1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != NULL);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != NULL);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <vector>
116 
117 #include <google/protobuf/message_lite.h>
118 
119 #include <google/protobuf/stubs/common.h>
120 #include <google/protobuf/descriptor.h>
121 
122 
123 #define GOOGLE_PROTOBUF_HAS_ONEOF
124 
125 namespace google {
126 namespace protobuf {
127 
128 // Defined in this file.
129 class Message;
130 class Reflection;
131 class MessageFactory;
132 
133 // Defined in other files.
134 class UnknownFieldSet;         // unknown_field_set.h
135 namespace io {
136   class ZeroCopyInputStream;   // zero_copy_stream.h
137   class ZeroCopyOutputStream;  // zero_copy_stream.h
138   class CodedInputStream;      // coded_stream.h
139   class CodedOutputStream;     // coded_stream.h
140 }
141 
142 
143 template<typename T>
144 class RepeatedField;     // repeated_field.h
145 
146 template<typename T>
147 class RepeatedPtrField;  // repeated_field.h
148 
149 // A container to hold message metadata.
150 struct Metadata {
151   const Descriptor* descriptor;
152   const Reflection* reflection;
153 };
154 
155 // Abstract interface for protocol messages.
156 //
157 // See also MessageLite, which contains most every-day operations.  Message
158 // adds descriptors and reflection on top of that.
159 //
160 // The methods of this class that are virtual but not pure-virtual have
161 // default implementations based on reflection.  Message classes which are
162 // optimized for speed will want to override these with faster implementations,
163 // but classes optimized for code size may be happy with keeping them.  See
164 // the optimize_for option in descriptor.proto.
165 class LIBPROTOBUF_EXPORT Message : public MessageLite {
166  public:
Message()167   inline Message() {}
168   virtual ~Message();
169 
170   // Basic Operations ------------------------------------------------
171 
172   // Construct a new instance of the same type.  Ownership is passed to the
173   // caller.  (This is also defined in MessageLite, but is defined again here
174   // for return-type covariance.)
175   virtual Message* New() const = 0;
176 
177   // Make this message into a copy of the given message.  The given message
178   // must have the same descriptor, but need not necessarily be the same class.
179   // By default this is just implemented as "Clear(); MergeFrom(from);".
180   virtual void CopyFrom(const Message& from);
181 
182   // Merge the fields from the given message into this message.  Singular
183   // fields will be overwritten, if specified in from, except for embedded
184   // messages which will be merged.  Repeated fields will be concatenated.
185   // The given message must be of the same type as this message (i.e. the
186   // exact same class).
187   virtual void MergeFrom(const Message& from);
188 
189   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
190   // a nice error message.
191   void CheckInitialized() const;
192 
193   // Slowly build a list of all required fields that are not set.
194   // This is much, much slower than IsInitialized() as it is implemented
195   // purely via reflection.  Generally, you should not call this unless you
196   // have already determined that an error exists by calling IsInitialized().
197   void FindInitializationErrors(std::vector<string>* errors) const;
198 
199   // Like FindInitializationErrors, but joins all the strings, delimited by
200   // commas, and returns them.
201   string InitializationErrorString() const;
202 
203   // Clears all unknown fields from this message and all embedded messages.
204   // Normally, if unknown tag numbers are encountered when parsing a message,
205   // the tag and value are stored in the message's UnknownFieldSet and
206   // then written back out when the message is serialized.  This allows servers
207   // which simply route messages to other servers to pass through messages
208   // that have new field definitions which they don't yet know about.  However,
209   // this behavior can have security implications.  To avoid it, call this
210   // method after parsing.
211   //
212   // See Reflection::GetUnknownFields() for more on unknown fields.
213   virtual void DiscardUnknownFields();
214 
215   // Computes (an estimate of) the total number of bytes currently used for
216   // storing the message in memory.  The default implementation calls the
217   // Reflection object's SpaceUsed() method.
218   virtual int SpaceUsed() const;
219 
220   // Debugging & Testing----------------------------------------------
221 
222   // Generates a human readable form of this message, useful for debugging
223   // and other purposes.
224   string DebugString() const;
225   // Like DebugString(), but with less whitespace.
226   string ShortDebugString() const;
227   // Like DebugString(), but do not escape UTF-8 byte sequences.
228   string Utf8DebugString() const;
229   // Convenience function useful in GDB.  Prints DebugString() to stdout.
230   void PrintDebugString() const;
231 
232   // Heavy I/O -------------------------------------------------------
233   // Additional parsing and serialization methods not implemented by
234   // MessageLite because they are not supported by the lite library.
235 
236   // Parse a protocol buffer from a file descriptor.  If successful, the entire
237   // input will be consumed.
238   bool ParseFromFileDescriptor(int file_descriptor);
239   // Like ParseFromFileDescriptor(), but accepts messages that are missing
240   // required fields.
241   bool ParsePartialFromFileDescriptor(int file_descriptor);
242   // Parse a protocol buffer from a C++ istream.  If successful, the entire
243   // input will be consumed.
244   bool ParseFromIstream(istream* input);
245   // Like ParseFromIstream(), but accepts messages that are missing
246   // required fields.
247   bool ParsePartialFromIstream(istream* input);
248 
249   // Serialize the message and write it to the given file descriptor.  All
250   // required fields must be set.
251   bool SerializeToFileDescriptor(int file_descriptor) const;
252   // Like SerializeToFileDescriptor(), but allows missing required fields.
253   bool SerializePartialToFileDescriptor(int file_descriptor) const;
254   // Serialize the message and write it to the given C++ ostream.  All
255   // required fields must be set.
256   bool SerializeToOstream(ostream* output) const;
257   // Like SerializeToOstream(), but allows missing required fields.
258   bool SerializePartialToOstream(ostream* output) const;
259 
260 
261   // Reflection-based methods ----------------------------------------
262   // These methods are pure-virtual in MessageLite, but Message provides
263   // reflection-based default implementations.
264 
265   virtual string GetTypeName() const;
266   virtual void Clear();
267   virtual bool IsInitialized() const;
268   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
269   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
270   virtual int ByteSize() const;
271   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
272 
273  private:
274   // This is called only by the default implementation of ByteSize(), to
275   // update the cached size.  If you override ByteSize(), you do not need
276   // to override this.  If you do not override ByteSize(), you MUST override
277   // this; the default implementation will crash.
278   //
279   // The method is private because subclasses should never call it; only
280   // override it.  Yes, C++ lets you do that.  Crazy, huh?
281   virtual void SetCachedSize(int size) const;
282 
283  public:
284 
285   // Introspection ---------------------------------------------------
286 
287   // Typedef for backwards-compatibility.
288   typedef google::protobuf::Reflection Reflection;
289 
290   // Get a Descriptor for this message's type.  This describes what
291   // fields the message contains, the types of those fields, etc.
GetDescriptor()292   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
293 
294   // Get the Reflection interface for this Message, which can be used to
295   // read and modify the fields of the Message dynamically (in other words,
296   // without knowing the message type at compile time).  This object remains
297   // property of the Message.
298   //
299   // This method remains virtual in case a subclass does not implement
300   // reflection and wants to override the default behavior.
GetReflection()301   virtual const Reflection* GetReflection() const {
302     return GetMetadata().reflection;
303   }
304 
305  protected:
306   // Get a struct containing the metadata for the Message. Most subclasses only
307   // need to implement this method, rather than the GetDescriptor() and
308   // GetReflection() wrappers.
309   virtual Metadata GetMetadata() const  = 0;
310 
311 
312  private:
313   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
314 };
315 
316 // This interface contains methods that can be used to dynamically access
317 // and modify the fields of a protocol message.  Their semantics are
318 // similar to the accessors the protocol compiler generates.
319 //
320 // To get the Reflection for a given Message, call Message::GetReflection().
321 //
322 // This interface is separate from Message only for efficiency reasons;
323 // the vast majority of implementations of Message will share the same
324 // implementation of Reflection (GeneratedMessageReflection,
325 // defined in generated_message.h), and all Messages of a particular class
326 // should share the same Reflection object (though you should not rely on
327 // the latter fact).
328 //
329 // There are several ways that these methods can be used incorrectly.  For
330 // example, any of the following conditions will lead to undefined
331 // results (probably assertion failures):
332 // - The FieldDescriptor is not a field of this message type.
333 // - The method called is not appropriate for the field's type.  For
334 //   each field type in FieldDescriptor::TYPE_*, there is only one
335 //   Get*() method, one Set*() method, and one Add*() method that is
336 //   valid for that type.  It should be obvious which (except maybe
337 //   for TYPE_BYTES, which are represented using strings in C++).
338 // - A Get*() or Set*() method for singular fields is called on a repeated
339 //   field.
340 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
341 //   field.
342 // - The Message object passed to any method is not of the right type for
343 //   this Reflection object (i.e. message.GetReflection() != reflection).
344 //
345 // You might wonder why there is not any abstract representation for a field
346 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
347 // returns "const Field&", where "Field" is some class with accessors like
348 // "GetInt32Value()".  The problem is that someone would have to deal with
349 // allocating these Field objects.  For generated message classes, having to
350 // allocate space for an additional object to wrap every field would at least
351 // double the message's memory footprint, probably worse.  Allocating the
352 // objects on-demand, on the other hand, would be expensive and prone to
353 // memory leaks.  So, instead we ended up with this flat interface.
354 //
355 // TODO(kenton):  Create a utility class which callers can use to read and
356 //   write fields from a Reflection without paying attention to the type.
357 class LIBPROTOBUF_EXPORT Reflection {
358  public:
Reflection()359   inline Reflection() {}
360   virtual ~Reflection();
361 
362   // Get the UnknownFieldSet for the message.  This contains fields which
363   // were seen when the Message was parsed but were not recognized according
364   // to the Message's definition.
365   virtual const UnknownFieldSet& GetUnknownFields(
366       const Message& message) const = 0;
367   // Get a mutable pointer to the UnknownFieldSet for the message.  This
368   // contains fields which were seen when the Message was parsed but were not
369   // recognized according to the Message's definition.
370   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
371 
372   // Estimate the amount of memory used by the message object.
373   virtual int SpaceUsed(const Message& message) const = 0;
374 
375   // Check if the given non-repeated field is set.
376   virtual bool HasField(const Message& message,
377                         const FieldDescriptor* field) const = 0;
378 
379   // Get the number of elements of a repeated field.
380   virtual int FieldSize(const Message& message,
381                         const FieldDescriptor* field) const = 0;
382 
383   // Clear the value of a field, so that HasField() returns false or
384   // FieldSize() returns zero.
385   virtual void ClearField(Message* message,
386                           const FieldDescriptor* field) const = 0;
387 
388   // Check if the oneof is set. Returns ture if any field in oneof
389   // is set, false otherwise.
390   // TODO(jieluo) - make it pure virtual after updating all
391   // the subclasses.
HasOneof(const Message &,const OneofDescriptor *)392   virtual bool HasOneof(const Message& /*message*/,
393                         const OneofDescriptor* /*oneof_descriptor*/) const {
394     return false;
395   }
396 
ClearOneof(Message *,const OneofDescriptor *)397   virtual void ClearOneof(Message* /*message*/,
398                           const OneofDescriptor* /*oneof_descriptor*/) const {}
399 
400   // Returns the field descriptor if the oneof is set. NULL otherwise.
401   // TODO(jieluo) - make it pure virtual.
GetOneofFieldDescriptor(const Message &,const OneofDescriptor *)402   virtual const FieldDescriptor* GetOneofFieldDescriptor(
403       const Message& /*message*/,
404       const OneofDescriptor* /*oneof_descriptor*/) const {
405     return NULL;
406   }
407 
408   // Removes the last element of a repeated field.
409   // We don't provide a way to remove any element other than the last
410   // because it invites inefficient use, such as O(n^2) filtering loops
411   // that should have been O(n).  If you want to remove an element other
412   // than the last, the best way to do it is to re-arrange the elements
413   // (using Swap()) so that the one you want removed is at the end, then
414   // call RemoveLast().
415   virtual void RemoveLast(Message* message,
416                           const FieldDescriptor* field) const = 0;
417   // Removes the last element of a repeated message field, and returns the
418   // pointer to the caller.  Caller takes ownership of the returned pointer.
419   virtual Message* ReleaseLast(Message* message,
420                                const FieldDescriptor* field) const = 0;
421 
422   // Swap the complete contents of two messages.
423   virtual void Swap(Message* message1, Message* message2) const = 0;
424 
425   // Swap fields listed in fields vector of two messages.
426   virtual void SwapFields(Message* message1,
427                           Message* message2,
428                           const std::vector<const FieldDescriptor*>& fields)
429       const = 0;
430 
431   // Swap two elements of a repeated field.
432   virtual void SwapElements(Message* message,
433                             const FieldDescriptor* field,
434                             int index1,
435                             int index2) const = 0;
436 
437   // List all fields of the message which are currently set.  This includes
438   // extensions.  Singular fields will only be listed if HasField(field) would
439   // return true and repeated fields will only be listed if FieldSize(field)
440   // would return non-zero.  Fields (both normal fields and extension fields)
441   // will be listed ordered by field number.
442   virtual void ListFields(const Message& message,
443                           std::vector<const FieldDescriptor*>* output) const = 0;
444 
445   // Singular field getters ------------------------------------------
446   // These get the value of a non-repeated field.  They return the default
447   // value for fields that aren't set.
448 
449   virtual int32  GetInt32 (const Message& message,
450                            const FieldDescriptor* field) const = 0;
451   virtual int64  GetInt64 (const Message& message,
452                            const FieldDescriptor* field) const = 0;
453   virtual uint32 GetUInt32(const Message& message,
454                            const FieldDescriptor* field) const = 0;
455   virtual uint64 GetUInt64(const Message& message,
456                            const FieldDescriptor* field) const = 0;
457   virtual float  GetFloat (const Message& message,
458                            const FieldDescriptor* field) const = 0;
459   virtual double GetDouble(const Message& message,
460                            const FieldDescriptor* field) const = 0;
461   virtual bool   GetBool  (const Message& message,
462                            const FieldDescriptor* field) const = 0;
463   virtual string GetString(const Message& message,
464                            const FieldDescriptor* field) const = 0;
465   virtual const EnumValueDescriptor* GetEnum(
466       const Message& message, const FieldDescriptor* field) const = 0;
467   // See MutableMessage() for the meaning of the "factory" parameter.
468   virtual const Message& GetMessage(const Message& message,
469                                     const FieldDescriptor* field,
470                                     MessageFactory* factory = NULL) const = 0;
471 
472   // Get a string value without copying, if possible.
473   //
474   // GetString() necessarily returns a copy of the string.  This can be
475   // inefficient when the string is already stored in a string object in the
476   // underlying message.  GetStringReference() will return a reference to the
477   // underlying string in this case.  Otherwise, it will copy the string into
478   // *scratch and return that.
479   //
480   // Note:  It is perfectly reasonable and useful to write code like:
481   //     str = reflection->GetStringReference(field, &str);
482   //   This line would ensure that only one copy of the string is made
483   //   regardless of the field's underlying representation.  When initializing
484   //   a newly-constructed string, though, it's just as fast and more readable
485   //   to use code like:
486   //     string str = reflection->GetString(field);
487   virtual const string& GetStringReference(const Message& message,
488                                            const FieldDescriptor* field,
489                                            string* scratch) const = 0;
490 
491 
492   // Singular field mutators -----------------------------------------
493   // These mutate the value of a non-repeated field.
494 
495   virtual void SetInt32 (Message* message,
496                          const FieldDescriptor* field, int32  value) const = 0;
497   virtual void SetInt64 (Message* message,
498                          const FieldDescriptor* field, int64  value) const = 0;
499   virtual void SetUInt32(Message* message,
500                          const FieldDescriptor* field, uint32 value) const = 0;
501   virtual void SetUInt64(Message* message,
502                          const FieldDescriptor* field, uint64 value) const = 0;
503   virtual void SetFloat (Message* message,
504                          const FieldDescriptor* field, float  value) const = 0;
505   virtual void SetDouble(Message* message,
506                          const FieldDescriptor* field, double value) const = 0;
507   virtual void SetBool  (Message* message,
508                          const FieldDescriptor* field, bool   value) const = 0;
509   virtual void SetString(Message* message,
510                          const FieldDescriptor* field,
511                          const string& value) const = 0;
512   virtual void SetEnum  (Message* message,
513                          const FieldDescriptor* field,
514                          const EnumValueDescriptor* value) const = 0;
515   // Get a mutable pointer to a field with a message type.  If a MessageFactory
516   // is provided, it will be used to construct instances of the sub-message;
517   // otherwise, the default factory is used.  If the field is an extension that
518   // does not live in the same pool as the containing message's descriptor (e.g.
519   // it lives in an overlay pool), then a MessageFactory must be provided.
520   // If you have no idea what that meant, then you probably don't need to worry
521   // about it (don't provide a MessageFactory).  WARNING:  If the
522   // FieldDescriptor is for a compiled-in extension, then
523   // factory->GetPrototype(field->message_type() MUST return an instance of the
524   // compiled-in class for this type, NOT DynamicMessage.
525   virtual Message* MutableMessage(Message* message,
526                                   const FieldDescriptor* field,
527                                   MessageFactory* factory = NULL) const = 0;
528   // Replaces the message specified by 'field' with the already-allocated object
529   // sub_message, passing ownership to the message.  If the field contained a
530   // message, that message is deleted.  If sub_message is NULL, the field is
531   // cleared.
532   virtual void SetAllocatedMessage(Message* message,
533                                    Message* sub_message,
534                                    const FieldDescriptor* field) const = 0;
535   // Releases the message specified by 'field' and returns the pointer,
536   // ReleaseMessage() will return the message the message object if it exists.
537   // Otherwise, it may or may not return NULL.  In any case, if the return value
538   // is non-NULL, the caller takes ownership of the pointer.
539   // If the field existed (HasField() is true), then the returned pointer will
540   // be the same as the pointer returned by MutableMessage().
541   // This function has the same effect as ClearField().
542   virtual Message* ReleaseMessage(Message* message,
543                                   const FieldDescriptor* field,
544                                   MessageFactory* factory = NULL) const = 0;
545 
546 
547   // Repeated field getters ------------------------------------------
548   // These get the value of one element of a repeated field.
549 
550   virtual int32  GetRepeatedInt32 (const Message& message,
551                                    const FieldDescriptor* field,
552                                    int index) const = 0;
553   virtual int64  GetRepeatedInt64 (const Message& message,
554                                    const FieldDescriptor* field,
555                                    int index) const = 0;
556   virtual uint32 GetRepeatedUInt32(const Message& message,
557                                    const FieldDescriptor* field,
558                                    int index) const = 0;
559   virtual uint64 GetRepeatedUInt64(const Message& message,
560                                    const FieldDescriptor* field,
561                                    int index) const = 0;
562   virtual float  GetRepeatedFloat (const Message& message,
563                                    const FieldDescriptor* field,
564                                    int index) const = 0;
565   virtual double GetRepeatedDouble(const Message& message,
566                                    const FieldDescriptor* field,
567                                    int index) const = 0;
568   virtual bool   GetRepeatedBool  (const Message& message,
569                                    const FieldDescriptor* field,
570                                    int index) const = 0;
571   virtual string GetRepeatedString(const Message& message,
572                                    const FieldDescriptor* field,
573                                    int index) const = 0;
574   virtual const EnumValueDescriptor* GetRepeatedEnum(
575       const Message& message,
576       const FieldDescriptor* field, int index) const = 0;
577   virtual const Message& GetRepeatedMessage(
578       const Message& message,
579       const FieldDescriptor* field, int index) const = 0;
580 
581   // See GetStringReference(), above.
582   virtual const string& GetRepeatedStringReference(
583       const Message& message, const FieldDescriptor* field,
584       int index, string* scratch) const = 0;
585 
586 
587   // Repeated field mutators -----------------------------------------
588   // These mutate the value of one element of a repeated field.
589 
590   virtual void SetRepeatedInt32 (Message* message,
591                                  const FieldDescriptor* field,
592                                  int index, int32  value) const = 0;
593   virtual void SetRepeatedInt64 (Message* message,
594                                  const FieldDescriptor* field,
595                                  int index, int64  value) const = 0;
596   virtual void SetRepeatedUInt32(Message* message,
597                                  const FieldDescriptor* field,
598                                  int index, uint32 value) const = 0;
599   virtual void SetRepeatedUInt64(Message* message,
600                                  const FieldDescriptor* field,
601                                  int index, uint64 value) const = 0;
602   virtual void SetRepeatedFloat (Message* message,
603                                  const FieldDescriptor* field,
604                                  int index, float  value) const = 0;
605   virtual void SetRepeatedDouble(Message* message,
606                                  const FieldDescriptor* field,
607                                  int index, double value) const = 0;
608   virtual void SetRepeatedBool  (Message* message,
609                                  const FieldDescriptor* field,
610                                  int index, bool   value) const = 0;
611   virtual void SetRepeatedString(Message* message,
612                                  const FieldDescriptor* field,
613                                  int index, const string& value) const = 0;
614   virtual void SetRepeatedEnum(Message* message,
615                                const FieldDescriptor* field, int index,
616                                const EnumValueDescriptor* value) const = 0;
617   // Get a mutable pointer to an element of a repeated field with a message
618   // type.
619   virtual Message* MutableRepeatedMessage(
620       Message* message, const FieldDescriptor* field, int index) const = 0;
621 
622 
623   // Repeated field adders -------------------------------------------
624   // These add an element to a repeated field.
625 
626   virtual void AddInt32 (Message* message,
627                          const FieldDescriptor* field, int32  value) const = 0;
628   virtual void AddInt64 (Message* message,
629                          const FieldDescriptor* field, int64  value) const = 0;
630   virtual void AddUInt32(Message* message,
631                          const FieldDescriptor* field, uint32 value) const = 0;
632   virtual void AddUInt64(Message* message,
633                          const FieldDescriptor* field, uint64 value) const = 0;
634   virtual void AddFloat (Message* message,
635                          const FieldDescriptor* field, float  value) const = 0;
636   virtual void AddDouble(Message* message,
637                          const FieldDescriptor* field, double value) const = 0;
638   virtual void AddBool  (Message* message,
639                          const FieldDescriptor* field, bool   value) const = 0;
640   virtual void AddString(Message* message,
641                          const FieldDescriptor* field,
642                          const string& value) const = 0;
643   virtual void AddEnum  (Message* message,
644                          const FieldDescriptor* field,
645                          const EnumValueDescriptor* value) const = 0;
646   // See MutableMessage() for comments on the "factory" parameter.
647   virtual Message* AddMessage(Message* message,
648                               const FieldDescriptor* field,
649                               MessageFactory* factory = NULL) const = 0;
650 
651 
652   // Repeated field accessors  -------------------------------------------------
653   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
654   // access to the data in a RepeatedField.  The methods below provide aggregate
655   // access by exposing the RepeatedField object itself with the Message.
656   // Applying these templates to inappropriate types will lead to an undefined
657   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
658   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
659   //
660   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
661 
662   // for T = Cord and all protobuf scalar types except enums.
663   template<typename T>
664   const RepeatedField<T>& GetRepeatedField(
665       const Message&, const FieldDescriptor*) const;
666 
667   // for T = Cord and all protobuf scalar types except enums.
668   template<typename T>
669   RepeatedField<T>* MutableRepeatedField(
670       Message*, const FieldDescriptor*) const;
671 
672   // for T = string, google::protobuf::internal::StringPieceField
673   //         google::protobuf::Message & descendants.
674   template<typename T>
675   const RepeatedPtrField<T>& GetRepeatedPtrField(
676       const Message&, const FieldDescriptor*) const;
677 
678   // for T = string, google::protobuf::internal::StringPieceField
679   //         google::protobuf::Message & descendants.
680   template<typename T>
681   RepeatedPtrField<T>* MutableRepeatedPtrField(
682       Message*, const FieldDescriptor*) const;
683 
684   // Extensions ----------------------------------------------------------------
685 
686   // Try to find an extension of this message type by fully-qualified field
687   // name.  Returns NULL if no extension is known for this name or number.
688   virtual const FieldDescriptor* FindKnownExtensionByName(
689       const string& name) const = 0;
690 
691   // Try to find an extension of this message type by field number.
692   // Returns NULL if no extension is known for this name or number.
693   virtual const FieldDescriptor* FindKnownExtensionByNumber(
694       int number) const = 0;
695 
696   // ---------------------------------------------------------------------------
697 
698  protected:
699   // Obtain a pointer to a Repeated Field Structure and do some type checking:
700   //   on field->cpp_type(),
701   //   on field->field_option().ctype() (if ctype >= 0)
702   //   of field->message_type() (if message_type != NULL).
703   // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
704   virtual void* MutableRawRepeatedField(
705       Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
706       int ctype, const Descriptor* message_type) const = 0;
707 
708  private:
709   // Special version for specialized implementations of string.  We can't call
710   // MutableRawRepeatedField directly here because we don't have access to
711   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
712   // file here is not possible because it would cause a circular include cycle.
713   void* MutableRawRepeatedString(
714       Message* message, const FieldDescriptor* field, bool is_string) const;
715 
716   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
717 };
718 
719 // Abstract interface for a factory for message objects.
720 class LIBPROTOBUF_EXPORT MessageFactory {
721  public:
MessageFactory()722   inline MessageFactory() {}
723   virtual ~MessageFactory();
724 
725   // Given a Descriptor, gets or constructs the default (prototype) Message
726   // of that type.  You can then call that message's New() method to construct
727   // a mutable message of that type.
728   //
729   // Calling this method twice with the same Descriptor returns the same
730   // object.  The returned object remains property of the factory.  Also, any
731   // objects created by calling the prototype's New() method share some data
732   // with the prototype, so these must be destroyed before the MessageFactory
733   // is destroyed.
734   //
735   // The given descriptor must outlive the returned message, and hence must
736   // outlive the MessageFactory.
737   //
738   // Some implementations do not support all types.  GetPrototype() will
739   // return NULL if the descriptor passed in is not supported.
740   //
741   // This method may or may not be thread-safe depending on the implementation.
742   // Each implementation should document its own degree thread-safety.
743   virtual const Message* GetPrototype(const Descriptor* type) = 0;
744 
745   // Gets a MessageFactory which supports all generated, compiled-in messages.
746   // In other words, for any compiled-in type FooMessage, the following is true:
747   //   MessageFactory::generated_factory()->GetPrototype(
748   //     FooMessage::descriptor()) == FooMessage::default_instance()
749   // This factory supports all types which are found in
750   // DescriptorPool::generated_pool().  If given a descriptor from any other
751   // pool, GetPrototype() will return NULL.  (You can also check if a
752   // descriptor is for a generated message by checking if
753   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
754   //
755   // This factory is 100% thread-safe; calling GetPrototype() does not modify
756   // any shared data.
757   //
758   // This factory is a singleton.  The caller must not delete the object.
759   static MessageFactory* generated_factory();
760 
761   // For internal use only:  Registers a .proto file at static initialization
762   // time, to be placed in generated_factory.  The first time GetPrototype()
763   // is called with a descriptor from this file, |register_messages| will be
764   // called, with the file name as the parameter.  It must call
765   // InternalRegisterGeneratedMessage() (below) to register each message type
766   // in the file.  This strange mechanism is necessary because descriptors are
767   // built lazily, so we can't register types by their descriptor until we
768   // know that the descriptor exists.  |filename| must be a permanent string.
769   static void InternalRegisterGeneratedFile(
770       const char* filename, void (*register_messages)(const string&));
771 
772   // For internal use only:  Registers a message type.  Called only by the
773   // functions which are registered with InternalRegisterGeneratedFile(),
774   // above.
775   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
776                                                const Message* prototype);
777 
778 
779  private:
780   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
781 };
782 
783 #define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
784 template<>                                                       \
785 LIBPROTOBUF_EXPORT                                               \
786 const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
787     const Message& message, const FieldDescriptor* field) const; \
788                                                                  \
789 template<>                                                       \
790 RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
791     Message* message, const FieldDescriptor* field) const;
792 
793 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)794 DECLARE_GET_REPEATED_FIELD(int64)
795 DECLARE_GET_REPEATED_FIELD(uint32)
796 DECLARE_GET_REPEATED_FIELD(uint64)
797 DECLARE_GET_REPEATED_FIELD(float)
798 DECLARE_GET_REPEATED_FIELD(double)
799 DECLARE_GET_REPEATED_FIELD(bool)
800 
801 #undef DECLARE_GET_REPEATED_FIELD
802 
803 // =============================================================================
804 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
805 // specializations for <string>, <StringPieceField> and <Message> and handle
806 // everything else with the default template which will match any type having
807 // a method with signature "static const google::protobuf::Descriptor* descriptor()".
808 // Such a type presumably is a descendant of google::protobuf::Message.
809 
810 template<>
811 inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
812     const Message& message, const FieldDescriptor* field) const {
813   return *static_cast<RepeatedPtrField<string>* >(
814       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
815 }
816 
817 template<>
818 inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
819     Message* message, const FieldDescriptor* field) const {
820   return static_cast<RepeatedPtrField<string>* >(
821       MutableRawRepeatedString(message, field, true));
822 }
823 
824 
825 // -----
826 
827 template<>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)828 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
829     const Message& message, const FieldDescriptor* field) const {
830   return *static_cast<RepeatedPtrField<Message>* >(
831       MutableRawRepeatedField(const_cast<Message*>(&message), field,
832           FieldDescriptor::CPPTYPE_MESSAGE, -1,
833           NULL));
834 }
835 
836 template<>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)837 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
838     Message* message, const FieldDescriptor* field) const {
839   return static_cast<RepeatedPtrField<Message>* >(
840       MutableRawRepeatedField(message, field,
841           FieldDescriptor::CPPTYPE_MESSAGE, -1,
842           NULL));
843 }
844 
845 template<typename PB>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)846 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
847     const Message& message, const FieldDescriptor* field) const {
848   return *static_cast<RepeatedPtrField<PB>* >(
849       MutableRawRepeatedField(const_cast<Message*>(&message), field,
850           FieldDescriptor::CPPTYPE_MESSAGE, -1,
851           PB::default_instance().GetDescriptor()));
852 }
853 
854 template<typename PB>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)855 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
856     Message* message, const FieldDescriptor* field) const {
857   return static_cast<RepeatedPtrField<PB>* >(
858       MutableRawRepeatedField(message, field,
859           FieldDescriptor::CPPTYPE_MESSAGE, -1,
860           PB::default_instance().GetDescriptor()));
861 }
862 
863 }  // namespace protobuf
864 
865 }  // namespace google
866 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
867