::get(SrcTy);
1512     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1513       ShuffleMask.push_back(i);
1514 
1515   } else {
1516     // If we're increasing the number of elements, shuffle in all of the
1517     // elements from InVal and fill the rest of the result elements with zeros
1518     // from a constant zero.
1519     V2 = Constant::getNullValue(SrcTy);
1520     unsigned SrcElts = SrcTy->getNumElements();
1521     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1522       ShuffleMask.push_back(i);
1523 
1524     // The excess elements reference the first element of the zero input.
1525     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1526       ShuffleMask.push_back(SrcElts);
1527   }
1528 
1529   return new ShuffleVectorInst(InVal, V2,
1530                                ConstantDataVector::get(V2->getContext(),
1531                                                        ShuffleMask));
1532 }
1533 
isMultipleOfTypeSize(unsigned Value,Type * Ty)1534 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1535   return Value % Ty->getPrimitiveSizeInBits() == 0;
1536 }
1537 
getTypeSizeIndex(unsigned Value,Type * Ty)1538 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1539   return Value / Ty->getPrimitiveSizeInBits();
1540 }
1541 
1542 /// CollectInsertionElements - V is a value which is inserted into a vector of
1543 /// VecEltTy.  Look through the value to see if we can decompose it into
1544 /// insertions into the vector.  See the example in the comment for
1545 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1546 /// The type of V is always a non-zero multiple of VecEltTy's size.
1547 /// Shift is the number of bits between the lsb of V and the lsb of
1548 /// the vector.
1549 ///
1550 /// This returns false if the pattern can't be matched or true if it can,
1551 /// filling in Elements with the elements found here.
CollectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1552 static bool CollectInsertionElements(Value *V, unsigned Shift,
1553                                      SmallVectorImpl<Value *> &Elements,
1554                                      Type *VecEltTy, bool isBigEndian) {
1555   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1556          "Shift should be a multiple of the element type size");
1557 
1558   // Undef values never contribute useful bits to the result.
1559   if (isa<UndefValue>(V)) return true;
1560 
1561   // If we got down to a value of the right type, we win, try inserting into the
1562   // right element.
1563   if (V->getType() == VecEltTy) {
1564     // Inserting null doesn't actually insert any elements.
1565     if (Constant *C = dyn_cast<Constant>(V))
1566       if (C->isNullValue())
1567         return true;
1568 
1569     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1570     if (isBigEndian)
1571       ElementIndex = Elements.size() - ElementIndex - 1;
1572 
1573     // Fail if multiple elements are inserted into this slot.
1574     if (Elements[ElementIndex])
1575       return false;
1576 
1577     Elements[ElementIndex] = V;
1578     return true;
1579   }
1580 
1581   if (Constant *C = dyn_cast<Constant>(V)) {
1582     // Figure out the # elements this provides, and bitcast it or slice it up
1583     // as required.
1584     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1585                                         VecEltTy);
1586     // If the constant is the size of a vector element, we just need to bitcast
1587     // it to the right type so it gets properly inserted.
1588     if (NumElts == 1)
1589       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1590                                       Shift, Elements, VecEltTy, isBigEndian);
1591 
1592     // Okay, this is a constant that covers multiple elements.  Slice it up into
1593     // pieces and insert each element-sized piece into the vector.
1594     if (!isa<IntegerType>(C->getType()))
1595       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1596                                        C->getType()->getPrimitiveSizeInBits()));
1597     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1598     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1599 
1600     for (unsigned i = 0; i != NumElts; ++i) {
1601       unsigned ShiftI = Shift+i*ElementSize;
1602       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1603                                                                   ShiftI));
1604       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1605       if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1606                                     isBigEndian))
1607         return false;
1608     }
1609     return true;
1610   }
1611 
1612   if (!V->hasOneUse()) return false;
1613 
1614   Instruction *I = dyn_cast<Instruction>(V);
1615   if (!I) return false;
1616   switch (I->getOpcode()) {
1617   default: return false; // Unhandled case.
1618   case Instruction::BitCast:
1619     return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1620                                     isBigEndian);
1621   case Instruction::ZExt:
1622     if (!isMultipleOfTypeSize(
1623                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1624                               VecEltTy))
1625       return false;
1626     return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1627                                     isBigEndian);
1628   case Instruction::Or:
1629     return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1630                                     isBigEndian) &&
1631            CollectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1632                                     isBigEndian);
1633   case Instruction::Shl: {
1634     // Must be shifting by a constant that is a multiple of the element size.
1635     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1636     if (!CI) return false;
1637     Shift += CI->getZExtValue();
1638     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1639     return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1640                                     isBigEndian);
1641   }
1642 
1643   }
1644 }
1645 
1646 
1647 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1648 /// may be doing shifts and ors to assemble the elements of the vector manually.
1649 /// Try to rip the code out and replace it with insertelements.  This is to
1650 /// optimize code like this:
1651 ///
1652 ///    %tmp37 = bitcast float %inc to i32
1653 ///    %tmp38 = zext i32 %tmp37 to i64
1654 ///    %tmp31 = bitcast float %inc5 to i32
1655 ///    %tmp32 = zext i32 %tmp31 to i64
1656 ///    %tmp33 = shl i64 %tmp32, 32
1657 ///    %ins35 = or i64 %tmp33, %tmp38
1658 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1659 ///
1660 /// Into two insertelements that do "buildvector{%inc, %inc5}".
OptimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1661 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1662                                                 InstCombiner &IC) {
1663   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1664   Value *IntInput = CI.getOperand(0);
1665 
1666   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1667   if (!CollectInsertionElements(IntInput, 0, Elements,
1668                                 DestVecTy->getElementType(),
1669                                 IC.getDataLayout().isBigEndian()))
1670     return nullptr;
1671 
1672   // If we succeeded, we know that all of the element are specified by Elements
1673   // or are zero if Elements has a null entry.  Recast this as a set of
1674   // insertions.
1675   Value *Result = Constant::getNullValue(CI.getType());
1676   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1677     if (!Elements[i]) continue;  // Unset element.
1678 
1679     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1680                                              IC.Builder->getInt32(i));
1681   }
1682 
1683   return Result;
1684 }
1685 
1686 
1687 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1688 /// bitcast.  The various long double bitcasts can't get in here.
OptimizeIntToFloatBitCast(BitCastInst & CI,InstCombiner & IC,const DataLayout & DL)1689 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC,
1690                                               const DataLayout &DL) {
1691   Value *Src = CI.getOperand(0);
1692   Type *DestTy = CI.getType();
1693 
1694   // If this is a bitcast from int to float, check to see if the int is an
1695   // extraction from a vector.
1696   Value *VecInput = nullptr;
1697   // bitcast(trunc(bitcast(somevector)))
1698   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1699       isa<VectorType>(VecInput->getType())) {
1700     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1701     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1702 
1703     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1704       // If the element type of the vector doesn't match the result type,
1705       // bitcast it to be a vector type we can extract from.
1706       if (VecTy->getElementType() != DestTy) {
1707         VecTy = VectorType::get(DestTy,
1708                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1709         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1710       }
1711 
1712       unsigned Elt = 0;
1713       if (DL.isBigEndian())
1714         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1715       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1716     }
1717   }
1718 
1719   // bitcast(trunc(lshr(bitcast(somevector), cst))
1720   ConstantInt *ShAmt = nullptr;
1721   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1722                                 m_ConstantInt(ShAmt)))) &&
1723       isa<VectorType>(VecInput->getType())) {
1724     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1725     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1726     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1727         ShAmt->getZExtValue() % DestWidth == 0) {
1728       // If the element type of the vector doesn't match the result type,
1729       // bitcast it to be a vector type we can extract from.
1730       if (VecTy->getElementType() != DestTy) {
1731         VecTy = VectorType::get(DestTy,
1732                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1733         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1734       }
1735 
1736       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1737       if (DL.isBigEndian())
1738         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1739       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1740     }
1741   }
1742   return nullptr;
1743 }
1744 
visitBitCast(BitCastInst & CI)1745 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1746   // If the operands are integer typed then apply the integer transforms,
1747   // otherwise just apply the common ones.
1748   Value *Src = CI.getOperand(0);
1749   Type *SrcTy = Src->getType();
1750   Type *DestTy = CI.getType();
1751 
1752   // Get rid of casts from one type to the same type. These are useless and can
1753   // be replaced by the operand.
1754   if (DestTy == Src->getType())
1755     return ReplaceInstUsesWith(CI, Src);
1756 
1757   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1758     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1759     Type *DstElTy = DstPTy->getElementType();
1760     Type *SrcElTy = SrcPTy->getElementType();
1761 
1762     // If we are casting a alloca to a pointer to a type of the same
1763     // size, rewrite the allocation instruction to allocate the "right" type.
1764     // There is no need to modify malloc calls because it is their bitcast that
1765     // needs to be cleaned up.
1766     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1767       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1768         return V;
1769 
1770     // If the source and destination are pointers, and this cast is equivalent
1771     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1772     // This can enhance SROA and other transforms that want type-safe pointers.
1773     Constant *ZeroUInt =
1774       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1775     unsigned NumZeros = 0;
1776     while (SrcElTy != DstElTy &&
1777            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1778            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1779       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1780       ++NumZeros;
1781     }
1782 
1783     // If we found a path from the src to dest, create the getelementptr now.
1784     if (SrcElTy == DstElTy) {
1785       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1786       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1787     }
1788   }
1789 
1790   // Try to optimize int -> float bitcasts.
1791   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1792     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this, DL))
1793       return I;
1794 
1795   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1796     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1797       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1798       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1799                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1800       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1801     }
1802 
1803     if (isa<IntegerType>(SrcTy)) {
1804       // If this is a cast from an integer to vector, check to see if the input
1805       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1806       // the casts with a shuffle and (potentially) a bitcast.
1807       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1808         CastInst *SrcCast = cast<CastInst>(Src);
1809         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1810           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1811             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1812                                                cast<VectorType>(DestTy), *this))
1813               return I;
1814       }
1815 
1816       // If the input is an 'or' instruction, we may be doing shifts and ors to
1817       // assemble the elements of the vector manually.  Try to rip the code out
1818       // and replace it with insertelements.
1819       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1820         return ReplaceInstUsesWith(CI, V);
1821     }
1822   }
1823 
1824   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1825     if (SrcVTy->getNumElements() == 1) {
1826       // If our destination is not a vector, then make this a straight
1827       // scalar-scalar cast.
1828       if (!DestTy->isVectorTy()) {
1829         Value *Elem =
1830           Builder->CreateExtractElement(Src,
1831                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1832         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1833       }
1834 
1835       // Otherwise, see if our source is an insert. If so, then use the scalar
1836       // component directly.
1837       if (InsertElementInst *IEI =
1838             dyn_cast<InsertElementInst>(CI.getOperand(0)))
1839         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1840                                 DestTy);
1841     }
1842   }
1843 
1844   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1845     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1846     // a bitcast to a vector with the same # elts.
1847     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1848         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1849         SVI->getType()->getNumElements() ==
1850         SVI->getOperand(0)->getType()->getVectorNumElements()) {
1851       BitCastInst *Tmp;
1852       // If either of the operands is a cast from CI.getType(), then
1853       // evaluating the shuffle in the casted destination's type will allow
1854       // us to eliminate at least one cast.
1855       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1856            Tmp->getOperand(0)->getType() == DestTy) ||
1857           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1858            Tmp->getOperand(0)->getType() == DestTy)) {
1859         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1860         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1861         // Return a new shuffle vector.  Use the same element ID's, as we
1862         // know the vector types match #elts.
1863         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1864       }
1865     }
1866   }
1867 
1868   if (SrcTy->isPointerTy())
1869     return commonPointerCastTransforms(CI);
1870   return commonCastTransforms(CI);
1871 }
1872 
visitAddrSpaceCast(AddrSpaceCastInst & CI)1873 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1874   // If the destination pointer element type is not the same as the source's
1875   // first do a bitcast to the destination type, and then the addrspacecast.
1876   // This allows the cast to be exposed to other transforms.
1877   Value *Src = CI.getOperand(0);
1878   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1879   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1880 
1881   Type *DestElemTy = DestTy->getElementType();
1882   if (SrcTy->getElementType() != DestElemTy) {
1883     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1884     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1885       // Handle vectors of pointers.
1886       MidTy = VectorType::get(MidTy, VT->getNumElements());
1887     }
1888 
1889     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1890     return new AddrSpaceCastInst(NewBitCast, CI.getType());
1891   }
1892 
1893   return commonPointerCastTransforms(CI);
1894 }
1895