1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mir_to_lir-inl.h"
18
19 #include "arm/codegen_arm.h"
20 #include "dex/compiler_ir.h"
21 #include "dex/dex_flags.h"
22 #include "dex/mir_graph.h"
23 #include "dex/quick/dex_file_method_inliner.h"
24 #include "dex/quick/dex_file_to_method_inliner_map.h"
25 #include "dex_file-inl.h"
26 #include "driver/compiler_driver.h"
27 #include "driver/compiler_options.h"
28 #include "entrypoints/quick/quick_entrypoints.h"
29 #include "invoke_type.h"
30 #include "mirror/array.h"
31 #include "mirror/class-inl.h"
32 #include "mirror/dex_cache.h"
33 #include "mirror/object_array-inl.h"
34 #include "mirror/string.h"
35 #include "scoped_thread_state_change.h"
36
37 namespace art {
38
39 // Shortcuts to repeatedly used long types.
40 typedef mirror::ObjectArray<mirror::Object> ObjArray;
41
42 /*
43 * This source files contains "gen" codegen routines that should
44 * be applicable to most targets. Only mid-level support utilities
45 * and "op" calls may be used here.
46 */
47
AddIntrinsicSlowPath(CallInfo * info,LIR * branch,LIR * resume)48 void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
49 class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
50 public:
51 IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info_in, LIR* branch_in, LIR* resume_in)
52 : LIRSlowPath(m2l, branch_in, resume_in), info_(info_in) {
53 DCHECK_EQ(info_in->offset, current_dex_pc_);
54 }
55
56 void Compile() {
57 m2l_->ResetRegPool();
58 m2l_->ResetDefTracking();
59 GenerateTargetLabel(kPseudoIntrinsicRetry);
60 // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
61 m2l_->GenInvokeNoInline(info_);
62 if (cont_ != nullptr) {
63 m2l_->OpUnconditionalBranch(cont_);
64 }
65 }
66
67 private:
68 CallInfo* const info_;
69 };
70
71 AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
72 }
73
74 /*
75 * To save scheduling time, helper calls are broken into two parts: generation of
76 * the helper target address, and the actual call to the helper. Because x86
77 * has a memory call operation, part 1 is a NOP for x86. For other targets,
78 * load arguments between the two parts.
79 */
80 // template <size_t pointer_size>
CallHelperSetup(QuickEntrypointEnum trampoline)81 RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
82 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
83 return RegStorage::InvalidReg();
84 } else {
85 return LoadHelper(trampoline);
86 }
87 }
88
CallHelper(RegStorage r_tgt,QuickEntrypointEnum trampoline,bool safepoint_pc,bool use_link)89 LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
90 bool use_link) {
91 LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
92
93 if (r_tgt.Valid()) {
94 FreeTemp(r_tgt);
95 }
96
97 if (safepoint_pc) {
98 MarkSafepointPC(call_inst);
99 }
100 return call_inst;
101 }
102
CallRuntimeHelper(QuickEntrypointEnum trampoline,bool safepoint_pc)103 void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
104 RegStorage r_tgt = CallHelperSetup(trampoline);
105 ClobberCallerSave();
106 CallHelper(r_tgt, trampoline, safepoint_pc);
107 }
108
CallRuntimeHelperImm(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)109 void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
110 RegStorage r_tgt = CallHelperSetup(trampoline);
111 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
112 ClobberCallerSave();
113 CallHelper(r_tgt, trampoline, safepoint_pc);
114 }
115
CallRuntimeHelperReg(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)116 void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
117 bool safepoint_pc) {
118 RegStorage r_tgt = CallHelperSetup(trampoline);
119 OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
120 ClobberCallerSave();
121 CallHelper(r_tgt, trampoline, safepoint_pc);
122 }
123
CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,bool safepoint_pc)124 void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
125 bool safepoint_pc) {
126 RegStorage r_tgt = CallHelperSetup(trampoline);
127 if (arg0.wide == 0) {
128 LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
129 } else {
130 LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
131 }
132 ClobberCallerSave();
133 CallHelper(r_tgt, trampoline, safepoint_pc);
134 }
135
CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline,int arg0,int arg1,bool safepoint_pc)136 void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
137 bool safepoint_pc) {
138 RegStorage r_tgt = CallHelperSetup(trampoline);
139 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
140 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
141 ClobberCallerSave();
142 CallHelper(r_tgt, trampoline, safepoint_pc);
143 }
144
CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,bool safepoint_pc)145 void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
146 RegLocation arg1, bool safepoint_pc) {
147 RegStorage r_tgt = CallHelperSetup(trampoline);
148 if (arg1.wide == 0) {
149 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
150 } else {
151 RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
152 LoadValueDirectWideFixed(arg1, r_tmp);
153 }
154 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
155 ClobberCallerSave();
156 CallHelper(r_tgt, trampoline, safepoint_pc);
157 }
158
CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline,RegLocation arg0,int arg1,bool safepoint_pc)159 void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
160 int arg1, bool safepoint_pc) {
161 RegStorage r_tgt = CallHelperSetup(trampoline);
162 DCHECK(!arg0.wide);
163 LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
164 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
165 ClobberCallerSave();
166 CallHelper(r_tgt, trampoline, safepoint_pc);
167 }
168
CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline,int arg0,RegStorage arg1,bool safepoint_pc)169 void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
170 bool safepoint_pc) {
171 RegStorage r_tgt = CallHelperSetup(trampoline);
172 OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
173 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
174 ClobberCallerSave();
175 CallHelper(r_tgt, trampoline, safepoint_pc);
176 }
177
CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,int arg1,bool safepoint_pc)178 void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
179 bool safepoint_pc) {
180 RegStorage r_tgt = CallHelperSetup(trampoline);
181 OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
182 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
183 ClobberCallerSave();
184 CallHelper(r_tgt, trampoline, safepoint_pc);
185 }
186
CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)187 void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
188 bool safepoint_pc) {
189 RegStorage r_tgt = CallHelperSetup(trampoline);
190 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
191 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
192 ClobberCallerSave();
193 CallHelper(r_tgt, trampoline, safepoint_pc);
194 }
195
CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)196 void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
197 bool safepoint_pc) {
198 RegStorage r_tgt = CallHelperSetup(trampoline);
199 DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
200 RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
201 if (r_tmp.NotExactlyEquals(arg0)) {
202 OpRegCopy(r_tmp, arg0);
203 }
204 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
205 ClobberCallerSave();
206 CallHelper(r_tgt, trampoline, safepoint_pc);
207 }
208
CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline,RegStorage arg0,RegLocation arg1,bool safepoint_pc)209 void Mir2Lir::CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
210 RegLocation arg1, bool safepoint_pc) {
211 RegStorage r_tgt = CallHelperSetup(trampoline);
212 DCHECK(!IsSameReg(TargetReg(kArg2, arg0.GetWideKind()), arg0));
213 RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
214 if (r_tmp.NotExactlyEquals(arg0)) {
215 OpRegCopy(r_tmp, arg0);
216 }
217 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
218 LoadCurrMethodDirect(TargetReg(kArg2, kRef));
219 ClobberCallerSave();
220 CallHelper(r_tgt, trampoline, safepoint_pc);
221 }
222
CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,bool safepoint_pc)223 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
224 RegLocation arg0, RegLocation arg1,
225 bool safepoint_pc) {
226 RegStorage r_tgt = CallHelperSetup(trampoline);
227 if (cu_->instruction_set == kArm64 || cu_->instruction_set == kMips64 ||
228 cu_->instruction_set == kX86_64) {
229 RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
230
231 RegStorage arg1_reg;
232 if (arg1.fp == arg0.fp) {
233 arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
234 } else {
235 arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
236 }
237
238 if (arg0.wide == 0) {
239 LoadValueDirectFixed(arg0, arg0_reg);
240 } else {
241 LoadValueDirectWideFixed(arg0, arg0_reg);
242 }
243
244 if (arg1.wide == 0) {
245 LoadValueDirectFixed(arg1, arg1_reg);
246 } else {
247 LoadValueDirectWideFixed(arg1, arg1_reg);
248 }
249 } else {
250 DCHECK(!cu_->target64);
251 if (arg0.wide == 0) {
252 LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
253 if (arg1.wide == 0) {
254 // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
255 if (cu_->instruction_set == kMips) {
256 LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg1, kNotWide));
257 } else {
258 LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kNotWide));
259 }
260 } else {
261 // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
262 if (cu_->instruction_set == kMips) {
263 LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
264 } else {
265 LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kWide));
266 }
267 }
268 } else {
269 LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
270 if (arg1.wide == 0) {
271 // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
272 if (cu_->instruction_set == kMips) {
273 LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kNotWide));
274 } else {
275 LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
276 }
277 } else {
278 // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
279 if (cu_->instruction_set == kMips) {
280 LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
281 } else {
282 LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
283 }
284 }
285 }
286 }
287 ClobberCallerSave();
288 CallHelper(r_tgt, trampoline, safepoint_pc);
289 }
290
CopyToArgumentRegs(RegStorage arg0,RegStorage arg1)291 void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
292 WideKind arg0_kind = arg0.GetWideKind();
293 WideKind arg1_kind = arg1.GetWideKind();
294 if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
295 if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
296 // Swap kArg0 and kArg1 with kArg2 as temp.
297 OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
298 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
299 OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
300 } else {
301 OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
302 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
303 }
304 } else {
305 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
306 OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
307 }
308 }
309
CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,bool safepoint_pc)310 void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
311 RegStorage arg1, bool safepoint_pc) {
312 RegStorage r_tgt = CallHelperSetup(trampoline);
313 CopyToArgumentRegs(arg0, arg1);
314 ClobberCallerSave();
315 CallHelper(r_tgt, trampoline, safepoint_pc);
316 }
317
CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,int arg2,bool safepoint_pc)318 void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
319 RegStorage arg1, int arg2, bool safepoint_pc) {
320 RegStorage r_tgt = CallHelperSetup(trampoline);
321 CopyToArgumentRegs(arg0, arg1);
322 LoadConstant(TargetReg(kArg2, kNotWide), arg2);
323 ClobberCallerSave();
324 CallHelper(r_tgt, trampoline, safepoint_pc);
325 }
326
CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,bool safepoint_pc)327 void Mir2Lir::CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
328 RegLocation arg1, bool safepoint_pc) {
329 RegStorage r_tgt = CallHelperSetup(trampoline);
330 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
331 LoadCurrMethodDirect(TargetReg(kArg2, kRef));
332 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
333 ClobberCallerSave();
334 CallHelper(r_tgt, trampoline, safepoint_pc);
335 }
336
CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline,int arg0,int arg1,bool safepoint_pc)337 void Mir2Lir::CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
338 bool safepoint_pc) {
339 RegStorage r_tgt = CallHelperSetup(trampoline);
340 LoadCurrMethodDirect(TargetReg(kArg2, kRef));
341 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
342 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
343 ClobberCallerSave();
344 CallHelper(r_tgt, trampoline, safepoint_pc);
345 }
346
CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)347 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
348 RegLocation arg1,
349 RegLocation arg2, bool safepoint_pc) {
350 RegStorage r_tgt = CallHelperSetup(trampoline);
351 DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U); // The static_cast works around an
352 // instantiation bug in GCC.
353 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
354 if (arg2.wide == 0) {
355 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
356 } else {
357 LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
358 }
359 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
360 ClobberCallerSave();
361 CallHelper(r_tgt, trampoline, safepoint_pc);
362 }
363
CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)364 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
365 QuickEntrypointEnum trampoline,
366 RegLocation arg0,
367 RegLocation arg1,
368 RegLocation arg2,
369 bool safepoint_pc) {
370 RegStorage r_tgt = CallHelperSetup(trampoline);
371 LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
372 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
373 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
374 ClobberCallerSave();
375 CallHelper(r_tgt, trampoline, safepoint_pc);
376 }
377
CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,RegLocation arg2,RegLocation arg3,bool safepoint_pc)378 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
379 QuickEntrypointEnum trampoline, RegLocation arg0, RegLocation arg1, RegLocation arg2,
380 RegLocation arg3, bool safepoint_pc) {
381 RegStorage r_tgt = CallHelperSetup(trampoline);
382 LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
383 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
384 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
385 LoadValueDirectFixed(arg3, TargetReg(kArg3, arg3));
386 ClobberCallerSave();
387 CallHelper(r_tgt, trampoline, safepoint_pc);
388 }
389
390 /*
391 * If there are any ins passed in registers that have not been promoted
392 * to a callee-save register, flush them to the frame. Perform initial
393 * assignment of promoted arguments.
394 *
395 * ArgLocs is an array of location records describing the incoming arguments
396 * with one location record per word of argument.
397 */
398 // TODO: Support 64-bit argument registers.
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)399 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
400 /*
401 * Dummy up a RegLocation for the incoming ArtMethod*
402 * It will attempt to keep kArg0 live (or copy it to home location
403 * if promoted).
404 */
405 RegLocation rl_src = rl_method;
406 rl_src.location = kLocPhysReg;
407 rl_src.reg = TargetReg(kArg0, kRef);
408 rl_src.home = false;
409 MarkLive(rl_src);
410 if (cu_->target64) {
411 DCHECK(rl_method.wide);
412 StoreValueWide(rl_method, rl_src);
413 } else {
414 StoreValue(rl_method, rl_src);
415 }
416 // If Method* has been promoted, explicitly flush
417 if (rl_method.location == kLocPhysReg) {
418 StoreBaseDisp(TargetPtrReg(kSp), 0, rl_src.reg, kWord, kNotVolatile);
419 }
420
421 if (mir_graph_->GetNumOfInVRs() == 0) {
422 return;
423 }
424
425 int start_vreg = mir_graph_->GetFirstInVR();
426 /*
427 * Copy incoming arguments to their proper home locations.
428 * NOTE: an older version of dx had an issue in which
429 * it would reuse static method argument registers.
430 * This could result in the same Dalvik virtual register
431 * being promoted to both core and fp regs. To account for this,
432 * we only copy to the corresponding promoted physical register
433 * if it matches the type of the SSA name for the incoming
434 * argument. It is also possible that long and double arguments
435 * end up half-promoted. In those cases, we must flush the promoted
436 * half to memory as well.
437 */
438 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
439 RegLocation* t_loc = nullptr;
440 EnsureInitializedArgMappingToPhysicalReg();
441 for (uint32_t i = 0; i < mir_graph_->GetNumOfInVRs(); i += t_loc->wide ? 2 : 1) {
442 // get reg corresponding to input
443 RegStorage reg = in_to_reg_storage_mapping_.GetReg(i);
444 t_loc = &ArgLocs[i];
445
446 // If the wide input appeared as single, flush it and go
447 // as it comes from memory.
448 if (t_loc->wide && reg.Valid() && !reg.Is64Bit()) {
449 // The memory already holds the half. Don't do anything.
450 reg = RegStorage::InvalidReg();
451 }
452
453 if (reg.Valid()) {
454 // If arriving in register.
455
456 // We have already updated the arg location with promoted info
457 // so we can be based on it.
458 if (t_loc->location == kLocPhysReg) {
459 // Just copy it.
460 if (t_loc->wide) {
461 OpRegCopyWide(t_loc->reg, reg);
462 } else {
463 OpRegCopy(t_loc->reg, reg);
464 }
465 } else {
466 // Needs flush.
467 int offset = SRegOffset(start_vreg + i);
468 if (t_loc->ref) {
469 StoreRefDisp(TargetPtrReg(kSp), offset, reg, kNotVolatile);
470 } else {
471 StoreBaseDisp(TargetPtrReg(kSp), offset, reg, t_loc->wide ? k64 : k32, kNotVolatile);
472 }
473 }
474 } else {
475 // If arriving in frame & promoted.
476 if (t_loc->location == kLocPhysReg) {
477 int offset = SRegOffset(start_vreg + i);
478 if (t_loc->ref) {
479 LoadRefDisp(TargetPtrReg(kSp), offset, t_loc->reg, kNotVolatile);
480 } else {
481 LoadBaseDisp(TargetPtrReg(kSp), offset, t_loc->reg, t_loc->wide ? k64 : k32,
482 kNotVolatile);
483 }
484 }
485 }
486 }
487 }
488
CommonCallCodeLoadThisIntoArg1(const CallInfo * info,Mir2Lir * cg)489 static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
490 RegLocation rl_arg = info->args[0];
491 cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
492 }
493
CommonCallCodeLoadClassIntoArg0(const CallInfo * info,Mir2Lir * cg)494 static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
495 cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
496 // get this->klass_ [use kArg1, set kArg0]
497 cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
498 cg->TargetReg(kArg0, kRef),
499 kNotVolatile);
500 cg->MarkPossibleNullPointerException(info->opt_flags);
501 }
502
CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage * alt_from,const CompilationUnit * cu,Mir2Lir * cg)503 static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage* alt_from,
504 const CompilationUnit* cu, Mir2Lir* cg) {
505 if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
506 int32_t offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
507 InstructionSetPointerSize(cu->instruction_set)).Int32Value();
508 // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
509 cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
510 cg->TargetPtrReg(kInvokeTgt));
511 return true;
512 }
513 return false;
514 }
515
516 /*
517 * Bit of a hack here - in the absence of a real scheduling pass,
518 * emit the next instruction in a virtual invoke sequence.
519 * We can use kLr as a temp prior to target address loading
520 * Note also that we'll load the first argument ("this") into
521 * kArg1 here rather than the standard GenDalvikArgs.
522 */
NextVCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t,uintptr_t,InvokeType)523 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
524 int state, const MethodReference& target_method,
525 uint32_t method_idx, uintptr_t, uintptr_t,
526 InvokeType) {
527 UNUSED(target_method);
528 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
529 /*
530 * This is the fast path in which the target virtual method is
531 * fully resolved at compile time.
532 */
533 switch (state) {
534 case 0:
535 CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
536 break;
537 case 1:
538 CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
539 // Includes a null-check.
540 break;
541 case 2: {
542 // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
543 const size_t pointer_size = InstructionSetPointerSize(
544 cu->compiler_driver->GetInstructionSet());
545 int32_t offset = mirror::Class::EmbeddedVTableEntryOffset(
546 method_idx, pointer_size).Uint32Value();
547 // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
548 cg->LoadWordDisp(cg->TargetPtrReg(kArg0), offset, cg->TargetPtrReg(kArg0));
549 break;
550 }
551 case 3:
552 if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
553 break; // kInvokeTgt := kArg0->entrypoint
554 }
555 DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
556 FALLTHROUGH_INTENDED;
557 default:
558 return -1;
559 }
560 return state + 1;
561 }
562
563 /*
564 * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
565 * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
566 * more than one interface method map to the same index. Note also that we'll load the first
567 * argument ("this") into kArg1 here rather than the standard GenDalvikArgs.
568 */
NextInterfaceCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t,uintptr_t,InvokeType)569 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
570 const MethodReference& target_method,
571 uint32_t method_idx, uintptr_t, uintptr_t, InvokeType) {
572 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
573
574 switch (state) {
575 case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
576 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
577 cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
578 if (cu->instruction_set == kX86) {
579 cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
580 }
581 break;
582 case 1:
583 CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
584 break;
585 case 2:
586 CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
587 // Includes a null-check.
588 break;
589 case 3: { // Get target method [use kInvokeTgt, set kArg0]
590 const size_t pointer_size = InstructionSetPointerSize(
591 cu->compiler_driver->GetInstructionSet());
592 int32_t offset = mirror::Class::EmbeddedImTableEntryOffset(
593 method_idx % mirror::Class::kImtSize, pointer_size).Uint32Value();
594 // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
595 cg->LoadWordDisp(cg->TargetPtrReg(kArg0), offset, cg->TargetPtrReg(kArg0));
596 break;
597 }
598 case 4:
599 if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
600 break; // kInvokeTgt := kArg0->entrypoint
601 }
602 DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
603 FALLTHROUGH_INTENDED;
604 default:
605 return -1;
606 }
607 return state + 1;
608 }
609
NextInvokeInsnSP(CompilationUnit * cu,CallInfo * info,QuickEntrypointEnum trampoline,int state,const MethodReference & target_method,uint32_t method_idx)610 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
611 QuickEntrypointEnum trampoline, int state,
612 const MethodReference& target_method, uint32_t method_idx) {
613 UNUSED(info, method_idx);
614 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
615
616 /*
617 * This handles the case in which the base method is not fully
618 * resolved at compile time, we bail to a runtime helper.
619 */
620 if (state == 0) {
621 if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
622 // Load trampoline target
623 int32_t disp;
624 if (cu->target64) {
625 disp = GetThreadOffset<8>(trampoline).Int32Value();
626 } else {
627 disp = GetThreadOffset<4>(trampoline).Int32Value();
628 }
629 cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
630 }
631 // Load kArg0 with method index
632 CHECK_EQ(cu->dex_file, target_method.dex_file);
633 cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
634 return 1;
635 }
636 return -1;
637 }
638
NextStaticCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t,uintptr_t,InvokeType)639 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
640 int state,
641 const MethodReference& target_method,
642 uint32_t, uintptr_t, uintptr_t, InvokeType) {
643 return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
644 target_method, 0);
645 }
646
NextDirectCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t,uintptr_t,InvokeType)647 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
648 const MethodReference& target_method,
649 uint32_t, uintptr_t, uintptr_t, InvokeType) {
650 return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
651 target_method, 0);
652 }
653
NextSuperCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t,uintptr_t,InvokeType)654 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
655 const MethodReference& target_method,
656 uint32_t, uintptr_t, uintptr_t, InvokeType) {
657 return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
658 target_method, 0);
659 }
660
NextVCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t,uintptr_t,InvokeType)661 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
662 const MethodReference& target_method,
663 uint32_t, uintptr_t, uintptr_t, InvokeType) {
664 return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
665 target_method, 0);
666 }
667
NextInterfaceCallInsnWithAccessCheck(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t,uintptr_t,InvokeType)668 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
669 CallInfo* info, int state,
670 const MethodReference& target_method,
671 uint32_t, uintptr_t, uintptr_t, InvokeType) {
672 return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
673 target_method, 0);
674 }
675
676 // Default implementation of implicit null pointer check.
677 // Overridden by arch specific as necessary.
GenImplicitNullCheck(RegStorage reg,int opt_flags)678 void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
679 if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
680 return;
681 }
682 RegStorage tmp = AllocTemp();
683 Load32Disp(reg, 0, tmp);
684 MarkPossibleNullPointerException(opt_flags);
685 FreeTemp(tmp);
686 }
687
688 /**
689 * @brief Used to flush promoted registers if they are used as argument
690 * in an invocation.
691 * @param info the infromation about arguments for invocation.
692 * @param start the first argument we should start to look from.
693 */
GenDalvikArgsFlushPromoted(CallInfo * info,int start)694 void Mir2Lir::GenDalvikArgsFlushPromoted(CallInfo* info, int start) {
695 if (cu_->disable_opt & (1 << kPromoteRegs)) {
696 // This make sense only if promotion is enabled.
697 return;
698 }
699 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
700 // Scan the rest of the args - if in phys_reg flush to memory
701 for (size_t next_arg = start; next_arg < info->num_arg_words;) {
702 RegLocation loc = info->args[next_arg];
703 if (loc.wide) {
704 loc = UpdateLocWide(loc);
705 if (loc.location == kLocPhysReg) {
706 StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
707 }
708 next_arg += 2;
709 } else {
710 loc = UpdateLoc(loc);
711 if (loc.location == kLocPhysReg) {
712 if (loc.ref) {
713 StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
714 } else {
715 StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
716 kNotVolatile);
717 }
718 }
719 next_arg++;
720 }
721 }
722 }
723
724 /**
725 * @brief Used to optimize the copying of VRs which are arguments of invocation.
726 * Please note that you should flush promoted registers first if you copy.
727 * If implementation does copying it may skip several of the first VRs but must copy
728 * till the end. Implementation must return the number of skipped VRs
729 * (it might be all VRs).
730 * @see GenDalvikArgsFlushPromoted
731 * @param info the information about arguments for invocation.
732 * @param first the first argument we should start to look from.
733 * @param count the number of remaining arguments we can handle.
734 * @return the number of arguments which we did not handle. Unhandled arguments
735 * must be attached to the first one.
736 */
GenDalvikArgsBulkCopy(CallInfo * info,int first,int count)737 int Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
738 // call is pretty expensive, let's use it if count is big.
739 if (count > 16) {
740 GenDalvikArgsFlushPromoted(info, first);
741 int start_offset = SRegOffset(info->args[first].s_reg_low);
742 int outs_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
743
744 OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
745 OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
746 CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
747 count * 4, false);
748 count = 0;
749 }
750 return count;
751 }
752
GenDalvikArgs(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)753 int Mir2Lir::GenDalvikArgs(CallInfo* info, int call_state,
754 LIR** pcrLabel, NextCallInsn next_call_insn,
755 const MethodReference& target_method,
756 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
757 InvokeType type, bool skip_this) {
758 // If no arguments, just return.
759 if (info->num_arg_words == 0u)
760 return call_state;
761
762 const size_t start_index = skip_this ? 1 : 0;
763
764 // Get architecture dependent mapping between output VRs and physical registers
765 // basing on shorty of method to call.
766 InToRegStorageMapping in_to_reg_storage_mapping(arena_);
767 {
768 const char* target_shorty = mir_graph_->GetShortyFromMethodReference(target_method);
769 ShortyIterator shorty_iterator(target_shorty, type == kStatic);
770 in_to_reg_storage_mapping.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
771 }
772
773 size_t stack_map_start = std::max(in_to_reg_storage_mapping.GetEndMappedIn(), start_index);
774 if ((stack_map_start < info->num_arg_words) && info->args[stack_map_start].high_word) {
775 // It is possible that the last mapped reg is 32 bit while arg is 64-bit.
776 // It will be handled together with low part mapped to register.
777 stack_map_start++;
778 }
779 size_t regs_left_to_pass_via_stack = info->num_arg_words - stack_map_start;
780
781 // If it is a range case we can try to copy remaining VRs (not mapped to physical registers)
782 // using more optimal algorithm.
783 if (info->is_range && regs_left_to_pass_via_stack > 1) {
784 regs_left_to_pass_via_stack = GenDalvikArgsBulkCopy(info, stack_map_start,
785 regs_left_to_pass_via_stack);
786 }
787
788 // Now handle any remaining VRs mapped to stack.
789 if (in_to_reg_storage_mapping.HasArgumentsOnStack()) {
790 // Two temps but do not use kArg1, it might be this which we can skip.
791 // Separate single and wide - it can give some advantage.
792 RegStorage regRef = TargetReg(kArg3, kRef);
793 RegStorage regSingle = TargetReg(kArg3, kNotWide);
794 RegStorage regWide = TargetReg(kArg2, kWide);
795 for (size_t i = start_index; i < stack_map_start + regs_left_to_pass_via_stack; i++) {
796 RegLocation rl_arg = info->args[i];
797 rl_arg = UpdateRawLoc(rl_arg);
798 RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
799 if (!reg.Valid()) {
800 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
801 {
802 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
803 if (rl_arg.wide) {
804 if (rl_arg.location == kLocPhysReg) {
805 StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
806 } else {
807 LoadValueDirectWideFixed(rl_arg, regWide);
808 StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
809 }
810 } else {
811 if (rl_arg.location == kLocPhysReg) {
812 if (rl_arg.ref) {
813 StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
814 } else {
815 StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
816 }
817 } else {
818 if (rl_arg.ref) {
819 LoadValueDirectFixed(rl_arg, regRef);
820 StoreRefDisp(TargetPtrReg(kSp), out_offset, regRef, kNotVolatile);
821 } else {
822 LoadValueDirectFixed(rl_arg, regSingle);
823 StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
824 }
825 }
826 }
827 }
828 call_state = next_call_insn(cu_, info, call_state, target_method,
829 vtable_idx, direct_code, direct_method, type);
830 }
831 if (rl_arg.wide) {
832 i++;
833 }
834 }
835 }
836
837 // Finish with VRs mapped to physical registers.
838 for (size_t i = start_index; i < stack_map_start; i++) {
839 RegLocation rl_arg = info->args[i];
840 rl_arg = UpdateRawLoc(rl_arg);
841 RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
842 if (reg.Valid()) {
843 if (rl_arg.wide) {
844 // if reg is not 64-bit (it is half of 64-bit) then handle it separately.
845 if (!reg.Is64Bit()) {
846 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
847 if (rl_arg.location == kLocPhysReg) {
848 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
849 // Dump it to memory.
850 StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
851 LoadBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile);
852 } else {
853 int high_offset = StackVisitor::GetOutVROffset(i + 1, cu_->instruction_set);
854 // First, use target reg for high part.
855 LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + 1), reg, k32,
856 kNotVolatile);
857 StoreBaseDisp(TargetPtrReg(kSp), high_offset, reg, k32, kNotVolatile);
858 // Now, use target reg for low part.
859 LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low), reg, k32, kNotVolatile);
860 int low_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
861 // And store it to the expected memory location.
862 StoreBaseDisp(TargetPtrReg(kSp), low_offset, reg, k32, kNotVolatile);
863 }
864 } else {
865 LoadValueDirectWideFixed(rl_arg, reg);
866 }
867 } else {
868 LoadValueDirectFixed(rl_arg, reg);
869 }
870 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
871 direct_code, direct_method, type);
872 }
873 if (rl_arg.wide) {
874 i++;
875 }
876 }
877
878 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
879 direct_code, direct_method, type);
880 if (pcrLabel) {
881 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
882 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
883 } else {
884 *pcrLabel = nullptr;
885 GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
886 }
887 }
888 return call_state;
889 }
890
EnsureInitializedArgMappingToPhysicalReg()891 void Mir2Lir::EnsureInitializedArgMappingToPhysicalReg() {
892 if (!in_to_reg_storage_mapping_.IsInitialized()) {
893 ShortyIterator shorty_iterator(cu_->shorty, cu_->invoke_type == kStatic);
894 in_to_reg_storage_mapping_.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
895 }
896 }
897
InlineTarget(CallInfo * info)898 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
899 RegLocation res;
900 if (info->result.location == kLocInvalid) {
901 // If result is unused, return a sink target based on type of invoke target.
902 res = GetReturn(
903 ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
904 } else {
905 res = info->result;
906 }
907 return res;
908 }
909
InlineTargetWide(CallInfo * info)910 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
911 RegLocation res;
912 if (info->result.location == kLocInvalid) {
913 // If result is unused, return a sink target based on type of invoke target.
914 res = GetReturnWide(ShortyToRegClass(
915 mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
916 } else {
917 res = info->result;
918 }
919 return res;
920 }
921
GenInlinedReferenceGetReferent(CallInfo * info)922 bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
923 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
924 // TODO: add Mips and Mips64 implementations.
925 return false;
926 }
927
928 bool use_direct_type_ptr;
929 uintptr_t direct_type_ptr;
930 ClassReference ref;
931 if (!cu_->compiler_driver->CanEmbedReferenceTypeInCode(&ref,
932 &use_direct_type_ptr, &direct_type_ptr)) {
933 return false;
934 }
935
936 RegStorage reg_class = TargetReg(kArg1, kRef);
937 Clobber(reg_class);
938 LockTemp(reg_class);
939 if (use_direct_type_ptr) {
940 LoadConstant(reg_class, direct_type_ptr);
941 } else {
942 uint16_t type_idx = ref.first->GetClassDef(ref.second).class_idx_;
943 LoadClassType(*ref.first, type_idx, kArg1);
944 }
945
946 uint32_t slow_path_flag_offset = cu_->compiler_driver->GetReferenceSlowFlagOffset();
947 uint32_t disable_flag_offset = cu_->compiler_driver->GetReferenceDisableFlagOffset();
948 CHECK(slow_path_flag_offset && disable_flag_offset &&
949 (slow_path_flag_offset != disable_flag_offset));
950
951 // intrinsic logic start.
952 RegLocation rl_obj = info->args[0];
953 rl_obj = LoadValue(rl_obj, kRefReg);
954
955 RegStorage reg_slow_path = AllocTemp();
956 RegStorage reg_disabled = AllocTemp();
957 LoadBaseDisp(reg_class, slow_path_flag_offset, reg_slow_path, kSignedByte, kNotVolatile);
958 LoadBaseDisp(reg_class, disable_flag_offset, reg_disabled, kSignedByte, kNotVolatile);
959 FreeTemp(reg_class);
960 LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
961 FreeTemp(reg_disabled);
962
963 // if slow path, jump to JNI path target
964 LIR* slow_path_branch;
965 if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
966 // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
967 slow_path_branch = OpCondBranch(kCondNe, nullptr);
968 } else {
969 // Generate compare and branch.
970 slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
971 }
972 FreeTemp(reg_slow_path);
973
974 // slow path not enabled, simply load the referent of the reference object
975 RegLocation rl_dest = InlineTarget(info);
976 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
977 GenNullCheck(rl_obj.reg, info->opt_flags);
978 LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
979 kNotVolatile);
980 MarkPossibleNullPointerException(info->opt_flags);
981 StoreValue(rl_dest, rl_result);
982
983 LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
984 AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
985 ClobberCallerSave(); // We must clobber everything because slow path will return here
986 return true;
987 }
988
GenInlinedCharAt(CallInfo * info)989 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
990 // Location of char array data
991 int value_offset = mirror::String::ValueOffset().Int32Value();
992 // Location of count
993 int count_offset = mirror::String::CountOffset().Int32Value();
994
995 RegLocation rl_obj = info->args[0];
996 RegLocation rl_idx = info->args[1];
997 rl_obj = LoadValue(rl_obj, kRefReg);
998 rl_idx = LoadValue(rl_idx, kCoreReg);
999 RegStorage reg_max;
1000 GenNullCheck(rl_obj.reg, info->opt_flags);
1001 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
1002 LIR* range_check_branch = nullptr;
1003 if (range_check) {
1004 reg_max = AllocTemp();
1005 Load32Disp(rl_obj.reg, count_offset, reg_max);
1006 MarkPossibleNullPointerException(info->opt_flags);
1007 // Set up a slow path to allow retry in case of bounds violation
1008 OpRegReg(kOpCmp, rl_idx.reg, reg_max);
1009 FreeTemp(reg_max);
1010 range_check_branch = OpCondBranch(kCondUge, nullptr);
1011 }
1012 RegStorage reg_ptr = AllocTempRef();
1013 OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, value_offset);
1014 FreeTemp(rl_obj.reg);
1015 RegLocation rl_dest = InlineTarget(info);
1016 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1017 LoadBaseIndexed(reg_ptr, rl_idx.reg, rl_result.reg, 1, kUnsignedHalf);
1018 FreeTemp(reg_ptr);
1019 StoreValue(rl_dest, rl_result);
1020 if (range_check) {
1021 DCHECK(range_check_branch != nullptr);
1022 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
1023 AddIntrinsicSlowPath(info, range_check_branch);
1024 }
1025 return true;
1026 }
1027
GenInlinedStringGetCharsNoCheck(CallInfo * info)1028 bool Mir2Lir::GenInlinedStringGetCharsNoCheck(CallInfo* info) {
1029 if (cu_->instruction_set == kMips) {
1030 // TODO - add Mips implementation
1031 return false;
1032 }
1033 size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar);
1034 // Location of data in char array buffer
1035 int data_offset = mirror::Array::DataOffset(char_component_size).Int32Value();
1036 // Location of char array data in string
1037 int value_offset = mirror::String::ValueOffset().Int32Value();
1038
1039 RegLocation rl_obj = info->args[0];
1040 RegLocation rl_start = info->args[1];
1041 RegLocation rl_end = info->args[2];
1042 RegLocation rl_buffer = info->args[3];
1043 RegLocation rl_index = info->args[4];
1044
1045 ClobberCallerSave();
1046 LockCallTemps(); // Using fixed registers
1047 RegStorage reg_dst_ptr = TargetReg(kArg0, kRef);
1048 RegStorage reg_src_ptr = TargetReg(kArg1, kRef);
1049 RegStorage reg_length = TargetReg(kArg2, kNotWide);
1050 RegStorage reg_tmp = TargetReg(kArg3, kNotWide);
1051 RegStorage reg_tmp_ptr = RegStorage(RegStorage::k64BitSolo, reg_tmp.GetRawBits() & RegStorage::kRegTypeMask);
1052
1053 LoadValueDirectFixed(rl_buffer, reg_dst_ptr);
1054 OpRegImm(kOpAdd, reg_dst_ptr, data_offset);
1055 LoadValueDirectFixed(rl_index, reg_tmp);
1056 OpRegRegImm(kOpLsl, reg_tmp, reg_tmp, 1);
1057 OpRegReg(kOpAdd, reg_dst_ptr, cu_->instruction_set == kArm64 ? reg_tmp_ptr : reg_tmp);
1058
1059 LoadValueDirectFixed(rl_start, reg_tmp);
1060 LoadValueDirectFixed(rl_end, reg_length);
1061 OpRegReg(kOpSub, reg_length, reg_tmp);
1062 OpRegRegImm(kOpLsl, reg_length, reg_length, 1);
1063 LoadValueDirectFixed(rl_obj, reg_src_ptr);
1064
1065 OpRegImm(kOpAdd, reg_src_ptr, value_offset);
1066 OpRegRegImm(kOpLsl, reg_tmp, reg_tmp, 1);
1067 OpRegReg(kOpAdd, reg_src_ptr, cu_->instruction_set == kArm64 ? reg_tmp_ptr : reg_tmp);
1068
1069 RegStorage r_tgt;
1070 if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1071 r_tgt = LoadHelper(kQuickMemcpy);
1072 } else {
1073 r_tgt = RegStorage::InvalidReg();
1074 }
1075 // NOTE: not a safepoint
1076 CallHelper(r_tgt, kQuickMemcpy, false, true);
1077
1078 return true;
1079 }
1080
1081 // Generates an inlined String.is_empty or String.length.
GenInlinedStringIsEmptyOrLength(CallInfo * info,bool is_empty)1082 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
1083 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1084 // TODO: add Mips and Mips64 implementations.
1085 return false;
1086 }
1087 // dst = src.length();
1088 RegLocation rl_obj = info->args[0];
1089 rl_obj = LoadValue(rl_obj, kRefReg);
1090 RegLocation rl_dest = InlineTarget(info);
1091 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1092 GenNullCheck(rl_obj.reg, info->opt_flags);
1093 Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
1094 MarkPossibleNullPointerException(info->opt_flags);
1095 if (is_empty) {
1096 // dst = (dst == 0);
1097 if (cu_->instruction_set == kThumb2) {
1098 RegStorage t_reg = AllocTemp();
1099 OpRegReg(kOpNeg, t_reg, rl_result.reg);
1100 OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
1101 } else if (cu_->instruction_set == kArm64) {
1102 OpRegImm(kOpSub, rl_result.reg, 1);
1103 OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
1104 } else {
1105 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
1106 OpRegImm(kOpSub, rl_result.reg, 1);
1107 OpRegImm(kOpLsr, rl_result.reg, 31);
1108 }
1109 }
1110 StoreValue(rl_dest, rl_result);
1111 return true;
1112 }
1113
GenInlinedStringFactoryNewStringFromBytes(CallInfo * info)1114 bool Mir2Lir::GenInlinedStringFactoryNewStringFromBytes(CallInfo* info) {
1115 if (cu_->instruction_set == kMips) {
1116 // TODO - add Mips implementation
1117 return false;
1118 }
1119 RegLocation rl_data = info->args[0];
1120 RegLocation rl_high = info->args[1];
1121 RegLocation rl_offset = info->args[2];
1122 RegLocation rl_count = info->args[3];
1123 rl_data = LoadValue(rl_data, kRefReg);
1124 LIR* data_null_check_branch = OpCmpImmBranch(kCondEq, rl_data.reg, 0, nullptr);
1125 AddIntrinsicSlowPath(info, data_null_check_branch);
1126 CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
1127 kQuickAllocStringFromBytes, rl_data, rl_high, rl_offset, rl_count, true);
1128 RegLocation rl_return = GetReturn(kRefReg);
1129 RegLocation rl_dest = InlineTarget(info);
1130 StoreValue(rl_dest, rl_return);
1131 return true;
1132 }
1133
GenInlinedStringFactoryNewStringFromChars(CallInfo * info)1134 bool Mir2Lir::GenInlinedStringFactoryNewStringFromChars(CallInfo* info) {
1135 if (cu_->instruction_set == kMips) {
1136 // TODO - add Mips implementation
1137 return false;
1138 }
1139 RegLocation rl_offset = info->args[0];
1140 RegLocation rl_count = info->args[1];
1141 RegLocation rl_data = info->args[2];
1142 CallRuntimeHelperRegLocationRegLocationRegLocation(
1143 kQuickAllocStringFromChars, rl_offset, rl_count, rl_data, true);
1144 RegLocation rl_return = GetReturn(kRefReg);
1145 RegLocation rl_dest = InlineTarget(info);
1146 StoreValue(rl_dest, rl_return);
1147 return true;
1148 }
1149
GenInlinedStringFactoryNewStringFromString(CallInfo * info)1150 bool Mir2Lir::GenInlinedStringFactoryNewStringFromString(CallInfo* info) {
1151 if (cu_->instruction_set == kMips) {
1152 // TODO - add Mips implementation
1153 return false;
1154 }
1155 RegLocation rl_string = info->args[0];
1156 rl_string = LoadValue(rl_string, kRefReg);
1157 LIR* string_null_check_branch = OpCmpImmBranch(kCondEq, rl_string.reg, 0, nullptr);
1158 AddIntrinsicSlowPath(info, string_null_check_branch);
1159 CallRuntimeHelperRegLocation(kQuickAllocStringFromString, rl_string, true);
1160 RegLocation rl_return = GetReturn(kRefReg);
1161 RegLocation rl_dest = InlineTarget(info);
1162 StoreValue(rl_dest, rl_return);
1163 return true;
1164 }
1165
GenInlinedReverseBytes(CallInfo * info,OpSize size)1166 bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1167 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1168 // TODO: add Mips and Mips64 implementations.
1169 return false;
1170 }
1171 RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info); // result reg
1172 if (rl_dest.s_reg_low == INVALID_SREG) {
1173 // Result is unused, the code is dead. Inlining successful, no code generated.
1174 return true;
1175 }
1176 RegLocation rl_src_i = info->args[0];
1177 RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
1178 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1179 if (IsWide(size)) {
1180 if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
1181 OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
1182 StoreValueWide(rl_dest, rl_result);
1183 return true;
1184 }
1185 RegStorage r_i_low = rl_i.reg.GetLow();
1186 if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1187 // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
1188 r_i_low = AllocTemp();
1189 OpRegCopy(r_i_low, rl_i.reg);
1190 }
1191 OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
1192 OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
1193 if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1194 FreeTemp(r_i_low);
1195 }
1196 StoreValueWide(rl_dest, rl_result);
1197 } else {
1198 DCHECK(size == k32 || size == kSignedHalf);
1199 OpKind op = (size == k32) ? kOpRev : kOpRevsh;
1200 OpRegReg(op, rl_result.reg, rl_i.reg);
1201 StoreValue(rl_dest, rl_result);
1202 }
1203 return true;
1204 }
1205
GenInlinedAbsInt(CallInfo * info)1206 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
1207 RegLocation rl_dest = InlineTarget(info);
1208 if (rl_dest.s_reg_low == INVALID_SREG) {
1209 // Result is unused, the code is dead. Inlining successful, no code generated.
1210 return true;
1211 }
1212 RegLocation rl_src = info->args[0];
1213 rl_src = LoadValue(rl_src, kCoreReg);
1214 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1215 RegStorage sign_reg = AllocTemp();
1216 // abs(x) = y<=x>>31, (x+y)^y.
1217 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
1218 OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1219 OpRegReg(kOpXor, rl_result.reg, sign_reg);
1220 StoreValue(rl_dest, rl_result);
1221 return true;
1222 }
1223
GenInlinedAbsLong(CallInfo * info)1224 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
1225 RegLocation rl_dest = InlineTargetWide(info);
1226 if (rl_dest.s_reg_low == INVALID_SREG) {
1227 // Result is unused, the code is dead. Inlining successful, no code generated.
1228 return true;
1229 }
1230 RegLocation rl_src = info->args[0];
1231 rl_src = LoadValueWide(rl_src, kCoreReg);
1232 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1233
1234 // If on x86 or if we would clobber a register needed later, just copy the source first.
1235 if (cu_->instruction_set != kX86_64 &&
1236 (cu_->instruction_set == kX86 ||
1237 rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
1238 OpRegCopyWide(rl_result.reg, rl_src.reg);
1239 if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
1240 rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
1241 rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
1242 rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
1243 // Reuse source registers to avoid running out of temps.
1244 FreeTemp(rl_src.reg);
1245 }
1246 rl_src = rl_result;
1247 }
1248
1249 // abs(x) = y<=x>>31, (x+y)^y.
1250 RegStorage sign_reg;
1251 if (cu_->instruction_set == kX86_64) {
1252 sign_reg = AllocTempWide();
1253 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
1254 OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1255 OpRegReg(kOpXor, rl_result.reg, sign_reg);
1256 } else {
1257 sign_reg = AllocTemp();
1258 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
1259 OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
1260 OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
1261 OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
1262 OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
1263 }
1264 FreeTemp(sign_reg);
1265 StoreValueWide(rl_dest, rl_result);
1266 return true;
1267 }
1268
GenInlinedReverseBits(CallInfo * info,OpSize size)1269 bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
1270 // Currently implemented only for ARM64.
1271 UNUSED(info, size);
1272 return false;
1273 }
1274
GenInlinedMinMaxFP(CallInfo * info,bool is_min,bool is_double)1275 bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
1276 // Currently implemented only for ARM64.
1277 UNUSED(info, is_min, is_double);
1278 return false;
1279 }
1280
GenInlinedCeil(CallInfo * info)1281 bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
1282 UNUSED(info);
1283 return false;
1284 }
1285
GenInlinedFloor(CallInfo * info)1286 bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
1287 UNUSED(info);
1288 return false;
1289 }
1290
GenInlinedRint(CallInfo * info)1291 bool Mir2Lir::GenInlinedRint(CallInfo* info) {
1292 UNUSED(info);
1293 return false;
1294 }
1295
GenInlinedRound(CallInfo * info,bool is_double)1296 bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
1297 UNUSED(info, is_double);
1298 return false;
1299 }
1300
GenInlinedFloatCvt(CallInfo * info)1301 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1302 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1303 // TODO: add Mips and Mips64 implementations.
1304 return false;
1305 }
1306 RegLocation rl_dest = InlineTarget(info);
1307 if (rl_dest.s_reg_low == INVALID_SREG) {
1308 // Result is unused, the code is dead. Inlining successful, no code generated.
1309 return true;
1310 }
1311 RegLocation rl_src = info->args[0];
1312 StoreValue(rl_dest, rl_src);
1313 return true;
1314 }
1315
GenInlinedDoubleCvt(CallInfo * info)1316 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1317 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1318 // TODO: add Mips and Mips64 implementations.
1319 return false;
1320 }
1321 RegLocation rl_dest = InlineTargetWide(info);
1322 if (rl_dest.s_reg_low == INVALID_SREG) {
1323 // Result is unused, the code is dead. Inlining successful, no code generated.
1324 return true;
1325 }
1326 RegLocation rl_src = info->args[0];
1327 StoreValueWide(rl_dest, rl_src);
1328 return true;
1329 }
1330
GenInlinedArrayCopyCharArray(CallInfo * info)1331 bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1332 UNUSED(info);
1333 return false;
1334 }
1335
1336
1337 /*
1338 * Fast String.indexOf(I) & (II). Tests for simple case of char <= 0xFFFF,
1339 * otherwise bails to standard library code.
1340 */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1341 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1342 RegLocation rl_obj = info->args[0];
1343 RegLocation rl_char = info->args[1];
1344 if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
1345 // Code point beyond 0xFFFF. Punt to the real String.indexOf().
1346 return false;
1347 }
1348
1349 ClobberCallerSave();
1350 LockCallTemps(); // Using fixed registers
1351 RegStorage reg_ptr = TargetReg(kArg0, kRef);
1352 RegStorage reg_char = TargetReg(kArg1, kNotWide);
1353 RegStorage reg_start = TargetReg(kArg2, kNotWide);
1354
1355 LoadValueDirectFixed(rl_obj, reg_ptr);
1356 LoadValueDirectFixed(rl_char, reg_char);
1357 if (zero_based) {
1358 LoadConstant(reg_start, 0);
1359 } else {
1360 RegLocation rl_start = info->args[2]; // 3rd arg only present in III flavor of IndexOf.
1361 LoadValueDirectFixed(rl_start, reg_start);
1362 }
1363 RegStorage r_tgt = LoadHelper(kQuickIndexOf);
1364 GenExplicitNullCheck(reg_ptr, info->opt_flags);
1365 LIR* high_code_point_branch =
1366 rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
1367 // NOTE: not a safepoint
1368 OpReg(kOpBlx, r_tgt);
1369 if (!rl_char.is_const) {
1370 // Add the slow path for code points beyond 0xFFFF.
1371 DCHECK(high_code_point_branch != nullptr);
1372 LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1373 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1374 AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
1375 ClobberCallerSave(); // We must clobber everything because slow path will return here
1376 } else {
1377 DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
1378 DCHECK(high_code_point_branch == nullptr);
1379 }
1380 RegLocation rl_return = GetReturn(kCoreReg);
1381 RegLocation rl_dest = InlineTarget(info);
1382 StoreValue(rl_dest, rl_return);
1383 return true;
1384 }
1385
1386 /* Fast string.compareTo(Ljava/lang/string;)I. */
GenInlinedStringCompareTo(CallInfo * info)1387 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1388 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1389 // TODO: add Mips and Mips64 implementations.
1390 return false;
1391 }
1392 ClobberCallerSave();
1393 LockCallTemps(); // Using fixed registers
1394 RegStorage reg_this = TargetReg(kArg0, kRef);
1395 RegStorage reg_cmp = TargetReg(kArg1, kRef);
1396
1397 RegLocation rl_this = info->args[0];
1398 RegLocation rl_cmp = info->args[1];
1399 LoadValueDirectFixed(rl_this, reg_this);
1400 LoadValueDirectFixed(rl_cmp, reg_cmp);
1401 RegStorage r_tgt;
1402 if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1403 r_tgt = LoadHelper(kQuickStringCompareTo);
1404 } else {
1405 r_tgt = RegStorage::InvalidReg();
1406 }
1407 GenExplicitNullCheck(reg_this, info->opt_flags);
1408 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1409 // TUNING: check if rl_cmp.s_reg_low is already null checked
1410 LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
1411 AddIntrinsicSlowPath(info, cmp_null_check_branch);
1412 // NOTE: not a safepoint
1413 CallHelper(r_tgt, kQuickStringCompareTo, false, true);
1414 RegLocation rl_return = GetReturn(kCoreReg);
1415 RegLocation rl_dest = InlineTarget(info);
1416 StoreValue(rl_dest, rl_return);
1417 return true;
1418 }
1419
GenInlinedCurrentThread(CallInfo * info)1420 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1421 RegLocation rl_dest = InlineTarget(info);
1422
1423 // Early exit if the result is unused.
1424 if (rl_dest.orig_sreg < 0) {
1425 return true;
1426 }
1427
1428 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1429
1430 if (cu_->target64) {
1431 LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
1432 kNotVolatile);
1433 } else {
1434 Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
1435 }
1436
1437 StoreValue(rl_dest, rl_result);
1438 return true;
1439 }
1440
GenInlinedUnsafeGet(CallInfo * info,bool is_long,bool is_object,bool is_volatile)1441 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1442 bool is_long, bool is_object, bool is_volatile) {
1443 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1444 // TODO: add Mips and Mips64 implementations.
1445 return false;
1446 }
1447 // Unused - RegLocation rl_src_unsafe = info->args[0];
1448 RegLocation rl_src_obj = info->args[1]; // Object
1449 RegLocation rl_src_offset = info->args[2]; // long low
1450 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
1451 RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg
1452
1453 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1454 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1455 RegLocation rl_result = EvalLoc(rl_dest, is_object ? kRefReg : kCoreReg, true);
1456 if (is_long) {
1457 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1458 || cu_->instruction_set == kArm64) {
1459 LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
1460 } else {
1461 RegStorage rl_temp_offset = AllocTemp();
1462 OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1463 LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
1464 FreeTemp(rl_temp_offset);
1465 }
1466 } else {
1467 if (rl_result.ref) {
1468 LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
1469 } else {
1470 LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
1471 }
1472 }
1473
1474 if (is_volatile) {
1475 GenMemBarrier(kLoadAny);
1476 }
1477
1478 if (is_long) {
1479 StoreValueWide(rl_dest, rl_result);
1480 } else {
1481 StoreValue(rl_dest, rl_result);
1482 }
1483 return true;
1484 }
1485
GenInlinedUnsafePut(CallInfo * info,bool is_long,bool is_object,bool is_volatile,bool is_ordered)1486 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1487 bool is_object, bool is_volatile, bool is_ordered) {
1488 if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
1489 // TODO: add Mips and Mips64 implementations.
1490 return false;
1491 }
1492 // Unused - RegLocation rl_src_unsafe = info->args[0];
1493 RegLocation rl_src_obj = info->args[1]; // Object
1494 RegLocation rl_src_offset = info->args[2]; // long low
1495 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
1496 RegLocation rl_src_value = info->args[4]; // value to store
1497 if (is_volatile || is_ordered) {
1498 GenMemBarrier(kAnyStore);
1499 }
1500 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1501 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1502 RegLocation rl_value;
1503 if (is_long) {
1504 rl_value = LoadValueWide(rl_src_value, kCoreReg);
1505 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1506 || cu_->instruction_set == kArm64) {
1507 StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
1508 } else {
1509 RegStorage rl_temp_offset = AllocTemp();
1510 OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1511 StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
1512 FreeTemp(rl_temp_offset);
1513 }
1514 } else {
1515 rl_value = LoadValue(rl_src_value, is_object ? kRefReg : kCoreReg);
1516 if (rl_value.ref) {
1517 StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
1518 } else {
1519 StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
1520 }
1521 }
1522
1523 // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1524 FreeTemp(rl_offset.reg);
1525
1526 if (is_volatile) {
1527 // Prevent reordering with a subsequent volatile load.
1528 // May also be needed to address store atomicity issues.
1529 GenMemBarrier(kAnyAny);
1530 }
1531 if (is_object) {
1532 MarkGCCard(0, rl_value.reg, rl_object.reg);
1533 }
1534 return true;
1535 }
1536
GenInvoke(CallInfo * info)1537 void Mir2Lir::GenInvoke(CallInfo* info) {
1538 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1539 if (mir_graph_->GetMethodLoweringInfo(info->mir).IsIntrinsic()) {
1540 const DexFile* dex_file = info->method_ref.dex_file;
1541 auto* inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(dex_file);
1542 if (inliner->GenIntrinsic(this, info)) {
1543 return;
1544 }
1545 }
1546 GenInvokeNoInline(info);
1547 }
1548
GenInvokeNoInline(CallInfo * info)1549 void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
1550 int call_state = 0;
1551 LIR* null_ck;
1552 LIR** p_null_ck = nullptr;
1553 NextCallInsn next_call_insn;
1554 FlushAllRegs(); /* Everything to home location */
1555 // Explicit register usage
1556 LockCallTemps();
1557
1558 const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
1559 MethodReference target_method = method_info.GetTargetMethod();
1560 cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
1561 InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
1562 info->type = method_info.GetSharpType();
1563 bool is_string_init = false;
1564 if (method_info.IsSpecial()) {
1565 DexFileMethodInliner* inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(
1566 target_method.dex_file);
1567 if (inliner->IsStringInitMethodIndex(target_method.dex_method_index)) {
1568 is_string_init = true;
1569 size_t pointer_size = GetInstructionSetPointerSize(cu_->instruction_set);
1570 info->string_init_offset = inliner->GetOffsetForStringInit(target_method.dex_method_index,
1571 pointer_size);
1572 info->type = kStatic;
1573 }
1574 }
1575 bool fast_path = method_info.FastPath();
1576 bool skip_this;
1577
1578 if (info->type == kInterface) {
1579 next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1580 skip_this = fast_path;
1581 } else if (info->type == kDirect) {
1582 if (fast_path) {
1583 p_null_ck = &null_ck;
1584 }
1585 next_call_insn = fast_path ? GetNextSDCallInsn() : NextDirectCallInsnSP;
1586 skip_this = false;
1587 } else if (info->type == kStatic) {
1588 next_call_insn = fast_path ? GetNextSDCallInsn() : NextStaticCallInsnSP;
1589 skip_this = false;
1590 } else if (info->type == kSuper) {
1591 DCHECK(!fast_path); // Fast path is a direct call.
1592 next_call_insn = NextSuperCallInsnSP;
1593 skip_this = false;
1594 } else {
1595 DCHECK_EQ(info->type, kVirtual);
1596 next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1597 skip_this = fast_path;
1598 }
1599 call_state = GenDalvikArgs(info, call_state, p_null_ck,
1600 next_call_insn, target_method, method_info.VTableIndex(),
1601 method_info.DirectCode(), method_info.DirectMethod(),
1602 original_type, skip_this);
1603 // Finish up any of the call sequence not interleaved in arg loading
1604 while (call_state >= 0) {
1605 call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
1606 method_info.DirectCode(), method_info.DirectMethod(),
1607 original_type);
1608 }
1609 LIR* call_insn = GenCallInsn(method_info);
1610 MarkSafepointPC(call_insn);
1611
1612 FreeCallTemps();
1613 if (info->result.location != kLocInvalid) {
1614 // We have a following MOVE_RESULT - do it now.
1615 RegisterClass reg_class = is_string_init ? kRefReg :
1616 ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]);
1617 if (info->result.wide) {
1618 RegLocation ret_loc = GetReturnWide(reg_class);
1619 StoreValueWide(info->result, ret_loc);
1620 } else {
1621 RegLocation ret_loc = GetReturn(reg_class);
1622 StoreValue(info->result, ret_loc);
1623 }
1624 }
1625 }
1626
1627 } // namespace art
1628