1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include <assert.h>
11 #include <stddef.h>
12 
13 #include <bitset>
14 #include <limits>
15 #include <sstream>
16 #include <string>
17 
18 #include "clang/AST/ASTContext.h"
19 
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/MathExtras.h"
25 
26 
27 #include "lldb/Core/DataBufferHeap.h"
28 #include "lldb/Core/DataExtractor.h"
29 #include "lldb/Core/DataBuffer.h"
30 #include "lldb/Core/Disassembler.h"
31 #include "lldb/Core/Log.h"
32 #include "lldb/Core/Stream.h"
33 #include "lldb/Core/StreamString.h"
34 #include "lldb/Core/UUID.h"
35 #include "lldb/Core/dwarf.h"
36 #include "lldb/Host/Endian.h"
37 #include "lldb/Symbol/ClangASTContext.h"
38 #include "lldb/Target/ExecutionContext.h"
39 #include "lldb/Target/ExecutionContextScope.h"
40 #include "lldb/Target/Target.h"
41 
42 using namespace lldb;
43 using namespace lldb_private;
44 
45 static inline uint16_t
ReadInt16(const unsigned char * ptr,offset_t offset)46 ReadInt16(const unsigned char* ptr, offset_t offset)
47 {
48     return *(uint16_t *)(ptr + offset);
49 }
50 static inline uint32_t
ReadInt32(const unsigned char * ptr,offset_t offset)51 ReadInt32 (const unsigned char* ptr, offset_t offset)
52 {
53     return *(uint32_t *)(ptr + offset);
54 }
55 
56 static inline uint64_t
ReadInt64(const unsigned char * ptr,offset_t offset)57 ReadInt64(const unsigned char* ptr, offset_t offset)
58 {
59     return *(uint64_t *)(ptr + offset);
60 }
61 
62 static inline uint16_t
ReadInt16(const void * ptr)63 ReadInt16(const void* ptr)
64 {
65     return *(uint16_t *)(ptr);
66 }
67 static inline uint32_t
ReadInt32(const void * ptr)68 ReadInt32 (const void* ptr)
69 {
70     return *(uint32_t *)(ptr);
71 }
72 
73 static inline uint64_t
ReadInt64(const void * ptr)74 ReadInt64(const void* ptr)
75 {
76     return *(uint64_t *)(ptr);
77 }
78 
79 static inline uint16_t
ReadSwapInt16(const unsigned char * ptr,offset_t offset)80 ReadSwapInt16(const unsigned char* ptr, offset_t offset)
81 {
82     return llvm::ByteSwap_16(*(uint16_t *)(ptr + offset));
83 }
84 
85 static inline uint32_t
ReadSwapInt32(const unsigned char * ptr,offset_t offset)86 ReadSwapInt32 (const unsigned char* ptr, offset_t offset)
87 {
88     return llvm::ByteSwap_32(*(uint32_t *)(ptr + offset));
89 }
90 static inline uint64_t
ReadSwapInt64(const unsigned char * ptr,offset_t offset)91 ReadSwapInt64(const unsigned char* ptr, offset_t offset)
92 {
93   return llvm::ByteSwap_64(*(uint64_t *)(ptr + offset));
94 }
95 
96 static inline uint16_t
ReadSwapInt16(const void * ptr)97 ReadSwapInt16(const void* ptr)
98 {
99     return llvm::ByteSwap_16(*(uint16_t *)(ptr));
100 }
101 
102 static inline uint32_t
ReadSwapInt32(const void * ptr)103 ReadSwapInt32 (const void* ptr)
104 {
105     return llvm::ByteSwap_32(*(uint32_t *)(ptr));
106 }
107 static inline uint64_t
ReadSwapInt64(const void * ptr)108 ReadSwapInt64(const void* ptr)
109 {
110     return llvm::ByteSwap_64(*(uint64_t *)(ptr));
111 }
112 
113 #define NON_PRINTABLE_CHAR '.'
114 //----------------------------------------------------------------------
115 // Default constructor.
116 //----------------------------------------------------------------------
DataExtractor()117 DataExtractor::DataExtractor () :
118     m_start     (NULL),
119     m_end       (NULL),
120     m_byte_order(lldb::endian::InlHostByteOrder()),
121     m_addr_size (4),
122     m_data_sp   ()
123 {
124 }
125 
126 //----------------------------------------------------------------------
127 // This constructor allows us to use data that is owned by someone else.
128 // The data must stay around as long as this object is valid.
129 //----------------------------------------------------------------------
DataExtractor(const void * data,offset_t length,ByteOrder endian,uint32_t addr_size)130 DataExtractor::DataExtractor (const void* data, offset_t length, ByteOrder endian, uint32_t addr_size) :
131     m_start     ((uint8_t*)data),
132     m_end       ((uint8_t*)data + length),
133     m_byte_order(endian),
134     m_addr_size (addr_size),
135     m_data_sp   ()
136 {
137 }
138 
139 //----------------------------------------------------------------------
140 // Make a shared pointer reference to the shared data in "data_sp" and
141 // set the endian swapping setting to "swap", and the address size to
142 // "addr_size". The shared data reference will ensure the data lives
143 // as long as any DataExtractor objects exist that have a reference to
144 // this data.
145 //----------------------------------------------------------------------
DataExtractor(const DataBufferSP & data_sp,ByteOrder endian,uint32_t addr_size)146 DataExtractor::DataExtractor (const DataBufferSP& data_sp, ByteOrder endian, uint32_t addr_size) :
147     m_start     (NULL),
148     m_end       (NULL),
149     m_byte_order(endian),
150     m_addr_size (addr_size),
151     m_data_sp   ()
152 {
153     SetData (data_sp);
154 }
155 
156 //----------------------------------------------------------------------
157 // Initialize this object with a subset of the data bytes in "data".
158 // If "data" contains shared data, then a reference to this shared
159 // data will added and the shared data will stay around as long
160 // as any object contains a reference to that data. The endian
161 // swap and address size settings are copied from "data".
162 //----------------------------------------------------------------------
DataExtractor(const DataExtractor & data,offset_t offset,offset_t length)163 DataExtractor::DataExtractor (const DataExtractor& data, offset_t offset, offset_t length) :
164     m_start(NULL),
165     m_end(NULL),
166     m_byte_order(data.m_byte_order),
167     m_addr_size(data.m_addr_size),
168     m_data_sp()
169 {
170     if (data.ValidOffset(offset))
171     {
172         offset_t bytes_available = data.GetByteSize() - offset;
173         if (length > bytes_available)
174             length = bytes_available;
175         SetData(data, offset, length);
176     }
177 }
178 
DataExtractor(const DataExtractor & rhs)179 DataExtractor::DataExtractor (const DataExtractor& rhs) :
180     m_start (rhs.m_start),
181     m_end (rhs.m_end),
182     m_byte_order (rhs.m_byte_order),
183     m_addr_size (rhs.m_addr_size),
184     m_data_sp (rhs.m_data_sp)
185 {
186 }
187 
188 //----------------------------------------------------------------------
189 // Assignment operator
190 //----------------------------------------------------------------------
191 const DataExtractor&
operator =(const DataExtractor & rhs)192 DataExtractor::operator= (const DataExtractor& rhs)
193 {
194     if (this != &rhs)
195     {
196         m_start = rhs.m_start;
197         m_end = rhs.m_end;
198         m_byte_order = rhs.m_byte_order;
199         m_addr_size = rhs.m_addr_size;
200         m_data_sp = rhs.m_data_sp;
201     }
202     return *this;
203 }
204 
205 //----------------------------------------------------------------------
206 // Destructor
207 //----------------------------------------------------------------------
~DataExtractor()208 DataExtractor::~DataExtractor ()
209 {
210 }
211 
212 //------------------------------------------------------------------
213 // Clears the object contents back to a default invalid state, and
214 // release any references to shared data that this object may
215 // contain.
216 //------------------------------------------------------------------
217 void
Clear()218 DataExtractor::Clear ()
219 {
220     m_start = NULL;
221     m_end = NULL;
222     m_byte_order = lldb::endian::InlHostByteOrder();
223     m_addr_size = 4;
224     m_data_sp.reset();
225 }
226 
227 //------------------------------------------------------------------
228 // If this object contains shared data, this function returns the
229 // offset into that shared data. Else zero is returned.
230 //------------------------------------------------------------------
231 size_t
GetSharedDataOffset() const232 DataExtractor::GetSharedDataOffset () const
233 {
234     if (m_start != NULL)
235     {
236         const DataBuffer * data = m_data_sp.get();
237         if (data != NULL)
238         {
239             const uint8_t * data_bytes = data->GetBytes();
240             if (data_bytes != NULL)
241             {
242                 assert(m_start >= data_bytes);
243                 return m_start - data_bytes;
244             }
245         }
246     }
247     return 0;
248 }
249 
250 //----------------------------------------------------------------------
251 // Set the data with which this object will extract from to data
252 // starting at BYTES and set the length of the data to LENGTH bytes
253 // long. The data is externally owned must be around at least as
254 // long as this object points to the data. No copy of the data is
255 // made, this object just refers to this data and can extract from
256 // it. If this object refers to any shared data upon entry, the
257 // reference to that data will be released. Is SWAP is set to true,
258 // any data extracted will be endian swapped.
259 //----------------------------------------------------------------------
260 lldb::offset_t
SetData(const void * bytes,offset_t length,ByteOrder endian)261 DataExtractor::SetData (const void *bytes, offset_t length, ByteOrder endian)
262 {
263     m_byte_order = endian;
264     m_data_sp.reset();
265     if (bytes == NULL || length == 0)
266     {
267         m_start = NULL;
268         m_end = NULL;
269     }
270     else
271     {
272         m_start = (uint8_t *)bytes;
273         m_end = m_start + length;
274     }
275     return GetByteSize();
276 }
277 
278 //----------------------------------------------------------------------
279 // Assign the data for this object to be a subrange in "data"
280 // starting "data_offset" bytes into "data" and ending "data_length"
281 // bytes later. If "data_offset" is not a valid offset into "data",
282 // then this object will contain no bytes. If "data_offset" is
283 // within "data" yet "data_length" is too large, the length will be
284 // capped at the number of bytes remaining in "data". If "data"
285 // contains a shared pointer to other data, then a ref counted
286 // pointer to that data will be made in this object. If "data"
287 // doesn't contain a shared pointer to data, then the bytes referred
288 // to in "data" will need to exist at least as long as this object
289 // refers to those bytes. The address size and endian swap settings
290 // are copied from the current values in "data".
291 //----------------------------------------------------------------------
292 lldb::offset_t
SetData(const DataExtractor & data,offset_t data_offset,offset_t data_length)293 DataExtractor::SetData (const DataExtractor& data, offset_t data_offset, offset_t data_length)
294 {
295     m_addr_size = data.m_addr_size;
296     // If "data" contains shared pointer to data, then we can use that
297     if (data.m_data_sp.get())
298     {
299         m_byte_order = data.m_byte_order;
300         return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length);
301     }
302 
303     // We have a DataExtractor object that just has a pointer to bytes
304     if (data.ValidOffset(data_offset))
305     {
306         if (data_length > data.GetByteSize() - data_offset)
307             data_length = data.GetByteSize() - data_offset;
308         return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder());
309     }
310     return 0;
311 }
312 
313 //----------------------------------------------------------------------
314 // Assign the data for this object to be a subrange of the shared
315 // data in "data_sp" starting "data_offset" bytes into "data_sp"
316 // and ending "data_length" bytes later. If "data_offset" is not
317 // a valid offset into "data_sp", then this object will contain no
318 // bytes. If "data_offset" is within "data_sp" yet "data_length" is
319 // too large, the length will be capped at the number of bytes
320 // remaining in "data_sp". A ref counted pointer to the data in
321 // "data_sp" will be made in this object IF the number of bytes this
322 // object refers to in greater than zero (if at least one byte was
323 // available starting at "data_offset") to ensure the data stays
324 // around as long as it is needed. The address size and endian swap
325 // settings will remain unchanged from their current settings.
326 //----------------------------------------------------------------------
327 lldb::offset_t
SetData(const DataBufferSP & data_sp,offset_t data_offset,offset_t data_length)328 DataExtractor::SetData (const DataBufferSP& data_sp, offset_t data_offset, offset_t data_length)
329 {
330     m_start = m_end = NULL;
331 
332     if (data_length > 0)
333     {
334         m_data_sp = data_sp;
335         if (data_sp.get())
336         {
337             const size_t data_size = data_sp->GetByteSize();
338             if (data_offset < data_size)
339             {
340                 m_start = data_sp->GetBytes() + data_offset;
341                 const size_t bytes_left = data_size - data_offset;
342                 // Cap the length of we asked for too many
343                 if (data_length <= bytes_left)
344                     m_end = m_start + data_length;  // We got all the bytes we wanted
345                 else
346                     m_end = m_start + bytes_left;   // Not all the bytes requested were available in the shared data
347             }
348         }
349     }
350 
351     size_t new_size = GetByteSize();
352 
353     // Don't hold a shared pointer to the data buffer if we don't share
354     // any valid bytes in the shared buffer.
355     if (new_size == 0)
356         m_data_sp.reset();
357 
358     return new_size;
359 }
360 
361 //----------------------------------------------------------------------
362 // Extract a single unsigned char from the binary data and update
363 // the offset pointed to by "offset_ptr".
364 //
365 // RETURNS the byte that was extracted, or zero on failure.
366 //----------------------------------------------------------------------
367 uint8_t
GetU8(offset_t * offset_ptr) const368 DataExtractor::GetU8 (offset_t *offset_ptr) const
369 {
370     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, 1);
371     if (data)
372         return *data;
373     return 0;
374 }
375 
376 //----------------------------------------------------------------------
377 // Extract "count" unsigned chars from the binary data and update the
378 // offset pointed to by "offset_ptr". The extracted data is copied into
379 // "dst".
380 //
381 // RETURNS the non-NULL buffer pointer upon successful extraction of
382 // all the requested bytes, or NULL when the data is not available in
383 // the buffer due to being out of bounds, or unsufficient data.
384 //----------------------------------------------------------------------
385 void *
GetU8(offset_t * offset_ptr,void * dst,uint32_t count) const386 DataExtractor::GetU8 (offset_t *offset_ptr, void *dst, uint32_t count) const
387 {
388     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, count);
389     if (data)
390     {
391         // Copy the data into the buffer
392         memcpy (dst, data, count);
393         // Return a non-NULL pointer to the converted data as an indicator of success
394         return dst;
395     }
396     return NULL;
397 }
398 
399 //----------------------------------------------------------------------
400 // Extract a single uint16_t from the data and update the offset
401 // pointed to by "offset_ptr".
402 //
403 // RETURNS the uint16_t that was extracted, or zero on failure.
404 //----------------------------------------------------------------------
405 uint16_t
GetU16(offset_t * offset_ptr) const406 DataExtractor::GetU16 (offset_t *offset_ptr) const
407 {
408     uint16_t val = 0;
409     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
410     if (data)
411     {
412         if (m_byte_order != lldb::endian::InlHostByteOrder())
413             val = ReadSwapInt16(data);
414         else
415             val = ReadInt16 (data);
416     }
417     return val;
418 }
419 
420 uint16_t
GetU16_unchecked(offset_t * offset_ptr) const421 DataExtractor::GetU16_unchecked (offset_t *offset_ptr) const
422 {
423     uint16_t val;
424     if (m_byte_order == lldb::endian::InlHostByteOrder())
425         val = ReadInt16 (m_start, *offset_ptr);
426     else
427         val = ReadSwapInt16(m_start, *offset_ptr);
428     *offset_ptr += sizeof(val);
429     return val;
430 }
431 
432 uint32_t
GetU32_unchecked(offset_t * offset_ptr) const433 DataExtractor::GetU32_unchecked (offset_t *offset_ptr) const
434 {
435     uint32_t val;
436     if (m_byte_order == lldb::endian::InlHostByteOrder())
437         val = ReadInt32 (m_start, *offset_ptr);
438     else
439         val =  ReadSwapInt32 (m_start, *offset_ptr);
440     *offset_ptr += sizeof(val);
441     return val;
442 }
443 
444 uint64_t
GetU64_unchecked(offset_t * offset_ptr) const445 DataExtractor::GetU64_unchecked (offset_t *offset_ptr) const
446 {
447     uint64_t val;
448     if (m_byte_order == lldb::endian::InlHostByteOrder())
449         val = ReadInt64 (m_start, *offset_ptr);
450     else
451         val = ReadSwapInt64 (m_start, *offset_ptr);
452     *offset_ptr += sizeof(val);
453     return val;
454 }
455 
456 
457 //----------------------------------------------------------------------
458 // Extract "count" uint16_t values from the binary data and update
459 // the offset pointed to by "offset_ptr". The extracted data is
460 // copied into "dst".
461 //
462 // RETURNS the non-NULL buffer pointer upon successful extraction of
463 // all the requested bytes, or NULL when the data is not available
464 // in the buffer due to being out of bounds, or unsufficient data.
465 //----------------------------------------------------------------------
466 void *
GetU16(offset_t * offset_ptr,void * void_dst,uint32_t count) const467 DataExtractor::GetU16 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
468 {
469     const size_t src_size = sizeof(uint16_t) * count;
470     const uint16_t *src = (const uint16_t *)GetData (offset_ptr, src_size);
471     if (src)
472     {
473         if (m_byte_order != lldb::endian::InlHostByteOrder())
474         {
475             uint16_t *dst_pos = (uint16_t *)void_dst;
476             uint16_t *dst_end = dst_pos + count;
477             const uint16_t *src_pos = src;
478             while (dst_pos < dst_end)
479             {
480                 *dst_pos = ReadSwapInt16 (src_pos);
481                 ++dst_pos;
482                 ++src_pos;
483             }
484         }
485         else
486         {
487             memcpy (void_dst, src, src_size);
488         }
489         // Return a non-NULL pointer to the converted data as an indicator of success
490         return void_dst;
491     }
492     return NULL;
493 }
494 
495 //----------------------------------------------------------------------
496 // Extract a single uint32_t from the data and update the offset
497 // pointed to by "offset_ptr".
498 //
499 // RETURNS the uint32_t that was extracted, or zero on failure.
500 //----------------------------------------------------------------------
501 uint32_t
GetU32(offset_t * offset_ptr) const502 DataExtractor::GetU32 (offset_t *offset_ptr) const
503 {
504     uint32_t val = 0;
505     const uint32_t *data = (const uint32_t *)GetData (offset_ptr, sizeof(val));
506     if (data)
507     {
508         if (m_byte_order != lldb::endian::InlHostByteOrder())
509             val = ReadSwapInt32 (data);
510         else
511             val = *data;
512     }
513     return val;
514 }
515 
516 //----------------------------------------------------------------------
517 // Extract "count" uint32_t values from the binary data and update
518 // the offset pointed to by "offset_ptr". The extracted data is
519 // copied into "dst".
520 //
521 // RETURNS the non-NULL buffer pointer upon successful extraction of
522 // all the requested bytes, or NULL when the data is not available
523 // in the buffer due to being out of bounds, or unsufficient data.
524 //----------------------------------------------------------------------
525 void *
GetU32(offset_t * offset_ptr,void * void_dst,uint32_t count) const526 DataExtractor::GetU32 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
527 {
528     const size_t src_size = sizeof(uint32_t) * count;
529     const uint32_t *src = (const uint32_t *)GetData (offset_ptr, src_size);
530     if (src)
531     {
532         if (m_byte_order != lldb::endian::InlHostByteOrder())
533         {
534             uint32_t *dst_pos = (uint32_t *)void_dst;
535             uint32_t *dst_end = dst_pos + count;
536             const uint32_t *src_pos = src;
537             while (dst_pos < dst_end)
538             {
539                 *dst_pos = ReadSwapInt32 (src_pos);
540                 ++dst_pos;
541                 ++src_pos;
542             }
543         }
544         else
545         {
546             memcpy (void_dst, src, src_size);
547         }
548         // Return a non-NULL pointer to the converted data as an indicator of success
549         return void_dst;
550     }
551     return NULL;
552 }
553 
554 //----------------------------------------------------------------------
555 // Extract a single uint64_t from the data and update the offset
556 // pointed to by "offset_ptr".
557 //
558 // RETURNS the uint64_t that was extracted, or zero on failure.
559 //----------------------------------------------------------------------
560 uint64_t
GetU64(offset_t * offset_ptr) const561 DataExtractor::GetU64 (offset_t *offset_ptr) const
562 {
563     uint64_t val = 0;
564     const uint64_t *data = (const uint64_t *)GetData (offset_ptr, sizeof(val));
565     if (data)
566     {
567         if (m_byte_order != lldb::endian::InlHostByteOrder())
568             val = ReadSwapInt64 (data);
569         else
570             val = *data;
571     }
572     return val;
573 }
574 
575 //----------------------------------------------------------------------
576 // GetU64
577 //
578 // Get multiple consecutive 64 bit values. Return true if the entire
579 // read succeeds and increment the offset pointed to by offset_ptr, else
580 // return false and leave the offset pointed to by offset_ptr unchanged.
581 //----------------------------------------------------------------------
582 void *
GetU64(offset_t * offset_ptr,void * void_dst,uint32_t count) const583 DataExtractor::GetU64 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
584 {
585     const size_t src_size = sizeof(uint64_t) * count;
586     const uint64_t *src = (const uint64_t *)GetData (offset_ptr, src_size);
587     if (src)
588     {
589         if (m_byte_order != lldb::endian::InlHostByteOrder())
590         {
591             uint64_t *dst_pos = (uint64_t *)void_dst;
592             uint64_t *dst_end = dst_pos + count;
593             const uint64_t *src_pos = src;
594             while (dst_pos < dst_end)
595             {
596                 *dst_pos = ReadSwapInt64 (src_pos);
597                 ++dst_pos;
598                 ++src_pos;
599             }
600         }
601         else
602         {
603             memcpy (void_dst, src, src_size);
604         }
605         // Return a non-NULL pointer to the converted data as an indicator of success
606         return void_dst;
607     }
608     return NULL;
609 }
610 
611 //----------------------------------------------------------------------
612 // Extract a single integer value from the data and update the offset
613 // pointed to by "offset_ptr". The size of the extracted integer
614 // is specified by the "byte_size" argument. "byte_size" should have
615 // a value between 1 and 4 since the return value is only 32 bits
616 // wide. Any "byte_size" values less than 1 or greater than 4 will
617 // result in nothing being extracted, and zero being returned.
618 //
619 // RETURNS the integer value that was extracted, or zero on failure.
620 //----------------------------------------------------------------------
621 uint32_t
GetMaxU32(offset_t * offset_ptr,size_t byte_size) const622 DataExtractor::GetMaxU32 (offset_t *offset_ptr, size_t byte_size) const
623 {
624     switch (byte_size)
625     {
626     case 1: return GetU8 (offset_ptr); break;
627     case 2: return GetU16(offset_ptr); break;
628     case 4: return GetU32(offset_ptr); break;
629     default:
630         assert("GetMaxU32 unhandled case!" == NULL);
631         break;
632     }
633     return 0;
634 }
635 
636 //----------------------------------------------------------------------
637 // Extract a single integer value from the data and update the offset
638 // pointed to by "offset_ptr". The size of the extracted integer
639 // is specified by the "byte_size" argument. "byte_size" should have
640 // a value >= 1 and <= 8 since the return value is only 64 bits
641 // wide. Any "byte_size" values less than 1 or greater than 8 will
642 // result in nothing being extracted, and zero being returned.
643 //
644 // RETURNS the integer value that was extracted, or zero on failure.
645 //----------------------------------------------------------------------
646 uint64_t
GetMaxU64(offset_t * offset_ptr,size_t size) const647 DataExtractor::GetMaxU64 (offset_t *offset_ptr, size_t size) const
648 {
649     switch (size)
650     {
651     case 1: return GetU8 (offset_ptr); break;
652     case 2: return GetU16(offset_ptr); break;
653     case 4: return GetU32(offset_ptr); break;
654     case 8: return GetU64(offset_ptr); break;
655     default:
656         assert("GetMax64 unhandled case!" == NULL);
657         break;
658     }
659     return 0;
660 }
661 
662 uint64_t
GetMaxU64_unchecked(offset_t * offset_ptr,size_t size) const663 DataExtractor::GetMaxU64_unchecked (offset_t *offset_ptr, size_t size) const
664 {
665     switch (size)
666     {
667         case 1: return GetU8_unchecked  (offset_ptr); break;
668         case 2: return GetU16_unchecked (offset_ptr); break;
669         case 4: return GetU32_unchecked (offset_ptr); break;
670         case 8: return GetU64_unchecked (offset_ptr); break;
671         default:
672             assert("GetMax64 unhandled case!" == NULL);
673             break;
674     }
675     return 0;
676 }
677 
678 int64_t
GetMaxS64(offset_t * offset_ptr,size_t size) const679 DataExtractor::GetMaxS64 (offset_t *offset_ptr, size_t size) const
680 {
681     switch (size)
682     {
683     case 1: return (int8_t)GetU8 (offset_ptr); break;
684     case 2: return (int16_t)GetU16(offset_ptr); break;
685     case 4: return (int32_t)GetU32(offset_ptr); break;
686     case 8: return (int64_t)GetU64(offset_ptr); break;
687     default:
688         assert("GetMax64 unhandled case!" == NULL);
689         break;
690     }
691     return 0;
692 }
693 
694 uint64_t
GetMaxU64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const695 DataExtractor::GetMaxU64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
696 {
697     uint64_t uval64 = GetMaxU64 (offset_ptr, size);
698     if (bitfield_bit_size > 0)
699     {
700         if (bitfield_bit_offset > 0)
701             uval64 >>= bitfield_bit_offset;
702         uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
703         if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
704             return uval64;
705         uval64 &= bitfield_mask;
706     }
707     return uval64;
708 }
709 
710 int64_t
GetMaxS64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const711 DataExtractor::GetMaxS64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
712 {
713     int64_t sval64 = GetMaxS64 (offset_ptr, size);
714     if (bitfield_bit_size > 0)
715     {
716         if (bitfield_bit_offset > 0)
717             sval64 >>= bitfield_bit_offset;
718         uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
719         sval64 &= bitfield_mask;
720         // sign extend if needed
721         if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
722             sval64 |= ~bitfield_mask;
723     }
724     return sval64;
725 }
726 
727 
728 float
GetFloat(offset_t * offset_ptr) const729 DataExtractor::GetFloat (offset_t *offset_ptr) const
730 {
731     typedef float float_type;
732     float_type val = 0.0;
733     const size_t src_size = sizeof(float_type);
734     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
735     if (src)
736     {
737         if (m_byte_order != lldb::endian::InlHostByteOrder())
738         {
739             const uint8_t *src_data = (const uint8_t *)src;
740             uint8_t *dst_data = (uint8_t *)&val;
741             for (size_t i=0; i<sizeof(float_type); ++i)
742                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
743         }
744         else
745         {
746             val = *src;
747         }
748     }
749     return val;
750 }
751 
752 double
GetDouble(offset_t * offset_ptr) const753 DataExtractor::GetDouble (offset_t *offset_ptr) const
754 {
755     typedef double float_type;
756     float_type val = 0.0;
757     const size_t src_size = sizeof(float_type);
758     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
759     if (src)
760     {
761         if (m_byte_order != lldb::endian::InlHostByteOrder())
762         {
763             const uint8_t *src_data = (const uint8_t *)src;
764             uint8_t *dst_data = (uint8_t *)&val;
765             for (size_t i=0; i<sizeof(float_type); ++i)
766                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
767         }
768         else
769         {
770             val = *src;
771         }
772     }
773     return val;
774 }
775 
776 
777 long double
GetLongDouble(offset_t * offset_ptr) const778 DataExtractor::GetLongDouble (offset_t *offset_ptr) const
779 {
780     typedef long double float_type;
781     float_type val = 0.0;
782     const size_t src_size = sizeof(float_type);
783     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
784     if (src)
785     {
786         if (m_byte_order != lldb::endian::InlHostByteOrder())
787         {
788             const uint8_t *src_data = (const uint8_t *)src;
789             uint8_t *dst_data = (uint8_t *)&val;
790             for (size_t i=0; i<sizeof(float_type); ++i)
791                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
792         }
793         else
794         {
795             val = *src;
796         }
797     }
798     return val;
799 }
800 
801 
802 //------------------------------------------------------------------
803 // Extract a single address from the data and update the offset
804 // pointed to by "offset_ptr". The size of the extracted address
805 // comes from the "this->m_addr_size" member variable and should be
806 // set correctly prior to extracting any address values.
807 //
808 // RETURNS the address that was extracted, or zero on failure.
809 //------------------------------------------------------------------
810 uint64_t
GetAddress(offset_t * offset_ptr) const811 DataExtractor::GetAddress (offset_t *offset_ptr) const
812 {
813     return GetMaxU64 (offset_ptr, m_addr_size);
814 }
815 
816 uint64_t
GetAddress_unchecked(offset_t * offset_ptr) const817 DataExtractor::GetAddress_unchecked (offset_t *offset_ptr) const
818 {
819     return GetMaxU64_unchecked (offset_ptr, m_addr_size);
820 }
821 
822 //------------------------------------------------------------------
823 // Extract a single pointer from the data and update the offset
824 // pointed to by "offset_ptr". The size of the extracted pointer
825 // comes from the "this->m_addr_size" member variable and should be
826 // set correctly prior to extracting any pointer values.
827 //
828 // RETURNS the pointer that was extracted, or zero on failure.
829 //------------------------------------------------------------------
830 uint64_t
GetPointer(offset_t * offset_ptr) const831 DataExtractor::GetPointer (offset_t *offset_ptr) const
832 {
833     return GetMaxU64 (offset_ptr, m_addr_size);
834 }
835 
836 //----------------------------------------------------------------------
837 // GetDwarfEHPtr
838 //
839 // Used for calls when the value type is specified by a DWARF EH Frame
840 // pointer encoding.
841 //----------------------------------------------------------------------
842 
843 uint64_t
GetGNUEHPointer(offset_t * offset_ptr,uint32_t eh_ptr_enc,lldb::addr_t pc_rel_addr,lldb::addr_t text_addr,lldb::addr_t data_addr)844 DataExtractor::GetGNUEHPointer (offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const
845 {
846     if (eh_ptr_enc == DW_EH_PE_omit)
847         return ULLONG_MAX;  // Value isn't in the buffer...
848 
849     uint64_t baseAddress = 0;
850     uint64_t addressValue = 0;
851     const uint32_t addr_size = GetAddressByteSize();
852 
853     bool signExtendValue = false;
854     // Decode the base part or adjust our offset
855     switch (eh_ptr_enc & 0x70)
856     {
857     case DW_EH_PE_pcrel:
858         signExtendValue = true;
859         baseAddress = *offset_ptr;
860         if (pc_rel_addr != LLDB_INVALID_ADDRESS)
861             baseAddress += pc_rel_addr;
862 //      else
863 //          Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address.");
864         break;
865 
866     case DW_EH_PE_textrel:
867         signExtendValue = true;
868         if (text_addr != LLDB_INVALID_ADDRESS)
869             baseAddress = text_addr;
870 //      else
871 //          Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero.");
872         break;
873 
874     case DW_EH_PE_datarel:
875         signExtendValue = true;
876         if (data_addr != LLDB_INVALID_ADDRESS)
877             baseAddress = data_addr;
878 //      else
879 //          Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero.");
880         break;
881 
882     case DW_EH_PE_funcrel:
883         signExtendValue = true;
884         break;
885 
886     case DW_EH_PE_aligned:
887         {
888             // SetPointerSize should be called prior to extracting these so the
889             // pointer size is cached
890             assert(addr_size != 0);
891             if (addr_size)
892             {
893                 // Align to a address size boundary first
894                 uint32_t alignOffset = *offset_ptr % addr_size;
895                 if (alignOffset)
896                     offset_ptr += addr_size - alignOffset;
897             }
898         }
899         break;
900 
901     default:
902     break;
903     }
904 
905     // Decode the value part
906     switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING)
907     {
908     case DW_EH_PE_absptr    :
909         {
910             addressValue = GetAddress (offset_ptr);
911 //          if (data_relocs)
912 //              addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue);
913         }
914         break;
915     case DW_EH_PE_uleb128   : addressValue = GetULEB128(offset_ptr);        break;
916     case DW_EH_PE_udata2    : addressValue = GetU16(offset_ptr);            break;
917     case DW_EH_PE_udata4    : addressValue = GetU32(offset_ptr);            break;
918     case DW_EH_PE_udata8    : addressValue = GetU64(offset_ptr);            break;
919     case DW_EH_PE_sleb128   : addressValue = GetSLEB128(offset_ptr);        break;
920     case DW_EH_PE_sdata2    : addressValue = (int16_t)GetU16(offset_ptr);   break;
921     case DW_EH_PE_sdata4    : addressValue = (int32_t)GetU32(offset_ptr);   break;
922     case DW_EH_PE_sdata8    : addressValue = (int64_t)GetU64(offset_ptr);   break;
923     default:
924     // Unhandled encoding type
925     assert(eh_ptr_enc);
926     break;
927     }
928 
929     // Since we promote everything to 64 bit, we may need to sign extend
930     if (signExtendValue && addr_size < sizeof(baseAddress))
931     {
932         uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
933         if (sign_bit & addressValue)
934         {
935             uint64_t mask = ~sign_bit + 1;
936             addressValue |= mask;
937         }
938     }
939     return baseAddress + addressValue;
940 }
941 
942 size_t
ExtractBytes(offset_t offset,offset_t length,ByteOrder dst_byte_order,void * dst) const943 DataExtractor::ExtractBytes (offset_t offset, offset_t length, ByteOrder dst_byte_order, void *dst) const
944 {
945     const uint8_t *src = PeekData (offset, length);
946     if (src)
947     {
948         if (dst_byte_order != GetByteOrder())
949         {
950             for (uint32_t i=0; i<length; ++i)
951                 ((uint8_t*)dst)[i] = src[length - i - 1];
952         }
953         else
954             ::memcpy (dst, src, length);
955         return length;
956     }
957     return 0;
958 }
959 
960 // Extract data and swap if needed when doing the copy
961 lldb::offset_t
CopyByteOrderedData(offset_t src_offset,offset_t src_len,void * dst_void_ptr,offset_t dst_len,ByteOrder dst_byte_order) const962 DataExtractor::CopyByteOrderedData (offset_t src_offset,
963                                     offset_t src_len,
964                                     void *dst_void_ptr,
965                                     offset_t dst_len,
966                                     ByteOrder dst_byte_order) const
967 {
968     // Validate the source info
969     if (!ValidOffsetForDataOfSize(src_offset, src_len))
970         assert (ValidOffsetForDataOfSize(src_offset, src_len));
971     assert (src_len > 0);
972     assert (m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
973 
974     // Validate the destination info
975     assert (dst_void_ptr != NULL);
976     assert (dst_len > 0);
977     assert (dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
978 
979     // Must have valid byte orders set in this object and for destination
980     if (!(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle) ||
981         !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
982         return 0;
983 
984     uint32_t i;
985     uint8_t* dst = (uint8_t*)dst_void_ptr;
986     const uint8_t* src = (const uint8_t *)PeekData (src_offset, src_len);
987     if (src)
988     {
989         if (dst_len >= src_len)
990         {
991             // We are copying the entire value from src into dst.
992             // Calculate how many, if any, zeroes we need for the most
993             // significant bytes if "dst_len" is greater than "src_len"...
994             const size_t num_zeroes = dst_len - src_len;
995             if (dst_byte_order == eByteOrderBig)
996             {
997                 // Big endian, so we lead with zeroes...
998                 if (num_zeroes > 0)
999                     ::memset (dst, 0, num_zeroes);
1000                 // Then either copy or swap the rest
1001                 if (m_byte_order == eByteOrderBig)
1002                 {
1003                     ::memcpy (dst + num_zeroes, src, src_len);
1004                 }
1005                 else
1006                 {
1007                     for (i=0; i<src_len; ++i)
1008                         dst[i+num_zeroes] = src[src_len - 1 - i];
1009                 }
1010             }
1011             else
1012             {
1013                 // Little endian destination, so we lead the value bytes
1014                 if (m_byte_order == eByteOrderBig)
1015                 {
1016                     for (i=0; i<src_len; ++i)
1017                         dst[i] = src[src_len - 1 - i];
1018                 }
1019                 else
1020                 {
1021                     ::memcpy (dst, src, src_len);
1022                 }
1023                 // And zero the rest...
1024                 if (num_zeroes > 0)
1025                     ::memset (dst + src_len, 0, num_zeroes);
1026             }
1027             return src_len;
1028         }
1029         else
1030         {
1031             // We are only copying some of the value from src into dst..
1032 
1033             if (dst_byte_order == eByteOrderBig)
1034             {
1035                 // Big endian dst
1036                 if (m_byte_order == eByteOrderBig)
1037                 {
1038                     // Big endian dst, with big endian src
1039                     ::memcpy (dst, src + (src_len - dst_len), dst_len);
1040                 }
1041                 else
1042                 {
1043                     // Big endian dst, with little endian src
1044                     for (i=0; i<dst_len; ++i)
1045                         dst[i] = src[dst_len - 1 - i];
1046                 }
1047             }
1048             else
1049             {
1050                 // Little endian dst
1051                 if (m_byte_order == eByteOrderBig)
1052                 {
1053                     // Little endian dst, with big endian src
1054                     for (i=0; i<dst_len; ++i)
1055                         dst[i] = src[src_len - 1 - i];
1056                 }
1057                 else
1058                 {
1059                     // Little endian dst, with big endian src
1060                     ::memcpy (dst, src, dst_len);
1061                 }
1062             }
1063             return dst_len;
1064         }
1065 
1066     }
1067     return 0;
1068 }
1069 
1070 
1071 //----------------------------------------------------------------------
1072 // Extracts a variable length NULL terminated C string from
1073 // the data at the offset pointed to by "offset_ptr".  The
1074 // "offset_ptr" will be updated with the offset of the byte that
1075 // follows the NULL terminator byte.
1076 //
1077 // If the offset pointed to by "offset_ptr" is out of bounds, or if
1078 // "length" is non-zero and there aren't enough avaialable
1079 // bytes, NULL will be returned and "offset_ptr" will not be
1080 // updated.
1081 //----------------------------------------------------------------------
1082 const char*
GetCStr(offset_t * offset_ptr) const1083 DataExtractor::GetCStr (offset_t *offset_ptr) const
1084 {
1085     const char *cstr = (const char *)PeekData (*offset_ptr, 1);
1086     if (cstr)
1087     {
1088         const char *cstr_end = cstr;
1089         const char *end = (const char *)m_end;
1090         while (cstr_end < end && *cstr_end)
1091             ++cstr_end;
1092 
1093         // Now we are either at the end of the data or we point to the
1094         // NULL C string terminator with cstr_end...
1095         if (*cstr_end == '\0')
1096         {
1097             // Advance the offset with one extra byte for the NULL terminator
1098             *offset_ptr += (cstr_end - cstr + 1);
1099             return cstr;
1100         }
1101 
1102         // We reached the end of the data without finding a NULL C string
1103         // terminator. Fall through and return NULL otherwise anyone that
1104         // would have used the result as a C string can wonder into
1105         // unknown memory...
1106     }
1107     return NULL;
1108 }
1109 
1110 //----------------------------------------------------------------------
1111 // Extracts a NULL terminated C string from the fixed length field of
1112 // length "len" at the offset pointed to by "offset_ptr".
1113 // The "offset_ptr" will be updated with the offset of the byte that
1114 // follows the fixed length field.
1115 //
1116 // If the offset pointed to by "offset_ptr" is out of bounds, or if
1117 // the offset plus the length of the field is out of bounds, or if the
1118 // field does not contain a NULL terminator byte, NULL will be returned
1119 // and "offset_ptr" will not be updated.
1120 //----------------------------------------------------------------------
1121 const char*
GetCStr(offset_t * offset_ptr,offset_t len) const1122 DataExtractor::GetCStr (offset_t *offset_ptr, offset_t len) const
1123 {
1124     const char *cstr = (const char *)PeekData (*offset_ptr, len);
1125     if (cstr)
1126     {
1127         if (memchr (cstr, '\0', len) == NULL)
1128         {
1129             return NULL;
1130         }
1131         *offset_ptr += len;
1132         return cstr;
1133     }
1134     return NULL;
1135 }
1136 
1137 //------------------------------------------------------------------
1138 // Peeks at a string in the contained data. No verification is done
1139 // to make sure the entire string lies within the bounds of this
1140 // object's data, only "offset" is verified to be a valid offset.
1141 //
1142 // Returns a valid C string pointer if "offset" is a valid offset in
1143 // this object's data, else NULL is returned.
1144 //------------------------------------------------------------------
1145 const char *
PeekCStr(offset_t offset) const1146 DataExtractor::PeekCStr (offset_t offset) const
1147 {
1148     return (const char *)PeekData (offset, 1);
1149 }
1150 
1151 //----------------------------------------------------------------------
1152 // Extracts an unsigned LEB128 number from this object's data
1153 // starting at the offset pointed to by "offset_ptr". The offset
1154 // pointed to by "offset_ptr" will be updated with the offset of the
1155 // byte following the last extracted byte.
1156 //
1157 // Returned the extracted integer value.
1158 //----------------------------------------------------------------------
1159 uint64_t
GetULEB128(offset_t * offset_ptr) const1160 DataExtractor::GetULEB128 (offset_t *offset_ptr) const
1161 {
1162     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1163     if (src == NULL)
1164         return 0;
1165 
1166     const uint8_t *end = m_end;
1167 
1168     if (src < end)
1169     {
1170         uint64_t result = *src++;
1171         if (result >= 0x80)
1172         {
1173             result &= 0x7f;
1174             int shift = 7;
1175             while (src < end)
1176             {
1177                 uint8_t byte = *src++;
1178                 result |= (byte & 0x7f) << shift;
1179                 if ((byte & 0x80) == 0)
1180                     break;
1181                 shift += 7;
1182             }
1183         }
1184         *offset_ptr = src - m_start;
1185         return result;
1186     }
1187 
1188     return 0;
1189 }
1190 
1191 //----------------------------------------------------------------------
1192 // Extracts an signed LEB128 number from this object's data
1193 // starting at the offset pointed to by "offset_ptr". The offset
1194 // pointed to by "offset_ptr" will be updated with the offset of the
1195 // byte following the last extracted byte.
1196 //
1197 // Returned the extracted integer value.
1198 //----------------------------------------------------------------------
1199 int64_t
GetSLEB128(offset_t * offset_ptr) const1200 DataExtractor::GetSLEB128 (offset_t *offset_ptr) const
1201 {
1202     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1203     if (src == NULL)
1204         return 0;
1205 
1206     const uint8_t *end = m_end;
1207 
1208     if (src < end)
1209     {
1210         int64_t result = 0;
1211         int shift = 0;
1212         int size = sizeof (int64_t) * 8;
1213 
1214         uint8_t byte = 0;
1215         int bytecount = 0;
1216 
1217         while (src < end)
1218         {
1219             bytecount++;
1220             byte = *src++;
1221             result |= (byte & 0x7f) << shift;
1222             shift += 7;
1223             if ((byte & 0x80) == 0)
1224                 break;
1225         }
1226 
1227         // Sign bit of byte is 2nd high order bit (0x40)
1228         if (shift < size && (byte & 0x40))
1229             result |= - (1 << shift);
1230 
1231         *offset_ptr += bytecount;
1232         return result;
1233     }
1234     return 0;
1235 }
1236 
1237 //----------------------------------------------------------------------
1238 // Skips a ULEB128 number (signed or unsigned) from this object's
1239 // data starting at the offset pointed to by "offset_ptr". The
1240 // offset pointed to by "offset_ptr" will be updated with the offset
1241 // of the byte following the last extracted byte.
1242 //
1243 // Returns the number of bytes consumed during the extraction.
1244 //----------------------------------------------------------------------
1245 uint32_t
Skip_LEB128(offset_t * offset_ptr) const1246 DataExtractor::Skip_LEB128 (offset_t *offset_ptr) const
1247 {
1248     uint32_t bytes_consumed = 0;
1249     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1250     if (src == NULL)
1251         return 0;
1252 
1253     const uint8_t *end = m_end;
1254 
1255     if (src < end)
1256     {
1257         const uint8_t *src_pos = src;
1258         while ((src_pos < end) && (*src_pos++ & 0x80))
1259             ++bytes_consumed;
1260         *offset_ptr += src_pos - src;
1261     }
1262     return bytes_consumed;
1263 }
1264 
1265 static bool
GetAPInt(const DataExtractor & data,lldb::offset_t * offset_ptr,lldb::offset_t byte_size,llvm::APInt & result)1266 GetAPInt (const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result)
1267 {
1268     llvm::SmallVector<uint64_t, 2> uint64_array;
1269     lldb::offset_t bytes_left = byte_size;
1270     uint64_t u64;
1271     const lldb::ByteOrder byte_order = data.GetByteOrder();
1272     if (byte_order == lldb::eByteOrderLittle)
1273     {
1274         while (bytes_left > 0)
1275         {
1276             if (bytes_left >= 8)
1277             {
1278                 u64 = data.GetU64(offset_ptr);
1279                 bytes_left -= 8;
1280             }
1281             else
1282             {
1283                 u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
1284                 bytes_left = 0;
1285             }
1286             uint64_array.push_back(u64);
1287         }
1288         result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
1289         return true;
1290     }
1291     else if (byte_order == lldb::eByteOrderBig)
1292     {
1293         lldb::offset_t be_offset = *offset_ptr + byte_size;
1294         lldb::offset_t temp_offset;
1295         while (bytes_left > 0)
1296         {
1297             if (bytes_left >= 8)
1298             {
1299                 be_offset -= 8;
1300                 temp_offset = be_offset;
1301                 u64 = data.GetU64(&temp_offset);
1302                 bytes_left -= 8;
1303             }
1304             else
1305             {
1306                 be_offset -= bytes_left;
1307                 temp_offset = be_offset;
1308                 u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
1309                 bytes_left = 0;
1310             }
1311             uint64_array.push_back(u64);
1312         }
1313         *offset_ptr += byte_size;
1314         result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
1315         return true;
1316     }
1317     return false;
1318 }
1319 
1320 static lldb::offset_t
DumpAPInt(Stream * s,const DataExtractor & data,lldb::offset_t offset,lldb::offset_t byte_size,bool is_signed,unsigned radix)1321 DumpAPInt (Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix)
1322 {
1323     llvm::APInt apint;
1324     if (GetAPInt (data, &offset, byte_size, apint))
1325     {
1326         std::string apint_str(apint.toString(radix, is_signed));
1327         switch (radix)
1328         {
1329             case 2:
1330                 s->Write ("0b", 2);
1331                 break;
1332             case 8:
1333                 s->Write ("0", 1);
1334                 break;
1335             case 10:
1336                 break;
1337         }
1338         s->Write(apint_str.c_str(), apint_str.size());
1339     }
1340     return offset;
1341 }
1342 
half2float(uint16_t half)1343 static float half2float (uint16_t half)
1344 {
1345     union{ float       f; uint32_t    u;}u;
1346     int32_t v = (int16_t) half;
1347 
1348     if( 0 == (v & 0x7c00))
1349     {
1350         u.u = v & 0x80007FFFU;
1351         return u.f * 0x1.0p125f;
1352     }
1353 
1354     v <<= 13;
1355     u.u = v | 0x70000000U;
1356     return u.f * 0x1.0p-112f;
1357 }
1358 
1359 lldb::offset_t
Dump(Stream * s,offset_t start_offset,lldb::Format item_format,size_t item_byte_size,size_t item_count,size_t num_per_line,uint64_t base_addr,uint32_t item_bit_size,uint32_t item_bit_offset,ExecutionContextScope * exe_scope) const1360 DataExtractor::Dump (Stream *s,
1361                      offset_t start_offset,
1362                      lldb::Format item_format,
1363                      size_t item_byte_size,
1364                      size_t item_count,
1365                      size_t num_per_line,
1366                      uint64_t base_addr,
1367                      uint32_t item_bit_size,     // If zero, this is not a bitfield value, if non-zero, the value is a bitfield
1368                      uint32_t item_bit_offset,    // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield
1369                      ExecutionContextScope *exe_scope) const
1370 {
1371     if (s == NULL)
1372         return start_offset;
1373 
1374     if (item_format == eFormatPointer)
1375     {
1376         if (item_byte_size != 4 && item_byte_size != 8)
1377             item_byte_size = s->GetAddressByteSize();
1378     }
1379 
1380     offset_t offset = start_offset;
1381 
1382     if (item_format == eFormatInstruction)
1383     {
1384         TargetSP target_sp;
1385         if (exe_scope)
1386             target_sp = exe_scope->CalculateTarget();
1387         if (target_sp)
1388         {
1389             DisassemblerSP disassembler_sp (Disassembler::FindPlugin(target_sp->GetArchitecture(), NULL,  NULL));
1390             if (disassembler_sp)
1391             {
1392                 lldb::addr_t addr = base_addr + start_offset;
1393                 lldb_private::Address so_addr;
1394 				bool data_from_file = true;
1395                 if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
1396                 {
1397                     data_from_file = false;
1398                 }
1399                 else
1400                 {
1401                     if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
1402                         so_addr.SetRawAddress(addr);
1403                 }
1404 
1405                 size_t bytes_consumed = disassembler_sp->DecodeInstructions (so_addr, *this, start_offset, item_count, false, data_from_file);
1406 
1407                 if (bytes_consumed)
1408                 {
1409                     offset += bytes_consumed;
1410                     const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
1411                     const bool show_bytes = true;
1412                     ExecutionContext exe_ctx;
1413                     exe_scope->CalculateExecutionContext(exe_ctx);
1414                     disassembler_sp->GetInstructionList().Dump (s,  show_address, show_bytes, &exe_ctx);
1415 
1416                     // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
1417                     // I'll fix that but for now, just clear the list and it will go away nicely.
1418                     disassembler_sp->GetInstructionList().Clear();
1419                 }
1420             }
1421         }
1422         else
1423             s->Printf ("invalid target");
1424 
1425         return offset;
1426     }
1427 
1428     if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8)
1429         item_format = eFormatHex;
1430 
1431     lldb::offset_t line_start_offset = start_offset;
1432     for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count)
1433     {
1434         if ((count % num_per_line) == 0)
1435         {
1436             if (count > 0)
1437             {
1438                 if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
1439                 {
1440                     s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
1441                     Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
1442                 }
1443                 s->EOL();
1444             }
1445             if (base_addr != LLDB_INVALID_ADDRESS)
1446                 s->Printf ("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset)));
1447             line_start_offset = offset;
1448         }
1449         else
1450         if (item_format != eFormatChar &&
1451             item_format != eFormatCharPrintable &&
1452             item_format != eFormatCharArray &&
1453             count > 0)
1454         {
1455             s->PutChar(' ');
1456         }
1457 
1458         uint32_t i;
1459         switch (item_format)
1460         {
1461         case eFormatBoolean:
1462             if (item_byte_size <= 8)
1463                 s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false");
1464             else
1465             {
1466                 s->Printf("error: unsupported byte size (%zu) for boolean format", item_byte_size);
1467                 return offset;
1468             }
1469             break;
1470 
1471         case eFormatBinary:
1472             if (item_byte_size <= 8)
1473             {
1474                 uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1475                 // Avoid std::bitset<64>::to_string() since it is missing in
1476                 // earlier C++ libraries
1477                 std::string binary_value(64, '0');
1478                 std::bitset<64> bits(uval64);
1479                 for (i = 0; i < 64; ++i)
1480                     if (bits[i])
1481                         binary_value[64 - 1 - i] = '1';
1482                 if (item_bit_size > 0)
1483                     s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
1484                 else if (item_byte_size > 0 && item_byte_size <= 8)
1485                     s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
1486             }
1487             else
1488             {
1489                 const bool is_signed = false;
1490                 const unsigned radix = 2;
1491                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1492             }
1493             break;
1494 
1495         case eFormatBytes:
1496         case eFormatBytesWithASCII:
1497             for (i=0; i<item_byte_size; ++i)
1498             {
1499                 s->Printf ("%2.2x", GetU8(&offset));
1500             }
1501             // Put an extra space between the groups of bytes if more than one
1502             // is being dumped in a group (item_byte_size is more than 1).
1503             if (item_byte_size > 1)
1504                 s->PutChar(' ');
1505             break;
1506 
1507         case eFormatChar:
1508         case eFormatCharPrintable:
1509         case eFormatCharArray:
1510             {
1511                 // If we are only printing one character surround it with single
1512                 // quotes
1513                 if (item_count == 1 && item_format == eFormatChar)
1514                     s->PutChar('\'');
1515 
1516                 const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1517                 if (isprint(ch))
1518                     s->Printf ("%c", (char)ch);
1519                 else if (item_format != eFormatCharPrintable)
1520                 {
1521                     switch (ch)
1522                     {
1523                     case '\033': s->Printf ("\\e"); break;
1524                     case '\a': s->Printf ("\\a"); break;
1525                     case '\b': s->Printf ("\\b"); break;
1526                     case '\f': s->Printf ("\\f"); break;
1527                     case '\n': s->Printf ("\\n"); break;
1528                     case '\r': s->Printf ("\\r"); break;
1529                     case '\t': s->Printf ("\\t"); break;
1530                     case '\v': s->Printf ("\\v"); break;
1531                     case '\0': s->Printf ("\\0"); break;
1532                     default:
1533                         if (item_byte_size == 1)
1534                             s->Printf ("\\x%2.2x", (uint8_t)ch);
1535                         else
1536                             s->Printf ("%" PRIu64, ch);
1537                         break;
1538                     }
1539                 }
1540                 else
1541                 {
1542                     s->PutChar(NON_PRINTABLE_CHAR);
1543                 }
1544 
1545                 // If we are only printing one character surround it with single quotes
1546                 if (item_count == 1 && item_format == eFormatChar)
1547                     s->PutChar('\'');
1548             }
1549             break;
1550 
1551         case eFormatEnum:       // Print enum value as a signed integer when we don't get the enum type
1552         case eFormatDecimal:
1553             if (item_byte_size <= 8)
1554                 s->Printf ("%" PRId64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1555             else
1556             {
1557                 const bool is_signed = true;
1558                 const unsigned radix = 10;
1559                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1560             }
1561             break;
1562 
1563         case eFormatUnsigned:
1564             if (item_byte_size <= 8)
1565                 s->Printf ("%" PRIu64, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1566             else
1567             {
1568                 const bool is_signed = false;
1569                 const unsigned radix = 10;
1570                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1571             }
1572             break;
1573 
1574         case eFormatOctal:
1575             if (item_byte_size <= 8)
1576                 s->Printf ("0%" PRIo64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1577             else
1578             {
1579                 const bool is_signed = false;
1580                 const unsigned radix = 8;
1581                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1582             }
1583             break;
1584 
1585         case eFormatOSType:
1586             {
1587                 uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1588                 s->PutChar('\'');
1589                 for (i=0; i<item_byte_size; ++i)
1590                 {
1591                     uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
1592                     if (isprint(ch))
1593                         s->Printf ("%c", ch);
1594                     else
1595                     {
1596                         switch (ch)
1597                         {
1598                         case '\033': s->Printf ("\\e"); break;
1599                         case '\a': s->Printf ("\\a"); break;
1600                         case '\b': s->Printf ("\\b"); break;
1601                         case '\f': s->Printf ("\\f"); break;
1602                         case '\n': s->Printf ("\\n"); break;
1603                         case '\r': s->Printf ("\\r"); break;
1604                         case '\t': s->Printf ("\\t"); break;
1605                         case '\v': s->Printf ("\\v"); break;
1606                         case '\0': s->Printf ("\\0"); break;
1607                         default:   s->Printf ("\\x%2.2x", ch); break;
1608                         }
1609                     }
1610                 }
1611                 s->PutChar('\'');
1612             }
1613             break;
1614 
1615         case eFormatCString:
1616             {
1617                 const char *cstr = GetCStr(&offset);
1618 
1619                 if (!cstr)
1620                 {
1621                     s->Printf("NULL");
1622                     offset = LLDB_INVALID_OFFSET;
1623                 }
1624                 else
1625                 {
1626                     s->PutChar('\"');
1627 
1628                     while (const char c = *cstr)
1629                     {
1630                         if (isprint(c))
1631                         {
1632                             s->PutChar(c);
1633                         }
1634                         else
1635                         {
1636                             switch (c)
1637                             {
1638                             case '\033': s->Printf ("\\e"); break;
1639                             case '\a': s->Printf ("\\a"); break;
1640                             case '\b': s->Printf ("\\b"); break;
1641                             case '\f': s->Printf ("\\f"); break;
1642                             case '\n': s->Printf ("\\n"); break;
1643                             case '\r': s->Printf ("\\r"); break;
1644                             case '\t': s->Printf ("\\t"); break;
1645                             case '\v': s->Printf ("\\v"); break;
1646                             default:   s->Printf ("\\x%2.2x", c); break;
1647                             }
1648                         }
1649 
1650                         ++cstr;
1651                     }
1652 
1653                     s->PutChar('\"');
1654                 }
1655             }
1656             break;
1657 
1658 
1659         case eFormatPointer:
1660             s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t));
1661             break;
1662 
1663 
1664         case eFormatComplexInteger:
1665             {
1666                 size_t complex_int_byte_size = item_byte_size / 2;
1667 
1668                 if (complex_int_byte_size <= 8)
1669                 {
1670                     s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
1671                     s->Printf(" + %" PRIu64 "i", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
1672                 }
1673                 else
1674                 {
1675                     s->Printf("error: unsupported byte size (%zu) for complex integer format", item_byte_size);
1676                     return offset;
1677                 }
1678             }
1679             break;
1680 
1681         case eFormatComplex:
1682             if (sizeof(float) * 2 == item_byte_size)
1683             {
1684                 float f32_1 = GetFloat (&offset);
1685                 float f32_2 = GetFloat (&offset);
1686 
1687                 s->Printf ("%g + %gi", f32_1, f32_2);
1688                 break;
1689             }
1690             else if (sizeof(double) * 2 == item_byte_size)
1691             {
1692                 double d64_1 = GetDouble (&offset);
1693                 double d64_2 = GetDouble (&offset);
1694 
1695                 s->Printf ("%lg + %lgi", d64_1, d64_2);
1696                 break;
1697             }
1698             else if (sizeof(long double) * 2 == item_byte_size)
1699             {
1700                 long double ld64_1 = GetLongDouble (&offset);
1701                 long double ld64_2 = GetLongDouble (&offset);
1702                 s->Printf ("%Lg + %Lgi", ld64_1, ld64_2);
1703                 break;
1704             }
1705             else
1706             {
1707                 s->Printf("error: unsupported byte size (%zu) for complex float format", item_byte_size);
1708                 return offset;
1709             }
1710             break;
1711 
1712         default:
1713         case eFormatDefault:
1714         case eFormatHex:
1715         case eFormatHexUppercase:
1716             {
1717                 bool wantsuppercase  = (item_format == eFormatHexUppercase);
1718                 if (item_byte_size <= 8)
1719                 {
1720                     s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1721                 }
1722                 else
1723                 {
1724                     assert (item_bit_size == 0 && item_bit_offset == 0);
1725                     s->PutCString("0x");
1726                     const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size);
1727                     if (bytes)
1728                     {
1729                         uint32_t idx;
1730                         if (m_byte_order == eByteOrderBig)
1731                         {
1732                             for (idx = 0; idx < item_byte_size; ++idx)
1733                                 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
1734                         }
1735                         else
1736                         {
1737                             for (idx = 0; idx < item_byte_size; ++idx)
1738                                 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]);
1739                         }
1740                     }
1741                 }
1742             }
1743             break;
1744 
1745         case eFormatFloat:
1746             {
1747                 TargetSP target_sp;
1748                 bool used_apfloat = false;
1749                 if (exe_scope)
1750                     target_sp = exe_scope->CalculateTarget();
1751                 if (target_sp)
1752                 {
1753                     ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
1754                     if (clang_ast)
1755                     {
1756                         clang::ASTContext *ast = clang_ast->getASTContext();
1757                         if (ast)
1758                         {
1759                             llvm::SmallVector<char, 256> sv;
1760                             // Show full precision when printing float values
1761                             const unsigned format_precision = 0;
1762                             const unsigned format_max_padding = 100;
1763                             size_t item_bit_size = item_byte_size * 8;
1764 
1765                             if (item_bit_size == ast->getTypeSize(ast->FloatTy))
1766                             {
1767                                 llvm::APInt apint(item_bit_size, this->GetMaxU64(&offset, item_byte_size));
1768                                 llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->FloatTy), apint);
1769                                 apfloat.toString(sv, format_precision, format_max_padding);
1770                             }
1771                             else if (item_bit_size == ast->getTypeSize(ast->DoubleTy))
1772                             {
1773                                 llvm::APInt apint;
1774                                 if (GetAPInt (*this, &offset, item_byte_size, apint))
1775                                 {
1776                                     llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->DoubleTy), apint);
1777                                     apfloat.toString(sv, format_precision, format_max_padding);
1778                                 }
1779                             }
1780                             else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy))
1781                             {
1782                                 llvm::APInt apint;
1783                                 switch (target_sp->GetArchitecture().GetCore())
1784                                 {
1785                                     case ArchSpec::eCore_x86_32_i386:
1786                                     case ArchSpec::eCore_x86_32_i486:
1787                                     case ArchSpec::eCore_x86_32_i486sx:
1788                                     case ArchSpec::eCore_x86_64_x86_64:
1789                                         // clang will assert when contructing the apfloat if we use a 16 byte integer value
1790                                         if (GetAPInt (*this, &offset, 10, apint))
1791                                         {
1792                                             llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
1793                                             apfloat.toString(sv, format_precision, format_max_padding);
1794                                         }
1795                                         break;
1796 
1797                                     default:
1798                                         if (GetAPInt (*this, &offset, item_byte_size, apint))
1799                                         {
1800                                             llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
1801                                             apfloat.toString(sv, format_precision, format_max_padding);
1802                                         }
1803                                         break;
1804                                 }
1805                             }
1806                             else if (item_bit_size == ast->getTypeSize(ast->HalfTy))
1807                             {
1808                                 llvm::APInt apint(item_bit_size, this->GetU16(&offset));
1809                                 llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->HalfTy), apint);
1810                                 apfloat.toString(sv, format_precision, format_max_padding);
1811                             }
1812 
1813                             if (!sv.empty())
1814                             {
1815                                 s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
1816                                 used_apfloat = true;
1817                             }
1818                         }
1819                     }
1820                 }
1821 
1822                 if (!used_apfloat)
1823                 {
1824                     std::ostringstream ss;
1825                     if (item_byte_size == sizeof(float) || item_byte_size == 2)
1826                     {
1827                         float f;
1828                         if (item_byte_size == 2)
1829                         {
1830                             uint16_t half = this->GetU16(&offset);
1831                             f = half2float(half);
1832                         }
1833                         else
1834                         {
1835                             f = GetFloat (&offset);
1836                         }
1837                         ss.precision(std::numeric_limits<float>::digits10);
1838                         ss << f;
1839                     }
1840                     else if (item_byte_size == sizeof(double))
1841                     {
1842                         ss.precision(std::numeric_limits<double>::digits10);
1843                         ss << GetDouble(&offset);
1844                     }
1845                     else if (item_byte_size == sizeof(long double))
1846                     {
1847                         ss.precision(std::numeric_limits<long double>::digits10);
1848                         ss << GetLongDouble(&offset);
1849                     }
1850                     else
1851                     {
1852                         s->Printf("error: unsupported byte size (%zu) for float format", item_byte_size);
1853                         return offset;
1854                     }
1855                     ss.flush();
1856                     s->Printf("%s", ss.str().c_str());
1857                 }
1858             }
1859             break;
1860 
1861         case eFormatUnicode16:
1862             s->Printf("U+%4.4x", GetU16 (&offset));
1863             break;
1864 
1865         case eFormatUnicode32:
1866             s->Printf("U+0x%8.8x", GetU32 (&offset));
1867             break;
1868 
1869         case eFormatAddressInfo:
1870             {
1871                 addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1872                 s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr);
1873                 if (exe_scope)
1874                 {
1875                     TargetSP target_sp (exe_scope->CalculateTarget());
1876                     lldb_private::Address so_addr;
1877                     if (target_sp)
1878                     {
1879                         if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
1880                         {
1881                             s->PutChar(' ');
1882                             so_addr.Dump (s,
1883                                           exe_scope,
1884                                           Address::DumpStyleResolvedDescription,
1885                                           Address::DumpStyleModuleWithFileAddress);
1886                         }
1887                         else
1888                         {
1889                             so_addr.SetOffset(addr);
1890                             so_addr.Dump (s, exe_scope, Address::DumpStyleResolvedPointerDescription);
1891                         }
1892                     }
1893                 }
1894             }
1895             break;
1896 
1897         case eFormatHexFloat:
1898             if (sizeof(float) == item_byte_size)
1899             {
1900                 char float_cstr[256];
1901                 llvm::APFloat ap_float (GetFloat (&offset));
1902                 ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
1903                 s->Printf ("%s", float_cstr);
1904                 break;
1905             }
1906             else if (sizeof(double) == item_byte_size)
1907             {
1908                 char float_cstr[256];
1909                 llvm::APFloat ap_float (GetDouble (&offset));
1910                 ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
1911                 s->Printf ("%s", float_cstr);
1912                 break;
1913             }
1914             else
1915             {
1916                 s->Printf("error: unsupported byte size (%zu) for hex float format", item_byte_size);
1917                 return offset;
1918             }
1919             break;
1920 
1921 // please keep the single-item formats below in sync with FormatManager::GetSingleItemFormat
1922 // if you fail to do so, users will start getting different outputs depending on internal
1923 // implementation details they should not care about ||
1924         case eFormatVectorOfChar:               //   ||
1925             s->PutChar('{');                    //   \/
1926             offset = Dump (s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1927             s->PutChar('}');
1928             break;
1929 
1930         case eFormatVectorOfSInt8:
1931             s->PutChar('{');
1932             offset = Dump (s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1933             s->PutChar('}');
1934             break;
1935 
1936         case eFormatVectorOfUInt8:
1937             s->PutChar('{');
1938             offset = Dump (s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1939             s->PutChar('}');
1940             break;
1941 
1942         case eFormatVectorOfSInt16:
1943             s->PutChar('{');
1944             offset = Dump (s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
1945             s->PutChar('}');
1946             break;
1947 
1948         case eFormatVectorOfUInt16:
1949             s->PutChar('{');
1950             offset = Dump (s, offset, eFormatHex,     sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
1951             s->PutChar('}');
1952             break;
1953 
1954         case eFormatVectorOfSInt32:
1955             s->PutChar('{');
1956             offset = Dump (s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
1957             s->PutChar('}');
1958             break;
1959 
1960         case eFormatVectorOfUInt32:
1961             s->PutChar('{');
1962             offset = Dump (s, offset, eFormatHex,     sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
1963             s->PutChar('}');
1964             break;
1965 
1966         case eFormatVectorOfSInt64:
1967             s->PutChar('{');
1968             offset = Dump (s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
1969             s->PutChar('}');
1970             break;
1971 
1972         case eFormatVectorOfUInt64:
1973             s->PutChar('{');
1974             offset = Dump (s, offset, eFormatHex,     sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
1975             s->PutChar('}');
1976             break;
1977 
1978         case eFormatVectorOfFloat32:
1979             s->PutChar('{');
1980             offset = Dump (s, offset, eFormatFloat,       4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
1981             s->PutChar('}');
1982             break;
1983 
1984         case eFormatVectorOfFloat64:
1985             s->PutChar('{');
1986             offset = Dump (s, offset, eFormatFloat,       8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
1987             s->PutChar('}');
1988             break;
1989 
1990         case eFormatVectorOfUInt128:
1991             s->PutChar('{');
1992             offset = Dump (s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
1993             s->PutChar('}');
1994             break;
1995         }
1996     }
1997 
1998     if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
1999     {
2000         s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
2001         Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
2002     }
2003     return offset;  // Return the offset at which we ended up
2004 }
2005 
2006 //----------------------------------------------------------------------
2007 // Dumps bytes from this object's data to the stream "s" starting
2008 // "start_offset" bytes into this data, and ending with the byte
2009 // before "end_offset". "base_addr" will be added to the offset
2010 // into the dumped data when showing the offset into the data in the
2011 // output information. "num_per_line" objects of type "type" will
2012 // be dumped with the option to override the format for each object
2013 // with "type_format". "type_format" is a printf style formatting
2014 // string. If "type_format" is NULL, then an appropriate format
2015 // string will be used for the supplied "type". If the stream "s"
2016 // is NULL, then the output will be send to Log().
2017 //----------------------------------------------------------------------
2018 lldb::offset_t
PutToLog(Log * log,offset_t start_offset,offset_t length,uint64_t base_addr,uint32_t num_per_line,DataExtractor::Type type,const char * format) const2019 DataExtractor::PutToLog
2020 (
2021     Log *log,
2022     offset_t start_offset,
2023     offset_t length,
2024     uint64_t base_addr,
2025     uint32_t num_per_line,
2026     DataExtractor::Type type,
2027     const char *format
2028 ) const
2029 {
2030     if (log == NULL)
2031         return start_offset;
2032 
2033     offset_t offset;
2034     offset_t end_offset;
2035     uint32_t count;
2036     StreamString sstr;
2037     for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count)
2038     {
2039         if ((count % num_per_line) == 0)
2040         {
2041             // Print out any previous string
2042             if (sstr.GetSize() > 0)
2043             {
2044                 log->Printf("%s", sstr.GetData());
2045                 sstr.Clear();
2046             }
2047             // Reset string offset and fill the current line string with address:
2048             if (base_addr != LLDB_INVALID_ADDRESS)
2049                 sstr.Printf("0x%8.8" PRIx64 ":", (uint64_t)(base_addr + (offset - start_offset)));
2050         }
2051 
2052         switch (type)
2053         {
2054             case TypeUInt8:   sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break;
2055             case TypeChar:
2056                 {
2057                     char ch = GetU8(&offset);
2058                     sstr.Printf (format ? format : " %c",    isprint(ch) ? ch : ' ');
2059                 }
2060                 break;
2061             case TypeUInt16:  sstr.Printf (format ? format : " %4.4x",       GetU16(&offset)); break;
2062             case TypeUInt32:  sstr.Printf (format ? format : " %8.8x",       GetU32(&offset)); break;
2063             case TypeUInt64:  sstr.Printf (format ? format : " %16.16" PRIx64,   GetU64(&offset)); break;
2064             case TypePointer: sstr.Printf (format ? format : " 0x%" PRIx64,      GetAddress(&offset)); break;
2065             case TypeULEB128: sstr.Printf (format ? format : " 0x%" PRIx64,      GetULEB128(&offset)); break;
2066             case TypeSLEB128: sstr.Printf (format ? format : " %" PRId64,        GetSLEB128(&offset)); break;
2067         }
2068     }
2069 
2070     if (sstr.GetSize() > 0)
2071         log->Printf("%s", sstr.GetData());
2072 
2073     return offset;  // Return the offset at which we ended up
2074 }
2075 
2076 //----------------------------------------------------------------------
2077 // DumpUUID
2078 //
2079 // Dump out a UUID starting at 'offset' bytes into the buffer
2080 //----------------------------------------------------------------------
2081 void
DumpUUID(Stream * s,offset_t offset) const2082 DataExtractor::DumpUUID (Stream *s, offset_t offset) const
2083 {
2084     if (s)
2085     {
2086         const uint8_t *uuid_data = PeekData(offset, 16);
2087         if ( uuid_data )
2088         {
2089             lldb_private::UUID uuid(uuid_data, 16);
2090             uuid.Dump(s);
2091         }
2092         else
2093         {
2094             s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", offset);
2095         }
2096     }
2097 }
2098 
2099 void
DumpHexBytes(Stream * s,const void * src,size_t src_len,uint32_t bytes_per_line,addr_t base_addr)2100 DataExtractor::DumpHexBytes (Stream *s,
2101                              const void *src,
2102                              size_t src_len,
2103                              uint32_t bytes_per_line,
2104                              addr_t base_addr)
2105 {
2106     DataExtractor data (src, src_len, eByteOrderLittle, 4);
2107     data.Dump (s,
2108                0,               // Offset into "src"
2109                eFormatBytes,    // Dump as hex bytes
2110                1,               // Size of each item is 1 for single bytes
2111                src_len,         // Number of bytes
2112                bytes_per_line,  // Num bytes per line
2113                base_addr,       // Base address
2114                0, 0);           // Bitfield info
2115 }
2116 
2117 size_t
Copy(DataExtractor & dest_data) const2118 DataExtractor::Copy (DataExtractor &dest_data) const
2119 {
2120     if (m_data_sp.get())
2121     {
2122         // we can pass along the SP to the data
2123         dest_data.SetData(m_data_sp);
2124     }
2125     else
2126     {
2127         const uint8_t *base_ptr = m_start;
2128         size_t data_size = GetByteSize();
2129         dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
2130     }
2131     return GetByteSize();
2132 }
2133 
2134 bool
Append(DataExtractor & rhs)2135 DataExtractor::Append(DataExtractor& rhs)
2136 {
2137     if (rhs.GetByteOrder() != GetByteOrder())
2138         return false;
2139 
2140     if (rhs.GetByteSize() == 0)
2141         return true;
2142 
2143     if (GetByteSize() == 0)
2144         return (rhs.Copy(*this) > 0);
2145 
2146     size_t bytes = GetByteSize() + rhs.GetByteSize();
2147 
2148     DataBufferHeap *buffer_heap_ptr = NULL;
2149     DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
2150 
2151     if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
2152         return false;
2153 
2154     uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
2155 
2156     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
2157     memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
2158 
2159     SetData(buffer_sp);
2160 
2161     return true;
2162 }
2163 
2164 bool
Append(void * buf,offset_t length)2165 DataExtractor::Append(void* buf, offset_t length)
2166 {
2167     if (buf == NULL)
2168         return false;
2169 
2170     if (length == 0)
2171         return true;
2172 
2173     size_t bytes = GetByteSize() + length;
2174 
2175     DataBufferHeap *buffer_heap_ptr = NULL;
2176     DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
2177 
2178     if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
2179         return false;
2180 
2181     uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
2182 
2183     if (GetByteSize() > 0)
2184         memcpy(bytes_ptr, GetDataStart(), GetByteSize());
2185 
2186     memcpy(bytes_ptr + GetByteSize(), buf, length);
2187 
2188     SetData(buffer_sp);
2189 
2190     return true;
2191 }
2192