1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interface for the loop memory dependence framework that 11 // was originally developed for the Loop Vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 17 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AliasSetTracker.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 namespace llvm { 29 30 class Value; 31 class DataLayout; 32 class AliasAnalysis; 33 class ScalarEvolution; 34 class Loop; 35 class SCEV; 36 37 /// Optimization analysis message produced during vectorization. Messages inform 38 /// the user why vectorization did not occur. 39 class LoopAccessReport { 40 std::string Message; 41 const Instruction *Instr; 42 43 protected: LoopAccessReport(const Twine & Message,const Instruction * I)44 LoopAccessReport(const Twine &Message, const Instruction *I) 45 : Message(Message.str()), Instr(I) {} 46 47 public: Instr(I)48 LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {} 49 50 template <typename A> LoopAccessReport &operator<<(const A &Value) { 51 raw_string_ostream Out(Message); 52 Out << Value; 53 return *this; 54 } 55 getInstr()56 const Instruction *getInstr() const { return Instr; } 57 str()58 std::string &str() { return Message; } str()59 const std::string &str() const { return Message; } Twine()60 operator Twine() { return Message; } 61 62 /// \brief Emit an analysis note for \p PassName with the debug location from 63 /// the instruction in \p Message if available. Otherwise use the location of 64 /// \p TheLoop. 65 static void emitAnalysis(const LoopAccessReport &Message, 66 const Function *TheFunction, 67 const Loop *TheLoop, 68 const char *PassName); 69 }; 70 71 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the 72 /// Loop Access Analysis. 73 struct VectorizerParams { 74 /// \brief Maximum SIMD width. 75 static const unsigned MaxVectorWidth; 76 77 /// \brief VF as overridden by the user. 78 static unsigned VectorizationFactor; 79 /// \brief Interleave factor as overridden by the user. 80 static unsigned VectorizationInterleave; 81 /// \brief True if force-vector-interleave was specified by the user. 82 static bool isInterleaveForced(); 83 84 /// \\brief When performing memory disambiguation checks at runtime do not 85 /// make more than this number of comparisons. 86 static unsigned RuntimeMemoryCheckThreshold; 87 }; 88 89 /// \brief Checks memory dependences among accesses to the same underlying 90 /// object to determine whether there vectorization is legal or not (and at 91 /// which vectorization factor). 92 /// 93 /// Note: This class will compute a conservative dependence for access to 94 /// different underlying pointers. Clients, such as the loop vectorizer, will 95 /// sometimes deal these potential dependencies by emitting runtime checks. 96 /// 97 /// We use the ScalarEvolution framework to symbolically evalutate access 98 /// functions pairs. Since we currently don't restructure the loop we can rely 99 /// on the program order of memory accesses to determine their safety. 100 /// At the moment we will only deem accesses as safe for: 101 /// * A negative constant distance assuming program order. 102 /// 103 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 104 /// a[i] = tmp; y = a[i]; 105 /// 106 /// The latter case is safe because later checks guarantuee that there can't 107 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 108 /// the same variable: a header phi can only be an induction or a reduction, a 109 /// reduction can't have a memory sink, an induction can't have a memory 110 /// source). This is important and must not be violated (or we have to 111 /// resort to checking for cycles through memory). 112 /// 113 /// * A positive constant distance assuming program order that is bigger 114 /// than the biggest memory access. 115 /// 116 /// tmp = a[i] OR b[i] = x 117 /// a[i+2] = tmp y = b[i+2]; 118 /// 119 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 120 /// 121 /// * Zero distances and all accesses have the same size. 122 /// 123 class MemoryDepChecker { 124 public: 125 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 126 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 127 /// \brief Set of potential dependent memory accesses. 128 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 129 130 /// \brief Dependece between memory access instructions. 131 struct Dependence { 132 /// \brief The type of the dependence. 133 enum DepType { 134 // No dependence. 135 NoDep, 136 // We couldn't determine the direction or the distance. 137 Unknown, 138 // Lexically forward. 139 Forward, 140 // Forward, but if vectorized, is likely to prevent store-to-load 141 // forwarding. 142 ForwardButPreventsForwarding, 143 // Lexically backward. 144 Backward, 145 // Backward, but the distance allows a vectorization factor of 146 // MaxSafeDepDistBytes. 147 BackwardVectorizable, 148 // Same, but may prevent store-to-load forwarding. 149 BackwardVectorizableButPreventsForwarding 150 }; 151 152 /// \brief String version of the types. 153 static const char *DepName[]; 154 155 /// \brief Index of the source of the dependence in the InstMap vector. 156 unsigned Source; 157 /// \brief Index of the destination of the dependence in the InstMap vector. 158 unsigned Destination; 159 /// \brief The type of the dependence. 160 DepType Type; 161 DependenceDependence162 Dependence(unsigned Source, unsigned Destination, DepType Type) 163 : Source(Source), Destination(Destination), Type(Type) {} 164 165 /// \brief Dependence types that don't prevent vectorization. 166 static bool isSafeForVectorization(DepType Type); 167 168 /// \brief Dependence types that can be queried from the analysis. 169 static bool isInterestingDependence(DepType Type); 170 171 /// \brief Lexically backward dependence types. 172 bool isPossiblyBackward() const; 173 174 /// \brief Print the dependence. \p Instr is used to map the instruction 175 /// indices to instructions. 176 void print(raw_ostream &OS, unsigned Depth, 177 const SmallVectorImpl<Instruction *> &Instrs) const; 178 }; 179 MemoryDepChecker(ScalarEvolution * Se,const Loop * L)180 MemoryDepChecker(ScalarEvolution *Se, const Loop *L) 181 : SE(Se), InnermostLoop(L), AccessIdx(0), 182 ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true), 183 RecordInterestingDependences(true) {} 184 185 /// \brief Register the location (instructions are given increasing numbers) 186 /// of a write access. addAccess(StoreInst * SI)187 void addAccess(StoreInst *SI) { 188 Value *Ptr = SI->getPointerOperand(); 189 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 190 InstMap.push_back(SI); 191 ++AccessIdx; 192 } 193 194 /// \brief Register the location (instructions are given increasing numbers) 195 /// of a write access. addAccess(LoadInst * LI)196 void addAccess(LoadInst *LI) { 197 Value *Ptr = LI->getPointerOperand(); 198 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 199 InstMap.push_back(LI); 200 ++AccessIdx; 201 } 202 203 /// \brief Check whether the dependencies between the accesses are safe. 204 /// 205 /// Only checks sets with elements in \p CheckDeps. 206 bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps, 207 const ValueToValueMap &Strides); 208 209 /// \brief No memory dependence was encountered that would inhibit 210 /// vectorization. isSafeForVectorization()211 bool isSafeForVectorization() const { return SafeForVectorization; } 212 213 /// \brief The maximum number of bytes of a vector register we can vectorize 214 /// the accesses safely with. getMaxSafeDepDistBytes()215 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 216 217 /// \brief In same cases when the dependency check fails we can still 218 /// vectorize the loop with a dynamic array access check. shouldRetryWithRuntimeCheck()219 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 220 221 /// \brief Returns the interesting dependences. If null is returned we 222 /// exceeded the MaxInterestingDependence threshold and this information is 223 /// not available. getInterestingDependences()224 const SmallVectorImpl<Dependence> *getInterestingDependences() const { 225 return RecordInterestingDependences ? &InterestingDependences : nullptr; 226 } 227 228 /// \brief The vector of memory access instructions. The indices are used as 229 /// instruction identifiers in the Dependence class. getMemoryInstructions()230 const SmallVectorImpl<Instruction *> &getMemoryInstructions() const { 231 return InstMap; 232 } 233 234 /// \brief Find the set of instructions that read or write via \p Ptr. 235 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 236 bool isWrite) const; 237 238 private: 239 ScalarEvolution *SE; 240 const Loop *InnermostLoop; 241 242 /// \brief Maps access locations (ptr, read/write) to program order. 243 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 244 245 /// \brief Memory access instructions in program order. 246 SmallVector<Instruction *, 16> InstMap; 247 248 /// \brief The program order index to be used for the next instruction. 249 unsigned AccessIdx; 250 251 // We can access this many bytes in parallel safely. 252 unsigned MaxSafeDepDistBytes; 253 254 /// \brief If we see a non-constant dependence distance we can still try to 255 /// vectorize this loop with runtime checks. 256 bool ShouldRetryWithRuntimeCheck; 257 258 /// \brief No memory dependence was encountered that would inhibit 259 /// vectorization. 260 bool SafeForVectorization; 261 262 //// \brief True if InterestingDependences reflects the dependences in the 263 //// loop. If false we exceeded MaxInterestingDependence and 264 //// InterestingDependences is invalid. 265 bool RecordInterestingDependences; 266 267 /// \brief Interesting memory dependences collected during the analysis as 268 /// defined by isInterestingDependence. Only valid if 269 /// RecordInterestingDependences is true. 270 SmallVector<Dependence, 8> InterestingDependences; 271 272 /// \brief Check whether there is a plausible dependence between the two 273 /// accesses. 274 /// 275 /// Access \p A must happen before \p B in program order. The two indices 276 /// identify the index into the program order map. 277 /// 278 /// This function checks whether there is a plausible dependence (or the 279 /// absence of such can't be proved) between the two accesses. If there is a 280 /// plausible dependence but the dependence distance is bigger than one 281 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 282 /// distance is smaller than any other distance encountered so far). 283 /// Otherwise, this function returns true signaling a possible dependence. 284 Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx, 285 const MemAccessInfo &B, unsigned BIdx, 286 const ValueToValueMap &Strides); 287 288 /// \brief Check whether the data dependence could prevent store-load 289 /// forwarding. 290 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 291 }; 292 293 /// \brief Drive the analysis of memory accesses in the loop 294 /// 295 /// This class is responsible for analyzing the memory accesses of a loop. It 296 /// collects the accesses and then its main helper the AccessAnalysis class 297 /// finds and categorizes the dependences in buildDependenceSets. 298 /// 299 /// For memory dependences that can be analyzed at compile time, it determines 300 /// whether the dependence is part of cycle inhibiting vectorization. This work 301 /// is delegated to the MemoryDepChecker class. 302 /// 303 /// For memory dependences that cannot be determined at compile time, it 304 /// generates run-time checks to prove independence. This is done by 305 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the 306 /// RuntimePointerCheck class. 307 class LoopAccessInfo { 308 public: 309 /// This struct holds information about the memory runtime legality check that 310 /// a group of pointers do not overlap. 311 struct RuntimePointerCheck { RuntimePointerCheckRuntimePointerCheck312 RuntimePointerCheck() : Need(false) {} 313 314 /// Reset the state of the pointer runtime information. resetRuntimePointerCheck315 void reset() { 316 Need = false; 317 Pointers.clear(); 318 Starts.clear(); 319 Ends.clear(); 320 IsWritePtr.clear(); 321 DependencySetId.clear(); 322 AliasSetId.clear(); 323 } 324 325 /// Insert a pointer and calculate the start and end SCEVs. 326 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 327 unsigned DepSetId, unsigned ASId, 328 const ValueToValueMap &Strides); 329 330 /// \brief No run-time memory checking is necessary. emptyRuntimePointerCheck331 bool empty() const { return Pointers.empty(); } 332 333 /// \brief Decide whether we need to issue a run-time check for pointer at 334 /// index \p I and \p J to prove their independence. 335 /// 336 /// If \p PtrPartition is set, it contains the partition number for 337 /// pointers (-1 if the pointer belongs to multiple partitions). In this 338 /// case omit checks between pointers belonging to the same partition. 339 bool needsChecking(unsigned I, unsigned J, 340 const SmallVectorImpl<int> *PtrPartition) const; 341 342 /// \brief Return true if any pointer requires run-time checking according 343 /// to needsChecking. 344 bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const; 345 346 /// \brief Print the list run-time memory checks necessary. 347 /// 348 /// If \p PtrPartition is set, it contains the partition number for 349 /// pointers (-1 if the pointer belongs to multiple partitions). In this 350 /// case omit checks between pointers belonging to the same partition. 351 void print(raw_ostream &OS, unsigned Depth = 0, 352 const SmallVectorImpl<int> *PtrPartition = nullptr) const; 353 354 /// This flag indicates if we need to add the runtime check. 355 bool Need; 356 /// Holds the pointers that we need to check. 357 SmallVector<TrackingVH<Value>, 2> Pointers; 358 /// Holds the pointer value at the beginning of the loop. 359 SmallVector<const SCEV*, 2> Starts; 360 /// Holds the pointer value at the end of the loop. 361 SmallVector<const SCEV*, 2> Ends; 362 /// Holds the information if this pointer is used for writing to memory. 363 SmallVector<bool, 2> IsWritePtr; 364 /// Holds the id of the set of pointers that could be dependent because of a 365 /// shared underlying object. 366 SmallVector<unsigned, 2> DependencySetId; 367 /// Holds the id of the disjoint alias set to which this pointer belongs. 368 SmallVector<unsigned, 2> AliasSetId; 369 }; 370 371 LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL, 372 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 373 DominatorTree *DT, const ValueToValueMap &Strides); 374 375 /// Return true we can analyze the memory accesses in the loop and there are 376 /// no memory dependence cycles. canVectorizeMemory()377 bool canVectorizeMemory() const { return CanVecMem; } 378 getRuntimePointerCheck()379 const RuntimePointerCheck *getRuntimePointerCheck() const { 380 return &PtrRtCheck; 381 } 382 383 /// \brief Number of memchecks required to prove independence of otherwise 384 /// may-alias pointers. getNumRuntimePointerChecks()385 unsigned getNumRuntimePointerChecks() const { return NumComparisons; } 386 387 /// Return true if the block BB needs to be predicated in order for the loop 388 /// to be vectorized. 389 static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 390 DominatorTree *DT); 391 392 /// Returns true if the value V is uniform within the loop. 393 bool isUniform(Value *V) const; 394 getMaxSafeDepDistBytes()395 unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; } getNumStores()396 unsigned getNumStores() const { return NumStores; } getNumLoads()397 unsigned getNumLoads() const { return NumLoads;} 398 399 /// \brief Add code that checks at runtime if the accessed arrays overlap. 400 /// 401 /// Returns a pair of instructions where the first element is the first 402 /// instruction generated in possibly a sequence of instructions and the 403 /// second value is the final comparator value or NULL if no check is needed. 404 /// 405 /// If \p PtrPartition is set, it contains the partition number for pointers 406 /// (-1 if the pointer belongs to multiple partitions). In this case omit 407 /// checks between pointers belonging to the same partition. 408 std::pair<Instruction *, Instruction *> 409 addRuntimeCheck(Instruction *Loc, 410 const SmallVectorImpl<int> *PtrPartition = nullptr) const; 411 412 /// \brief The diagnostics report generated for the analysis. E.g. why we 413 /// couldn't analyze the loop. getReport()414 const Optional<LoopAccessReport> &getReport() const { return Report; } 415 416 /// \brief the Memory Dependence Checker which can determine the 417 /// loop-independent and loop-carried dependences between memory accesses. getDepChecker()418 const MemoryDepChecker &getDepChecker() const { return DepChecker; } 419 420 /// \brief Return the list of instructions that use \p Ptr to read or write 421 /// memory. getInstructionsForAccess(Value * Ptr,bool isWrite)422 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 423 bool isWrite) const { 424 return DepChecker.getInstructionsForAccess(Ptr, isWrite); 425 } 426 427 /// \brief Print the information about the memory accesses in the loop. 428 void print(raw_ostream &OS, unsigned Depth = 0) const; 429 430 /// \brief Used to ensure that if the analysis was run with speculating the 431 /// value of symbolic strides, the client queries it with the same assumption. 432 /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI. 433 unsigned NumSymbolicStrides; 434 435 /// \brief Checks existence of store to invariant address inside loop. 436 /// If the loop has any store to invariant address, then it returns true, 437 /// else returns false. hasStoreToLoopInvariantAddress()438 bool hasStoreToLoopInvariantAddress() const { 439 return StoreToLoopInvariantAddress; 440 } 441 442 private: 443 /// \brief Analyze the loop. Substitute symbolic strides using Strides. 444 void analyzeLoop(const ValueToValueMap &Strides); 445 446 /// \brief Check if the structure of the loop allows it to be analyzed by this 447 /// pass. 448 bool canAnalyzeLoop(); 449 450 void emitAnalysis(LoopAccessReport &Message); 451 452 /// We need to check that all of the pointers in this list are disjoint 453 /// at runtime. 454 RuntimePointerCheck PtrRtCheck; 455 456 /// \brief the Memory Dependence Checker which can determine the 457 /// loop-independent and loop-carried dependences between memory accesses. 458 MemoryDepChecker DepChecker; 459 460 /// \brief Number of memchecks required to prove independence of otherwise 461 /// may-alias pointers 462 unsigned NumComparisons; 463 464 Loop *TheLoop; 465 ScalarEvolution *SE; 466 const DataLayout &DL; 467 const TargetLibraryInfo *TLI; 468 AliasAnalysis *AA; 469 DominatorTree *DT; 470 471 unsigned NumLoads; 472 unsigned NumStores; 473 474 unsigned MaxSafeDepDistBytes; 475 476 /// \brief Cache the result of analyzeLoop. 477 bool CanVecMem; 478 479 /// \brief Indicator for storing to uniform addresses. 480 /// If a loop has write to a loop invariant address then it should be true. 481 bool StoreToLoopInvariantAddress; 482 483 /// \brief The diagnostics report generated for the analysis. E.g. why we 484 /// couldn't analyze the loop. 485 Optional<LoopAccessReport> Report; 486 }; 487 488 Value *stripIntegerCast(Value *V); 489 490 ///\brief Return the SCEV corresponding to a pointer with the symbolic stride 491 ///replaced with constant one. 492 /// 493 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p 494 /// Ptr. \p PtrToStride provides the mapping between the pointer value and its 495 /// stride as collected by LoopVectorizationLegality::collectStridedAccess. 496 const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 497 const ValueToValueMap &PtrToStride, 498 Value *Ptr, Value *OrigPtr = nullptr); 499 500 /// \brief This analysis provides dependence information for the memory accesses 501 /// of a loop. 502 /// 503 /// It runs the analysis for a loop on demand. This can be initiated by 504 /// querying the loop access info via LAA::getInfo. getInfo return a 505 /// LoopAccessInfo object. See this class for the specifics of what information 506 /// is provided. 507 class LoopAccessAnalysis : public FunctionPass { 508 public: 509 static char ID; 510 LoopAccessAnalysis()511 LoopAccessAnalysis() : FunctionPass(ID) { 512 initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry()); 513 } 514 515 bool runOnFunction(Function &F) override; 516 517 void getAnalysisUsage(AnalysisUsage &AU) const override; 518 519 /// \brief Query the result of the loop access information for the loop \p L. 520 /// 521 /// If the client speculates (and then issues run-time checks) for the values 522 /// of symbolic strides, \p Strides provides the mapping (see 523 /// replaceSymbolicStrideSCEV). If there is no cached result available run 524 /// the analysis. 525 const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides); 526 releaseMemory()527 void releaseMemory() override { 528 // Invalidate the cache when the pass is freed. 529 LoopAccessInfoMap.clear(); 530 } 531 532 /// \brief Print the result of the analysis when invoked with -analyze. 533 void print(raw_ostream &OS, const Module *M = nullptr) const override; 534 535 private: 536 /// \brief The cache. 537 DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap; 538 539 // The used analysis passes. 540 ScalarEvolution *SE; 541 const TargetLibraryInfo *TLI; 542 AliasAnalysis *AA; 543 DominatorTree *DT; 544 }; 545 } // End llvm namespace 546 547 #endif 548