1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
commonShiftTransforms(BinaryOperator & I)24 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
25   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
26   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
27 
28   // See if we can fold away this shift.
29   if (SimplifyDemandedInstructionBits(I))
30     return &I;
31 
32   // Try to fold constant and into select arguments.
33   if (isa<Constant>(Op0))
34     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
35       if (Instruction *R = FoldOpIntoSelect(I, SI))
36         return R;
37 
38   if (Constant *CUI = dyn_cast<Constant>(Op1))
39     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
40       return Res;
41 
42   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
43   // Because shifts by negative values (which could occur if A were negative)
44   // are undefined.
45   Value *A; const APInt *B;
46   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
47     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
48     // demand the sign bit (and many others) here??
49     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
50                                     Op1->getName());
51     I.setOperand(1, Rem);
52     return &I;
53   }
54 
55   return nullptr;
56 }
57 
58 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
59 /// logically to the left or right by some number of bits.  This should return
60 /// true if the expression can be computed for the same cost as the current
61 /// expression tree.  This is used to eliminate extraneous shifting from things
62 /// like:
63 ///      %C = shl i128 %A, 64
64 ///      %D = shl i128 %B, 96
65 ///      %E = or i128 %C, %D
66 ///      %F = lshr i128 %E, 64
67 /// where the client will ask if E can be computed shifted right by 64-bits.  If
68 /// this succeeds, the GetShiftedValue function will be called to produce the
69 /// value.
CanEvaluateShifted(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC,Instruction * CxtI)70 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
71                                InstCombiner &IC, Instruction *CxtI) {
72   // We can always evaluate constants shifted.
73   if (isa<Constant>(V))
74     return true;
75 
76   Instruction *I = dyn_cast<Instruction>(V);
77   if (!I) return false;
78 
79   // If this is the opposite shift, we can directly reuse the input of the shift
80   // if the needed bits are already zero in the input.  This allows us to reuse
81   // the value which means that we don't care if the shift has multiple uses.
82   //  TODO:  Handle opposite shift by exact value.
83   ConstantInt *CI = nullptr;
84   if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
85       (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
86     if (CI->getZExtValue() == NumBits) {
87       // TODO: Check that the input bits are already zero with MaskedValueIsZero
88 #if 0
89       // If this is a truncate of a logical shr, we can truncate it to a smaller
90       // lshr iff we know that the bits we would otherwise be shifting in are
91       // already zeros.
92       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
93       uint32_t BitWidth = Ty->getScalarSizeInBits();
94       if (MaskedValueIsZero(I->getOperand(0),
95             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
96           CI->getLimitedValue(BitWidth) < BitWidth) {
97         return CanEvaluateTruncated(I->getOperand(0), Ty);
98       }
99 #endif
100 
101     }
102   }
103 
104   // We can't mutate something that has multiple uses: doing so would
105   // require duplicating the instruction in general, which isn't profitable.
106   if (!I->hasOneUse()) return false;
107 
108   switch (I->getOpcode()) {
109   default: return false;
110   case Instruction::And:
111   case Instruction::Or:
112   case Instruction::Xor:
113     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
114     return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC, I) &&
115            CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC, I);
116 
117   case Instruction::Shl: {
118     // We can often fold the shift into shifts-by-a-constant.
119     CI = dyn_cast<ConstantInt>(I->getOperand(1));
120     if (!CI) return false;
121 
122     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
123     if (isLeftShift) return true;
124 
125     // We can always turn shl(c)+shr(c) -> and(c2).
126     if (CI->getValue() == NumBits) return true;
127 
128     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
129 
130     // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
131     // profitable unless we know the and'd out bits are already zero.
132     if (CI->getZExtValue() > NumBits) {
133       unsigned LowBits = TypeWidth - CI->getZExtValue();
134       if (IC.MaskedValueIsZero(I->getOperand(0),
135                        APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
136                        0, CxtI))
137         return true;
138     }
139 
140     return false;
141   }
142   case Instruction::LShr: {
143     // We can often fold the shift into shifts-by-a-constant.
144     CI = dyn_cast<ConstantInt>(I->getOperand(1));
145     if (!CI) return false;
146 
147     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
148     if (!isLeftShift) return true;
149 
150     // We can always turn lshr(c)+shl(c) -> and(c2).
151     if (CI->getValue() == NumBits) return true;
152 
153     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
154 
155     // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
156     // profitable unless we know the and'd out bits are already zero.
157     if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
158       unsigned LowBits = CI->getZExtValue() - NumBits;
159       if (IC.MaskedValueIsZero(I->getOperand(0),
160                           APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
161                           0, CxtI))
162         return true;
163     }
164 
165     return false;
166   }
167   case Instruction::Select: {
168     SelectInst *SI = cast<SelectInst>(I);
169     return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift,
170                               IC, SI) &&
171            CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC, SI);
172   }
173   case Instruction::PHI: {
174     // We can change a phi if we can change all operands.  Note that we never
175     // get into trouble with cyclic PHIs here because we only consider
176     // instructions with a single use.
177     PHINode *PN = cast<PHINode>(I);
178     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
179       if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,
180                               IC, PN))
181         return false;
182     return true;
183   }
184   }
185 }
186 
187 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
188 /// this value inserts the new computation that produces the shifted value.
GetShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC,const DataLayout & DL)189 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
190                               InstCombiner &IC, const DataLayout &DL) {
191   // We can always evaluate constants shifted.
192   if (Constant *C = dyn_cast<Constant>(V)) {
193     if (isLeftShift)
194       V = IC.Builder->CreateShl(C, NumBits);
195     else
196       V = IC.Builder->CreateLShr(C, NumBits);
197     // If we got a constantexpr back, try to simplify it with TD info.
198     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199       V = ConstantFoldConstantExpression(CE, DL, IC.getTargetLibraryInfo());
200     return V;
201   }
202 
203   Instruction *I = cast<Instruction>(V);
204   IC.Worklist.Add(I);
205 
206   switch (I->getOpcode()) {
207   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
208   case Instruction::And:
209   case Instruction::Or:
210   case Instruction::Xor:
211     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
212     I->setOperand(
213         0, GetShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
214     I->setOperand(
215         1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
216     return I;
217 
218   case Instruction::Shl: {
219     BinaryOperator *BO = cast<BinaryOperator>(I);
220     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
221 
222     // We only accept shifts-by-a-constant in CanEvaluateShifted.
223     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
224 
225     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
226     if (isLeftShift) {
227       // If this is oversized composite shift, then unsigned shifts get 0.
228       unsigned NewShAmt = NumBits+CI->getZExtValue();
229       if (NewShAmt >= TypeWidth)
230         return Constant::getNullValue(I->getType());
231 
232       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
233       BO->setHasNoUnsignedWrap(false);
234       BO->setHasNoSignedWrap(false);
235       return I;
236     }
237 
238     // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
239     // zeros.
240     if (CI->getValue() == NumBits) {
241       APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
242       V = IC.Builder->CreateAnd(BO->getOperand(0),
243                                 ConstantInt::get(BO->getContext(), Mask));
244       if (Instruction *VI = dyn_cast<Instruction>(V)) {
245         VI->moveBefore(BO);
246         VI->takeName(BO);
247       }
248       return V;
249     }
250 
251     // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
252     // the and won't be needed.
253     assert(CI->getZExtValue() > NumBits);
254     BO->setOperand(1, ConstantInt::get(BO->getType(),
255                                        CI->getZExtValue() - NumBits));
256     BO->setHasNoUnsignedWrap(false);
257     BO->setHasNoSignedWrap(false);
258     return BO;
259   }
260   case Instruction::LShr: {
261     BinaryOperator *BO = cast<BinaryOperator>(I);
262     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
263     // We only accept shifts-by-a-constant in CanEvaluateShifted.
264     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
265 
266     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
267     if (!isLeftShift) {
268       // If this is oversized composite shift, then unsigned shifts get 0.
269       unsigned NewShAmt = NumBits+CI->getZExtValue();
270       if (NewShAmt >= TypeWidth)
271         return Constant::getNullValue(BO->getType());
272 
273       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
274       BO->setIsExact(false);
275       return I;
276     }
277 
278     // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
279     // zeros.
280     if (CI->getValue() == NumBits) {
281       APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
282       V = IC.Builder->CreateAnd(I->getOperand(0),
283                                 ConstantInt::get(BO->getContext(), Mask));
284       if (Instruction *VI = dyn_cast<Instruction>(V)) {
285         VI->moveBefore(I);
286         VI->takeName(I);
287       }
288       return V;
289     }
290 
291     // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
292     // the and won't be needed.
293     assert(CI->getZExtValue() > NumBits);
294     BO->setOperand(1, ConstantInt::get(BO->getType(),
295                                        CI->getZExtValue() - NumBits));
296     BO->setIsExact(false);
297     return BO;
298   }
299 
300   case Instruction::Select:
301     I->setOperand(
302         1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
303     I->setOperand(
304         2, GetShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
305     return I;
306   case Instruction::PHI: {
307     // We can change a phi if we can change all operands.  Note that we never
308     // get into trouble with cyclic PHIs here because we only consider
309     // instructions with a single use.
310     PHINode *PN = cast<PHINode>(I);
311     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
312       PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits,
313                                               isLeftShift, IC, DL));
314     return PN;
315   }
316   }
317 }
318 
319 
320 
FoldShiftByConstant(Value * Op0,Constant * Op1,BinaryOperator & I)321 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
322                                                BinaryOperator &I) {
323   bool isLeftShift = I.getOpcode() == Instruction::Shl;
324 
325   ConstantInt *COp1 = nullptr;
326   if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
327     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
328   else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
329     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
330   else
331     COp1 = dyn_cast<ConstantInt>(Op1);
332 
333   if (!COp1)
334     return nullptr;
335 
336   // See if we can propagate this shift into the input, this covers the trivial
337   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
338   if (I.getOpcode() != Instruction::AShr &&
339       CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this, &I)) {
340     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
341               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
342 
343     return ReplaceInstUsesWith(
344         I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this, DL));
345   }
346 
347   // See if we can simplify any instructions used by the instruction whose sole
348   // purpose is to compute bits we don't care about.
349   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
350 
351   assert(!COp1->uge(TypeBits) &&
352          "Shift over the type width should have been removed already");
353 
354   // ((X*C1) << C2) == (X * (C1 << C2))
355   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
356     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
357       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
358         return BinaryOperator::CreateMul(BO->getOperand(0),
359                                         ConstantExpr::getShl(BOOp, Op1));
360 
361   // Try to fold constant and into select arguments.
362   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
363     if (Instruction *R = FoldOpIntoSelect(I, SI))
364       return R;
365   if (isa<PHINode>(Op0))
366     if (Instruction *NV = FoldOpIntoPhi(I))
367       return NV;
368 
369   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
370   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
371     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
372     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
373     // place.  Don't try to do this transformation in this case.  Also, we
374     // require that the input operand is a shift-by-constant so that we have
375     // confidence that the shifts will get folded together.  We could do this
376     // xform in more cases, but it is unlikely to be profitable.
377     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
378         isa<ConstantInt>(TrOp->getOperand(1))) {
379       // Okay, we'll do this xform.  Make the shift of shift.
380       Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
381       // (shift2 (shift1 & 0x00FF), c2)
382       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
383 
384       // For logical shifts, the truncation has the effect of making the high
385       // part of the register be zeros.  Emulate this by inserting an AND to
386       // clear the top bits as needed.  This 'and' will usually be zapped by
387       // other xforms later if dead.
388       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
389       unsigned DstSize = TI->getType()->getScalarSizeInBits();
390       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
391 
392       // The mask we constructed says what the trunc would do if occurring
393       // between the shifts.  We want to know the effect *after* the second
394       // shift.  We know that it is a logical shift by a constant, so adjust the
395       // mask as appropriate.
396       if (I.getOpcode() == Instruction::Shl)
397         MaskV <<= COp1->getZExtValue();
398       else {
399         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
400         MaskV = MaskV.lshr(COp1->getZExtValue());
401       }
402 
403       // shift1 & 0x00FF
404       Value *And = Builder->CreateAnd(NSh,
405                                       ConstantInt::get(I.getContext(), MaskV),
406                                       TI->getName());
407 
408       // Return the value truncated to the interesting size.
409       return new TruncInst(And, I.getType());
410     }
411   }
412 
413   if (Op0->hasOneUse()) {
414     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
415       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
416       Value *V1, *V2;
417       ConstantInt *CC;
418       switch (Op0BO->getOpcode()) {
419       default: break;
420       case Instruction::Add:
421       case Instruction::And:
422       case Instruction::Or:
423       case Instruction::Xor: {
424         // These operators commute.
425         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
426         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
427             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
428                   m_Specific(Op1)))) {
429           Value *YS =         // (Y << C)
430             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
431           // (X + (Y << C))
432           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
433                                           Op0BO->getOperand(1)->getName());
434           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
435 
436           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
437           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
438           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
439             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
440           return BinaryOperator::CreateAnd(X, Mask);
441         }
442 
443         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
444         Value *Op0BOOp1 = Op0BO->getOperand(1);
445         if (isLeftShift && Op0BOOp1->hasOneUse() &&
446             match(Op0BOOp1,
447                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
448                         m_ConstantInt(CC)))) {
449           Value *YS =   // (Y << C)
450             Builder->CreateShl(Op0BO->getOperand(0), Op1,
451                                          Op0BO->getName());
452           // X & (CC << C)
453           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
454                                          V1->getName()+".mask");
455           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
456         }
457       }
458 
459       // FALL THROUGH.
460       case Instruction::Sub: {
461         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
462         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
463             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
464                   m_Specific(Op1)))) {
465           Value *YS =  // (Y << C)
466             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
467           // (X + (Y << C))
468           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
469                                           Op0BO->getOperand(0)->getName());
470           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
471 
472           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
473           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
474           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
475             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
476           return BinaryOperator::CreateAnd(X, Mask);
477         }
478 
479         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
480         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
481             match(Op0BO->getOperand(0),
482                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
483                         m_ConstantInt(CC))) && V2 == Op1) {
484           Value *YS = // (Y << C)
485             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
486           // X & (CC << C)
487           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
488                                          V1->getName()+".mask");
489 
490           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
491         }
492 
493         break;
494       }
495       }
496 
497 
498       // If the operand is a bitwise operator with a constant RHS, and the
499       // shift is the only use, we can pull it out of the shift.
500       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
501         bool isValid = true;     // Valid only for And, Or, Xor
502         bool highBitSet = false; // Transform if high bit of constant set?
503 
504         switch (Op0BO->getOpcode()) {
505         default: isValid = false; break;   // Do not perform transform!
506         case Instruction::Add:
507           isValid = isLeftShift;
508           break;
509         case Instruction::Or:
510         case Instruction::Xor:
511           highBitSet = false;
512           break;
513         case Instruction::And:
514           highBitSet = true;
515           break;
516         }
517 
518         // If this is a signed shift right, and the high bit is modified
519         // by the logical operation, do not perform the transformation.
520         // The highBitSet boolean indicates the value of the high bit of
521         // the constant which would cause it to be modified for this
522         // operation.
523         //
524         if (isValid && I.getOpcode() == Instruction::AShr)
525           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
526 
527         if (isValid) {
528           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
529 
530           Value *NewShift =
531             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
532           NewShift->takeName(Op0BO);
533 
534           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
535                                         NewRHS);
536         }
537       }
538     }
539   }
540 
541   // Find out if this is a shift of a shift by a constant.
542   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
543   if (ShiftOp && !ShiftOp->isShift())
544     ShiftOp = nullptr;
545 
546   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
547 
548     // This is a constant shift of a constant shift. Be careful about hiding
549     // shl instructions behind bit masks. They are used to represent multiplies
550     // by a constant, and it is important that simple arithmetic expressions
551     // are still recognizable by scalar evolution.
552     //
553     // The transforms applied to shl are very similar to the transforms applied
554     // to mul by constant. We can be more aggressive about optimizing right
555     // shifts.
556     //
557     // Combinations of right and left shifts will still be optimized in
558     // DAGCombine where scalar evolution no longer applies.
559 
560     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
561     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
562     uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
563     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
564     if (ShiftAmt1 == 0) return nullptr;  // Will be simplified in the future.
565     Value *X = ShiftOp->getOperand(0);
566 
567     IntegerType *Ty = cast<IntegerType>(I.getType());
568 
569     // Check for (X << c1) << c2  and  (X >> c1) >> c2
570     if (I.getOpcode() == ShiftOp->getOpcode()) {
571       uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
572       // If this is oversized composite shift, then unsigned shifts get 0, ashr
573       // saturates.
574       if (AmtSum >= TypeBits) {
575         if (I.getOpcode() != Instruction::AShr)
576           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
577         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
578       }
579 
580       return BinaryOperator::Create(I.getOpcode(), X,
581                                     ConstantInt::get(Ty, AmtSum));
582     }
583 
584     if (ShiftAmt1 == ShiftAmt2) {
585       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
586       if (I.getOpcode() == Instruction::LShr &&
587           ShiftOp->getOpcode() == Instruction::Shl) {
588         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
589         return BinaryOperator::CreateAnd(X,
590                                         ConstantInt::get(I.getContext(), Mask));
591       }
592     } else if (ShiftAmt1 < ShiftAmt2) {
593       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
594 
595       // (X >>?,exact C1) << C2 --> X << (C2-C1)
596       // The inexact version is deferred to DAGCombine so we don't hide shl
597       // behind a bit mask.
598       if (I.getOpcode() == Instruction::Shl &&
599           ShiftOp->getOpcode() != Instruction::Shl &&
600           ShiftOp->isExact()) {
601         assert(ShiftOp->getOpcode() == Instruction::LShr ||
602                ShiftOp->getOpcode() == Instruction::AShr);
603         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
604         BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
605                                                         X, ShiftDiffCst);
606         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
607         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
608         return NewShl;
609       }
610 
611       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
612       if (I.getOpcode() == Instruction::LShr &&
613           ShiftOp->getOpcode() == Instruction::Shl) {
614         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
615         // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
616         if (ShiftOp->hasNoUnsignedWrap()) {
617           BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
618                                                            X, ShiftDiffCst);
619           NewLShr->setIsExact(I.isExact());
620           return NewLShr;
621         }
622         Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
623 
624         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
625         return BinaryOperator::CreateAnd(Shift,
626                                          ConstantInt::get(I.getContext(),Mask));
627       }
628 
629       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
630       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
631       if (I.getOpcode() == Instruction::AShr &&
632           ShiftOp->getOpcode() == Instruction::Shl) {
633         if (ShiftOp->hasNoSignedWrap()) {
634           // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
635           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
636           BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
637                                                            X, ShiftDiffCst);
638           NewAShr->setIsExact(I.isExact());
639           return NewAShr;
640         }
641       }
642     } else {
643       assert(ShiftAmt2 < ShiftAmt1);
644       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
645 
646       // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
647       // The inexact version is deferred to DAGCombine so we don't hide shl
648       // behind a bit mask.
649       if (I.getOpcode() == Instruction::Shl &&
650           ShiftOp->getOpcode() != Instruction::Shl &&
651           ShiftOp->isExact()) {
652         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
653         BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
654                                                         X, ShiftDiffCst);
655         NewShr->setIsExact(true);
656         return NewShr;
657       }
658 
659       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
660       if (I.getOpcode() == Instruction::LShr &&
661           ShiftOp->getOpcode() == Instruction::Shl) {
662         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
663         if (ShiftOp->hasNoUnsignedWrap()) {
664           // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
665           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
666                                                           X, ShiftDiffCst);
667           NewShl->setHasNoUnsignedWrap(true);
668           return NewShl;
669         }
670         Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
671 
672         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
673         return BinaryOperator::CreateAnd(Shift,
674                                          ConstantInt::get(I.getContext(),Mask));
675       }
676 
677       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
678       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
679       if (I.getOpcode() == Instruction::AShr &&
680           ShiftOp->getOpcode() == Instruction::Shl) {
681         if (ShiftOp->hasNoSignedWrap()) {
682           // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
683           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
684           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
685                                                           X, ShiftDiffCst);
686           NewShl->setHasNoSignedWrap(true);
687           return NewShl;
688         }
689       }
690     }
691   }
692   return nullptr;
693 }
694 
visitShl(BinaryOperator & I)695 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
696   if (Value *V = SimplifyVectorOp(I))
697     return ReplaceInstUsesWith(I, V);
698 
699   if (Value *V =
700           SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(),
701                           I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
702     return ReplaceInstUsesWith(I, V);
703 
704   if (Instruction *V = commonShiftTransforms(I))
705     return V;
706 
707   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
708     unsigned ShAmt = Op1C->getZExtValue();
709 
710     // If the shifted-out value is known-zero, then this is a NUW shift.
711     if (!I.hasNoUnsignedWrap() &&
712         MaskedValueIsZero(I.getOperand(0),
713                           APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt),
714                           0, &I)) {
715           I.setHasNoUnsignedWrap();
716           return &I;
717         }
718 
719     // If the shifted out value is all signbits, this is a NSW shift.
720     if (!I.hasNoSignedWrap() &&
721         ComputeNumSignBits(I.getOperand(0), 0, &I) > ShAmt) {
722       I.setHasNoSignedWrap();
723       return &I;
724     }
725   }
726 
727   // (C1 << A) << C2 -> (C1 << C2) << A
728   Constant *C1, *C2;
729   Value *A;
730   if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
731       match(I.getOperand(1), m_Constant(C2)))
732     return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
733 
734   return nullptr;
735 }
736 
visitLShr(BinaryOperator & I)737 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
738   if (Value *V = SimplifyVectorOp(I))
739     return ReplaceInstUsesWith(I, V);
740 
741   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
742                                   DL, TLI, DT, AC))
743     return ReplaceInstUsesWith(I, V);
744 
745   if (Instruction *R = commonShiftTransforms(I))
746     return R;
747 
748   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
749 
750   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
751     unsigned ShAmt = Op1C->getZExtValue();
752 
753     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
754       unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
755       // ctlz.i32(x)>>5  --> zext(x == 0)
756       // cttz.i32(x)>>5  --> zext(x == 0)
757       // ctpop.i32(x)>>5 --> zext(x == -1)
758       if ((II->getIntrinsicID() == Intrinsic::ctlz ||
759            II->getIntrinsicID() == Intrinsic::cttz ||
760            II->getIntrinsicID() == Intrinsic::ctpop) &&
761           isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
762         bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
763         Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
764         Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
765         return new ZExtInst(Cmp, II->getType());
766       }
767     }
768 
769     // If the shifted-out value is known-zero, then this is an exact shift.
770     if (!I.isExact() &&
771         MaskedValueIsZero(Op0, APInt::getLowBitsSet(Op1C->getBitWidth(), ShAmt),
772                           0, &I)){
773       I.setIsExact();
774       return &I;
775     }
776   }
777 
778   return nullptr;
779 }
780 
visitAShr(BinaryOperator & I)781 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
782   if (Value *V = SimplifyVectorOp(I))
783     return ReplaceInstUsesWith(I, V);
784 
785   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
786                                   DL, TLI, DT, AC))
787     return ReplaceInstUsesWith(I, V);
788 
789   if (Instruction *R = commonShiftTransforms(I))
790     return R;
791 
792   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
793 
794   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
795     unsigned ShAmt = Op1C->getZExtValue();
796 
797     // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
798     // have a sign-extend idiom.
799     Value *X;
800     if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
801       // If the input is an extension from the shifted amount value, e.g.
802       //   %x = zext i8 %A to i32
803       //   %y = shl i32 %x, 24
804       //   %z = ashr %y, 24
805       // then turn this into "z = sext i8 A to i32".
806       if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
807         uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
808         uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
809         if (Op1C->getZExtValue() == DestBits-SrcBits)
810           return new SExtInst(ZI->getOperand(0), ZI->getType());
811       }
812     }
813 
814     // If the shifted-out value is known-zero, then this is an exact shift.
815     if (!I.isExact() &&
816         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt),
817                           0, &I)){
818       I.setIsExact();
819       return &I;
820     }
821   }
822 
823   // See if we can turn a signed shr into an unsigned shr.
824   if (MaskedValueIsZero(Op0,
825                         APInt::getSignBit(I.getType()->getScalarSizeInBits()),
826                         0, &I))
827     return BinaryOperator::CreateLShr(Op0, Op1);
828 
829   return nullptr;
830 }
831