1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "nodes.h"
18
19 #include "ssa_builder.h"
20 #include "base/bit_vector-inl.h"
21 #include "base/bit_utils.h"
22 #include "utils/growable_array.h"
23 #include "scoped_thread_state_change.h"
24
25 namespace art {
26
AddBlock(HBasicBlock * block)27 void HGraph::AddBlock(HBasicBlock* block) {
28 block->SetBlockId(blocks_.Size());
29 blocks_.Add(block);
30 }
31
FindBackEdges(ArenaBitVector * visited)32 void HGraph::FindBackEdges(ArenaBitVector* visited) {
33 ArenaBitVector visiting(arena_, blocks_.Size(), false);
34 VisitBlockForBackEdges(entry_block_, visited, &visiting);
35 }
36
RemoveAsUser(HInstruction * instruction)37 static void RemoveAsUser(HInstruction* instruction) {
38 for (size_t i = 0; i < instruction->InputCount(); i++) {
39 instruction->RemoveAsUserOfInput(i);
40 }
41
42 for (HEnvironment* environment = instruction->GetEnvironment();
43 environment != nullptr;
44 environment = environment->GetParent()) {
45 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
46 if (environment->GetInstructionAt(i) != nullptr) {
47 environment->RemoveAsUserOfInput(i);
48 }
49 }
50 }
51 }
52
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const53 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
54 for (size_t i = 0; i < blocks_.Size(); ++i) {
55 if (!visited.IsBitSet(i)) {
56 HBasicBlock* block = blocks_.Get(i);
57 DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
58 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
59 RemoveAsUser(it.Current());
60 }
61 }
62 }
63 }
64
RemoveDeadBlocks(const ArenaBitVector & visited)65 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
66 for (size_t i = 0; i < blocks_.Size(); ++i) {
67 if (!visited.IsBitSet(i)) {
68 HBasicBlock* block = blocks_.Get(i);
69 // We only need to update the successor, which might be live.
70 for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
71 block->GetSuccessors().Get(j)->RemovePredecessor(block);
72 }
73 // Remove the block from the list of blocks, so that further analyses
74 // never see it.
75 blocks_.Put(i, nullptr);
76 }
77 }
78 }
79
VisitBlockForBackEdges(HBasicBlock * block,ArenaBitVector * visited,ArenaBitVector * visiting)80 void HGraph::VisitBlockForBackEdges(HBasicBlock* block,
81 ArenaBitVector* visited,
82 ArenaBitVector* visiting) {
83 int id = block->GetBlockId();
84 if (visited->IsBitSet(id)) return;
85
86 visited->SetBit(id);
87 visiting->SetBit(id);
88 for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
89 HBasicBlock* successor = block->GetSuccessors().Get(i);
90 if (visiting->IsBitSet(successor->GetBlockId())) {
91 successor->AddBackEdge(block);
92 } else {
93 VisitBlockForBackEdges(successor, visited, visiting);
94 }
95 }
96 visiting->ClearBit(id);
97 }
98
BuildDominatorTree()99 void HGraph::BuildDominatorTree() {
100 ArenaBitVector visited(arena_, blocks_.Size(), false);
101
102 // (1) Find the back edges in the graph doing a DFS traversal.
103 FindBackEdges(&visited);
104
105 // (2) Remove instructions and phis from blocks not visited during
106 // the initial DFS as users from other instructions, so that
107 // users can be safely removed before uses later.
108 RemoveInstructionsAsUsersFromDeadBlocks(visited);
109
110 // (3) Remove blocks not visited during the initial DFS.
111 // Step (4) requires dead blocks to be removed from the
112 // predecessors list of live blocks.
113 RemoveDeadBlocks(visited);
114
115 // (4) Simplify the CFG now, so that we don't need to recompute
116 // dominators and the reverse post order.
117 SimplifyCFG();
118
119 // (5) Compute the dominance information and the reverse post order.
120 ComputeDominanceInformation();
121 }
122
ClearDominanceInformation()123 void HGraph::ClearDominanceInformation() {
124 for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
125 it.Current()->ClearDominanceInformation();
126 }
127 reverse_post_order_.Reset();
128 }
129
ClearDominanceInformation()130 void HBasicBlock::ClearDominanceInformation() {
131 dominated_blocks_.Reset();
132 dominator_ = nullptr;
133 }
134
ComputeDominanceInformation()135 void HGraph::ComputeDominanceInformation() {
136 DCHECK(reverse_post_order_.IsEmpty());
137 GrowableArray<size_t> visits(arena_, blocks_.Size());
138 visits.SetSize(blocks_.Size());
139 reverse_post_order_.Add(entry_block_);
140 for (size_t i = 0; i < entry_block_->GetSuccessors().Size(); i++) {
141 VisitBlockForDominatorTree(entry_block_->GetSuccessors().Get(i), entry_block_, &visits);
142 }
143 }
144
FindCommonDominator(HBasicBlock * first,HBasicBlock * second) const145 HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const {
146 ArenaBitVector visited(arena_, blocks_.Size(), false);
147 // Walk the dominator tree of the first block and mark the visited blocks.
148 while (first != nullptr) {
149 visited.SetBit(first->GetBlockId());
150 first = first->GetDominator();
151 }
152 // Walk the dominator tree of the second block until a marked block is found.
153 while (second != nullptr) {
154 if (visited.IsBitSet(second->GetBlockId())) {
155 return second;
156 }
157 second = second->GetDominator();
158 }
159 LOG(ERROR) << "Could not find common dominator";
160 return nullptr;
161 }
162
VisitBlockForDominatorTree(HBasicBlock * block,HBasicBlock * predecessor,GrowableArray<size_t> * visits)163 void HGraph::VisitBlockForDominatorTree(HBasicBlock* block,
164 HBasicBlock* predecessor,
165 GrowableArray<size_t>* visits) {
166 if (block->GetDominator() == nullptr) {
167 block->SetDominator(predecessor);
168 } else {
169 block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor));
170 }
171
172 visits->Increment(block->GetBlockId());
173 // Once all the forward edges have been visited, we know the immediate
174 // dominator of the block. We can then start visiting its successors.
175 if (visits->Get(block->GetBlockId()) ==
176 block->GetPredecessors().Size() - block->NumberOfBackEdges()) {
177 block->GetDominator()->AddDominatedBlock(block);
178 reverse_post_order_.Add(block);
179 for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
180 VisitBlockForDominatorTree(block->GetSuccessors().Get(i), block, visits);
181 }
182 }
183 }
184
TransformToSsa()185 void HGraph::TransformToSsa() {
186 DCHECK(!reverse_post_order_.IsEmpty());
187 SsaBuilder ssa_builder(this);
188 ssa_builder.BuildSsa();
189 }
190
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)191 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
192 // Insert a new node between `block` and `successor` to split the
193 // critical edge.
194 HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
195 AddBlock(new_block);
196 new_block->AddInstruction(new (arena_) HGoto());
197 // Use `InsertBetween` to ensure the predecessor index and successor index of
198 // `block` and `successor` are preserved.
199 new_block->InsertBetween(block, successor);
200 if (successor->IsLoopHeader()) {
201 // If we split at a back edge boundary, make the new block the back edge.
202 HLoopInformation* info = successor->GetLoopInformation();
203 if (info->IsBackEdge(*block)) {
204 info->RemoveBackEdge(block);
205 info->AddBackEdge(new_block);
206 }
207 }
208 }
209
SimplifyLoop(HBasicBlock * header)210 void HGraph::SimplifyLoop(HBasicBlock* header) {
211 HLoopInformation* info = header->GetLoopInformation();
212
213 // Make sure the loop has only one pre header. This simplifies SSA building by having
214 // to just look at the pre header to know which locals are initialized at entry of the
215 // loop.
216 size_t number_of_incomings = header->GetPredecessors().Size() - info->NumberOfBackEdges();
217 if (number_of_incomings != 1) {
218 HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
219 AddBlock(pre_header);
220 pre_header->AddInstruction(new (arena_) HGoto());
221
222 for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) {
223 HBasicBlock* predecessor = header->GetPredecessors().Get(pred);
224 if (!info->IsBackEdge(*predecessor)) {
225 predecessor->ReplaceSuccessor(header, pre_header);
226 pred--;
227 }
228 }
229 pre_header->AddSuccessor(header);
230 }
231
232 // Make sure the first predecessor of a loop header is the incoming block.
233 if (info->IsBackEdge(*header->GetPredecessors().Get(0))) {
234 HBasicBlock* to_swap = header->GetPredecessors().Get(0);
235 for (size_t pred = 1, e = header->GetPredecessors().Size(); pred < e; ++pred) {
236 HBasicBlock* predecessor = header->GetPredecessors().Get(pred);
237 if (!info->IsBackEdge(*predecessor)) {
238 header->predecessors_.Put(pred, to_swap);
239 header->predecessors_.Put(0, predecessor);
240 break;
241 }
242 }
243 }
244
245 // Place the suspend check at the beginning of the header, so that live registers
246 // will be known when allocating registers. Note that code generation can still
247 // generate the suspend check at the back edge, but needs to be careful with
248 // loop phi spill slots (which are not written to at back edge).
249 HInstruction* first_instruction = header->GetFirstInstruction();
250 if (!first_instruction->IsSuspendCheck()) {
251 HSuspendCheck* check = new (arena_) HSuspendCheck(header->GetDexPc());
252 header->InsertInstructionBefore(check, first_instruction);
253 first_instruction = check;
254 }
255 info->SetSuspendCheck(first_instruction->AsSuspendCheck());
256 }
257
SimplifyCFG()258 void HGraph::SimplifyCFG() {
259 // Simplify the CFG for future analysis, and code generation:
260 // (1): Split critical edges.
261 // (2): Simplify loops by having only one back edge, and one preheader.
262 for (size_t i = 0; i < blocks_.Size(); ++i) {
263 HBasicBlock* block = blocks_.Get(i);
264 if (block == nullptr) continue;
265 if (block->GetSuccessors().Size() > 1) {
266 for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
267 HBasicBlock* successor = block->GetSuccessors().Get(j);
268 if (successor->GetPredecessors().Size() > 1) {
269 SplitCriticalEdge(block, successor);
270 --j;
271 }
272 }
273 }
274 if (block->IsLoopHeader()) {
275 SimplifyLoop(block);
276 }
277 }
278 }
279
AnalyzeNaturalLoops() const280 bool HGraph::AnalyzeNaturalLoops() const {
281 // Order does not matter.
282 for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
283 HBasicBlock* block = it.Current();
284 if (block->IsLoopHeader()) {
285 HLoopInformation* info = block->GetLoopInformation();
286 if (!info->Populate()) {
287 // Abort if the loop is non natural. We currently bailout in such cases.
288 return false;
289 }
290 }
291 }
292 return true;
293 }
294
InsertConstant(HConstant * constant)295 void HGraph::InsertConstant(HConstant* constant) {
296 // New constants are inserted before the final control-flow instruction
297 // of the graph, or at its end if called from the graph builder.
298 if (entry_block_->EndsWithControlFlowInstruction()) {
299 entry_block_->InsertInstructionBefore(constant, entry_block_->GetLastInstruction());
300 } else {
301 entry_block_->AddInstruction(constant);
302 }
303 }
304
GetNullConstant()305 HNullConstant* HGraph::GetNullConstant() {
306 // For simplicity, don't bother reviving the cached null constant if it is
307 // not null and not in a block. Otherwise, we need to clear the instruction
308 // id and/or any invariants the graph is assuming when adding new instructions.
309 if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
310 cached_null_constant_ = new (arena_) HNullConstant();
311 InsertConstant(cached_null_constant_);
312 }
313 return cached_null_constant_;
314 }
315
GetConstant(Primitive::Type type,int64_t value)316 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value) {
317 switch (type) {
318 case Primitive::Type::kPrimBoolean:
319 DCHECK(IsUint<1>(value));
320 FALLTHROUGH_INTENDED;
321 case Primitive::Type::kPrimByte:
322 case Primitive::Type::kPrimChar:
323 case Primitive::Type::kPrimShort:
324 case Primitive::Type::kPrimInt:
325 DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
326 return GetIntConstant(static_cast<int32_t>(value));
327
328 case Primitive::Type::kPrimLong:
329 return GetLongConstant(value);
330
331 default:
332 LOG(FATAL) << "Unsupported constant type";
333 UNREACHABLE();
334 }
335 }
336
CacheFloatConstant(HFloatConstant * constant)337 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
338 int32_t value = bit_cast<int32_t, float>(constant->GetValue());
339 DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
340 cached_float_constants_.Overwrite(value, constant);
341 }
342
CacheDoubleConstant(HDoubleConstant * constant)343 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
344 int64_t value = bit_cast<int64_t, double>(constant->GetValue());
345 DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
346 cached_double_constants_.Overwrite(value, constant);
347 }
348
Add(HBasicBlock * block)349 void HLoopInformation::Add(HBasicBlock* block) {
350 blocks_.SetBit(block->GetBlockId());
351 }
352
Remove(HBasicBlock * block)353 void HLoopInformation::Remove(HBasicBlock* block) {
354 blocks_.ClearBit(block->GetBlockId());
355 }
356
PopulateRecursive(HBasicBlock * block)357 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
358 if (blocks_.IsBitSet(block->GetBlockId())) {
359 return;
360 }
361
362 blocks_.SetBit(block->GetBlockId());
363 block->SetInLoop(this);
364 for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
365 PopulateRecursive(block->GetPredecessors().Get(i));
366 }
367 }
368
Populate()369 bool HLoopInformation::Populate() {
370 DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
371 for (size_t i = 0, e = GetBackEdges().Size(); i < e; ++i) {
372 HBasicBlock* back_edge = GetBackEdges().Get(i);
373 DCHECK(back_edge->GetDominator() != nullptr);
374 if (!header_->Dominates(back_edge)) {
375 // This loop is not natural. Do not bother going further.
376 return false;
377 }
378
379 // Populate this loop: starting with the back edge, recursively add predecessors
380 // that are not already part of that loop. Set the header as part of the loop
381 // to end the recursion.
382 // This is a recursive implementation of the algorithm described in
383 // "Advanced Compiler Design & Implementation" (Muchnick) p192.
384 blocks_.SetBit(header_->GetBlockId());
385 PopulateRecursive(back_edge);
386 }
387 return true;
388 }
389
Update()390 void HLoopInformation::Update() {
391 HGraph* graph = header_->GetGraph();
392 for (uint32_t id : blocks_.Indexes()) {
393 HBasicBlock* block = graph->GetBlocks().Get(id);
394 // Reset loop information of non-header blocks inside the loop, except
395 // members of inner nested loops because those should already have been
396 // updated by their own LoopInformation.
397 if (block->GetLoopInformation() == this && block != header_) {
398 block->SetLoopInformation(nullptr);
399 }
400 }
401 blocks_.ClearAllBits();
402
403 if (back_edges_.IsEmpty()) {
404 // The loop has been dismantled, delete its suspend check and remove info
405 // from the header.
406 DCHECK(HasSuspendCheck());
407 header_->RemoveInstruction(suspend_check_);
408 header_->SetLoopInformation(nullptr);
409 header_ = nullptr;
410 suspend_check_ = nullptr;
411 } else {
412 if (kIsDebugBuild) {
413 for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
414 DCHECK(header_->Dominates(back_edges_.Get(i)));
415 }
416 }
417 // This loop still has reachable back edges. Repopulate the list of blocks.
418 bool populate_successful = Populate();
419 DCHECK(populate_successful);
420 }
421 }
422
GetPreHeader() const423 HBasicBlock* HLoopInformation::GetPreHeader() const {
424 return header_->GetDominator();
425 }
426
Contains(const HBasicBlock & block) const427 bool HLoopInformation::Contains(const HBasicBlock& block) const {
428 return blocks_.IsBitSet(block.GetBlockId());
429 }
430
IsIn(const HLoopInformation & other) const431 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
432 return other.blocks_.IsBitSet(header_->GetBlockId());
433 }
434
GetLifetimeEnd() const435 size_t HLoopInformation::GetLifetimeEnd() const {
436 size_t last_position = 0;
437 for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
438 last_position = std::max(back_edges_.Get(i)->GetLifetimeEnd(), last_position);
439 }
440 return last_position;
441 }
442
Dominates(HBasicBlock * other) const443 bool HBasicBlock::Dominates(HBasicBlock* other) const {
444 // Walk up the dominator tree from `other`, to find out if `this`
445 // is an ancestor.
446 HBasicBlock* current = other;
447 while (current != nullptr) {
448 if (current == this) {
449 return true;
450 }
451 current = current->GetDominator();
452 }
453 return false;
454 }
455
UpdateInputsUsers(HInstruction * instruction)456 static void UpdateInputsUsers(HInstruction* instruction) {
457 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
458 instruction->InputAt(i)->AddUseAt(instruction, i);
459 }
460 // Environment should be created later.
461 DCHECK(!instruction->HasEnvironment());
462 }
463
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)464 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
465 HInstruction* replacement) {
466 DCHECK(initial->GetBlock() == this);
467 InsertInstructionBefore(replacement, initial);
468 initial->ReplaceWith(replacement);
469 RemoveInstruction(initial);
470 }
471
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)472 static void Add(HInstructionList* instruction_list,
473 HBasicBlock* block,
474 HInstruction* instruction) {
475 DCHECK(instruction->GetBlock() == nullptr);
476 DCHECK_EQ(instruction->GetId(), -1);
477 instruction->SetBlock(block);
478 instruction->SetId(block->GetGraph()->GetNextInstructionId());
479 UpdateInputsUsers(instruction);
480 instruction_list->AddInstruction(instruction);
481 }
482
AddInstruction(HInstruction * instruction)483 void HBasicBlock::AddInstruction(HInstruction* instruction) {
484 Add(&instructions_, this, instruction);
485 }
486
AddPhi(HPhi * phi)487 void HBasicBlock::AddPhi(HPhi* phi) {
488 Add(&phis_, this, phi);
489 }
490
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)491 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
492 DCHECK(!cursor->IsPhi());
493 DCHECK(!instruction->IsPhi());
494 DCHECK_EQ(instruction->GetId(), -1);
495 DCHECK_NE(cursor->GetId(), -1);
496 DCHECK_EQ(cursor->GetBlock(), this);
497 DCHECK(!instruction->IsControlFlow());
498 instruction->SetBlock(this);
499 instruction->SetId(GetGraph()->GetNextInstructionId());
500 UpdateInputsUsers(instruction);
501 instructions_.InsertInstructionBefore(instruction, cursor);
502 }
503
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)504 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
505 DCHECK(!cursor->IsPhi());
506 DCHECK(!instruction->IsPhi());
507 DCHECK_EQ(instruction->GetId(), -1);
508 DCHECK_NE(cursor->GetId(), -1);
509 DCHECK_EQ(cursor->GetBlock(), this);
510 DCHECK(!instruction->IsControlFlow());
511 DCHECK(!cursor->IsControlFlow());
512 instruction->SetBlock(this);
513 instruction->SetId(GetGraph()->GetNextInstructionId());
514 UpdateInputsUsers(instruction);
515 instructions_.InsertInstructionAfter(instruction, cursor);
516 }
517
InsertPhiAfter(HPhi * phi,HPhi * cursor)518 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
519 DCHECK_EQ(phi->GetId(), -1);
520 DCHECK_NE(cursor->GetId(), -1);
521 DCHECK_EQ(cursor->GetBlock(), this);
522 phi->SetBlock(this);
523 phi->SetId(GetGraph()->GetNextInstructionId());
524 UpdateInputsUsers(phi);
525 phis_.InsertInstructionAfter(phi, cursor);
526 }
527
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)528 static void Remove(HInstructionList* instruction_list,
529 HBasicBlock* block,
530 HInstruction* instruction,
531 bool ensure_safety) {
532 DCHECK_EQ(block, instruction->GetBlock());
533 instruction->SetBlock(nullptr);
534 instruction_list->RemoveInstruction(instruction);
535 if (ensure_safety) {
536 DCHECK(instruction->GetUses().IsEmpty());
537 DCHECK(instruction->GetEnvUses().IsEmpty());
538 RemoveAsUser(instruction);
539 }
540 }
541
RemoveInstruction(HInstruction * instruction,bool ensure_safety)542 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
543 DCHECK(!instruction->IsPhi());
544 Remove(&instructions_, this, instruction, ensure_safety);
545 }
546
RemovePhi(HPhi * phi,bool ensure_safety)547 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
548 Remove(&phis_, this, phi, ensure_safety);
549 }
550
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)551 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
552 if (instruction->IsPhi()) {
553 RemovePhi(instruction->AsPhi(), ensure_safety);
554 } else {
555 RemoveInstruction(instruction, ensure_safety);
556 }
557 }
558
CopyFrom(const GrowableArray<HInstruction * > & locals)559 void HEnvironment::CopyFrom(const GrowableArray<HInstruction*>& locals) {
560 for (size_t i = 0; i < locals.Size(); i++) {
561 HInstruction* instruction = locals.Get(i);
562 SetRawEnvAt(i, instruction);
563 if (instruction != nullptr) {
564 instruction->AddEnvUseAt(this, i);
565 }
566 }
567 }
568
CopyFrom(HEnvironment * env)569 void HEnvironment::CopyFrom(HEnvironment* env) {
570 for (size_t i = 0; i < env->Size(); i++) {
571 HInstruction* instruction = env->GetInstructionAt(i);
572 SetRawEnvAt(i, instruction);
573 if (instruction != nullptr) {
574 instruction->AddEnvUseAt(this, i);
575 }
576 }
577 }
578
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)579 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
580 HBasicBlock* loop_header) {
581 DCHECK(loop_header->IsLoopHeader());
582 for (size_t i = 0; i < env->Size(); i++) {
583 HInstruction* instruction = env->GetInstructionAt(i);
584 SetRawEnvAt(i, instruction);
585 if (instruction == nullptr) {
586 continue;
587 }
588 if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
589 // At the end of the loop pre-header, the corresponding value for instruction
590 // is the first input of the phi.
591 HInstruction* initial = instruction->AsPhi()->InputAt(0);
592 DCHECK(initial->GetBlock()->Dominates(loop_header));
593 SetRawEnvAt(i, initial);
594 initial->AddEnvUseAt(this, i);
595 } else {
596 instruction->AddEnvUseAt(this, i);
597 }
598 }
599 }
600
RemoveAsUserOfInput(size_t index) const601 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
602 const HUserRecord<HEnvironment*> user_record = vregs_.Get(index);
603 user_record.GetInstruction()->RemoveEnvironmentUser(user_record.GetUseNode());
604 }
605
GetNextDisregardingMoves() const606 HInstruction* HInstruction::GetNextDisregardingMoves() const {
607 HInstruction* next = GetNext();
608 while (next != nullptr && next->IsParallelMove()) {
609 next = next->GetNext();
610 }
611 return next;
612 }
613
GetPreviousDisregardingMoves() const614 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
615 HInstruction* previous = GetPrevious();
616 while (previous != nullptr && previous->IsParallelMove()) {
617 previous = previous->GetPrevious();
618 }
619 return previous;
620 }
621
AddInstruction(HInstruction * instruction)622 void HInstructionList::AddInstruction(HInstruction* instruction) {
623 if (first_instruction_ == nullptr) {
624 DCHECK(last_instruction_ == nullptr);
625 first_instruction_ = last_instruction_ = instruction;
626 } else {
627 last_instruction_->next_ = instruction;
628 instruction->previous_ = last_instruction_;
629 last_instruction_ = instruction;
630 }
631 }
632
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)633 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
634 DCHECK(Contains(cursor));
635 if (cursor == first_instruction_) {
636 cursor->previous_ = instruction;
637 instruction->next_ = cursor;
638 first_instruction_ = instruction;
639 } else {
640 instruction->previous_ = cursor->previous_;
641 instruction->next_ = cursor;
642 cursor->previous_ = instruction;
643 instruction->previous_->next_ = instruction;
644 }
645 }
646
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)647 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
648 DCHECK(Contains(cursor));
649 if (cursor == last_instruction_) {
650 cursor->next_ = instruction;
651 instruction->previous_ = cursor;
652 last_instruction_ = instruction;
653 } else {
654 instruction->next_ = cursor->next_;
655 instruction->previous_ = cursor;
656 cursor->next_ = instruction;
657 instruction->next_->previous_ = instruction;
658 }
659 }
660
RemoveInstruction(HInstruction * instruction)661 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
662 if (instruction->previous_ != nullptr) {
663 instruction->previous_->next_ = instruction->next_;
664 }
665 if (instruction->next_ != nullptr) {
666 instruction->next_->previous_ = instruction->previous_;
667 }
668 if (instruction == first_instruction_) {
669 first_instruction_ = instruction->next_;
670 }
671 if (instruction == last_instruction_) {
672 last_instruction_ = instruction->previous_;
673 }
674 }
675
Contains(HInstruction * instruction) const676 bool HInstructionList::Contains(HInstruction* instruction) const {
677 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
678 if (it.Current() == instruction) {
679 return true;
680 }
681 }
682 return false;
683 }
684
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const685 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
686 const HInstruction* instruction2) const {
687 DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
688 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
689 if (it.Current() == instruction1) {
690 return true;
691 }
692 if (it.Current() == instruction2) {
693 return false;
694 }
695 }
696 LOG(FATAL) << "Did not find an order between two instructions of the same block.";
697 return true;
698 }
699
StrictlyDominates(HInstruction * other_instruction) const700 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
701 if (other_instruction == this) {
702 // An instruction does not strictly dominate itself.
703 return false;
704 }
705 HBasicBlock* block = GetBlock();
706 HBasicBlock* other_block = other_instruction->GetBlock();
707 if (block != other_block) {
708 return GetBlock()->Dominates(other_instruction->GetBlock());
709 } else {
710 // If both instructions are in the same block, ensure this
711 // instruction comes before `other_instruction`.
712 if (IsPhi()) {
713 if (!other_instruction->IsPhi()) {
714 // Phis appear before non phi-instructions so this instruction
715 // dominates `other_instruction`.
716 return true;
717 } else {
718 // There is no order among phis.
719 LOG(FATAL) << "There is no dominance between phis of a same block.";
720 return false;
721 }
722 } else {
723 // `this` is not a phi.
724 if (other_instruction->IsPhi()) {
725 // Phis appear before non phi-instructions so this instruction
726 // does not dominate `other_instruction`.
727 return false;
728 } else {
729 // Check whether this instruction comes before
730 // `other_instruction` in the instruction list.
731 return block->GetInstructions().FoundBefore(this, other_instruction);
732 }
733 }
734 }
735 }
736
ReplaceWith(HInstruction * other)737 void HInstruction::ReplaceWith(HInstruction* other) {
738 DCHECK(other != nullptr);
739 for (HUseIterator<HInstruction*> it(GetUses()); !it.Done(); it.Advance()) {
740 HUseListNode<HInstruction*>* current = it.Current();
741 HInstruction* user = current->GetUser();
742 size_t input_index = current->GetIndex();
743 user->SetRawInputAt(input_index, other);
744 other->AddUseAt(user, input_index);
745 }
746
747 for (HUseIterator<HEnvironment*> it(GetEnvUses()); !it.Done(); it.Advance()) {
748 HUseListNode<HEnvironment*>* current = it.Current();
749 HEnvironment* user = current->GetUser();
750 size_t input_index = current->GetIndex();
751 user->SetRawEnvAt(input_index, other);
752 other->AddEnvUseAt(user, input_index);
753 }
754
755 uses_.Clear();
756 env_uses_.Clear();
757 }
758
ReplaceInput(HInstruction * replacement,size_t index)759 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
760 RemoveAsUserOfInput(index);
761 SetRawInputAt(index, replacement);
762 replacement->AddUseAt(this, index);
763 }
764
EnvironmentSize() const765 size_t HInstruction::EnvironmentSize() const {
766 return HasEnvironment() ? environment_->Size() : 0;
767 }
768
AddInput(HInstruction * input)769 void HPhi::AddInput(HInstruction* input) {
770 DCHECK(input->GetBlock() != nullptr);
771 inputs_.Add(HUserRecord<HInstruction*>(input));
772 input->AddUseAt(this, inputs_.Size() - 1);
773 }
774
RemoveInputAt(size_t index)775 void HPhi::RemoveInputAt(size_t index) {
776 RemoveAsUserOfInput(index);
777 inputs_.DeleteAt(index);
778 for (size_t i = index, e = InputCount(); i < e; ++i) {
779 InputRecordAt(i).GetUseNode()->SetIndex(i);
780 }
781 }
782
783 #define DEFINE_ACCEPT(name, super) \
784 void H##name::Accept(HGraphVisitor* visitor) { \
785 visitor->Visit##name(this); \
786 }
787
FOR_EACH_INSTRUCTION(DEFINE_ACCEPT)788 FOR_EACH_INSTRUCTION(DEFINE_ACCEPT)
789
790 #undef DEFINE_ACCEPT
791
792 void HGraphVisitor::VisitInsertionOrder() {
793 const GrowableArray<HBasicBlock*>& blocks = graph_->GetBlocks();
794 for (size_t i = 0 ; i < blocks.Size(); i++) {
795 HBasicBlock* block = blocks.Get(i);
796 if (block != nullptr) {
797 VisitBasicBlock(block);
798 }
799 }
800 }
801
VisitReversePostOrder()802 void HGraphVisitor::VisitReversePostOrder() {
803 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
804 VisitBasicBlock(it.Current());
805 }
806 }
807
VisitBasicBlock(HBasicBlock * block)808 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
809 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
810 it.Current()->Accept(this);
811 }
812 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
813 it.Current()->Accept(this);
814 }
815 }
816
TryStaticEvaluation() const817 HConstant* HUnaryOperation::TryStaticEvaluation() const {
818 if (GetInput()->IsIntConstant()) {
819 int32_t value = Evaluate(GetInput()->AsIntConstant()->GetValue());
820 return GetBlock()->GetGraph()->GetIntConstant(value);
821 } else if (GetInput()->IsLongConstant()) {
822 // TODO: Implement static evaluation of long unary operations.
823 //
824 // Do not exit with a fatal condition here. Instead, simply
825 // return `null' to notify the caller that this instruction
826 // cannot (yet) be statically evaluated.
827 return nullptr;
828 }
829 return nullptr;
830 }
831
TryStaticEvaluation() const832 HConstant* HBinaryOperation::TryStaticEvaluation() const {
833 if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
834 int32_t value = Evaluate(GetLeft()->AsIntConstant()->GetValue(),
835 GetRight()->AsIntConstant()->GetValue());
836 return GetBlock()->GetGraph()->GetIntConstant(value);
837 } else if (GetLeft()->IsLongConstant() && GetRight()->IsLongConstant()) {
838 int64_t value = Evaluate(GetLeft()->AsLongConstant()->GetValue(),
839 GetRight()->AsLongConstant()->GetValue());
840 if (GetResultType() == Primitive::kPrimLong) {
841 return GetBlock()->GetGraph()->GetLongConstant(value);
842 } else {
843 DCHECK_EQ(GetResultType(), Primitive::kPrimInt);
844 return GetBlock()->GetGraph()->GetIntConstant(static_cast<int32_t>(value));
845 }
846 }
847 return nullptr;
848 }
849
GetConstantRight() const850 HConstant* HBinaryOperation::GetConstantRight() const {
851 if (GetRight()->IsConstant()) {
852 return GetRight()->AsConstant();
853 } else if (IsCommutative() && GetLeft()->IsConstant()) {
854 return GetLeft()->AsConstant();
855 } else {
856 return nullptr;
857 }
858 }
859
860 // If `GetConstantRight()` returns one of the input, this returns the other
861 // one. Otherwise it returns null.
GetLeastConstantLeft() const862 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
863 HInstruction* most_constant_right = GetConstantRight();
864 if (most_constant_right == nullptr) {
865 return nullptr;
866 } else if (most_constant_right == GetLeft()) {
867 return GetRight();
868 } else {
869 return GetLeft();
870 }
871 }
872
IsBeforeWhenDisregardMoves(HInstruction * instruction) const873 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
874 return this == instruction->GetPreviousDisregardingMoves();
875 }
876
Equals(HInstruction * other) const877 bool HInstruction::Equals(HInstruction* other) const {
878 if (!InstructionTypeEquals(other)) return false;
879 DCHECK_EQ(GetKind(), other->GetKind());
880 if (!InstructionDataEquals(other)) return false;
881 if (GetType() != other->GetType()) return false;
882 if (InputCount() != other->InputCount()) return false;
883
884 for (size_t i = 0, e = InputCount(); i < e; ++i) {
885 if (InputAt(i) != other->InputAt(i)) return false;
886 }
887 DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
888 return true;
889 }
890
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)891 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
892 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
893 switch (rhs) {
894 FOR_EACH_INSTRUCTION(DECLARE_CASE)
895 default:
896 os << "Unknown instruction kind " << static_cast<int>(rhs);
897 break;
898 }
899 #undef DECLARE_CASE
900 return os;
901 }
902
MoveBefore(HInstruction * cursor)903 void HInstruction::MoveBefore(HInstruction* cursor) {
904 next_->previous_ = previous_;
905 if (previous_ != nullptr) {
906 previous_->next_ = next_;
907 }
908 if (block_->instructions_.first_instruction_ == this) {
909 block_->instructions_.first_instruction_ = next_;
910 }
911 DCHECK_NE(block_->instructions_.last_instruction_, this);
912
913 previous_ = cursor->previous_;
914 if (previous_ != nullptr) {
915 previous_->next_ = this;
916 }
917 next_ = cursor;
918 cursor->previous_ = this;
919 block_ = cursor->block_;
920
921 if (block_->instructions_.first_instruction_ == cursor) {
922 block_->instructions_.first_instruction_ = this;
923 }
924 }
925
SplitAfter(HInstruction * cursor)926 HBasicBlock* HBasicBlock::SplitAfter(HInstruction* cursor) {
927 DCHECK(!cursor->IsControlFlow());
928 DCHECK_NE(instructions_.last_instruction_, cursor);
929 DCHECK_EQ(cursor->GetBlock(), this);
930
931 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
932 new_block->instructions_.first_instruction_ = cursor->GetNext();
933 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
934 cursor->next_->previous_ = nullptr;
935 cursor->next_ = nullptr;
936 instructions_.last_instruction_ = cursor;
937
938 new_block->instructions_.SetBlockOfInstructions(new_block);
939 for (size_t i = 0, e = GetSuccessors().Size(); i < e; ++i) {
940 HBasicBlock* successor = GetSuccessors().Get(i);
941 new_block->successors_.Add(successor);
942 successor->predecessors_.Put(successor->GetPredecessorIndexOf(this), new_block);
943 }
944 successors_.Reset();
945
946 for (size_t i = 0, e = GetDominatedBlocks().Size(); i < e; ++i) {
947 HBasicBlock* dominated = GetDominatedBlocks().Get(i);
948 dominated->dominator_ = new_block;
949 new_block->dominated_blocks_.Add(dominated);
950 }
951 dominated_blocks_.Reset();
952 return new_block;
953 }
954
IsSingleGoto() const955 bool HBasicBlock::IsSingleGoto() const {
956 HLoopInformation* loop_info = GetLoopInformation();
957 // TODO: Remove the null check b/19084197.
958 return GetFirstInstruction() != nullptr
959 && GetPhis().IsEmpty()
960 && GetFirstInstruction() == GetLastInstruction()
961 && GetLastInstruction()->IsGoto()
962 // Back edges generate the suspend check.
963 && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
964 }
965
EndsWithControlFlowInstruction() const966 bool HBasicBlock::EndsWithControlFlowInstruction() const {
967 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
968 }
969
EndsWithIf() const970 bool HBasicBlock::EndsWithIf() const {
971 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
972 }
973
HasSinglePhi() const974 bool HBasicBlock::HasSinglePhi() const {
975 return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
976 }
977
CountSize() const978 size_t HInstructionList::CountSize() const {
979 size_t size = 0;
980 HInstruction* current = first_instruction_;
981 for (; current != nullptr; current = current->GetNext()) {
982 size++;
983 }
984 return size;
985 }
986
SetBlockOfInstructions(HBasicBlock * block) const987 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
988 for (HInstruction* current = first_instruction_;
989 current != nullptr;
990 current = current->GetNext()) {
991 current->SetBlock(block);
992 }
993 }
994
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)995 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
996 DCHECK(Contains(cursor));
997 if (!instruction_list.IsEmpty()) {
998 if (cursor == last_instruction_) {
999 last_instruction_ = instruction_list.last_instruction_;
1000 } else {
1001 cursor->next_->previous_ = instruction_list.last_instruction_;
1002 }
1003 instruction_list.last_instruction_->next_ = cursor->next_;
1004 cursor->next_ = instruction_list.first_instruction_;
1005 instruction_list.first_instruction_->previous_ = cursor;
1006 }
1007 }
1008
Add(const HInstructionList & instruction_list)1009 void HInstructionList::Add(const HInstructionList& instruction_list) {
1010 if (IsEmpty()) {
1011 first_instruction_ = instruction_list.first_instruction_;
1012 last_instruction_ = instruction_list.last_instruction_;
1013 } else {
1014 AddAfter(last_instruction_, instruction_list);
1015 }
1016 }
1017
DisconnectAndDelete()1018 void HBasicBlock::DisconnectAndDelete() {
1019 // Dominators must be removed after all the blocks they dominate. This way
1020 // a loop header is removed last, a requirement for correct loop information
1021 // iteration.
1022 DCHECK(dominated_blocks_.IsEmpty());
1023
1024 // Remove the block from all loops it is included in.
1025 for (HLoopInformationOutwardIterator it(*this); !it.Done(); it.Advance()) {
1026 HLoopInformation* loop_info = it.Current();
1027 loop_info->Remove(this);
1028 if (loop_info->IsBackEdge(*this)) {
1029 // If this was the last back edge of the loop, we deliberately leave the
1030 // loop in an inconsistent state and will fail SSAChecker unless the
1031 // entire loop is removed during the pass.
1032 loop_info->RemoveBackEdge(this);
1033 }
1034 }
1035
1036 // Disconnect the block from its predecessors and update their control-flow
1037 // instructions.
1038 for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
1039 HBasicBlock* predecessor = predecessors_.Get(i);
1040 HInstruction* last_instruction = predecessor->GetLastInstruction();
1041 predecessor->RemoveInstruction(last_instruction);
1042 predecessor->RemoveSuccessor(this);
1043 if (predecessor->GetSuccessors().Size() == 1u) {
1044 DCHECK(last_instruction->IsIf());
1045 predecessor->AddInstruction(new (graph_->GetArena()) HGoto());
1046 } else {
1047 // The predecessor has no remaining successors and therefore must be dead.
1048 // We deliberately leave it without a control-flow instruction so that the
1049 // SSAChecker fails unless it is not removed during the pass too.
1050 DCHECK_EQ(predecessor->GetSuccessors().Size(), 0u);
1051 }
1052 }
1053 predecessors_.Reset();
1054
1055 // Disconnect the block from its successors and update their phis.
1056 for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
1057 HBasicBlock* successor = successors_.Get(i);
1058 // Delete this block from the list of predecessors.
1059 size_t this_index = successor->GetPredecessorIndexOf(this);
1060 successor->predecessors_.DeleteAt(this_index);
1061
1062 // Check that `successor` has other predecessors, otherwise `this` is the
1063 // dominator of `successor` which violates the order DCHECKed at the top.
1064 DCHECK(!successor->predecessors_.IsEmpty());
1065
1066 // Remove this block's entries in the successor's phis.
1067 if (successor->predecessors_.Size() == 1u) {
1068 // The successor has just one predecessor left. Replace phis with the only
1069 // remaining input.
1070 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1071 HPhi* phi = phi_it.Current()->AsPhi();
1072 phi->ReplaceWith(phi->InputAt(1 - this_index));
1073 successor->RemovePhi(phi);
1074 }
1075 } else {
1076 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1077 phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1078 }
1079 }
1080 }
1081 successors_.Reset();
1082
1083 // Disconnect from the dominator.
1084 dominator_->RemoveDominatedBlock(this);
1085 SetDominator(nullptr);
1086
1087 // Delete from the graph. The function safely deletes remaining instructions
1088 // and updates the reverse post order.
1089 graph_->DeleteDeadBlock(this);
1090 SetGraph(nullptr);
1091 }
1092
MergeWith(HBasicBlock * other)1093 void HBasicBlock::MergeWith(HBasicBlock* other) {
1094 DCHECK_EQ(GetGraph(), other->GetGraph());
1095 DCHECK(GetDominatedBlocks().Contains(other));
1096 DCHECK_EQ(GetSuccessors().Size(), 1u);
1097 DCHECK_EQ(GetSuccessors().Get(0), other);
1098 DCHECK_EQ(other->GetPredecessors().Size(), 1u);
1099 DCHECK_EQ(other->GetPredecessors().Get(0), this);
1100 DCHECK(other->GetPhis().IsEmpty());
1101
1102 // Move instructions from `other` to `this`.
1103 DCHECK(EndsWithControlFlowInstruction());
1104 RemoveInstruction(GetLastInstruction());
1105 instructions_.Add(other->GetInstructions());
1106 other->instructions_.SetBlockOfInstructions(this);
1107 other->instructions_.Clear();
1108
1109 // Remove `other` from the loops it is included in.
1110 for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1111 HLoopInformation* loop_info = it.Current();
1112 loop_info->Remove(other);
1113 if (loop_info->IsBackEdge(*other)) {
1114 loop_info->ReplaceBackEdge(other, this);
1115 }
1116 }
1117
1118 // Update links to the successors of `other`.
1119 successors_.Reset();
1120 while (!other->successors_.IsEmpty()) {
1121 HBasicBlock* successor = other->successors_.Get(0);
1122 successor->ReplacePredecessor(other, this);
1123 }
1124
1125 // Update the dominator tree.
1126 dominated_blocks_.Delete(other);
1127 for (size_t i = 0, e = other->GetDominatedBlocks().Size(); i < e; ++i) {
1128 HBasicBlock* dominated = other->GetDominatedBlocks().Get(i);
1129 dominated_blocks_.Add(dominated);
1130 dominated->SetDominator(this);
1131 }
1132 other->dominated_blocks_.Reset();
1133 other->dominator_ = nullptr;
1134
1135 // Clear the list of predecessors of `other` in preparation of deleting it.
1136 other->predecessors_.Reset();
1137
1138 // Delete `other` from the graph. The function updates reverse post order.
1139 graph_->DeleteDeadBlock(other);
1140 other->SetGraph(nullptr);
1141 }
1142
MergeWithInlined(HBasicBlock * other)1143 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
1144 DCHECK_NE(GetGraph(), other->GetGraph());
1145 DCHECK(GetDominatedBlocks().IsEmpty());
1146 DCHECK(GetSuccessors().IsEmpty());
1147 DCHECK(!EndsWithControlFlowInstruction());
1148 DCHECK_EQ(other->GetPredecessors().Size(), 1u);
1149 DCHECK(other->GetPredecessors().Get(0)->IsEntryBlock());
1150 DCHECK(other->GetPhis().IsEmpty());
1151 DCHECK(!other->IsInLoop());
1152
1153 // Move instructions from `other` to `this`.
1154 instructions_.Add(other->GetInstructions());
1155 other->instructions_.SetBlockOfInstructions(this);
1156
1157 // Update links to the successors of `other`.
1158 successors_.Reset();
1159 while (!other->successors_.IsEmpty()) {
1160 HBasicBlock* successor = other->successors_.Get(0);
1161 successor->ReplacePredecessor(other, this);
1162 }
1163
1164 // Update the dominator tree.
1165 for (size_t i = 0, e = other->GetDominatedBlocks().Size(); i < e; ++i) {
1166 HBasicBlock* dominated = other->GetDominatedBlocks().Get(i);
1167 dominated_blocks_.Add(dominated);
1168 dominated->SetDominator(this);
1169 }
1170 other->dominated_blocks_.Reset();
1171 other->dominator_ = nullptr;
1172 other->graph_ = nullptr;
1173 }
1174
ReplaceWith(HBasicBlock * other)1175 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
1176 while (!GetPredecessors().IsEmpty()) {
1177 HBasicBlock* predecessor = GetPredecessors().Get(0);
1178 predecessor->ReplaceSuccessor(this, other);
1179 }
1180 while (!GetSuccessors().IsEmpty()) {
1181 HBasicBlock* successor = GetSuccessors().Get(0);
1182 successor->ReplacePredecessor(this, other);
1183 }
1184 for (size_t i = 0; i < dominated_blocks_.Size(); ++i) {
1185 other->AddDominatedBlock(dominated_blocks_.Get(i));
1186 }
1187 GetDominator()->ReplaceDominatedBlock(this, other);
1188 other->SetDominator(GetDominator());
1189 dominator_ = nullptr;
1190 graph_ = nullptr;
1191 }
1192
1193 // Create space in `blocks` for adding `number_of_new_blocks` entries
1194 // starting at location `at`. Blocks after `at` are moved accordingly.
MakeRoomFor(GrowableArray<HBasicBlock * > * blocks,size_t number_of_new_blocks,size_t at)1195 static void MakeRoomFor(GrowableArray<HBasicBlock*>* blocks,
1196 size_t number_of_new_blocks,
1197 size_t at) {
1198 size_t old_size = blocks->Size();
1199 size_t new_size = old_size + number_of_new_blocks;
1200 blocks->SetSize(new_size);
1201 for (size_t i = old_size - 1, j = new_size - 1; i > at; --i, --j) {
1202 blocks->Put(j, blocks->Get(i));
1203 }
1204 }
1205
DeleteDeadBlock(HBasicBlock * block)1206 void HGraph::DeleteDeadBlock(HBasicBlock* block) {
1207 DCHECK_EQ(block->GetGraph(), this);
1208 DCHECK(block->GetSuccessors().IsEmpty());
1209 DCHECK(block->GetPredecessors().IsEmpty());
1210 DCHECK(block->GetDominatedBlocks().IsEmpty());
1211 DCHECK(block->GetDominator() == nullptr);
1212
1213 for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1214 block->RemoveInstruction(it.Current());
1215 }
1216 for (HBackwardInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1217 block->RemovePhi(it.Current()->AsPhi());
1218 }
1219
1220 reverse_post_order_.Delete(block);
1221 blocks_.Put(block->GetBlockId(), nullptr);
1222 }
1223
InlineInto(HGraph * outer_graph,HInvoke * invoke)1224 void HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
1225 if (GetBlocks().Size() == 3) {
1226 // Simple case of an entry block, a body block, and an exit block.
1227 // Put the body block's instruction into `invoke`'s block.
1228 HBasicBlock* body = GetBlocks().Get(1);
1229 DCHECK(GetBlocks().Get(0)->IsEntryBlock());
1230 DCHECK(GetBlocks().Get(2)->IsExitBlock());
1231 DCHECK(!body->IsExitBlock());
1232 HInstruction* last = body->GetLastInstruction();
1233
1234 invoke->GetBlock()->instructions_.AddAfter(invoke, body->GetInstructions());
1235 body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
1236
1237 // Replace the invoke with the return value of the inlined graph.
1238 if (last->IsReturn()) {
1239 invoke->ReplaceWith(last->InputAt(0));
1240 } else {
1241 DCHECK(last->IsReturnVoid());
1242 }
1243
1244 invoke->GetBlock()->RemoveInstruction(last);
1245 } else {
1246 // Need to inline multiple blocks. We split `invoke`'s block
1247 // into two blocks, merge the first block of the inlined graph into
1248 // the first half, and replace the exit block of the inlined graph
1249 // with the second half.
1250 ArenaAllocator* allocator = outer_graph->GetArena();
1251 HBasicBlock* at = invoke->GetBlock();
1252 HBasicBlock* to = at->SplitAfter(invoke);
1253
1254 HBasicBlock* first = entry_block_->GetSuccessors().Get(0);
1255 DCHECK(!first->IsInLoop());
1256 at->MergeWithInlined(first);
1257 exit_block_->ReplaceWith(to);
1258
1259 // Update all predecessors of the exit block (now the `to` block)
1260 // to not `HReturn` but `HGoto` instead.
1261 HInstruction* return_value = nullptr;
1262 bool returns_void = to->GetPredecessors().Get(0)->GetLastInstruction()->IsReturnVoid();
1263 if (to->GetPredecessors().Size() == 1) {
1264 HBasicBlock* predecessor = to->GetPredecessors().Get(0);
1265 HInstruction* last = predecessor->GetLastInstruction();
1266 if (!returns_void) {
1267 return_value = last->InputAt(0);
1268 }
1269 predecessor->AddInstruction(new (allocator) HGoto());
1270 predecessor->RemoveInstruction(last);
1271 } else {
1272 if (!returns_void) {
1273 // There will be multiple returns.
1274 return_value = new (allocator) HPhi(
1275 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()));
1276 to->AddPhi(return_value->AsPhi());
1277 }
1278 for (size_t i = 0, e = to->GetPredecessors().Size(); i < e; ++i) {
1279 HBasicBlock* predecessor = to->GetPredecessors().Get(i);
1280 HInstruction* last = predecessor->GetLastInstruction();
1281 if (!returns_void) {
1282 return_value->AsPhi()->AddInput(last->InputAt(0));
1283 }
1284 predecessor->AddInstruction(new (allocator) HGoto());
1285 predecessor->RemoveInstruction(last);
1286 }
1287 }
1288
1289 if (return_value != nullptr) {
1290 invoke->ReplaceWith(return_value);
1291 }
1292
1293 // Update the meta information surrounding blocks:
1294 // (1) the graph they are now in,
1295 // (2) the reverse post order of that graph,
1296 // (3) the potential loop information they are now in.
1297
1298 // We don't add the entry block, the exit block, and the first block, which
1299 // has been merged with `at`.
1300 static constexpr int kNumberOfSkippedBlocksInCallee = 3;
1301
1302 // We add the `to` block.
1303 static constexpr int kNumberOfNewBlocksInCaller = 1;
1304 size_t blocks_added = (reverse_post_order_.Size() - kNumberOfSkippedBlocksInCallee)
1305 + kNumberOfNewBlocksInCaller;
1306
1307 // Find the location of `at` in the outer graph's reverse post order. The new
1308 // blocks will be added after it.
1309 size_t index_of_at = 0;
1310 while (outer_graph->reverse_post_order_.Get(index_of_at) != at) {
1311 index_of_at++;
1312 }
1313 MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
1314
1315 // Do a reverse post order of the blocks in the callee and do (1), (2),
1316 // and (3) to the blocks that apply.
1317 HLoopInformation* info = at->GetLoopInformation();
1318 for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
1319 HBasicBlock* current = it.Current();
1320 if (current != exit_block_ && current != entry_block_ && current != first) {
1321 DCHECK(!current->IsInLoop());
1322 DCHECK(current->GetGraph() == this);
1323 current->SetGraph(outer_graph);
1324 outer_graph->AddBlock(current);
1325 outer_graph->reverse_post_order_.Put(++index_of_at, current);
1326 if (info != nullptr) {
1327 current->SetLoopInformation(info);
1328 for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) {
1329 loop_it.Current()->Add(current);
1330 }
1331 }
1332 }
1333 }
1334
1335 // Do (1), (2), and (3) to `to`.
1336 to->SetGraph(outer_graph);
1337 outer_graph->AddBlock(to);
1338 outer_graph->reverse_post_order_.Put(++index_of_at, to);
1339 if (info != nullptr) {
1340 to->SetLoopInformation(info);
1341 for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) {
1342 loop_it.Current()->Add(to);
1343 }
1344 if (info->IsBackEdge(*at)) {
1345 // Only `to` can become a back edge, as the inlined blocks
1346 // are predecessors of `to`.
1347 info->ReplaceBackEdge(at, to);
1348 }
1349 }
1350 }
1351
1352 // Update the next instruction id of the outer graph, so that instructions
1353 // added later get bigger ids than those in the inner graph.
1354 outer_graph->SetCurrentInstructionId(GetNextInstructionId());
1355
1356 // Walk over the entry block and:
1357 // - Move constants from the entry block to the outer_graph's entry block,
1358 // - Replace HParameterValue instructions with their real value.
1359 // - Remove suspend checks, that hold an environment.
1360 // We must do this after the other blocks have been inlined, otherwise ids of
1361 // constants could overlap with the inner graph.
1362 size_t parameter_index = 0;
1363 for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
1364 HInstruction* current = it.Current();
1365 if (current->IsNullConstant()) {
1366 current->ReplaceWith(outer_graph->GetNullConstant());
1367 } else if (current->IsIntConstant()) {
1368 current->ReplaceWith(outer_graph->GetIntConstant(current->AsIntConstant()->GetValue()));
1369 } else if (current->IsLongConstant()) {
1370 current->ReplaceWith(outer_graph->GetLongConstant(current->AsLongConstant()->GetValue()));
1371 } else if (current->IsFloatConstant()) {
1372 current->ReplaceWith(outer_graph->GetFloatConstant(current->AsFloatConstant()->GetValue()));
1373 } else if (current->IsDoubleConstant()) {
1374 current->ReplaceWith(outer_graph->GetDoubleConstant(current->AsDoubleConstant()->GetValue()));
1375 } else if (current->IsParameterValue()) {
1376 if (kIsDebugBuild
1377 && invoke->IsInvokeStaticOrDirect()
1378 && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
1379 // Ensure we do not use the last input of `invoke`, as it
1380 // contains a clinit check which is not an actual argument.
1381 size_t last_input_index = invoke->InputCount() - 1;
1382 DCHECK(parameter_index != last_input_index);
1383 }
1384 current->ReplaceWith(invoke->InputAt(parameter_index++));
1385 } else {
1386 DCHECK(current->IsGoto() || current->IsSuspendCheck());
1387 entry_block_->RemoveInstruction(current);
1388 }
1389 }
1390
1391 // Finally remove the invoke from the caller.
1392 invoke->GetBlock()->RemoveInstruction(invoke);
1393 }
1394
1395 /*
1396 * Loop will be transformed to:
1397 * old_pre_header
1398 * |
1399 * if_block
1400 * / \
1401 * dummy_block deopt_block
1402 * \ /
1403 * new_pre_header
1404 * |
1405 * header
1406 */
TransformLoopHeaderForBCE(HBasicBlock * header)1407 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
1408 DCHECK(header->IsLoopHeader());
1409 HBasicBlock* pre_header = header->GetDominator();
1410
1411 // Need this to avoid critical edge.
1412 HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
1413 // Need this to avoid critical edge.
1414 HBasicBlock* dummy_block = new (arena_) HBasicBlock(this, header->GetDexPc());
1415 HBasicBlock* deopt_block = new (arena_) HBasicBlock(this, header->GetDexPc());
1416 HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
1417 AddBlock(if_block);
1418 AddBlock(dummy_block);
1419 AddBlock(deopt_block);
1420 AddBlock(new_pre_header);
1421
1422 header->ReplacePredecessor(pre_header, new_pre_header);
1423 pre_header->successors_.Reset();
1424 pre_header->dominated_blocks_.Reset();
1425
1426 pre_header->AddSuccessor(if_block);
1427 if_block->AddSuccessor(dummy_block); // True successor
1428 if_block->AddSuccessor(deopt_block); // False successor
1429 dummy_block->AddSuccessor(new_pre_header);
1430 deopt_block->AddSuccessor(new_pre_header);
1431
1432 pre_header->dominated_blocks_.Add(if_block);
1433 if_block->SetDominator(pre_header);
1434 if_block->dominated_blocks_.Add(dummy_block);
1435 dummy_block->SetDominator(if_block);
1436 if_block->dominated_blocks_.Add(deopt_block);
1437 deopt_block->SetDominator(if_block);
1438 if_block->dominated_blocks_.Add(new_pre_header);
1439 new_pre_header->SetDominator(if_block);
1440 new_pre_header->dominated_blocks_.Add(header);
1441 header->SetDominator(new_pre_header);
1442
1443 size_t index_of_header = 0;
1444 while (reverse_post_order_.Get(index_of_header) != header) {
1445 index_of_header++;
1446 }
1447 MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
1448 reverse_post_order_.Put(index_of_header++, if_block);
1449 reverse_post_order_.Put(index_of_header++, dummy_block);
1450 reverse_post_order_.Put(index_of_header++, deopt_block);
1451 reverse_post_order_.Put(index_of_header++, new_pre_header);
1452
1453 HLoopInformation* info = pre_header->GetLoopInformation();
1454 if (info != nullptr) {
1455 if_block->SetLoopInformation(info);
1456 dummy_block->SetLoopInformation(info);
1457 deopt_block->SetLoopInformation(info);
1458 new_pre_header->SetLoopInformation(info);
1459 for (HLoopInformationOutwardIterator loop_it(*pre_header);
1460 !loop_it.Done();
1461 loop_it.Advance()) {
1462 loop_it.Current()->Add(if_block);
1463 loop_it.Current()->Add(dummy_block);
1464 loop_it.Current()->Add(deopt_block);
1465 loop_it.Current()->Add(new_pre_header);
1466 }
1467 }
1468 }
1469
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)1470 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
1471 ScopedObjectAccess soa(Thread::Current());
1472 os << "["
1473 << " is_top=" << rhs.IsTop()
1474 << " type=" << (rhs.IsTop() ? "?" : PrettyClass(rhs.GetTypeHandle().Get()))
1475 << " is_exact=" << rhs.IsExact()
1476 << " ]";
1477 return os;
1478 }
1479
1480 } // namespace art
1481