1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30 using namespace clang;
31
32 //===----------------------------------------------------------------------===//
33 // C99 6.7: Declarations.
34 //===----------------------------------------------------------------------===//
35
36 /// ParseTypeName
37 /// type-name: [C99 6.7.6]
38 /// specifier-qualifier-list abstract-declarator[opt]
39 ///
40 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)41 TypeResult Parser::ParseTypeName(SourceRange *Range,
42 Declarator::TheContext Context,
43 AccessSpecifier AS,
44 Decl **OwnedType,
45 ParsedAttributes *Attrs) {
46 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47 if (DSC == DSC_normal)
48 DSC = DSC_type_specifier;
49
50 // Parse the common declaration-specifiers piece.
51 DeclSpec DS(AttrFactory);
52 if (Attrs)
53 DS.addAttributes(Attrs->getList());
54 ParseSpecifierQualifierList(DS, AS, DSC);
55 if (OwnedType)
56 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57
58 // Parse the abstract-declarator, if present.
59 Declarator DeclaratorInfo(DS, Context);
60 ParseDeclarator(DeclaratorInfo);
61 if (Range)
62 *Range = DeclaratorInfo.getSourceRange();
63
64 if (DeclaratorInfo.isInvalidType())
65 return true;
66
67 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68 }
69
70
71 /// isAttributeLateParsed - Return true if the attribute has arguments that
72 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)73 static bool isAttributeLateParsed(const IdentifierInfo &II) {
74 #define CLANG_ATTR_LATE_PARSED_LIST
75 return llvm::StringSwitch<bool>(II.getName())
76 #include "clang/Parse/AttrParserStringSwitches.inc"
77 .Default(false);
78 #undef CLANG_ATTR_LATE_PARSED_LIST
79 }
80
81 /// ParseGNUAttributes - Parse a non-empty attributes list.
82 ///
83 /// [GNU] attributes:
84 /// attribute
85 /// attributes attribute
86 ///
87 /// [GNU] attribute:
88 /// '__attribute__' '(' '(' attribute-list ')' ')'
89 ///
90 /// [GNU] attribute-list:
91 /// attrib
92 /// attribute_list ',' attrib
93 ///
94 /// [GNU] attrib:
95 /// empty
96 /// attrib-name
97 /// attrib-name '(' identifier ')'
98 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
99 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100 ///
101 /// [GNU] attrib-name:
102 /// identifier
103 /// typespec
104 /// typequal
105 /// storageclass
106 ///
107 /// Whether an attribute takes an 'identifier' is determined by the
108 /// attrib-name. GCC's behavior here is not worth imitating:
109 ///
110 /// * In C mode, if the attribute argument list starts with an identifier
111 /// followed by a ',' or an ')', and the identifier doesn't resolve to
112 /// a type, it is parsed as an identifier. If the attribute actually
113 /// wanted an expression, it's out of luck (but it turns out that no
114 /// attributes work that way, because C constant expressions are very
115 /// limited).
116 /// * In C++ mode, if the attribute argument list starts with an identifier,
117 /// and the attribute *wants* an identifier, it is parsed as an identifier.
118 /// At block scope, any additional tokens between the identifier and the
119 /// ',' or ')' are ignored, otherwise they produce a parse error.
120 ///
121 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123 SourceLocation *endLoc,
124 LateParsedAttrList *LateAttrs,
125 Declarator *D) {
126 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127
128 while (Tok.is(tok::kw___attribute)) {
129 ConsumeToken();
130 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131 "attribute")) {
132 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133 return;
134 }
135 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137 return;
138 }
139 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140 while (true) {
141 // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142 if (TryConsumeToken(tok::comma))
143 continue;
144
145 // Expect an identifier or declaration specifier (const, int, etc.)
146 if (Tok.isAnnotation())
147 break;
148 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
149 if (!AttrName)
150 break;
151
152 SourceLocation AttrNameLoc = ConsumeToken();
153
154 if (Tok.isNot(tok::l_paren)) {
155 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
156 AttributeList::AS_GNU);
157 continue;
158 }
159
160 // Handle "parameterized" attributes
161 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
162 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
163 SourceLocation(), AttributeList::AS_GNU, D);
164 continue;
165 }
166
167 // Handle attributes with arguments that require late parsing.
168 LateParsedAttribute *LA =
169 new LateParsedAttribute(this, *AttrName, AttrNameLoc);
170 LateAttrs->push_back(LA);
171
172 // Attributes in a class are parsed at the end of the class, along
173 // with other late-parsed declarations.
174 if (!ClassStack.empty() && !LateAttrs->parseSoon())
175 getCurrentClass().LateParsedDeclarations.push_back(LA);
176
177 // consume everything up to and including the matching right parens
178 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
179
180 Token Eof;
181 Eof.startToken();
182 Eof.setLocation(Tok.getLocation());
183 LA->Toks.push_back(Eof);
184 }
185
186 if (ExpectAndConsume(tok::r_paren))
187 SkipUntil(tok::r_paren, StopAtSemi);
188 SourceLocation Loc = Tok.getLocation();
189 if (ExpectAndConsume(tok::r_paren))
190 SkipUntil(tok::r_paren, StopAtSemi);
191 if (endLoc)
192 *endLoc = Loc;
193 }
194 }
195
196 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)197 static StringRef normalizeAttrName(StringRef Name) {
198 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
199 Name = Name.drop_front(2).drop_back(2);
200 return Name;
201 }
202
203 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)204 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
205 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
206 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
207 #include "clang/Parse/AttrParserStringSwitches.inc"
208 .Default(false);
209 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
210 }
211
212 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)213 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
214 #define CLANG_ATTR_TYPE_ARG_LIST
215 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
216 #include "clang/Parse/AttrParserStringSwitches.inc"
217 .Default(false);
218 #undef CLANG_ATTR_TYPE_ARG_LIST
219 }
220
221 /// \brief Determine whether the given attribute requires parsing its arguments
222 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)223 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
224 #define CLANG_ATTR_ARG_CONTEXT_LIST
225 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
226 #include "clang/Parse/AttrParserStringSwitches.inc"
227 .Default(false);
228 #undef CLANG_ATTR_ARG_CONTEXT_LIST
229 }
230
ParseIdentifierLoc()231 IdentifierLoc *Parser::ParseIdentifierLoc() {
232 assert(Tok.is(tok::identifier) && "expected an identifier");
233 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
234 Tok.getLocation(),
235 Tok.getIdentifierInfo());
236 ConsumeToken();
237 return IL;
238 }
239
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)240 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
241 SourceLocation AttrNameLoc,
242 ParsedAttributes &Attrs,
243 SourceLocation *EndLoc,
244 IdentifierInfo *ScopeName,
245 SourceLocation ScopeLoc,
246 AttributeList::Syntax Syntax) {
247 BalancedDelimiterTracker Parens(*this, tok::l_paren);
248 Parens.consumeOpen();
249
250 TypeResult T;
251 if (Tok.isNot(tok::r_paren))
252 T = ParseTypeName();
253
254 if (Parens.consumeClose())
255 return;
256
257 if (T.isInvalid())
258 return;
259
260 if (T.isUsable())
261 Attrs.addNewTypeAttr(&AttrName,
262 SourceRange(AttrNameLoc, Parens.getCloseLocation()),
263 ScopeName, ScopeLoc, T.get(), Syntax);
264 else
265 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
266 ScopeName, ScopeLoc, nullptr, 0, Syntax);
267 }
268
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)269 unsigned Parser::ParseAttributeArgsCommon(
270 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
271 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
272 SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
273 // Ignore the left paren location for now.
274 ConsumeParen();
275
276 ArgsVector ArgExprs;
277 if (Tok.is(tok::identifier)) {
278 // If this attribute wants an 'identifier' argument, make it so.
279 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
280 AttributeList::Kind AttrKind =
281 AttributeList::getKind(AttrName, ScopeName, Syntax);
282
283 // If we don't know how to parse this attribute, but this is the only
284 // token in this argument, assume it's meant to be an identifier.
285 if (AttrKind == AttributeList::UnknownAttribute ||
286 AttrKind == AttributeList::IgnoredAttribute) {
287 const Token &Next = NextToken();
288 IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
289 }
290
291 if (IsIdentifierArg)
292 ArgExprs.push_back(ParseIdentifierLoc());
293 }
294
295 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
296 // Eat the comma.
297 if (!ArgExprs.empty())
298 ConsumeToken();
299
300 // Parse the non-empty comma-separated list of expressions.
301 do {
302 std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
303 if (attributeParsedArgsUnevaluated(*AttrName))
304 Unevaluated.reset(
305 new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
306
307 ExprResult ArgExpr(
308 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
309 if (ArgExpr.isInvalid()) {
310 SkipUntil(tok::r_paren, StopAtSemi);
311 return 0;
312 }
313 ArgExprs.push_back(ArgExpr.get());
314 // Eat the comma, move to the next argument
315 } while (TryConsumeToken(tok::comma));
316 }
317
318 SourceLocation RParen = Tok.getLocation();
319 if (!ExpectAndConsume(tok::r_paren)) {
320 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
321 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
322 ArgExprs.data(), ArgExprs.size(), Syntax);
323 }
324
325 if (EndLoc)
326 *EndLoc = RParen;
327
328 return static_cast<unsigned>(ArgExprs.size());
329 }
330
331 /// Parse the arguments to a parameterized GNU attribute or
332 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)333 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
334 SourceLocation AttrNameLoc,
335 ParsedAttributes &Attrs,
336 SourceLocation *EndLoc,
337 IdentifierInfo *ScopeName,
338 SourceLocation ScopeLoc,
339 AttributeList::Syntax Syntax,
340 Declarator *D) {
341
342 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
343
344 AttributeList::Kind AttrKind =
345 AttributeList::getKind(AttrName, ScopeName, Syntax);
346
347 if (AttrKind == AttributeList::AT_Availability) {
348 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
349 ScopeLoc, Syntax);
350 return;
351 } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
352 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
353 ScopeName, ScopeLoc, Syntax);
354 return;
355 } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
357 ScopeName, ScopeLoc, Syntax);
358 return;
359 } else if (attributeIsTypeArgAttr(*AttrName)) {
360 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
361 ScopeLoc, Syntax);
362 return;
363 }
364
365 // These may refer to the function arguments, but need to be parsed early to
366 // participate in determining whether it's a redeclaration.
367 std::unique_ptr<ParseScope> PrototypeScope;
368 if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
369 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
370 PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
371 Scope::FunctionDeclarationScope |
372 Scope::DeclScope));
373 for (unsigned i = 0; i != FTI.NumParams; ++i) {
374 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
375 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
376 }
377 }
378
379 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
380 ScopeLoc, Syntax);
381 }
382
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)383 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
384 SourceLocation AttrNameLoc,
385 ParsedAttributes &Attrs) {
386 // If the attribute isn't known, we will not attempt to parse any
387 // arguments.
388 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
389 getTargetInfo().getTriple(), getLangOpts())) {
390 // Eat the left paren, then skip to the ending right paren.
391 ConsumeParen();
392 SkipUntil(tok::r_paren);
393 return false;
394 }
395
396 SourceLocation OpenParenLoc = Tok.getLocation();
397
398 if (AttrName->getName() == "property") {
399 // The property declspec is more complex in that it can take one or two
400 // assignment expressions as a parameter, but the lhs of the assignment
401 // must be named get or put.
402
403 BalancedDelimiterTracker T(*this, tok::l_paren);
404 T.expectAndConsume(diag::err_expected_lparen_after,
405 AttrName->getNameStart(), tok::r_paren);
406
407 enum AccessorKind {
408 AK_Invalid = -1,
409 AK_Put = 0,
410 AK_Get = 1 // indices into AccessorNames
411 };
412 IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
413 bool HasInvalidAccessor = false;
414
415 // Parse the accessor specifications.
416 while (true) {
417 // Stop if this doesn't look like an accessor spec.
418 if (!Tok.is(tok::identifier)) {
419 // If the user wrote a completely empty list, use a special diagnostic.
420 if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
421 AccessorNames[AK_Put] == nullptr &&
422 AccessorNames[AK_Get] == nullptr) {
423 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
424 break;
425 }
426
427 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
428 break;
429 }
430
431 AccessorKind Kind;
432 SourceLocation KindLoc = Tok.getLocation();
433 StringRef KindStr = Tok.getIdentifierInfo()->getName();
434 if (KindStr == "get") {
435 Kind = AK_Get;
436 } else if (KindStr == "put") {
437 Kind = AK_Put;
438
439 // Recover from the common mistake of using 'set' instead of 'put'.
440 } else if (KindStr == "set") {
441 Diag(KindLoc, diag::err_ms_property_has_set_accessor)
442 << FixItHint::CreateReplacement(KindLoc, "put");
443 Kind = AK_Put;
444
445 // Handle the mistake of forgetting the accessor kind by skipping
446 // this accessor.
447 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
448 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
449 ConsumeToken();
450 HasInvalidAccessor = true;
451 goto next_property_accessor;
452
453 // Otherwise, complain about the unknown accessor kind.
454 } else {
455 Diag(KindLoc, diag::err_ms_property_unknown_accessor);
456 HasInvalidAccessor = true;
457 Kind = AK_Invalid;
458
459 // Try to keep parsing unless it doesn't look like an accessor spec.
460 if (!NextToken().is(tok::equal))
461 break;
462 }
463
464 // Consume the identifier.
465 ConsumeToken();
466
467 // Consume the '='.
468 if (!TryConsumeToken(tok::equal)) {
469 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
470 << KindStr;
471 break;
472 }
473
474 // Expect the method name.
475 if (!Tok.is(tok::identifier)) {
476 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
477 break;
478 }
479
480 if (Kind == AK_Invalid) {
481 // Just drop invalid accessors.
482 } else if (AccessorNames[Kind] != nullptr) {
483 // Complain about the repeated accessor, ignore it, and keep parsing.
484 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
485 } else {
486 AccessorNames[Kind] = Tok.getIdentifierInfo();
487 }
488 ConsumeToken();
489
490 next_property_accessor:
491 // Keep processing accessors until we run out.
492 if (TryConsumeToken(tok::comma))
493 continue;
494
495 // If we run into the ')', stop without consuming it.
496 if (Tok.is(tok::r_paren))
497 break;
498
499 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
500 break;
501 }
502
503 // Only add the property attribute if it was well-formed.
504 if (!HasInvalidAccessor)
505 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
506 AccessorNames[AK_Get], AccessorNames[AK_Put],
507 AttributeList::AS_Declspec);
508 T.skipToEnd();
509 return !HasInvalidAccessor;
510 }
511
512 unsigned NumArgs =
513 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
514 SourceLocation(), AttributeList::AS_Declspec);
515
516 // If this attribute's args were parsed, and it was expected to have
517 // arguments but none were provided, emit a diagnostic.
518 const AttributeList *Attr = Attrs.getList();
519 if (Attr && Attr->getMaxArgs() && !NumArgs) {
520 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
521 return false;
522 }
523 return true;
524 }
525
526 /// [MS] decl-specifier:
527 /// __declspec ( extended-decl-modifier-seq )
528 ///
529 /// [MS] extended-decl-modifier-seq:
530 /// extended-decl-modifier[opt]
531 /// extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpec(ParsedAttributes & Attrs)532 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
533 assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
534
535 ConsumeToken();
536 BalancedDelimiterTracker T(*this, tok::l_paren);
537 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
538 tok::r_paren))
539 return;
540
541 // An empty declspec is perfectly legal and should not warn. Additionally,
542 // you can specify multiple attributes per declspec.
543 while (Tok.isNot(tok::r_paren)) {
544 // Attribute not present.
545 if (TryConsumeToken(tok::comma))
546 continue;
547
548 // We expect either a well-known identifier or a generic string. Anything
549 // else is a malformed declspec.
550 bool IsString = Tok.getKind() == tok::string_literal;
551 if (!IsString && Tok.getKind() != tok::identifier &&
552 Tok.getKind() != tok::kw_restrict) {
553 Diag(Tok, diag::err_ms_declspec_type);
554 T.skipToEnd();
555 return;
556 }
557
558 IdentifierInfo *AttrName;
559 SourceLocation AttrNameLoc;
560 if (IsString) {
561 SmallString<8> StrBuffer;
562 bool Invalid = false;
563 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
564 if (Invalid) {
565 T.skipToEnd();
566 return;
567 }
568 AttrName = PP.getIdentifierInfo(Str);
569 AttrNameLoc = ConsumeStringToken();
570 } else {
571 AttrName = Tok.getIdentifierInfo();
572 AttrNameLoc = ConsumeToken();
573 }
574
575 bool AttrHandled = false;
576
577 // Parse attribute arguments.
578 if (Tok.is(tok::l_paren))
579 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
580 else if (AttrName->getName() == "property")
581 // The property attribute must have an argument list.
582 Diag(Tok.getLocation(), diag::err_expected_lparen_after)
583 << AttrName->getName();
584
585 if (!AttrHandled)
586 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
587 AttributeList::AS_Declspec);
588 }
589 T.consumeClose();
590 }
591
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)592 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
593 // Treat these like attributes
594 while (true) {
595 switch (Tok.getKind()) {
596 case tok::kw___fastcall:
597 case tok::kw___stdcall:
598 case tok::kw___thiscall:
599 case tok::kw___cdecl:
600 case tok::kw___vectorcall:
601 case tok::kw___ptr64:
602 case tok::kw___w64:
603 case tok::kw___ptr32:
604 case tok::kw___unaligned:
605 case tok::kw___sptr:
606 case tok::kw___uptr: {
607 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
608 SourceLocation AttrNameLoc = ConsumeToken();
609 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
610 AttributeList::AS_Keyword);
611 break;
612 }
613 default:
614 return;
615 }
616 }
617 }
618
DiagnoseAndSkipExtendedMicrosoftTypeAttributes()619 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
620 SourceLocation StartLoc = Tok.getLocation();
621 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
622
623 if (EndLoc.isValid()) {
624 SourceRange Range(StartLoc, EndLoc);
625 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
626 }
627 }
628
SkipExtendedMicrosoftTypeAttributes()629 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
630 SourceLocation EndLoc;
631
632 while (true) {
633 switch (Tok.getKind()) {
634 case tok::kw_const:
635 case tok::kw_volatile:
636 case tok::kw___fastcall:
637 case tok::kw___stdcall:
638 case tok::kw___thiscall:
639 case tok::kw___cdecl:
640 case tok::kw___vectorcall:
641 case tok::kw___ptr32:
642 case tok::kw___ptr64:
643 case tok::kw___w64:
644 case tok::kw___unaligned:
645 case tok::kw___sptr:
646 case tok::kw___uptr:
647 EndLoc = ConsumeToken();
648 break;
649 default:
650 return EndLoc;
651 }
652 }
653 }
654
ParseBorlandTypeAttributes(ParsedAttributes & attrs)655 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
656 // Treat these like attributes
657 while (Tok.is(tok::kw___pascal)) {
658 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
659 SourceLocation AttrNameLoc = ConsumeToken();
660 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
661 AttributeList::AS_Keyword);
662 }
663 }
664
ParseOpenCLAttributes(ParsedAttributes & attrs)665 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
666 // Treat these like attributes
667 while (Tok.is(tok::kw___kernel)) {
668 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
669 SourceLocation AttrNameLoc = ConsumeToken();
670 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
671 AttributeList::AS_Keyword);
672 }
673 }
674
ParseOpenCLQualifiers(ParsedAttributes & Attrs)675 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
676 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677 SourceLocation AttrNameLoc = Tok.getLocation();
678 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679 AttributeList::AS_Keyword);
680 }
681
VersionNumberSeparator(const char Separator)682 static bool VersionNumberSeparator(const char Separator) {
683 return (Separator == '.' || Separator == '_');
684 }
685
686 /// \brief Parse a version number.
687 ///
688 /// version:
689 /// simple-integer
690 /// simple-integer ',' simple-integer
691 /// simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)692 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
693 Range = Tok.getLocation();
694
695 if (!Tok.is(tok::numeric_constant)) {
696 Diag(Tok, diag::err_expected_version);
697 SkipUntil(tok::comma, tok::r_paren,
698 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
699 return VersionTuple();
700 }
701
702 // Parse the major (and possibly minor and subminor) versions, which
703 // are stored in the numeric constant. We utilize a quirk of the
704 // lexer, which is that it handles something like 1.2.3 as a single
705 // numeric constant, rather than two separate tokens.
706 SmallString<512> Buffer;
707 Buffer.resize(Tok.getLength()+1);
708 const char *ThisTokBegin = &Buffer[0];
709
710 // Get the spelling of the token, which eliminates trigraphs, etc.
711 bool Invalid = false;
712 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
713 if (Invalid)
714 return VersionTuple();
715
716 // Parse the major version.
717 unsigned AfterMajor = 0;
718 unsigned Major = 0;
719 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
720 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
721 ++AfterMajor;
722 }
723
724 if (AfterMajor == 0) {
725 Diag(Tok, diag::err_expected_version);
726 SkipUntil(tok::comma, tok::r_paren,
727 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
728 return VersionTuple();
729 }
730
731 if (AfterMajor == ActualLength) {
732 ConsumeToken();
733
734 // We only had a single version component.
735 if (Major == 0) {
736 Diag(Tok, diag::err_zero_version);
737 return VersionTuple();
738 }
739
740 return VersionTuple(Major);
741 }
742
743 const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
744 if (!VersionNumberSeparator(AfterMajorSeparator)
745 || (AfterMajor + 1 == ActualLength)) {
746 Diag(Tok, diag::err_expected_version);
747 SkipUntil(tok::comma, tok::r_paren,
748 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
749 return VersionTuple();
750 }
751
752 // Parse the minor version.
753 unsigned AfterMinor = AfterMajor + 1;
754 unsigned Minor = 0;
755 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
756 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
757 ++AfterMinor;
758 }
759
760 if (AfterMinor == ActualLength) {
761 ConsumeToken();
762
763 // We had major.minor.
764 if (Major == 0 && Minor == 0) {
765 Diag(Tok, diag::err_zero_version);
766 return VersionTuple();
767 }
768
769 return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
770 }
771
772 const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
773 // If what follows is not a '.' or '_', we have a problem.
774 if (!VersionNumberSeparator(AfterMinorSeparator)) {
775 Diag(Tok, diag::err_expected_version);
776 SkipUntil(tok::comma, tok::r_paren,
777 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
778 return VersionTuple();
779 }
780
781 // Warn if separators, be it '.' or '_', do not match.
782 if (AfterMajorSeparator != AfterMinorSeparator)
783 Diag(Tok, diag::warn_expected_consistent_version_separator);
784
785 // Parse the subminor version.
786 unsigned AfterSubminor = AfterMinor + 1;
787 unsigned Subminor = 0;
788 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
789 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
790 ++AfterSubminor;
791 }
792
793 if (AfterSubminor != ActualLength) {
794 Diag(Tok, diag::err_expected_version);
795 SkipUntil(tok::comma, tok::r_paren,
796 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
797 return VersionTuple();
798 }
799 ConsumeToken();
800 return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
801 }
802
803 /// \brief Parse the contents of the "availability" attribute.
804 ///
805 /// availability-attribute:
806 /// 'availability' '(' platform ',' version-arg-list, opt-message')'
807 ///
808 /// platform:
809 /// identifier
810 ///
811 /// version-arg-list:
812 /// version-arg
813 /// version-arg ',' version-arg-list
814 ///
815 /// version-arg:
816 /// 'introduced' '=' version
817 /// 'deprecated' '=' version
818 /// 'obsoleted' = version
819 /// 'unavailable'
820 /// opt-message:
821 /// 'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)822 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
823 SourceLocation AvailabilityLoc,
824 ParsedAttributes &attrs,
825 SourceLocation *endLoc,
826 IdentifierInfo *ScopeName,
827 SourceLocation ScopeLoc,
828 AttributeList::Syntax Syntax) {
829 enum { Introduced, Deprecated, Obsoleted, Unknown };
830 AvailabilityChange Changes[Unknown];
831 ExprResult MessageExpr;
832
833 // Opening '('.
834 BalancedDelimiterTracker T(*this, tok::l_paren);
835 if (T.consumeOpen()) {
836 Diag(Tok, diag::err_expected) << tok::l_paren;
837 return;
838 }
839
840 // Parse the platform name,
841 if (Tok.isNot(tok::identifier)) {
842 Diag(Tok, diag::err_availability_expected_platform);
843 SkipUntil(tok::r_paren, StopAtSemi);
844 return;
845 }
846 IdentifierLoc *Platform = ParseIdentifierLoc();
847
848 // Parse the ',' following the platform name.
849 if (ExpectAndConsume(tok::comma)) {
850 SkipUntil(tok::r_paren, StopAtSemi);
851 return;
852 }
853
854 // If we haven't grabbed the pointers for the identifiers
855 // "introduced", "deprecated", and "obsoleted", do so now.
856 if (!Ident_introduced) {
857 Ident_introduced = PP.getIdentifierInfo("introduced");
858 Ident_deprecated = PP.getIdentifierInfo("deprecated");
859 Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
860 Ident_unavailable = PP.getIdentifierInfo("unavailable");
861 Ident_message = PP.getIdentifierInfo("message");
862 }
863
864 // Parse the set of introductions/deprecations/removals.
865 SourceLocation UnavailableLoc;
866 do {
867 if (Tok.isNot(tok::identifier)) {
868 Diag(Tok, diag::err_availability_expected_change);
869 SkipUntil(tok::r_paren, StopAtSemi);
870 return;
871 }
872 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
873 SourceLocation KeywordLoc = ConsumeToken();
874
875 if (Keyword == Ident_unavailable) {
876 if (UnavailableLoc.isValid()) {
877 Diag(KeywordLoc, diag::err_availability_redundant)
878 << Keyword << SourceRange(UnavailableLoc);
879 }
880 UnavailableLoc = KeywordLoc;
881 continue;
882 }
883
884 if (Tok.isNot(tok::equal)) {
885 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
886 SkipUntil(tok::r_paren, StopAtSemi);
887 return;
888 }
889 ConsumeToken();
890 if (Keyword == Ident_message) {
891 if (Tok.isNot(tok::string_literal)) {
892 Diag(Tok, diag::err_expected_string_literal)
893 << /*Source='availability attribute'*/2;
894 SkipUntil(tok::r_paren, StopAtSemi);
895 return;
896 }
897 MessageExpr = ParseStringLiteralExpression();
898 // Also reject wide string literals.
899 if (StringLiteral *MessageStringLiteral =
900 cast_or_null<StringLiteral>(MessageExpr.get())) {
901 if (MessageStringLiteral->getCharByteWidth() != 1) {
902 Diag(MessageStringLiteral->getSourceRange().getBegin(),
903 diag::err_expected_string_literal)
904 << /*Source='availability attribute'*/ 2;
905 SkipUntil(tok::r_paren, StopAtSemi);
906 return;
907 }
908 }
909 break;
910 }
911
912 // Special handling of 'NA' only when applied to introduced or
913 // deprecated.
914 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
915 Tok.is(tok::identifier)) {
916 IdentifierInfo *NA = Tok.getIdentifierInfo();
917 if (NA->getName() == "NA") {
918 ConsumeToken();
919 if (Keyword == Ident_introduced)
920 UnavailableLoc = KeywordLoc;
921 continue;
922 }
923 }
924
925 SourceRange VersionRange;
926 VersionTuple Version = ParseVersionTuple(VersionRange);
927
928 if (Version.empty()) {
929 SkipUntil(tok::r_paren, StopAtSemi);
930 return;
931 }
932
933 unsigned Index;
934 if (Keyword == Ident_introduced)
935 Index = Introduced;
936 else if (Keyword == Ident_deprecated)
937 Index = Deprecated;
938 else if (Keyword == Ident_obsoleted)
939 Index = Obsoleted;
940 else
941 Index = Unknown;
942
943 if (Index < Unknown) {
944 if (!Changes[Index].KeywordLoc.isInvalid()) {
945 Diag(KeywordLoc, diag::err_availability_redundant)
946 << Keyword
947 << SourceRange(Changes[Index].KeywordLoc,
948 Changes[Index].VersionRange.getEnd());
949 }
950
951 Changes[Index].KeywordLoc = KeywordLoc;
952 Changes[Index].Version = Version;
953 Changes[Index].VersionRange = VersionRange;
954 } else {
955 Diag(KeywordLoc, diag::err_availability_unknown_change)
956 << Keyword << VersionRange;
957 }
958
959 } while (TryConsumeToken(tok::comma));
960
961 // Closing ')'.
962 if (T.consumeClose())
963 return;
964
965 if (endLoc)
966 *endLoc = T.getCloseLocation();
967
968 // The 'unavailable' availability cannot be combined with any other
969 // availability changes. Make sure that hasn't happened.
970 if (UnavailableLoc.isValid()) {
971 bool Complained = false;
972 for (unsigned Index = Introduced; Index != Unknown; ++Index) {
973 if (Changes[Index].KeywordLoc.isValid()) {
974 if (!Complained) {
975 Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
976 << SourceRange(Changes[Index].KeywordLoc,
977 Changes[Index].VersionRange.getEnd());
978 Complained = true;
979 }
980
981 // Clear out the availability.
982 Changes[Index] = AvailabilityChange();
983 }
984 }
985 }
986
987 // Record this attribute
988 attrs.addNew(&Availability,
989 SourceRange(AvailabilityLoc, T.getCloseLocation()),
990 ScopeName, ScopeLoc,
991 Platform,
992 Changes[Introduced],
993 Changes[Deprecated],
994 Changes[Obsoleted],
995 UnavailableLoc, MessageExpr.get(),
996 Syntax);
997 }
998
999 /// \brief Parse the contents of the "objc_bridge_related" attribute.
1000 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1001 /// related_class:
1002 /// Identifier
1003 ///
1004 /// opt-class_method:
1005 /// Identifier: | <empty>
1006 ///
1007 /// opt-instance_method:
1008 /// Identifier | <empty>
1009 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1010 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1011 SourceLocation ObjCBridgeRelatedLoc,
1012 ParsedAttributes &attrs,
1013 SourceLocation *endLoc,
1014 IdentifierInfo *ScopeName,
1015 SourceLocation ScopeLoc,
1016 AttributeList::Syntax Syntax) {
1017 // Opening '('.
1018 BalancedDelimiterTracker T(*this, tok::l_paren);
1019 if (T.consumeOpen()) {
1020 Diag(Tok, diag::err_expected) << tok::l_paren;
1021 return;
1022 }
1023
1024 // Parse the related class name.
1025 if (Tok.isNot(tok::identifier)) {
1026 Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1027 SkipUntil(tok::r_paren, StopAtSemi);
1028 return;
1029 }
1030 IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1031 if (ExpectAndConsume(tok::comma)) {
1032 SkipUntil(tok::r_paren, StopAtSemi);
1033 return;
1034 }
1035
1036 // Parse optional class method name.
1037 IdentifierLoc *ClassMethod = nullptr;
1038 if (Tok.is(tok::identifier)) {
1039 ClassMethod = ParseIdentifierLoc();
1040 if (!TryConsumeToken(tok::colon)) {
1041 Diag(Tok, diag::err_objcbridge_related_selector_name);
1042 SkipUntil(tok::r_paren, StopAtSemi);
1043 return;
1044 }
1045 }
1046 if (!TryConsumeToken(tok::comma)) {
1047 if (Tok.is(tok::colon))
1048 Diag(Tok, diag::err_objcbridge_related_selector_name);
1049 else
1050 Diag(Tok, diag::err_expected) << tok::comma;
1051 SkipUntil(tok::r_paren, StopAtSemi);
1052 return;
1053 }
1054
1055 // Parse optional instance method name.
1056 IdentifierLoc *InstanceMethod = nullptr;
1057 if (Tok.is(tok::identifier))
1058 InstanceMethod = ParseIdentifierLoc();
1059 else if (Tok.isNot(tok::r_paren)) {
1060 Diag(Tok, diag::err_expected) << tok::r_paren;
1061 SkipUntil(tok::r_paren, StopAtSemi);
1062 return;
1063 }
1064
1065 // Closing ')'.
1066 if (T.consumeClose())
1067 return;
1068
1069 if (endLoc)
1070 *endLoc = T.getCloseLocation();
1071
1072 // Record this attribute
1073 attrs.addNew(&ObjCBridgeRelated,
1074 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1075 ScopeName, ScopeLoc,
1076 RelatedClass,
1077 ClassMethod,
1078 InstanceMethod,
1079 Syntax);
1080 }
1081
1082 // Late Parsed Attributes:
1083 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1084
ParseLexedAttributes()1085 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1086
ParseLexedAttributes()1087 void Parser::LateParsedClass::ParseLexedAttributes() {
1088 Self->ParseLexedAttributes(*Class);
1089 }
1090
ParseLexedAttributes()1091 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1092 Self->ParseLexedAttribute(*this, true, false);
1093 }
1094
1095 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1096 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1097 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1098 // Deal with templates
1099 // FIXME: Test cases to make sure this does the right thing for templates.
1100 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1101 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1102 HasTemplateScope);
1103 if (HasTemplateScope)
1104 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1105
1106 // Set or update the scope flags.
1107 bool AlreadyHasClassScope = Class.TopLevelClass;
1108 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1109 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1110 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1111
1112 // Enter the scope of nested classes
1113 if (!AlreadyHasClassScope)
1114 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1115 Class.TagOrTemplate);
1116 if (!Class.LateParsedDeclarations.empty()) {
1117 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1118 Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1119 }
1120 }
1121
1122 if (!AlreadyHasClassScope)
1123 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1124 Class.TagOrTemplate);
1125 }
1126
1127
1128 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1129 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1130 bool EnterScope, bool OnDefinition) {
1131 assert(LAs.parseSoon() &&
1132 "Attribute list should be marked for immediate parsing.");
1133 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1134 if (D)
1135 LAs[i]->addDecl(D);
1136 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1137 delete LAs[i];
1138 }
1139 LAs.clear();
1140 }
1141
1142
1143 /// \brief Finish parsing an attribute for which parsing was delayed.
1144 /// This will be called at the end of parsing a class declaration
1145 /// for each LateParsedAttribute. We consume the saved tokens and
1146 /// create an attribute with the arguments filled in. We add this
1147 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1148 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1149 bool EnterScope, bool OnDefinition) {
1150 // Create a fake EOF so that attribute parsing won't go off the end of the
1151 // attribute.
1152 Token AttrEnd;
1153 AttrEnd.startToken();
1154 AttrEnd.setKind(tok::eof);
1155 AttrEnd.setLocation(Tok.getLocation());
1156 AttrEnd.setEofData(LA.Toks.data());
1157 LA.Toks.push_back(AttrEnd);
1158
1159 // Append the current token at the end of the new token stream so that it
1160 // doesn't get lost.
1161 LA.Toks.push_back(Tok);
1162 PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1163 // Consume the previously pushed token.
1164 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1165
1166 ParsedAttributes Attrs(AttrFactory);
1167 SourceLocation endLoc;
1168
1169 if (LA.Decls.size() > 0) {
1170 Decl *D = LA.Decls[0];
1171 NamedDecl *ND = dyn_cast<NamedDecl>(D);
1172 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1173
1174 // Allow 'this' within late-parsed attributes.
1175 Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1176 ND && ND->isCXXInstanceMember());
1177
1178 if (LA.Decls.size() == 1) {
1179 // If the Decl is templatized, add template parameters to scope.
1180 bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1181 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1182 if (HasTemplateScope)
1183 Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1184
1185 // If the Decl is on a function, add function parameters to the scope.
1186 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1187 ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1188 if (HasFunScope)
1189 Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1190
1191 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1192 nullptr, SourceLocation(), AttributeList::AS_GNU,
1193 nullptr);
1194
1195 if (HasFunScope) {
1196 Actions.ActOnExitFunctionContext();
1197 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1198 }
1199 if (HasTemplateScope) {
1200 TempScope.Exit();
1201 }
1202 } else {
1203 // If there are multiple decls, then the decl cannot be within the
1204 // function scope.
1205 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1206 nullptr, SourceLocation(), AttributeList::AS_GNU,
1207 nullptr);
1208 }
1209 } else {
1210 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1211 }
1212
1213 const AttributeList *AL = Attrs.getList();
1214 if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1215 AL->isKnownToGCC())
1216 Diag(Tok, diag::warn_attribute_on_function_definition)
1217 << &LA.AttrName;
1218
1219 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1220 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1221
1222 // Due to a parsing error, we either went over the cached tokens or
1223 // there are still cached tokens left, so we skip the leftover tokens.
1224 while (Tok.isNot(tok::eof))
1225 ConsumeAnyToken();
1226
1227 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1228 ConsumeAnyToken();
1229 }
1230
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1231 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1232 SourceLocation AttrNameLoc,
1233 ParsedAttributes &Attrs,
1234 SourceLocation *EndLoc,
1235 IdentifierInfo *ScopeName,
1236 SourceLocation ScopeLoc,
1237 AttributeList::Syntax Syntax) {
1238 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1239
1240 BalancedDelimiterTracker T(*this, tok::l_paren);
1241 T.consumeOpen();
1242
1243 if (Tok.isNot(tok::identifier)) {
1244 Diag(Tok, diag::err_expected) << tok::identifier;
1245 T.skipToEnd();
1246 return;
1247 }
1248 IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1249
1250 if (ExpectAndConsume(tok::comma)) {
1251 T.skipToEnd();
1252 return;
1253 }
1254
1255 SourceRange MatchingCTypeRange;
1256 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1257 if (MatchingCType.isInvalid()) {
1258 T.skipToEnd();
1259 return;
1260 }
1261
1262 bool LayoutCompatible = false;
1263 bool MustBeNull = false;
1264 while (TryConsumeToken(tok::comma)) {
1265 if (Tok.isNot(tok::identifier)) {
1266 Diag(Tok, diag::err_expected) << tok::identifier;
1267 T.skipToEnd();
1268 return;
1269 }
1270 IdentifierInfo *Flag = Tok.getIdentifierInfo();
1271 if (Flag->isStr("layout_compatible"))
1272 LayoutCompatible = true;
1273 else if (Flag->isStr("must_be_null"))
1274 MustBeNull = true;
1275 else {
1276 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1277 T.skipToEnd();
1278 return;
1279 }
1280 ConsumeToken(); // consume flag
1281 }
1282
1283 if (!T.consumeClose()) {
1284 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1285 ArgumentKind, MatchingCType.get(),
1286 LayoutCompatible, MustBeNull, Syntax);
1287 }
1288
1289 if (EndLoc)
1290 *EndLoc = T.getCloseLocation();
1291 }
1292
1293 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1294 /// of a C++11 attribute-specifier in a location where an attribute is not
1295 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1296 /// situation.
1297 ///
1298 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1299 /// this doesn't appear to actually be an attribute-specifier, and the caller
1300 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1301 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1302 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1303
1304 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1305 case CAK_NotAttributeSpecifier:
1306 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1307 return false;
1308
1309 case CAK_InvalidAttributeSpecifier:
1310 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1311 return false;
1312
1313 case CAK_AttributeSpecifier:
1314 // Parse and discard the attributes.
1315 SourceLocation BeginLoc = ConsumeBracket();
1316 ConsumeBracket();
1317 SkipUntil(tok::r_square);
1318 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1319 SourceLocation EndLoc = ConsumeBracket();
1320 Diag(BeginLoc, diag::err_attributes_not_allowed)
1321 << SourceRange(BeginLoc, EndLoc);
1322 return true;
1323 }
1324 llvm_unreachable("All cases handled above.");
1325 }
1326
1327 /// \brief We have found the opening square brackets of a C++11
1328 /// attribute-specifier in a location where an attribute is not permitted, but
1329 /// we know where the attributes ought to be written. Parse them anyway, and
1330 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1331 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1332 SourceLocation CorrectLocation) {
1333 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1334 Tok.is(tok::kw_alignas));
1335
1336 // Consume the attributes.
1337 SourceLocation Loc = Tok.getLocation();
1338 ParseCXX11Attributes(Attrs);
1339 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1340
1341 Diag(Loc, diag::err_attributes_not_allowed)
1342 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1343 << FixItHint::CreateRemoval(AttrRange);
1344 }
1345
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1346 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1347 Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1348 << attrs.Range;
1349 }
1350
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1351 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1352 AttributeList *AttrList = attrs.getList();
1353 while (AttrList) {
1354 if (AttrList->isCXX11Attribute()) {
1355 Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1356 << AttrList->getName();
1357 AttrList->setInvalid();
1358 }
1359 AttrList = AttrList->getNext();
1360 }
1361 }
1362
1363 /// ParseDeclaration - Parse a full 'declaration', which consists of
1364 /// declaration-specifiers, some number of declarators, and a semicolon.
1365 /// 'Context' should be a Declarator::TheContext value. This returns the
1366 /// location of the semicolon in DeclEnd.
1367 ///
1368 /// declaration: [C99 6.7]
1369 /// block-declaration ->
1370 /// simple-declaration
1371 /// others [FIXME]
1372 /// [C++] template-declaration
1373 /// [C++] namespace-definition
1374 /// [C++] using-directive
1375 /// [C++] using-declaration
1376 /// [C++11/C11] static_assert-declaration
1377 /// others... [FIXME]
1378 ///
ParseDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1379 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1380 SourceLocation &DeclEnd,
1381 ParsedAttributesWithRange &attrs) {
1382 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1383 // Must temporarily exit the objective-c container scope for
1384 // parsing c none objective-c decls.
1385 ObjCDeclContextSwitch ObjCDC(*this);
1386
1387 Decl *SingleDecl = nullptr;
1388 Decl *OwnedType = nullptr;
1389 switch (Tok.getKind()) {
1390 case tok::kw_template:
1391 case tok::kw_export:
1392 ProhibitAttributes(attrs);
1393 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1394 break;
1395 case tok::kw_inline:
1396 // Could be the start of an inline namespace. Allowed as an ext in C++03.
1397 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1398 ProhibitAttributes(attrs);
1399 SourceLocation InlineLoc = ConsumeToken();
1400 SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1401 break;
1402 }
1403 return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1404 true);
1405 case tok::kw_namespace:
1406 ProhibitAttributes(attrs);
1407 SingleDecl = ParseNamespace(Context, DeclEnd);
1408 break;
1409 case tok::kw_using:
1410 SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1411 DeclEnd, attrs, &OwnedType);
1412 break;
1413 case tok::kw_static_assert:
1414 case tok::kw__Static_assert:
1415 ProhibitAttributes(attrs);
1416 SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1417 break;
1418 default:
1419 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1420 }
1421
1422 // This routine returns a DeclGroup, if the thing we parsed only contains a
1423 // single decl, convert it now. Alias declarations can also declare a type;
1424 // include that too if it is present.
1425 return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1426 }
1427
1428 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1429 /// declaration-specifiers init-declarator-list[opt] ';'
1430 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1431 /// init-declarator-list ';'
1432 ///[C90/C++]init-declarator-list ';' [TODO]
1433 /// [OMP] threadprivate-directive [TODO]
1434 ///
1435 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1436 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1437 ///
1438 /// If RequireSemi is false, this does not check for a ';' at the end of the
1439 /// declaration. If it is true, it checks for and eats it.
1440 ///
1441 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1442 /// of a simple-declaration. If we find that we are, we also parse the
1443 /// for-range-initializer, and place it here.
1444 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1445 Parser::ParseSimpleDeclaration(unsigned Context,
1446 SourceLocation &DeclEnd,
1447 ParsedAttributesWithRange &Attrs,
1448 bool RequireSemi, ForRangeInit *FRI) {
1449 // Parse the common declaration-specifiers piece.
1450 ParsingDeclSpec DS(*this);
1451
1452 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1453 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1454
1455 // If we had a free-standing type definition with a missing semicolon, we
1456 // may get this far before the problem becomes obvious.
1457 if (DS.hasTagDefinition() &&
1458 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1459 return DeclGroupPtrTy();
1460
1461 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1462 // declaration-specifiers init-declarator-list[opt] ';'
1463 if (Tok.is(tok::semi)) {
1464 ProhibitAttributes(Attrs);
1465 DeclEnd = Tok.getLocation();
1466 if (RequireSemi) ConsumeToken();
1467 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1468 DS);
1469 DS.complete(TheDecl);
1470 return Actions.ConvertDeclToDeclGroup(TheDecl);
1471 }
1472
1473 DS.takeAttributesFrom(Attrs);
1474 return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1475 }
1476
1477 /// Returns true if this might be the start of a declarator, or a common typo
1478 /// for a declarator.
MightBeDeclarator(unsigned Context)1479 bool Parser::MightBeDeclarator(unsigned Context) {
1480 switch (Tok.getKind()) {
1481 case tok::annot_cxxscope:
1482 case tok::annot_template_id:
1483 case tok::caret:
1484 case tok::code_completion:
1485 case tok::coloncolon:
1486 case tok::ellipsis:
1487 case tok::kw___attribute:
1488 case tok::kw_operator:
1489 case tok::l_paren:
1490 case tok::star:
1491 return true;
1492
1493 case tok::amp:
1494 case tok::ampamp:
1495 return getLangOpts().CPlusPlus;
1496
1497 case tok::l_square: // Might be an attribute on an unnamed bit-field.
1498 return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1499 NextToken().is(tok::l_square);
1500
1501 case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1502 return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1503
1504 case tok::identifier:
1505 switch (NextToken().getKind()) {
1506 case tok::code_completion:
1507 case tok::coloncolon:
1508 case tok::comma:
1509 case tok::equal:
1510 case tok::equalequal: // Might be a typo for '='.
1511 case tok::kw_alignas:
1512 case tok::kw_asm:
1513 case tok::kw___attribute:
1514 case tok::l_brace:
1515 case tok::l_paren:
1516 case tok::l_square:
1517 case tok::less:
1518 case tok::r_brace:
1519 case tok::r_paren:
1520 case tok::r_square:
1521 case tok::semi:
1522 return true;
1523
1524 case tok::colon:
1525 // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1526 // and in block scope it's probably a label. Inside a class definition,
1527 // this is a bit-field.
1528 return Context == Declarator::MemberContext ||
1529 (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1530
1531 case tok::identifier: // Possible virt-specifier.
1532 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1533
1534 default:
1535 return false;
1536 }
1537
1538 default:
1539 return false;
1540 }
1541 }
1542
1543 /// Skip until we reach something which seems like a sensible place to pick
1544 /// up parsing after a malformed declaration. This will sometimes stop sooner
1545 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1546 void Parser::SkipMalformedDecl() {
1547 while (true) {
1548 switch (Tok.getKind()) {
1549 case tok::l_brace:
1550 // Skip until matching }, then stop. We've probably skipped over
1551 // a malformed class or function definition or similar.
1552 ConsumeBrace();
1553 SkipUntil(tok::r_brace);
1554 if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1555 // This declaration isn't over yet. Keep skipping.
1556 continue;
1557 }
1558 TryConsumeToken(tok::semi);
1559 return;
1560
1561 case tok::l_square:
1562 ConsumeBracket();
1563 SkipUntil(tok::r_square);
1564 continue;
1565
1566 case tok::l_paren:
1567 ConsumeParen();
1568 SkipUntil(tok::r_paren);
1569 continue;
1570
1571 case tok::r_brace:
1572 return;
1573
1574 case tok::semi:
1575 ConsumeToken();
1576 return;
1577
1578 case tok::kw_inline:
1579 // 'inline namespace' at the start of a line is almost certainly
1580 // a good place to pick back up parsing, except in an Objective-C
1581 // @interface context.
1582 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1583 (!ParsingInObjCContainer || CurParsedObjCImpl))
1584 return;
1585 break;
1586
1587 case tok::kw_namespace:
1588 // 'namespace' at the start of a line is almost certainly a good
1589 // place to pick back up parsing, except in an Objective-C
1590 // @interface context.
1591 if (Tok.isAtStartOfLine() &&
1592 (!ParsingInObjCContainer || CurParsedObjCImpl))
1593 return;
1594 break;
1595
1596 case tok::at:
1597 // @end is very much like } in Objective-C contexts.
1598 if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1599 ParsingInObjCContainer)
1600 return;
1601 break;
1602
1603 case tok::minus:
1604 case tok::plus:
1605 // - and + probably start new method declarations in Objective-C contexts.
1606 if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1607 return;
1608 break;
1609
1610 case tok::eof:
1611 case tok::annot_module_begin:
1612 case tok::annot_module_end:
1613 case tok::annot_module_include:
1614 return;
1615
1616 default:
1617 break;
1618 }
1619
1620 ConsumeAnyToken();
1621 }
1622 }
1623
1624 /// ParseDeclGroup - Having concluded that this is either a function
1625 /// definition or a group of object declarations, actually parse the
1626 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,SourceLocation * DeclEnd,ForRangeInit * FRI)1627 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1628 unsigned Context,
1629 SourceLocation *DeclEnd,
1630 ForRangeInit *FRI) {
1631 // Parse the first declarator.
1632 ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1633 ParseDeclarator(D);
1634
1635 // Bail out if the first declarator didn't seem well-formed.
1636 if (!D.hasName() && !D.mayOmitIdentifier()) {
1637 SkipMalformedDecl();
1638 return DeclGroupPtrTy();
1639 }
1640
1641 // Save late-parsed attributes for now; they need to be parsed in the
1642 // appropriate function scope after the function Decl has been constructed.
1643 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1644 LateParsedAttrList LateParsedAttrs(true);
1645 if (D.isFunctionDeclarator()) {
1646 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1647
1648 // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1649 // attribute. If we find the keyword here, tell the user to put it
1650 // at the start instead.
1651 if (Tok.is(tok::kw__Noreturn)) {
1652 SourceLocation Loc = ConsumeToken();
1653 const char *PrevSpec;
1654 unsigned DiagID;
1655
1656 // We can offer a fixit if it's valid to mark this function as _Noreturn
1657 // and we don't have any other declarators in this declaration.
1658 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1659 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1660 Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
1661
1662 Diag(Loc, diag::err_c11_noreturn_misplaced)
1663 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1664 << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1665 : FixItHint());
1666 }
1667 }
1668
1669 // Check to see if we have a function *definition* which must have a body.
1670 if (D.isFunctionDeclarator() &&
1671 // Look at the next token to make sure that this isn't a function
1672 // declaration. We have to check this because __attribute__ might be the
1673 // start of a function definition in GCC-extended K&R C.
1674 !isDeclarationAfterDeclarator()) {
1675
1676 // Function definitions are only allowed at file scope and in C++ classes.
1677 // The C++ inline method definition case is handled elsewhere, so we only
1678 // need to handle the file scope definition case.
1679 if (Context == Declarator::FileContext) {
1680 if (isStartOfFunctionDefinition(D)) {
1681 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1682 Diag(Tok, diag::err_function_declared_typedef);
1683
1684 // Recover by treating the 'typedef' as spurious.
1685 DS.ClearStorageClassSpecs();
1686 }
1687
1688 Decl *TheDecl =
1689 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1690 return Actions.ConvertDeclToDeclGroup(TheDecl);
1691 }
1692
1693 if (isDeclarationSpecifier()) {
1694 // If there is an invalid declaration specifier right after the
1695 // function prototype, then we must be in a missing semicolon case
1696 // where this isn't actually a body. Just fall through into the code
1697 // that handles it as a prototype, and let the top-level code handle
1698 // the erroneous declspec where it would otherwise expect a comma or
1699 // semicolon.
1700 } else {
1701 Diag(Tok, diag::err_expected_fn_body);
1702 SkipUntil(tok::semi);
1703 return DeclGroupPtrTy();
1704 }
1705 } else {
1706 if (Tok.is(tok::l_brace)) {
1707 Diag(Tok, diag::err_function_definition_not_allowed);
1708 SkipMalformedDecl();
1709 return DeclGroupPtrTy();
1710 }
1711 }
1712 }
1713
1714 if (ParseAsmAttributesAfterDeclarator(D))
1715 return DeclGroupPtrTy();
1716
1717 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1718 // must parse and analyze the for-range-initializer before the declaration is
1719 // analyzed.
1720 //
1721 // Handle the Objective-C for-in loop variable similarly, although we
1722 // don't need to parse the container in advance.
1723 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1724 bool IsForRangeLoop = false;
1725 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1726 IsForRangeLoop = true;
1727 if (Tok.is(tok::l_brace))
1728 FRI->RangeExpr = ParseBraceInitializer();
1729 else
1730 FRI->RangeExpr = ParseExpression();
1731 }
1732
1733 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1734 if (IsForRangeLoop)
1735 Actions.ActOnCXXForRangeDecl(ThisDecl);
1736 Actions.FinalizeDeclaration(ThisDecl);
1737 D.complete(ThisDecl);
1738 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1739 }
1740
1741 SmallVector<Decl *, 8> DeclsInGroup;
1742 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1743 D, ParsedTemplateInfo(), FRI);
1744 if (LateParsedAttrs.size() > 0)
1745 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1746 D.complete(FirstDecl);
1747 if (FirstDecl)
1748 DeclsInGroup.push_back(FirstDecl);
1749
1750 bool ExpectSemi = Context != Declarator::ForContext;
1751
1752 // If we don't have a comma, it is either the end of the list (a ';') or an
1753 // error, bail out.
1754 SourceLocation CommaLoc;
1755 while (TryConsumeToken(tok::comma, CommaLoc)) {
1756 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1757 // This comma was followed by a line-break and something which can't be
1758 // the start of a declarator. The comma was probably a typo for a
1759 // semicolon.
1760 Diag(CommaLoc, diag::err_expected_semi_declaration)
1761 << FixItHint::CreateReplacement(CommaLoc, ";");
1762 ExpectSemi = false;
1763 break;
1764 }
1765
1766 // Parse the next declarator.
1767 D.clear();
1768 D.setCommaLoc(CommaLoc);
1769
1770 // Accept attributes in an init-declarator. In the first declarator in a
1771 // declaration, these would be part of the declspec. In subsequent
1772 // declarators, they become part of the declarator itself, so that they
1773 // don't apply to declarators after *this* one. Examples:
1774 // short __attribute__((common)) var; -> declspec
1775 // short var __attribute__((common)); -> declarator
1776 // short x, __attribute__((common)) var; -> declarator
1777 MaybeParseGNUAttributes(D);
1778
1779 // MSVC parses but ignores qualifiers after the comma as an extension.
1780 if (getLangOpts().MicrosoftExt)
1781 DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1782
1783 ParseDeclarator(D);
1784 if (!D.isInvalidType()) {
1785 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1786 D.complete(ThisDecl);
1787 if (ThisDecl)
1788 DeclsInGroup.push_back(ThisDecl);
1789 }
1790 }
1791
1792 if (DeclEnd)
1793 *DeclEnd = Tok.getLocation();
1794
1795 if (ExpectSemi &&
1796 ExpectAndConsumeSemi(Context == Declarator::FileContext
1797 ? diag::err_invalid_token_after_toplevel_declarator
1798 : diag::err_expected_semi_declaration)) {
1799 // Okay, there was no semicolon and one was expected. If we see a
1800 // declaration specifier, just assume it was missing and continue parsing.
1801 // Otherwise things are very confused and we skip to recover.
1802 if (!isDeclarationSpecifier()) {
1803 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1804 TryConsumeToken(tok::semi);
1805 }
1806 }
1807
1808 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1809 }
1810
1811 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1812 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1813 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1814 // If a simple-asm-expr is present, parse it.
1815 if (Tok.is(tok::kw_asm)) {
1816 SourceLocation Loc;
1817 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1818 if (AsmLabel.isInvalid()) {
1819 SkipUntil(tok::semi, StopBeforeMatch);
1820 return true;
1821 }
1822
1823 D.setAsmLabel(AsmLabel.get());
1824 D.SetRangeEnd(Loc);
1825 }
1826
1827 MaybeParseGNUAttributes(D);
1828 return false;
1829 }
1830
1831 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1832 /// declarator'. This method parses the remainder of the declaration
1833 /// (including any attributes or initializer, among other things) and
1834 /// finalizes the declaration.
1835 ///
1836 /// init-declarator: [C99 6.7]
1837 /// declarator
1838 /// declarator '=' initializer
1839 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
1840 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1841 /// [C++] declarator initializer[opt]
1842 ///
1843 /// [C++] initializer:
1844 /// [C++] '=' initializer-clause
1845 /// [C++] '(' expression-list ')'
1846 /// [C++0x] '=' 'default' [TODO]
1847 /// [C++0x] '=' 'delete'
1848 /// [C++0x] braced-init-list
1849 ///
1850 /// According to the standard grammar, =default and =delete are function
1851 /// definitions, but that definitely doesn't fit with the parser here.
1852 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1853 Decl *Parser::ParseDeclarationAfterDeclarator(
1854 Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1855 if (ParseAsmAttributesAfterDeclarator(D))
1856 return nullptr;
1857
1858 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1859 }
1860
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1861 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1862 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1863 // Inform the current actions module that we just parsed this declarator.
1864 Decl *ThisDecl = nullptr;
1865 switch (TemplateInfo.Kind) {
1866 case ParsedTemplateInfo::NonTemplate:
1867 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1868 break;
1869
1870 case ParsedTemplateInfo::Template:
1871 case ParsedTemplateInfo::ExplicitSpecialization: {
1872 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1873 *TemplateInfo.TemplateParams,
1874 D);
1875 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1876 // Re-direct this decl to refer to the templated decl so that we can
1877 // initialize it.
1878 ThisDecl = VT->getTemplatedDecl();
1879 break;
1880 }
1881 case ParsedTemplateInfo::ExplicitInstantiation: {
1882 if (Tok.is(tok::semi)) {
1883 DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1884 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1885 if (ThisRes.isInvalid()) {
1886 SkipUntil(tok::semi, StopBeforeMatch);
1887 return nullptr;
1888 }
1889 ThisDecl = ThisRes.get();
1890 } else {
1891 // FIXME: This check should be for a variable template instantiation only.
1892
1893 // Check that this is a valid instantiation
1894 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1895 // If the declarator-id is not a template-id, issue a diagnostic and
1896 // recover by ignoring the 'template' keyword.
1897 Diag(Tok, diag::err_template_defn_explicit_instantiation)
1898 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1899 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1900 } else {
1901 SourceLocation LAngleLoc =
1902 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1903 Diag(D.getIdentifierLoc(),
1904 diag::err_explicit_instantiation_with_definition)
1905 << SourceRange(TemplateInfo.TemplateLoc)
1906 << FixItHint::CreateInsertion(LAngleLoc, "<>");
1907
1908 // Recover as if it were an explicit specialization.
1909 TemplateParameterLists FakedParamLists;
1910 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1911 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1912 0, LAngleLoc));
1913
1914 ThisDecl =
1915 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1916 }
1917 }
1918 break;
1919 }
1920 }
1921
1922 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1923
1924 // Parse declarator '=' initializer.
1925 // If a '==' or '+=' is found, suggest a fixit to '='.
1926 if (isTokenEqualOrEqualTypo()) {
1927 SourceLocation EqualLoc = ConsumeToken();
1928
1929 if (Tok.is(tok::kw_delete)) {
1930 if (D.isFunctionDeclarator())
1931 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1932 << 1 /* delete */;
1933 else
1934 Diag(ConsumeToken(), diag::err_deleted_non_function);
1935 } else if (Tok.is(tok::kw_default)) {
1936 if (D.isFunctionDeclarator())
1937 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1938 << 0 /* default */;
1939 else
1940 Diag(ConsumeToken(), diag::err_default_special_members);
1941 } else {
1942 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1943 EnterScope(0);
1944 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1945 }
1946
1947 if (Tok.is(tok::code_completion)) {
1948 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1949 Actions.FinalizeDeclaration(ThisDecl);
1950 cutOffParsing();
1951 return nullptr;
1952 }
1953
1954 ExprResult Init(ParseInitializer());
1955
1956 // If this is the only decl in (possibly) range based for statement,
1957 // our best guess is that the user meant ':' instead of '='.
1958 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1959 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1960 << FixItHint::CreateReplacement(EqualLoc, ":");
1961 // We are trying to stop parser from looking for ';' in this for
1962 // statement, therefore preventing spurious errors to be issued.
1963 FRI->ColonLoc = EqualLoc;
1964 Init = ExprError();
1965 FRI->RangeExpr = Init;
1966 }
1967
1968 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1969 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1970 ExitScope();
1971 }
1972
1973 if (Init.isInvalid()) {
1974 SmallVector<tok::TokenKind, 2> StopTokens;
1975 StopTokens.push_back(tok::comma);
1976 if (D.getContext() == Declarator::ForContext)
1977 StopTokens.push_back(tok::r_paren);
1978 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1979 Actions.ActOnInitializerError(ThisDecl);
1980 } else
1981 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1982 /*DirectInit=*/false, TypeContainsAuto);
1983 }
1984 } else if (Tok.is(tok::l_paren)) {
1985 // Parse C++ direct initializer: '(' expression-list ')'
1986 BalancedDelimiterTracker T(*this, tok::l_paren);
1987 T.consumeOpen();
1988
1989 ExprVector Exprs;
1990 CommaLocsTy CommaLocs;
1991
1992 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1993 EnterScope(0);
1994 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1995 }
1996
1997 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1998 Actions.CodeCompleteConstructor(getCurScope(),
1999 cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
2000 ThisDecl->getLocation(), Exprs);
2001 })) {
2002 Actions.ActOnInitializerError(ThisDecl);
2003 SkipUntil(tok::r_paren, StopAtSemi);
2004
2005 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2006 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2007 ExitScope();
2008 }
2009 } else {
2010 // Match the ')'.
2011 T.consumeClose();
2012
2013 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2014 "Unexpected number of commas!");
2015
2016 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2017 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2018 ExitScope();
2019 }
2020
2021 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2022 T.getCloseLocation(),
2023 Exprs);
2024 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2025 /*DirectInit=*/true, TypeContainsAuto);
2026 }
2027 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2028 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2029 // Parse C++0x braced-init-list.
2030 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2031
2032 if (D.getCXXScopeSpec().isSet()) {
2033 EnterScope(0);
2034 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2035 }
2036
2037 ExprResult Init(ParseBraceInitializer());
2038
2039 if (D.getCXXScopeSpec().isSet()) {
2040 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2041 ExitScope();
2042 }
2043
2044 if (Init.isInvalid()) {
2045 Actions.ActOnInitializerError(ThisDecl);
2046 } else
2047 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2048 /*DirectInit=*/true, TypeContainsAuto);
2049
2050 } else {
2051 Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2052 }
2053
2054 Actions.FinalizeDeclaration(ThisDecl);
2055
2056 return ThisDecl;
2057 }
2058
2059 /// ParseSpecifierQualifierList
2060 /// specifier-qualifier-list:
2061 /// type-specifier specifier-qualifier-list[opt]
2062 /// type-qualifier specifier-qualifier-list[opt]
2063 /// [GNU] attributes specifier-qualifier-list[opt]
2064 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)2065 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2066 DeclSpecContext DSC) {
2067 /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2068 /// parse declaration-specifiers and complain about extra stuff.
2069 /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2070 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2071
2072 // Validate declspec for type-name.
2073 unsigned Specs = DS.getParsedSpecifiers();
2074 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2075 Diag(Tok, diag::err_expected_type);
2076 DS.SetTypeSpecError();
2077 } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
2078 !DS.hasAttributes()) {
2079 Diag(Tok, diag::err_typename_requires_specqual);
2080 if (!DS.hasTypeSpecifier())
2081 DS.SetTypeSpecError();
2082 }
2083
2084 // Issue diagnostic and remove storage class if present.
2085 if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2086 if (DS.getStorageClassSpecLoc().isValid())
2087 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2088 else
2089 Diag(DS.getThreadStorageClassSpecLoc(),
2090 diag::err_typename_invalid_storageclass);
2091 DS.ClearStorageClassSpecs();
2092 }
2093
2094 // Issue diagnostic and remove function specfier if present.
2095 if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2096 if (DS.isInlineSpecified())
2097 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2098 if (DS.isVirtualSpecified())
2099 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2100 if (DS.isExplicitSpecified())
2101 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2102 DS.ClearFunctionSpecs();
2103 }
2104
2105 // Issue diagnostic and remove constexpr specfier if present.
2106 if (DS.isConstexprSpecified()) {
2107 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2108 DS.ClearConstexprSpec();
2109 }
2110 }
2111
2112 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2113 /// specified token is valid after the identifier in a declarator which
2114 /// immediately follows the declspec. For example, these things are valid:
2115 ///
2116 /// int x [ 4]; // direct-declarator
2117 /// int x ( int y); // direct-declarator
2118 /// int(int x ) // direct-declarator
2119 /// int x ; // simple-declaration
2120 /// int x = 17; // init-declarator-list
2121 /// int x , y; // init-declarator-list
2122 /// int x __asm__ ("foo"); // init-declarator-list
2123 /// int x : 4; // struct-declarator
2124 /// int x { 5}; // C++'0x unified initializers
2125 ///
2126 /// This is not, because 'x' does not immediately follow the declspec (though
2127 /// ')' happens to be valid anyway).
2128 /// int (x)
2129 ///
isValidAfterIdentifierInDeclarator(const Token & T)2130 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2131 return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2132 T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2133 T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2134 }
2135
2136
2137 /// ParseImplicitInt - This method is called when we have an non-typename
2138 /// identifier in a declspec (which normally terminates the decl spec) when
2139 /// the declspec has no type specifier. In this case, the declspec is either
2140 /// malformed or is "implicit int" (in K&R and C89).
2141 ///
2142 /// This method handles diagnosing this prettily and returns false if the
2143 /// declspec is done being processed. If it recovers and thinks there may be
2144 /// other pieces of declspec after it, it returns true.
2145 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2146 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2147 const ParsedTemplateInfo &TemplateInfo,
2148 AccessSpecifier AS, DeclSpecContext DSC,
2149 ParsedAttributesWithRange &Attrs) {
2150 assert(Tok.is(tok::identifier) && "should have identifier");
2151
2152 SourceLocation Loc = Tok.getLocation();
2153 // If we see an identifier that is not a type name, we normally would
2154 // parse it as the identifer being declared. However, when a typename
2155 // is typo'd or the definition is not included, this will incorrectly
2156 // parse the typename as the identifier name and fall over misparsing
2157 // later parts of the diagnostic.
2158 //
2159 // As such, we try to do some look-ahead in cases where this would
2160 // otherwise be an "implicit-int" case to see if this is invalid. For
2161 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2162 // an identifier with implicit int, we'd get a parse error because the
2163 // next token is obviously invalid for a type. Parse these as a case
2164 // with an invalid type specifier.
2165 assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2166
2167 // Since we know that this either implicit int (which is rare) or an
2168 // error, do lookahead to try to do better recovery. This never applies
2169 // within a type specifier. Outside of C++, we allow this even if the
2170 // language doesn't "officially" support implicit int -- we support
2171 // implicit int as an extension in C99 and C11.
2172 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2173 isValidAfterIdentifierInDeclarator(NextToken())) {
2174 // If this token is valid for implicit int, e.g. "static x = 4", then
2175 // we just avoid eating the identifier, so it will be parsed as the
2176 // identifier in the declarator.
2177 return false;
2178 }
2179
2180 if (getLangOpts().CPlusPlus &&
2181 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2182 // Don't require a type specifier if we have the 'auto' storage class
2183 // specifier in C++98 -- we'll promote it to a type specifier.
2184 if (SS)
2185 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2186 return false;
2187 }
2188
2189 // Otherwise, if we don't consume this token, we are going to emit an
2190 // error anyway. Try to recover from various common problems. Check
2191 // to see if this was a reference to a tag name without a tag specified.
2192 // This is a common problem in C (saying 'foo' instead of 'struct foo').
2193 //
2194 // C++ doesn't need this, and isTagName doesn't take SS.
2195 if (SS == nullptr) {
2196 const char *TagName = nullptr, *FixitTagName = nullptr;
2197 tok::TokenKind TagKind = tok::unknown;
2198
2199 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2200 default: break;
2201 case DeclSpec::TST_enum:
2202 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2203 case DeclSpec::TST_union:
2204 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2205 case DeclSpec::TST_struct:
2206 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2207 case DeclSpec::TST_interface:
2208 TagName="__interface"; FixitTagName = "__interface ";
2209 TagKind=tok::kw___interface;break;
2210 case DeclSpec::TST_class:
2211 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2212 }
2213
2214 if (TagName) {
2215 IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2216 LookupResult R(Actions, TokenName, SourceLocation(),
2217 Sema::LookupOrdinaryName);
2218
2219 Diag(Loc, diag::err_use_of_tag_name_without_tag)
2220 << TokenName << TagName << getLangOpts().CPlusPlus
2221 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2222
2223 if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2224 for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2225 I != IEnd; ++I)
2226 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2227 << TokenName << TagName;
2228 }
2229
2230 // Parse this as a tag as if the missing tag were present.
2231 if (TagKind == tok::kw_enum)
2232 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2233 else
2234 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2235 /*EnteringContext*/ false, DSC_normal, Attrs);
2236 return true;
2237 }
2238 }
2239
2240 // Determine whether this identifier could plausibly be the name of something
2241 // being declared (with a missing type).
2242 if (!isTypeSpecifier(DSC) &&
2243 (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2244 // Look ahead to the next token to try to figure out what this declaration
2245 // was supposed to be.
2246 switch (NextToken().getKind()) {
2247 case tok::l_paren: {
2248 // static x(4); // 'x' is not a type
2249 // x(int n); // 'x' is not a type
2250 // x (*p)[]; // 'x' is a type
2251 //
2252 // Since we're in an error case, we can afford to perform a tentative
2253 // parse to determine which case we're in.
2254 TentativeParsingAction PA(*this);
2255 ConsumeToken();
2256 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2257 PA.Revert();
2258
2259 if (TPR != TPResult::False) {
2260 // The identifier is followed by a parenthesized declarator.
2261 // It's supposed to be a type.
2262 break;
2263 }
2264
2265 // If we're in a context where we could be declaring a constructor,
2266 // check whether this is a constructor declaration with a bogus name.
2267 if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2268 IdentifierInfo *II = Tok.getIdentifierInfo();
2269 if (Actions.isCurrentClassNameTypo(II, SS)) {
2270 Diag(Loc, diag::err_constructor_bad_name)
2271 << Tok.getIdentifierInfo() << II
2272 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2273 Tok.setIdentifierInfo(II);
2274 }
2275 }
2276 // Fall through.
2277 }
2278 case tok::comma:
2279 case tok::equal:
2280 case tok::kw_asm:
2281 case tok::l_brace:
2282 case tok::l_square:
2283 case tok::semi:
2284 // This looks like a variable or function declaration. The type is
2285 // probably missing. We're done parsing decl-specifiers.
2286 if (SS)
2287 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2288 return false;
2289
2290 default:
2291 // This is probably supposed to be a type. This includes cases like:
2292 // int f(itn);
2293 // struct S { unsinged : 4; };
2294 break;
2295 }
2296 }
2297
2298 // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2299 // and attempt to recover.
2300 ParsedType T;
2301 IdentifierInfo *II = Tok.getIdentifierInfo();
2302 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2303 getLangOpts().CPlusPlus &&
2304 NextToken().is(tok::less));
2305 if (T) {
2306 // The action has suggested that the type T could be used. Set that as
2307 // the type in the declaration specifiers, consume the would-be type
2308 // name token, and we're done.
2309 const char *PrevSpec;
2310 unsigned DiagID;
2311 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2312 Actions.getASTContext().getPrintingPolicy());
2313 DS.SetRangeEnd(Tok.getLocation());
2314 ConsumeToken();
2315 // There may be other declaration specifiers after this.
2316 return true;
2317 } else if (II != Tok.getIdentifierInfo()) {
2318 // If no type was suggested, the correction is to a keyword
2319 Tok.setKind(II->getTokenID());
2320 // There may be other declaration specifiers after this.
2321 return true;
2322 }
2323
2324 // Otherwise, the action had no suggestion for us. Mark this as an error.
2325 DS.SetTypeSpecError();
2326 DS.SetRangeEnd(Tok.getLocation());
2327 ConsumeToken();
2328
2329 // TODO: Could inject an invalid typedef decl in an enclosing scope to
2330 // avoid rippling error messages on subsequent uses of the same type,
2331 // could be useful if #include was forgotten.
2332 return false;
2333 }
2334
2335 /// \brief Determine the declaration specifier context from the declarator
2336 /// context.
2337 ///
2338 /// \param Context the declarator context, which is one of the
2339 /// Declarator::TheContext enumerator values.
2340 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2341 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2342 if (Context == Declarator::MemberContext)
2343 return DSC_class;
2344 if (Context == Declarator::FileContext)
2345 return DSC_top_level;
2346 if (Context == Declarator::TemplateTypeArgContext)
2347 return DSC_template_type_arg;
2348 if (Context == Declarator::TrailingReturnContext)
2349 return DSC_trailing;
2350 if (Context == Declarator::AliasDeclContext ||
2351 Context == Declarator::AliasTemplateContext)
2352 return DSC_alias_declaration;
2353 return DSC_normal;
2354 }
2355
2356 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2357 ///
2358 /// FIXME: Simply returns an alignof() expression if the argument is a
2359 /// type. Ideally, the type should be propagated directly into Sema.
2360 ///
2361 /// [C11] type-id
2362 /// [C11] constant-expression
2363 /// [C++0x] type-id ...[opt]
2364 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2365 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2366 SourceLocation &EllipsisLoc) {
2367 ExprResult ER;
2368 if (isTypeIdInParens()) {
2369 SourceLocation TypeLoc = Tok.getLocation();
2370 ParsedType Ty = ParseTypeName().get();
2371 SourceRange TypeRange(Start, Tok.getLocation());
2372 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2373 Ty.getAsOpaquePtr(), TypeRange);
2374 } else
2375 ER = ParseConstantExpression();
2376
2377 if (getLangOpts().CPlusPlus11)
2378 TryConsumeToken(tok::ellipsis, EllipsisLoc);
2379
2380 return ER;
2381 }
2382
2383 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2384 /// attribute to Attrs.
2385 ///
2386 /// alignment-specifier:
2387 /// [C11] '_Alignas' '(' type-id ')'
2388 /// [C11] '_Alignas' '(' constant-expression ')'
2389 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2390 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2391 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2392 SourceLocation *EndLoc) {
2393 assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2394 "Not an alignment-specifier!");
2395
2396 IdentifierInfo *KWName = Tok.getIdentifierInfo();
2397 SourceLocation KWLoc = ConsumeToken();
2398
2399 BalancedDelimiterTracker T(*this, tok::l_paren);
2400 if (T.expectAndConsume())
2401 return;
2402
2403 SourceLocation EllipsisLoc;
2404 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2405 if (ArgExpr.isInvalid()) {
2406 T.skipToEnd();
2407 return;
2408 }
2409
2410 T.consumeClose();
2411 if (EndLoc)
2412 *EndLoc = T.getCloseLocation();
2413
2414 ArgsVector ArgExprs;
2415 ArgExprs.push_back(ArgExpr.get());
2416 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2417 AttributeList::AS_Keyword, EllipsisLoc);
2418 }
2419
2420 /// Determine whether we're looking at something that might be a declarator
2421 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2422 /// diagnose a missing semicolon after a prior tag definition in the decl
2423 /// specifier.
2424 ///
2425 /// \return \c true if an error occurred and this can't be any kind of
2426 /// declaration.
2427 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2428 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2429 DeclSpecContext DSContext,
2430 LateParsedAttrList *LateAttrs) {
2431 assert(DS.hasTagDefinition() && "shouldn't call this");
2432
2433 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2434
2435 if (getLangOpts().CPlusPlus &&
2436 (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2437 Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2438 TryAnnotateCXXScopeToken(EnteringContext)) {
2439 SkipMalformedDecl();
2440 return true;
2441 }
2442
2443 bool HasScope = Tok.is(tok::annot_cxxscope);
2444 // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2445 Token AfterScope = HasScope ? NextToken() : Tok;
2446
2447 // Determine whether the following tokens could possibly be a
2448 // declarator.
2449 bool MightBeDeclarator = true;
2450 if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2451 // A declarator-id can't start with 'typename'.
2452 MightBeDeclarator = false;
2453 } else if (AfterScope.is(tok::annot_template_id)) {
2454 // If we have a type expressed as a template-id, this cannot be a
2455 // declarator-id (such a type cannot be redeclared in a simple-declaration).
2456 TemplateIdAnnotation *Annot =
2457 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2458 if (Annot->Kind == TNK_Type_template)
2459 MightBeDeclarator = false;
2460 } else if (AfterScope.is(tok::identifier)) {
2461 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2462
2463 // These tokens cannot come after the declarator-id in a
2464 // simple-declaration, and are likely to come after a type-specifier.
2465 if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2466 Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2467 Next.is(tok::coloncolon)) {
2468 // Missing a semicolon.
2469 MightBeDeclarator = false;
2470 } else if (HasScope) {
2471 // If the declarator-id has a scope specifier, it must redeclare a
2472 // previously-declared entity. If that's a type (and this is not a
2473 // typedef), that's an error.
2474 CXXScopeSpec SS;
2475 Actions.RestoreNestedNameSpecifierAnnotation(
2476 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2477 IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2478 Sema::NameClassification Classification = Actions.ClassifyName(
2479 getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2480 /*IsAddressOfOperand*/false);
2481 switch (Classification.getKind()) {
2482 case Sema::NC_Error:
2483 SkipMalformedDecl();
2484 return true;
2485
2486 case Sema::NC_Keyword:
2487 case Sema::NC_NestedNameSpecifier:
2488 llvm_unreachable("typo correction and nested name specifiers not "
2489 "possible here");
2490
2491 case Sema::NC_Type:
2492 case Sema::NC_TypeTemplate:
2493 // Not a previously-declared non-type entity.
2494 MightBeDeclarator = false;
2495 break;
2496
2497 case Sema::NC_Unknown:
2498 case Sema::NC_Expression:
2499 case Sema::NC_VarTemplate:
2500 case Sema::NC_FunctionTemplate:
2501 // Might be a redeclaration of a prior entity.
2502 break;
2503 }
2504 }
2505 }
2506
2507 if (MightBeDeclarator)
2508 return false;
2509
2510 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2511 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2512 diag::err_expected_after)
2513 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2514
2515 // Try to recover from the typo, by dropping the tag definition and parsing
2516 // the problematic tokens as a type.
2517 //
2518 // FIXME: Split the DeclSpec into pieces for the standalone
2519 // declaration and pieces for the following declaration, instead
2520 // of assuming that all the other pieces attach to new declaration,
2521 // and call ParsedFreeStandingDeclSpec as appropriate.
2522 DS.ClearTypeSpecType();
2523 ParsedTemplateInfo NotATemplate;
2524 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2525 return false;
2526 }
2527
2528 /// ParseDeclarationSpecifiers
2529 /// declaration-specifiers: [C99 6.7]
2530 /// storage-class-specifier declaration-specifiers[opt]
2531 /// type-specifier declaration-specifiers[opt]
2532 /// [C99] function-specifier declaration-specifiers[opt]
2533 /// [C11] alignment-specifier declaration-specifiers[opt]
2534 /// [GNU] attributes declaration-specifiers[opt]
2535 /// [Clang] '__module_private__' declaration-specifiers[opt]
2536 ///
2537 /// storage-class-specifier: [C99 6.7.1]
2538 /// 'typedef'
2539 /// 'extern'
2540 /// 'static'
2541 /// 'auto'
2542 /// 'register'
2543 /// [C++] 'mutable'
2544 /// [C++11] 'thread_local'
2545 /// [C11] '_Thread_local'
2546 /// [GNU] '__thread'
2547 /// function-specifier: [C99 6.7.4]
2548 /// [C99] 'inline'
2549 /// [C++] 'virtual'
2550 /// [C++] 'explicit'
2551 /// [OpenCL] '__kernel'
2552 /// 'friend': [C++ dcl.friend]
2553 /// 'constexpr': [C++0x dcl.constexpr]
2554
2555 ///
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2556 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2557 const ParsedTemplateInfo &TemplateInfo,
2558 AccessSpecifier AS,
2559 DeclSpecContext DSContext,
2560 LateParsedAttrList *LateAttrs) {
2561 if (DS.getSourceRange().isInvalid()) {
2562 // Start the range at the current token but make the end of the range
2563 // invalid. This will make the entire range invalid unless we successfully
2564 // consume a token.
2565 DS.SetRangeStart(Tok.getLocation());
2566 DS.SetRangeEnd(SourceLocation());
2567 }
2568
2569 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2570 bool AttrsLastTime = false;
2571 ParsedAttributesWithRange attrs(AttrFactory);
2572 // We use Sema's policy to get bool macros right.
2573 const PrintingPolicy &Policy = Actions.getPrintingPolicy();
2574 while (1) {
2575 bool isInvalid = false;
2576 bool isStorageClass = false;
2577 const char *PrevSpec = nullptr;
2578 unsigned DiagID = 0;
2579
2580 SourceLocation Loc = Tok.getLocation();
2581
2582 switch (Tok.getKind()) {
2583 default:
2584 DoneWithDeclSpec:
2585 if (!AttrsLastTime)
2586 ProhibitAttributes(attrs);
2587 else {
2588 // Reject C++11 attributes that appertain to decl specifiers as
2589 // we don't support any C++11 attributes that appertain to decl
2590 // specifiers. This also conforms to what g++ 4.8 is doing.
2591 ProhibitCXX11Attributes(attrs);
2592
2593 DS.takeAttributesFrom(attrs);
2594 }
2595
2596 // If this is not a declaration specifier token, we're done reading decl
2597 // specifiers. First verify that DeclSpec's are consistent.
2598 DS.Finish(Diags, PP, Policy);
2599 return;
2600
2601 case tok::l_square:
2602 case tok::kw_alignas:
2603 if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2604 goto DoneWithDeclSpec;
2605
2606 ProhibitAttributes(attrs);
2607 // FIXME: It would be good to recover by accepting the attributes,
2608 // but attempting to do that now would cause serious
2609 // madness in terms of diagnostics.
2610 attrs.clear();
2611 attrs.Range = SourceRange();
2612
2613 ParseCXX11Attributes(attrs);
2614 AttrsLastTime = true;
2615 continue;
2616
2617 case tok::code_completion: {
2618 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2619 if (DS.hasTypeSpecifier()) {
2620 bool AllowNonIdentifiers
2621 = (getCurScope()->getFlags() & (Scope::ControlScope |
2622 Scope::BlockScope |
2623 Scope::TemplateParamScope |
2624 Scope::FunctionPrototypeScope |
2625 Scope::AtCatchScope)) == 0;
2626 bool AllowNestedNameSpecifiers
2627 = DSContext == DSC_top_level ||
2628 (DSContext == DSC_class && DS.isFriendSpecified());
2629
2630 Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2631 AllowNonIdentifiers,
2632 AllowNestedNameSpecifiers);
2633 return cutOffParsing();
2634 }
2635
2636 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2637 CCC = Sema::PCC_LocalDeclarationSpecifiers;
2638 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2639 CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2640 : Sema::PCC_Template;
2641 else if (DSContext == DSC_class)
2642 CCC = Sema::PCC_Class;
2643 else if (CurParsedObjCImpl)
2644 CCC = Sema::PCC_ObjCImplementation;
2645
2646 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2647 return cutOffParsing();
2648 }
2649
2650 case tok::coloncolon: // ::foo::bar
2651 // C++ scope specifier. Annotate and loop, or bail out on error.
2652 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2653 if (!DS.hasTypeSpecifier())
2654 DS.SetTypeSpecError();
2655 goto DoneWithDeclSpec;
2656 }
2657 if (Tok.is(tok::coloncolon)) // ::new or ::delete
2658 goto DoneWithDeclSpec;
2659 continue;
2660
2661 case tok::annot_cxxscope: {
2662 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2663 goto DoneWithDeclSpec;
2664
2665 CXXScopeSpec SS;
2666 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2667 Tok.getAnnotationRange(),
2668 SS);
2669
2670 // We are looking for a qualified typename.
2671 Token Next = NextToken();
2672 if (Next.is(tok::annot_template_id) &&
2673 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2674 ->Kind == TNK_Type_template) {
2675 // We have a qualified template-id, e.g., N::A<int>
2676
2677 // C++ [class.qual]p2:
2678 // In a lookup in which the constructor is an acceptable lookup
2679 // result and the nested-name-specifier nominates a class C:
2680 //
2681 // - if the name specified after the
2682 // nested-name-specifier, when looked up in C, is the
2683 // injected-class-name of C (Clause 9), or
2684 //
2685 // - if the name specified after the nested-name-specifier
2686 // is the same as the identifier or the
2687 // simple-template-id's template-name in the last
2688 // component of the nested-name-specifier,
2689 //
2690 // the name is instead considered to name the constructor of
2691 // class C.
2692 //
2693 // Thus, if the template-name is actually the constructor
2694 // name, then the code is ill-formed; this interpretation is
2695 // reinforced by the NAD status of core issue 635.
2696 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2697 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2698 TemplateId->Name &&
2699 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2700 if (isConstructorDeclarator(/*Unqualified*/false)) {
2701 // The user meant this to be an out-of-line constructor
2702 // definition, but template arguments are not allowed
2703 // there. Just allow this as a constructor; we'll
2704 // complain about it later.
2705 goto DoneWithDeclSpec;
2706 }
2707
2708 // The user meant this to name a type, but it actually names
2709 // a constructor with some extraneous template
2710 // arguments. Complain, then parse it as a type as the user
2711 // intended.
2712 Diag(TemplateId->TemplateNameLoc,
2713 diag::err_out_of_line_template_id_names_constructor)
2714 << TemplateId->Name;
2715 }
2716
2717 DS.getTypeSpecScope() = SS;
2718 ConsumeToken(); // The C++ scope.
2719 assert(Tok.is(tok::annot_template_id) &&
2720 "ParseOptionalCXXScopeSpecifier not working");
2721 AnnotateTemplateIdTokenAsType();
2722 continue;
2723 }
2724
2725 if (Next.is(tok::annot_typename)) {
2726 DS.getTypeSpecScope() = SS;
2727 ConsumeToken(); // The C++ scope.
2728 if (Tok.getAnnotationValue()) {
2729 ParsedType T = getTypeAnnotation(Tok);
2730 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2731 Tok.getAnnotationEndLoc(),
2732 PrevSpec, DiagID, T, Policy);
2733 if (isInvalid)
2734 break;
2735 }
2736 else
2737 DS.SetTypeSpecError();
2738 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2739 ConsumeToken(); // The typename
2740 }
2741
2742 if (Next.isNot(tok::identifier))
2743 goto DoneWithDeclSpec;
2744
2745 // If we're in a context where the identifier could be a class name,
2746 // check whether this is a constructor declaration.
2747 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2748 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2749 &SS)) {
2750 if (isConstructorDeclarator(/*Unqualified*/false))
2751 goto DoneWithDeclSpec;
2752
2753 // As noted in C++ [class.qual]p2 (cited above), when the name
2754 // of the class is qualified in a context where it could name
2755 // a constructor, its a constructor name. However, we've
2756 // looked at the declarator, and the user probably meant this
2757 // to be a type. Complain that it isn't supposed to be treated
2758 // as a type, then proceed to parse it as a type.
2759 Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2760 << Next.getIdentifierInfo();
2761 }
2762
2763 ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2764 Next.getLocation(),
2765 getCurScope(), &SS,
2766 false, false, ParsedType(),
2767 /*IsCtorOrDtorName=*/false,
2768 /*NonTrivialSourceInfo=*/true);
2769
2770 // If the referenced identifier is not a type, then this declspec is
2771 // erroneous: We already checked about that it has no type specifier, and
2772 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
2773 // typename.
2774 if (!TypeRep) {
2775 ConsumeToken(); // Eat the scope spec so the identifier is current.
2776 ParsedAttributesWithRange Attrs(AttrFactory);
2777 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2778 if (!Attrs.empty()) {
2779 AttrsLastTime = true;
2780 attrs.takeAllFrom(Attrs);
2781 }
2782 continue;
2783 }
2784 goto DoneWithDeclSpec;
2785 }
2786
2787 DS.getTypeSpecScope() = SS;
2788 ConsumeToken(); // The C++ scope.
2789
2790 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2791 DiagID, TypeRep, Policy);
2792 if (isInvalid)
2793 break;
2794
2795 DS.SetRangeEnd(Tok.getLocation());
2796 ConsumeToken(); // The typename.
2797
2798 continue;
2799 }
2800
2801 case tok::annot_typename: {
2802 // If we've previously seen a tag definition, we were almost surely
2803 // missing a semicolon after it.
2804 if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2805 goto DoneWithDeclSpec;
2806
2807 if (Tok.getAnnotationValue()) {
2808 ParsedType T = getTypeAnnotation(Tok);
2809 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2810 DiagID, T, Policy);
2811 } else
2812 DS.SetTypeSpecError();
2813
2814 if (isInvalid)
2815 break;
2816
2817 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2818 ConsumeToken(); // The typename
2819
2820 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2821 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2822 // Objective-C interface.
2823 if (Tok.is(tok::less) && getLangOpts().ObjC1)
2824 ParseObjCProtocolQualifiers(DS);
2825
2826 continue;
2827 }
2828
2829 case tok::kw___is_signed:
2830 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2831 // typically treats it as a trait. If we see __is_signed as it appears
2832 // in libstdc++, e.g.,
2833 //
2834 // static const bool __is_signed;
2835 //
2836 // then treat __is_signed as an identifier rather than as a keyword.
2837 if (DS.getTypeSpecType() == TST_bool &&
2838 DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2839 DS.getStorageClassSpec() == DeclSpec::SCS_static)
2840 TryKeywordIdentFallback(true);
2841
2842 // We're done with the declaration-specifiers.
2843 goto DoneWithDeclSpec;
2844
2845 // typedef-name
2846 case tok::kw___super:
2847 case tok::kw_decltype:
2848 case tok::identifier: {
2849 // This identifier can only be a typedef name if we haven't already seen
2850 // a type-specifier. Without this check we misparse:
2851 // typedef int X; struct Y { short X; }; as 'short int'.
2852 if (DS.hasTypeSpecifier())
2853 goto DoneWithDeclSpec;
2854
2855 // In C++, check to see if this is a scope specifier like foo::bar::, if
2856 // so handle it as such. This is important for ctor parsing.
2857 if (getLangOpts().CPlusPlus) {
2858 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2859 DS.SetTypeSpecError();
2860 goto DoneWithDeclSpec;
2861 }
2862 if (!Tok.is(tok::identifier))
2863 continue;
2864 }
2865
2866 // Check for need to substitute AltiVec keyword tokens.
2867 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2868 break;
2869
2870 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2871 // allow the use of a typedef name as a type specifier.
2872 if (DS.isTypeAltiVecVector())
2873 goto DoneWithDeclSpec;
2874
2875 ParsedType TypeRep =
2876 Actions.getTypeName(*Tok.getIdentifierInfo(),
2877 Tok.getLocation(), getCurScope());
2878
2879 // MSVC: If we weren't able to parse a default template argument, and it's
2880 // just a simple identifier, create a DependentNameType. This will allow
2881 // us to defer the name lookup to template instantiation time, as long we
2882 // forge a NestedNameSpecifier for the current context.
2883 if (!TypeRep && DSContext == DSC_template_type_arg &&
2884 getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2885 TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2886 *Tok.getIdentifierInfo(), Tok.getLocation());
2887 }
2888
2889 // If this is not a typedef name, don't parse it as part of the declspec,
2890 // it must be an implicit int or an error.
2891 if (!TypeRep) {
2892 ParsedAttributesWithRange Attrs(AttrFactory);
2893 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2894 if (!Attrs.empty()) {
2895 AttrsLastTime = true;
2896 attrs.takeAllFrom(Attrs);
2897 }
2898 continue;
2899 }
2900 goto DoneWithDeclSpec;
2901 }
2902
2903 // If we're in a context where the identifier could be a class name,
2904 // check whether this is a constructor declaration.
2905 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2906 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2907 isConstructorDeclarator(/*Unqualified*/true))
2908 goto DoneWithDeclSpec;
2909
2910 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2911 DiagID, TypeRep, Policy);
2912 if (isInvalid)
2913 break;
2914
2915 DS.SetRangeEnd(Tok.getLocation());
2916 ConsumeToken(); // The identifier
2917
2918 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2919 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2920 // Objective-C interface.
2921 if (Tok.is(tok::less) && getLangOpts().ObjC1)
2922 ParseObjCProtocolQualifiers(DS);
2923
2924 // Need to support trailing type qualifiers (e.g. "id<p> const").
2925 // If a type specifier follows, it will be diagnosed elsewhere.
2926 continue;
2927 }
2928
2929 // type-name
2930 case tok::annot_template_id: {
2931 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2932 if (TemplateId->Kind != TNK_Type_template) {
2933 // This template-id does not refer to a type name, so we're
2934 // done with the type-specifiers.
2935 goto DoneWithDeclSpec;
2936 }
2937
2938 // If we're in a context where the template-id could be a
2939 // constructor name or specialization, check whether this is a
2940 // constructor declaration.
2941 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2942 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2943 isConstructorDeclarator(TemplateId->SS.isEmpty()))
2944 goto DoneWithDeclSpec;
2945
2946 // Turn the template-id annotation token into a type annotation
2947 // token, then try again to parse it as a type-specifier.
2948 AnnotateTemplateIdTokenAsType();
2949 continue;
2950 }
2951
2952 // GNU attributes support.
2953 case tok::kw___attribute:
2954 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2955 continue;
2956
2957 // Microsoft declspec support.
2958 case tok::kw___declspec:
2959 ParseMicrosoftDeclSpec(DS.getAttributes());
2960 continue;
2961
2962 // Microsoft single token adornments.
2963 case tok::kw___forceinline: {
2964 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2965 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2966 SourceLocation AttrNameLoc = Tok.getLocation();
2967 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2968 nullptr, 0, AttributeList::AS_Keyword);
2969 break;
2970 }
2971
2972 case tok::kw___sptr:
2973 case tok::kw___uptr:
2974 case tok::kw___ptr64:
2975 case tok::kw___ptr32:
2976 case tok::kw___w64:
2977 case tok::kw___cdecl:
2978 case tok::kw___stdcall:
2979 case tok::kw___fastcall:
2980 case tok::kw___thiscall:
2981 case tok::kw___vectorcall:
2982 case tok::kw___unaligned:
2983 ParseMicrosoftTypeAttributes(DS.getAttributes());
2984 continue;
2985
2986 // Borland single token adornments.
2987 case tok::kw___pascal:
2988 ParseBorlandTypeAttributes(DS.getAttributes());
2989 continue;
2990
2991 // OpenCL single token adornments.
2992 case tok::kw___kernel:
2993 ParseOpenCLAttributes(DS.getAttributes());
2994 continue;
2995
2996 // storage-class-specifier
2997 case tok::kw_typedef:
2998 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2999 PrevSpec, DiagID, Policy);
3000 isStorageClass = true;
3001 break;
3002 case tok::kw_extern:
3003 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3004 Diag(Tok, diag::ext_thread_before) << "extern";
3005 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3006 PrevSpec, DiagID, Policy);
3007 isStorageClass = true;
3008 break;
3009 case tok::kw___private_extern__:
3010 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3011 Loc, PrevSpec, DiagID, Policy);
3012 isStorageClass = true;
3013 break;
3014 case tok::kw_static:
3015 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3016 Diag(Tok, diag::ext_thread_before) << "static";
3017 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3018 PrevSpec, DiagID, Policy);
3019 isStorageClass = true;
3020 break;
3021 case tok::kw_auto:
3022 if (getLangOpts().CPlusPlus11) {
3023 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3024 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3025 PrevSpec, DiagID, Policy);
3026 if (!isInvalid)
3027 Diag(Tok, diag::ext_auto_storage_class)
3028 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3029 } else
3030 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3031 DiagID, Policy);
3032 } else
3033 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3034 PrevSpec, DiagID, Policy);
3035 isStorageClass = true;
3036 break;
3037 case tok::kw_register:
3038 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3039 PrevSpec, DiagID, Policy);
3040 isStorageClass = true;
3041 break;
3042 case tok::kw_mutable:
3043 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3044 PrevSpec, DiagID, Policy);
3045 isStorageClass = true;
3046 break;
3047 case tok::kw___thread:
3048 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3049 PrevSpec, DiagID);
3050 isStorageClass = true;
3051 break;
3052 case tok::kw_thread_local:
3053 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3054 PrevSpec, DiagID);
3055 break;
3056 case tok::kw__Thread_local:
3057 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3058 Loc, PrevSpec, DiagID);
3059 isStorageClass = true;
3060 break;
3061
3062 // function-specifier
3063 case tok::kw_inline:
3064 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3065 break;
3066 case tok::kw_virtual:
3067 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3068 break;
3069 case tok::kw_explicit:
3070 isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3071 break;
3072 case tok::kw__Noreturn:
3073 if (!getLangOpts().C11)
3074 Diag(Loc, diag::ext_c11_noreturn);
3075 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3076 break;
3077
3078 // alignment-specifier
3079 case tok::kw__Alignas:
3080 if (!getLangOpts().C11)
3081 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3082 ParseAlignmentSpecifier(DS.getAttributes());
3083 continue;
3084
3085 // friend
3086 case tok::kw_friend:
3087 if (DSContext == DSC_class)
3088 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3089 else {
3090 PrevSpec = ""; // not actually used by the diagnostic
3091 DiagID = diag::err_friend_invalid_in_context;
3092 isInvalid = true;
3093 }
3094 break;
3095
3096 // Modules
3097 case tok::kw___module_private__:
3098 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3099 break;
3100
3101 // constexpr
3102 case tok::kw_constexpr:
3103 isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3104 break;
3105
3106 // type-specifier
3107 case tok::kw_short:
3108 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3109 DiagID, Policy);
3110 break;
3111 case tok::kw_long:
3112 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3113 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3114 DiagID, Policy);
3115 else
3116 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3117 DiagID, Policy);
3118 break;
3119 case tok::kw___int64:
3120 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3121 DiagID, Policy);
3122 break;
3123 case tok::kw_signed:
3124 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3125 DiagID);
3126 break;
3127 case tok::kw_unsigned:
3128 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3129 DiagID);
3130 break;
3131 case tok::kw__Complex:
3132 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3133 DiagID);
3134 break;
3135 case tok::kw__Imaginary:
3136 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3137 DiagID);
3138 break;
3139 case tok::kw_void:
3140 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3141 DiagID, Policy);
3142 break;
3143 case tok::kw_char:
3144 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3145 DiagID, Policy);
3146 break;
3147 case tok::kw_int:
3148 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3149 DiagID, Policy);
3150 break;
3151 case tok::kw___int128:
3152 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3153 DiagID, Policy);
3154 break;
3155 case tok::kw_half:
3156 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3157 DiagID, Policy);
3158 break;
3159 case tok::kw_float:
3160 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3161 DiagID, Policy);
3162 break;
3163 case tok::kw_double:
3164 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3165 DiagID, Policy);
3166 break;
3167 case tok::kw_wchar_t:
3168 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3169 DiagID, Policy);
3170 break;
3171 case tok::kw_char16_t:
3172 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3173 DiagID, Policy);
3174 break;
3175 case tok::kw_char32_t:
3176 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3177 DiagID, Policy);
3178 break;
3179 case tok::kw_bool:
3180 case tok::kw__Bool:
3181 if (Tok.is(tok::kw_bool) &&
3182 DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3183 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3184 PrevSpec = ""; // Not used by the diagnostic.
3185 DiagID = diag::err_bool_redeclaration;
3186 // For better error recovery.
3187 Tok.setKind(tok::identifier);
3188 isInvalid = true;
3189 } else {
3190 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3191 DiagID, Policy);
3192 }
3193 break;
3194 case tok::kw__Decimal32:
3195 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3196 DiagID, Policy);
3197 break;
3198 case tok::kw__Decimal64:
3199 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3200 DiagID, Policy);
3201 break;
3202 case tok::kw__Decimal128:
3203 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3204 DiagID, Policy);
3205 break;
3206 case tok::kw___vector:
3207 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3208 break;
3209 case tok::kw___pixel:
3210 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3211 break;
3212 case tok::kw___bool:
3213 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3214 break;
3215 case tok::kw___unknown_anytype:
3216 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3217 PrevSpec, DiagID, Policy);
3218 break;
3219
3220 // class-specifier:
3221 case tok::kw_class:
3222 case tok::kw_struct:
3223 case tok::kw___interface:
3224 case tok::kw_union: {
3225 tok::TokenKind Kind = Tok.getKind();
3226 ConsumeToken();
3227
3228 // These are attributes following class specifiers.
3229 // To produce better diagnostic, we parse them when
3230 // parsing class specifier.
3231 ParsedAttributesWithRange Attributes(AttrFactory);
3232 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3233 EnteringContext, DSContext, Attributes);
3234
3235 // If there are attributes following class specifier,
3236 // take them over and handle them here.
3237 if (!Attributes.empty()) {
3238 AttrsLastTime = true;
3239 attrs.takeAllFrom(Attributes);
3240 }
3241 continue;
3242 }
3243
3244 // enum-specifier:
3245 case tok::kw_enum:
3246 ConsumeToken();
3247 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3248 continue;
3249
3250 // cv-qualifier:
3251 case tok::kw_const:
3252 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3253 getLangOpts());
3254 break;
3255 case tok::kw_volatile:
3256 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3257 getLangOpts());
3258 break;
3259 case tok::kw_restrict:
3260 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3261 getLangOpts());
3262 break;
3263
3264 // C++ typename-specifier:
3265 case tok::kw_typename:
3266 if (TryAnnotateTypeOrScopeToken()) {
3267 DS.SetTypeSpecError();
3268 goto DoneWithDeclSpec;
3269 }
3270 if (!Tok.is(tok::kw_typename))
3271 continue;
3272 break;
3273
3274 // GNU typeof support.
3275 case tok::kw_typeof:
3276 ParseTypeofSpecifier(DS);
3277 continue;
3278
3279 case tok::annot_decltype:
3280 ParseDecltypeSpecifier(DS);
3281 continue;
3282
3283 case tok::kw___underlying_type:
3284 ParseUnderlyingTypeSpecifier(DS);
3285 continue;
3286
3287 case tok::kw__Atomic:
3288 // C11 6.7.2.4/4:
3289 // If the _Atomic keyword is immediately followed by a left parenthesis,
3290 // it is interpreted as a type specifier (with a type name), not as a
3291 // type qualifier.
3292 if (NextToken().is(tok::l_paren)) {
3293 ParseAtomicSpecifier(DS);
3294 continue;
3295 }
3296 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3297 getLangOpts());
3298 break;
3299
3300 // OpenCL qualifiers:
3301 case tok::kw___generic:
3302 // generic address space is introduced only in OpenCL v2.0
3303 // see OpenCL C Spec v2.0 s6.5.5
3304 if (Actions.getLangOpts().OpenCLVersion < 200) {
3305 DiagID = diag::err_opencl_unknown_type_specifier;
3306 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3307 isInvalid = true;
3308 break;
3309 };
3310 case tok::kw___private:
3311 case tok::kw___global:
3312 case tok::kw___local:
3313 case tok::kw___constant:
3314 case tok::kw___read_only:
3315 case tok::kw___write_only:
3316 case tok::kw___read_write:
3317 ParseOpenCLQualifiers(DS.getAttributes());
3318 break;
3319
3320 case tok::less:
3321 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3322 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3323 // but we support it.
3324 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3325 goto DoneWithDeclSpec;
3326
3327 if (!ParseObjCProtocolQualifiers(DS))
3328 Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3329 << FixItHint::CreateInsertion(Loc, "id")
3330 << SourceRange(Loc, DS.getSourceRange().getEnd());
3331
3332 // Need to support trailing type qualifiers (e.g. "id<p> const").
3333 // If a type specifier follows, it will be diagnosed elsewhere.
3334 continue;
3335 }
3336 // If the specifier wasn't legal, issue a diagnostic.
3337 if (isInvalid) {
3338 assert(PrevSpec && "Method did not return previous specifier!");
3339 assert(DiagID);
3340
3341 if (DiagID == diag::ext_duplicate_declspec)
3342 Diag(Tok, DiagID)
3343 << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3344 else if (DiagID == diag::err_opencl_unknown_type_specifier)
3345 Diag(Tok, DiagID) << PrevSpec << isStorageClass;
3346 else
3347 Diag(Tok, DiagID) << PrevSpec;
3348 }
3349
3350 DS.SetRangeEnd(Tok.getLocation());
3351 if (DiagID != diag::err_bool_redeclaration)
3352 ConsumeToken();
3353
3354 AttrsLastTime = false;
3355 }
3356 }
3357
3358 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3359 /// semicolon.
3360 ///
3361 /// struct-declaration:
3362 /// specifier-qualifier-list struct-declarator-list
3363 /// [GNU] __extension__ struct-declaration
3364 /// [GNU] specifier-qualifier-list
3365 /// struct-declarator-list:
3366 /// struct-declarator
3367 /// struct-declarator-list ',' struct-declarator
3368 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3369 /// struct-declarator:
3370 /// declarator
3371 /// [GNU] declarator attributes[opt]
3372 /// declarator[opt] ':' constant-expression
3373 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3374 ///
ParseStructDeclaration(ParsingDeclSpec & DS,llvm::function_ref<void (ParsingFieldDeclarator &)> FieldsCallback)3375 void Parser::ParseStructDeclaration(
3376 ParsingDeclSpec &DS,
3377 llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3378
3379 if (Tok.is(tok::kw___extension__)) {
3380 // __extension__ silences extension warnings in the subexpression.
3381 ExtensionRAIIObject O(Diags); // Use RAII to do this.
3382 ConsumeToken();
3383 return ParseStructDeclaration(DS, FieldsCallback);
3384 }
3385
3386 // Parse the common specifier-qualifiers-list piece.
3387 ParseSpecifierQualifierList(DS);
3388
3389 // If there are no declarators, this is a free-standing declaration
3390 // specifier. Let the actions module cope with it.
3391 if (Tok.is(tok::semi)) {
3392 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3393 DS);
3394 DS.complete(TheDecl);
3395 return;
3396 }
3397
3398 // Read struct-declarators until we find the semicolon.
3399 bool FirstDeclarator = true;
3400 SourceLocation CommaLoc;
3401 while (1) {
3402 ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3403 DeclaratorInfo.D.setCommaLoc(CommaLoc);
3404
3405 // Attributes are only allowed here on successive declarators.
3406 if (!FirstDeclarator)
3407 MaybeParseGNUAttributes(DeclaratorInfo.D);
3408
3409 /// struct-declarator: declarator
3410 /// struct-declarator: declarator[opt] ':' constant-expression
3411 if (Tok.isNot(tok::colon)) {
3412 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3413 ColonProtectionRAIIObject X(*this);
3414 ParseDeclarator(DeclaratorInfo.D);
3415 } else
3416 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3417
3418 if (TryConsumeToken(tok::colon)) {
3419 ExprResult Res(ParseConstantExpression());
3420 if (Res.isInvalid())
3421 SkipUntil(tok::semi, StopBeforeMatch);
3422 else
3423 DeclaratorInfo.BitfieldSize = Res.get();
3424 }
3425
3426 // If attributes exist after the declarator, parse them.
3427 MaybeParseGNUAttributes(DeclaratorInfo.D);
3428
3429 // We're done with this declarator; invoke the callback.
3430 FieldsCallback(DeclaratorInfo);
3431
3432 // If we don't have a comma, it is either the end of the list (a ';')
3433 // or an error, bail out.
3434 if (!TryConsumeToken(tok::comma, CommaLoc))
3435 return;
3436
3437 FirstDeclarator = false;
3438 }
3439 }
3440
3441 /// ParseStructUnionBody
3442 /// struct-contents:
3443 /// struct-declaration-list
3444 /// [EXT] empty
3445 /// [GNU] "struct-declaration-list" without terminatoring ';'
3446 /// struct-declaration-list:
3447 /// struct-declaration
3448 /// struct-declaration-list struct-declaration
3449 /// [OBC] '@' 'defs' '(' class-name ')'
3450 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3451 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3452 unsigned TagType, Decl *TagDecl) {
3453 PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3454 "parsing struct/union body");
3455 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3456
3457 BalancedDelimiterTracker T(*this, tok::l_brace);
3458 if (T.consumeOpen())
3459 return;
3460
3461 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3462 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3463
3464 SmallVector<Decl *, 32> FieldDecls;
3465
3466 // While we still have something to read, read the declarations in the struct.
3467 while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3468 // Each iteration of this loop reads one struct-declaration.
3469
3470 // Check for extraneous top-level semicolon.
3471 if (Tok.is(tok::semi)) {
3472 ConsumeExtraSemi(InsideStruct, TagType);
3473 continue;
3474 }
3475
3476 // Parse _Static_assert declaration.
3477 if (Tok.is(tok::kw__Static_assert)) {
3478 SourceLocation DeclEnd;
3479 ParseStaticAssertDeclaration(DeclEnd);
3480 continue;
3481 }
3482
3483 if (Tok.is(tok::annot_pragma_pack)) {
3484 HandlePragmaPack();
3485 continue;
3486 }
3487
3488 if (Tok.is(tok::annot_pragma_align)) {
3489 HandlePragmaAlign();
3490 continue;
3491 }
3492
3493 if (!Tok.is(tok::at)) {
3494 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3495 // Install the declarator into the current TagDecl.
3496 Decl *Field =
3497 Actions.ActOnField(getCurScope(), TagDecl,
3498 FD.D.getDeclSpec().getSourceRange().getBegin(),
3499 FD.D, FD.BitfieldSize);
3500 FieldDecls.push_back(Field);
3501 FD.complete(Field);
3502 };
3503
3504 // Parse all the comma separated declarators.
3505 ParsingDeclSpec DS(*this);
3506 ParseStructDeclaration(DS, CFieldCallback);
3507 } else { // Handle @defs
3508 ConsumeToken();
3509 if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3510 Diag(Tok, diag::err_unexpected_at);
3511 SkipUntil(tok::semi);
3512 continue;
3513 }
3514 ConsumeToken();
3515 ExpectAndConsume(tok::l_paren);
3516 if (!Tok.is(tok::identifier)) {
3517 Diag(Tok, diag::err_expected) << tok::identifier;
3518 SkipUntil(tok::semi);
3519 continue;
3520 }
3521 SmallVector<Decl *, 16> Fields;
3522 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3523 Tok.getIdentifierInfo(), Fields);
3524 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3525 ConsumeToken();
3526 ExpectAndConsume(tok::r_paren);
3527 }
3528
3529 if (TryConsumeToken(tok::semi))
3530 continue;
3531
3532 if (Tok.is(tok::r_brace)) {
3533 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3534 break;
3535 }
3536
3537 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3538 // Skip to end of block or statement to avoid ext-warning on extra ';'.
3539 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3540 // If we stopped at a ';', eat it.
3541 TryConsumeToken(tok::semi);
3542 }
3543
3544 T.consumeClose();
3545
3546 ParsedAttributes attrs(AttrFactory);
3547 // If attributes exist after struct contents, parse them.
3548 MaybeParseGNUAttributes(attrs);
3549
3550 Actions.ActOnFields(getCurScope(),
3551 RecordLoc, TagDecl, FieldDecls,
3552 T.getOpenLocation(), T.getCloseLocation(),
3553 attrs.getList());
3554 StructScope.Exit();
3555 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3556 T.getCloseLocation());
3557 }
3558
3559 /// ParseEnumSpecifier
3560 /// enum-specifier: [C99 6.7.2.2]
3561 /// 'enum' identifier[opt] '{' enumerator-list '}'
3562 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3563 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3564 /// '}' attributes[opt]
3565 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3566 /// '}'
3567 /// 'enum' identifier
3568 /// [GNU] 'enum' attributes[opt] identifier
3569 ///
3570 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3571 /// [C++11] enum-head '{' enumerator-list ',' '}'
3572 ///
3573 /// enum-head: [C++11]
3574 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3575 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
3576 /// identifier enum-base[opt]
3577 ///
3578 /// enum-key: [C++11]
3579 /// 'enum'
3580 /// 'enum' 'class'
3581 /// 'enum' 'struct'
3582 ///
3583 /// enum-base: [C++11]
3584 /// ':' type-specifier-seq
3585 ///
3586 /// [C++] elaborated-type-specifier:
3587 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
3588 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3589 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3590 const ParsedTemplateInfo &TemplateInfo,
3591 AccessSpecifier AS, DeclSpecContext DSC) {
3592 // Parse the tag portion of this.
3593 if (Tok.is(tok::code_completion)) {
3594 // Code completion for an enum name.
3595 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3596 return cutOffParsing();
3597 }
3598
3599 // If attributes exist after tag, parse them.
3600 ParsedAttributesWithRange attrs(AttrFactory);
3601 MaybeParseGNUAttributes(attrs);
3602 MaybeParseCXX11Attributes(attrs);
3603
3604 // If declspecs exist after tag, parse them.
3605 while (Tok.is(tok::kw___declspec))
3606 ParseMicrosoftDeclSpec(attrs);
3607
3608 SourceLocation ScopedEnumKWLoc;
3609 bool IsScopedUsingClassTag = false;
3610
3611 // In C++11, recognize 'enum class' and 'enum struct'.
3612 if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3613 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3614 : diag::ext_scoped_enum);
3615 IsScopedUsingClassTag = Tok.is(tok::kw_class);
3616 ScopedEnumKWLoc = ConsumeToken();
3617
3618 // Attributes are not allowed between these keywords. Diagnose,
3619 // but then just treat them like they appeared in the right place.
3620 ProhibitAttributes(attrs);
3621
3622 // They are allowed afterwards, though.
3623 MaybeParseGNUAttributes(attrs);
3624 MaybeParseCXX11Attributes(attrs);
3625 while (Tok.is(tok::kw___declspec))
3626 ParseMicrosoftDeclSpec(attrs);
3627 }
3628
3629 // C++11 [temp.explicit]p12:
3630 // The usual access controls do not apply to names used to specify
3631 // explicit instantiations.
3632 // We extend this to also cover explicit specializations. Note that
3633 // we don't suppress if this turns out to be an elaborated type
3634 // specifier.
3635 bool shouldDelayDiagsInTag =
3636 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3637 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3638 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3639
3640 // Enum definitions should not be parsed in a trailing-return-type.
3641 bool AllowDeclaration = DSC != DSC_trailing;
3642
3643 bool AllowFixedUnderlyingType = AllowDeclaration &&
3644 (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3645 getLangOpts().ObjC2);
3646
3647 CXXScopeSpec &SS = DS.getTypeSpecScope();
3648 if (getLangOpts().CPlusPlus) {
3649 // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3650 // if a fixed underlying type is allowed.
3651 ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3652
3653 CXXScopeSpec Spec;
3654 if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(),
3655 /*EnteringContext=*/true))
3656 return;
3657
3658 if (Spec.isSet() && Tok.isNot(tok::identifier)) {
3659 Diag(Tok, diag::err_expected) << tok::identifier;
3660 if (Tok.isNot(tok::l_brace)) {
3661 // Has no name and is not a definition.
3662 // Skip the rest of this declarator, up until the comma or semicolon.
3663 SkipUntil(tok::comma, StopAtSemi);
3664 return;
3665 }
3666 }
3667
3668 SS = Spec;
3669 }
3670
3671 // Must have either 'enum name' or 'enum {...}'.
3672 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3673 !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3674 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3675
3676 // Skip the rest of this declarator, up until the comma or semicolon.
3677 SkipUntil(tok::comma, StopAtSemi);
3678 return;
3679 }
3680
3681 // If an identifier is present, consume and remember it.
3682 IdentifierInfo *Name = nullptr;
3683 SourceLocation NameLoc;
3684 if (Tok.is(tok::identifier)) {
3685 Name = Tok.getIdentifierInfo();
3686 NameLoc = ConsumeToken();
3687 }
3688
3689 if (!Name && ScopedEnumKWLoc.isValid()) {
3690 // C++0x 7.2p2: The optional identifier shall not be omitted in the
3691 // declaration of a scoped enumeration.
3692 Diag(Tok, diag::err_scoped_enum_missing_identifier);
3693 ScopedEnumKWLoc = SourceLocation();
3694 IsScopedUsingClassTag = false;
3695 }
3696
3697 // Okay, end the suppression area. We'll decide whether to emit the
3698 // diagnostics in a second.
3699 if (shouldDelayDiagsInTag)
3700 diagsFromTag.done();
3701
3702 TypeResult BaseType;
3703
3704 // Parse the fixed underlying type.
3705 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3706 if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3707 bool PossibleBitfield = false;
3708 if (CanBeBitfield) {
3709 // If we're in class scope, this can either be an enum declaration with
3710 // an underlying type, or a declaration of a bitfield member. We try to
3711 // use a simple disambiguation scheme first to catch the common cases
3712 // (integer literal, sizeof); if it's still ambiguous, we then consider
3713 // anything that's a simple-type-specifier followed by '(' as an
3714 // expression. This suffices because function types are not valid
3715 // underlying types anyway.
3716 EnterExpressionEvaluationContext Unevaluated(Actions,
3717 Sema::ConstantEvaluated);
3718 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3719 // If the next token starts an expression, we know we're parsing a
3720 // bit-field. This is the common case.
3721 if (TPR == TPResult::True)
3722 PossibleBitfield = true;
3723 // If the next token starts a type-specifier-seq, it may be either a
3724 // a fixed underlying type or the start of a function-style cast in C++;
3725 // lookahead one more token to see if it's obvious that we have a
3726 // fixed underlying type.
3727 else if (TPR == TPResult::False &&
3728 GetLookAheadToken(2).getKind() == tok::semi) {
3729 // Consume the ':'.
3730 ConsumeToken();
3731 } else {
3732 // We have the start of a type-specifier-seq, so we have to perform
3733 // tentative parsing to determine whether we have an expression or a
3734 // type.
3735 TentativeParsingAction TPA(*this);
3736
3737 // Consume the ':'.
3738 ConsumeToken();
3739
3740 // If we see a type specifier followed by an open-brace, we have an
3741 // ambiguity between an underlying type and a C++11 braced
3742 // function-style cast. Resolve this by always treating it as an
3743 // underlying type.
3744 // FIXME: The standard is not entirely clear on how to disambiguate in
3745 // this case.
3746 if ((getLangOpts().CPlusPlus &&
3747 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3748 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3749 // We'll parse this as a bitfield later.
3750 PossibleBitfield = true;
3751 TPA.Revert();
3752 } else {
3753 // We have a type-specifier-seq.
3754 TPA.Commit();
3755 }
3756 }
3757 } else {
3758 // Consume the ':'.
3759 ConsumeToken();
3760 }
3761
3762 if (!PossibleBitfield) {
3763 SourceRange Range;
3764 BaseType = ParseTypeName(&Range);
3765
3766 if (getLangOpts().CPlusPlus11) {
3767 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3768 } else if (!getLangOpts().ObjC2) {
3769 if (getLangOpts().CPlusPlus)
3770 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3771 else
3772 Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3773 }
3774 }
3775 }
3776
3777 // There are four options here. If we have 'friend enum foo;' then this is a
3778 // friend declaration, and cannot have an accompanying definition. If we have
3779 // 'enum foo;', then this is a forward declaration. If we have
3780 // 'enum foo {...' then this is a definition. Otherwise we have something
3781 // like 'enum foo xyz', a reference.
3782 //
3783 // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3784 // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
3785 // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
3786 //
3787 Sema::TagUseKind TUK;
3788 if (!AllowDeclaration) {
3789 TUK = Sema::TUK_Reference;
3790 } else if (Tok.is(tok::l_brace)) {
3791 if (DS.isFriendSpecified()) {
3792 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3793 << SourceRange(DS.getFriendSpecLoc());
3794 ConsumeBrace();
3795 SkipUntil(tok::r_brace, StopAtSemi);
3796 TUK = Sema::TUK_Friend;
3797 } else {
3798 TUK = Sema::TUK_Definition;
3799 }
3800 } else if (!isTypeSpecifier(DSC) &&
3801 (Tok.is(tok::semi) ||
3802 (Tok.isAtStartOfLine() &&
3803 !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3804 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3805 if (Tok.isNot(tok::semi)) {
3806 // A semicolon was missing after this declaration. Diagnose and recover.
3807 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3808 PP.EnterToken(Tok);
3809 Tok.setKind(tok::semi);
3810 }
3811 } else {
3812 TUK = Sema::TUK_Reference;
3813 }
3814
3815 // If this is an elaborated type specifier, and we delayed
3816 // diagnostics before, just merge them into the current pool.
3817 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3818 diagsFromTag.redelay();
3819 }
3820
3821 MultiTemplateParamsArg TParams;
3822 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3823 TUK != Sema::TUK_Reference) {
3824 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3825 // Skip the rest of this declarator, up until the comma or semicolon.
3826 Diag(Tok, diag::err_enum_template);
3827 SkipUntil(tok::comma, StopAtSemi);
3828 return;
3829 }
3830
3831 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3832 // Enumerations can't be explicitly instantiated.
3833 DS.SetTypeSpecError();
3834 Diag(StartLoc, diag::err_explicit_instantiation_enum);
3835 return;
3836 }
3837
3838 assert(TemplateInfo.TemplateParams && "no template parameters");
3839 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3840 TemplateInfo.TemplateParams->size());
3841 }
3842
3843 if (TUK == Sema::TUK_Reference)
3844 ProhibitAttributes(attrs);
3845
3846 if (!Name && TUK != Sema::TUK_Definition) {
3847 Diag(Tok, diag::err_enumerator_unnamed_no_def);
3848
3849 // Skip the rest of this declarator, up until the comma or semicolon.
3850 SkipUntil(tok::comma, StopAtSemi);
3851 return;
3852 }
3853
3854 bool Owned = false;
3855 bool IsDependent = false;
3856 const char *PrevSpec = nullptr;
3857 unsigned DiagID;
3858 Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3859 StartLoc, SS, Name, NameLoc, attrs.getList(),
3860 AS, DS.getModulePrivateSpecLoc(), TParams,
3861 Owned, IsDependent, ScopedEnumKWLoc,
3862 IsScopedUsingClassTag, BaseType,
3863 DSC == DSC_type_specifier);
3864
3865 if (IsDependent) {
3866 // This enum has a dependent nested-name-specifier. Handle it as a
3867 // dependent tag.
3868 if (!Name) {
3869 DS.SetTypeSpecError();
3870 Diag(Tok, diag::err_expected_type_name_after_typename);
3871 return;
3872 }
3873
3874 TypeResult Type = Actions.ActOnDependentTag(
3875 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3876 if (Type.isInvalid()) {
3877 DS.SetTypeSpecError();
3878 return;
3879 }
3880
3881 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3882 NameLoc.isValid() ? NameLoc : StartLoc,
3883 PrevSpec, DiagID, Type.get(),
3884 Actions.getASTContext().getPrintingPolicy()))
3885 Diag(StartLoc, DiagID) << PrevSpec;
3886
3887 return;
3888 }
3889
3890 if (!TagDecl) {
3891 // The action failed to produce an enumeration tag. If this is a
3892 // definition, consume the entire definition.
3893 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3894 ConsumeBrace();
3895 SkipUntil(tok::r_brace, StopAtSemi);
3896 }
3897
3898 DS.SetTypeSpecError();
3899 return;
3900 }
3901
3902 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3903 ParseEnumBody(StartLoc, TagDecl);
3904
3905 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3906 NameLoc.isValid() ? NameLoc : StartLoc,
3907 PrevSpec, DiagID, TagDecl, Owned,
3908 Actions.getASTContext().getPrintingPolicy()))
3909 Diag(StartLoc, DiagID) << PrevSpec;
3910 }
3911
3912 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
3913 /// enumerator-list:
3914 /// enumerator
3915 /// enumerator-list ',' enumerator
3916 /// enumerator:
3917 /// enumeration-constant attributes[opt]
3918 /// enumeration-constant attributes[opt] '=' constant-expression
3919 /// enumeration-constant:
3920 /// identifier
3921 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)3922 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3923 // Enter the scope of the enum body and start the definition.
3924 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3925 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3926
3927 BalancedDelimiterTracker T(*this, tok::l_brace);
3928 T.consumeOpen();
3929
3930 // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3931 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3932 Diag(Tok, diag::error_empty_enum);
3933
3934 SmallVector<Decl *, 32> EnumConstantDecls;
3935
3936 Decl *LastEnumConstDecl = nullptr;
3937
3938 // Parse the enumerator-list.
3939 while (Tok.isNot(tok::r_brace)) {
3940 // Parse enumerator. If failed, try skipping till the start of the next
3941 // enumerator definition.
3942 if (Tok.isNot(tok::identifier)) {
3943 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3944 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3945 TryConsumeToken(tok::comma))
3946 continue;
3947 break;
3948 }
3949 IdentifierInfo *Ident = Tok.getIdentifierInfo();
3950 SourceLocation IdentLoc = ConsumeToken();
3951
3952 // If attributes exist after the enumerator, parse them.
3953 ParsedAttributesWithRange attrs(AttrFactory);
3954 MaybeParseGNUAttributes(attrs);
3955 ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
3956 if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
3957 if (!getLangOpts().CPlusPlus1z)
3958 Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
3959 << 1 /*enumerator*/;
3960 ParseCXX11Attributes(attrs);
3961 }
3962
3963 SourceLocation EqualLoc;
3964 ExprResult AssignedVal;
3965 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3966
3967 if (TryConsumeToken(tok::equal, EqualLoc)) {
3968 AssignedVal = ParseConstantExpression();
3969 if (AssignedVal.isInvalid())
3970 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3971 }
3972
3973 // Install the enumerator constant into EnumDecl.
3974 Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3975 LastEnumConstDecl,
3976 IdentLoc, Ident,
3977 attrs.getList(), EqualLoc,
3978 AssignedVal.get());
3979 PD.complete(EnumConstDecl);
3980
3981 EnumConstantDecls.push_back(EnumConstDecl);
3982 LastEnumConstDecl = EnumConstDecl;
3983
3984 if (Tok.is(tok::identifier)) {
3985 // We're missing a comma between enumerators.
3986 SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3987 Diag(Loc, diag::err_enumerator_list_missing_comma)
3988 << FixItHint::CreateInsertion(Loc, ", ");
3989 continue;
3990 }
3991
3992 // Emumerator definition must be finished, only comma or r_brace are
3993 // allowed here.
3994 SourceLocation CommaLoc;
3995 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3996 if (EqualLoc.isValid())
3997 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3998 << tok::comma;
3999 else
4000 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4001 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4002 if (TryConsumeToken(tok::comma, CommaLoc))
4003 continue;
4004 } else {
4005 break;
4006 }
4007 }
4008
4009 // If comma is followed by r_brace, emit appropriate warning.
4010 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4011 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4012 Diag(CommaLoc, getLangOpts().CPlusPlus ?
4013 diag::ext_enumerator_list_comma_cxx :
4014 diag::ext_enumerator_list_comma_c)
4015 << FixItHint::CreateRemoval(CommaLoc);
4016 else if (getLangOpts().CPlusPlus11)
4017 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4018 << FixItHint::CreateRemoval(CommaLoc);
4019 break;
4020 }
4021 }
4022
4023 // Eat the }.
4024 T.consumeClose();
4025
4026 // If attributes exist after the identifier list, parse them.
4027 ParsedAttributes attrs(AttrFactory);
4028 MaybeParseGNUAttributes(attrs);
4029
4030 Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4031 EnumDecl, EnumConstantDecls,
4032 getCurScope(),
4033 attrs.getList());
4034
4035 EnumScope.Exit();
4036 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4037 T.getCloseLocation());
4038
4039 // The next token must be valid after an enum definition. If not, a ';'
4040 // was probably forgotten.
4041 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4042 if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4043 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4044 // Push this token back into the preprocessor and change our current token
4045 // to ';' so that the rest of the code recovers as though there were an
4046 // ';' after the definition.
4047 PP.EnterToken(Tok);
4048 Tok.setKind(tok::semi);
4049 }
4050 }
4051
4052 /// isTypeSpecifierQualifier - Return true if the current token could be the
4053 /// start of a type-qualifier-list.
isTypeQualifier() const4054 bool Parser::isTypeQualifier() const {
4055 switch (Tok.getKind()) {
4056 default: return false;
4057 // type-qualifier
4058 case tok::kw_const:
4059 case tok::kw_volatile:
4060 case tok::kw_restrict:
4061 case tok::kw___private:
4062 case tok::kw___local:
4063 case tok::kw___global:
4064 case tok::kw___constant:
4065 case tok::kw___generic:
4066 case tok::kw___read_only:
4067 case tok::kw___read_write:
4068 case tok::kw___write_only:
4069 return true;
4070 }
4071 }
4072
4073 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4074 /// is definitely a type-specifier. Return false if it isn't part of a type
4075 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const4076 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4077 switch (Tok.getKind()) {
4078 default: return false;
4079 // type-specifiers
4080 case tok::kw_short:
4081 case tok::kw_long:
4082 case tok::kw___int64:
4083 case tok::kw___int128:
4084 case tok::kw_signed:
4085 case tok::kw_unsigned:
4086 case tok::kw__Complex:
4087 case tok::kw__Imaginary:
4088 case tok::kw_void:
4089 case tok::kw_char:
4090 case tok::kw_wchar_t:
4091 case tok::kw_char16_t:
4092 case tok::kw_char32_t:
4093 case tok::kw_int:
4094 case tok::kw_half:
4095 case tok::kw_float:
4096 case tok::kw_double:
4097 case tok::kw_bool:
4098 case tok::kw__Bool:
4099 case tok::kw__Decimal32:
4100 case tok::kw__Decimal64:
4101 case tok::kw__Decimal128:
4102 case tok::kw___vector:
4103
4104 // struct-or-union-specifier (C99) or class-specifier (C++)
4105 case tok::kw_class:
4106 case tok::kw_struct:
4107 case tok::kw___interface:
4108 case tok::kw_union:
4109 // enum-specifier
4110 case tok::kw_enum:
4111
4112 // typedef-name
4113 case tok::annot_typename:
4114 return true;
4115 }
4116 }
4117
4118 /// isTypeSpecifierQualifier - Return true if the current token could be the
4119 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()4120 bool Parser::isTypeSpecifierQualifier() {
4121 switch (Tok.getKind()) {
4122 default: return false;
4123
4124 case tok::identifier: // foo::bar
4125 if (TryAltiVecVectorToken())
4126 return true;
4127 // Fall through.
4128 case tok::kw_typename: // typename T::type
4129 // Annotate typenames and C++ scope specifiers. If we get one, just
4130 // recurse to handle whatever we get.
4131 if (TryAnnotateTypeOrScopeToken())
4132 return true;
4133 if (Tok.is(tok::identifier))
4134 return false;
4135 return isTypeSpecifierQualifier();
4136
4137 case tok::coloncolon: // ::foo::bar
4138 if (NextToken().is(tok::kw_new) || // ::new
4139 NextToken().is(tok::kw_delete)) // ::delete
4140 return false;
4141
4142 if (TryAnnotateTypeOrScopeToken())
4143 return true;
4144 return isTypeSpecifierQualifier();
4145
4146 // GNU attributes support.
4147 case tok::kw___attribute:
4148 // GNU typeof support.
4149 case tok::kw_typeof:
4150
4151 // type-specifiers
4152 case tok::kw_short:
4153 case tok::kw_long:
4154 case tok::kw___int64:
4155 case tok::kw___int128:
4156 case tok::kw_signed:
4157 case tok::kw_unsigned:
4158 case tok::kw__Complex:
4159 case tok::kw__Imaginary:
4160 case tok::kw_void:
4161 case tok::kw_char:
4162 case tok::kw_wchar_t:
4163 case tok::kw_char16_t:
4164 case tok::kw_char32_t:
4165 case tok::kw_int:
4166 case tok::kw_half:
4167 case tok::kw_float:
4168 case tok::kw_double:
4169 case tok::kw_bool:
4170 case tok::kw__Bool:
4171 case tok::kw__Decimal32:
4172 case tok::kw__Decimal64:
4173 case tok::kw__Decimal128:
4174 case tok::kw___vector:
4175
4176 // struct-or-union-specifier (C99) or class-specifier (C++)
4177 case tok::kw_class:
4178 case tok::kw_struct:
4179 case tok::kw___interface:
4180 case tok::kw_union:
4181 // enum-specifier
4182 case tok::kw_enum:
4183
4184 // type-qualifier
4185 case tok::kw_const:
4186 case tok::kw_volatile:
4187 case tok::kw_restrict:
4188
4189 // Debugger support.
4190 case tok::kw___unknown_anytype:
4191
4192 // typedef-name
4193 case tok::annot_typename:
4194 return true;
4195
4196 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4197 case tok::less:
4198 return getLangOpts().ObjC1;
4199
4200 case tok::kw___cdecl:
4201 case tok::kw___stdcall:
4202 case tok::kw___fastcall:
4203 case tok::kw___thiscall:
4204 case tok::kw___vectorcall:
4205 case tok::kw___w64:
4206 case tok::kw___ptr64:
4207 case tok::kw___ptr32:
4208 case tok::kw___pascal:
4209 case tok::kw___unaligned:
4210
4211 case tok::kw___private:
4212 case tok::kw___local:
4213 case tok::kw___global:
4214 case tok::kw___constant:
4215 case tok::kw___generic:
4216 case tok::kw___read_only:
4217 case tok::kw___read_write:
4218 case tok::kw___write_only:
4219
4220 return true;
4221
4222 // C11 _Atomic
4223 case tok::kw__Atomic:
4224 return true;
4225 }
4226 }
4227
4228 /// isDeclarationSpecifier() - Return true if the current token is part of a
4229 /// declaration specifier.
4230 ///
4231 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4232 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4233 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4234 switch (Tok.getKind()) {
4235 default: return false;
4236
4237 case tok::identifier: // foo::bar
4238 // Unfortunate hack to support "Class.factoryMethod" notation.
4239 if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4240 return false;
4241 if (TryAltiVecVectorToken())
4242 return true;
4243 // Fall through.
4244 case tok::kw_decltype: // decltype(T())::type
4245 case tok::kw_typename: // typename T::type
4246 // Annotate typenames and C++ scope specifiers. If we get one, just
4247 // recurse to handle whatever we get.
4248 if (TryAnnotateTypeOrScopeToken())
4249 return true;
4250 if (Tok.is(tok::identifier))
4251 return false;
4252
4253 // If we're in Objective-C and we have an Objective-C class type followed
4254 // by an identifier and then either ':' or ']', in a place where an
4255 // expression is permitted, then this is probably a class message send
4256 // missing the initial '['. In this case, we won't consider this to be
4257 // the start of a declaration.
4258 if (DisambiguatingWithExpression &&
4259 isStartOfObjCClassMessageMissingOpenBracket())
4260 return false;
4261
4262 return isDeclarationSpecifier();
4263
4264 case tok::coloncolon: // ::foo::bar
4265 if (NextToken().is(tok::kw_new) || // ::new
4266 NextToken().is(tok::kw_delete)) // ::delete
4267 return false;
4268
4269 // Annotate typenames and C++ scope specifiers. If we get one, just
4270 // recurse to handle whatever we get.
4271 if (TryAnnotateTypeOrScopeToken())
4272 return true;
4273 return isDeclarationSpecifier();
4274
4275 // storage-class-specifier
4276 case tok::kw_typedef:
4277 case tok::kw_extern:
4278 case tok::kw___private_extern__:
4279 case tok::kw_static:
4280 case tok::kw_auto:
4281 case tok::kw_register:
4282 case tok::kw___thread:
4283 case tok::kw_thread_local:
4284 case tok::kw__Thread_local:
4285
4286 // Modules
4287 case tok::kw___module_private__:
4288
4289 // Debugger support
4290 case tok::kw___unknown_anytype:
4291
4292 // type-specifiers
4293 case tok::kw_short:
4294 case tok::kw_long:
4295 case tok::kw___int64:
4296 case tok::kw___int128:
4297 case tok::kw_signed:
4298 case tok::kw_unsigned:
4299 case tok::kw__Complex:
4300 case tok::kw__Imaginary:
4301 case tok::kw_void:
4302 case tok::kw_char:
4303 case tok::kw_wchar_t:
4304 case tok::kw_char16_t:
4305 case tok::kw_char32_t:
4306
4307 case tok::kw_int:
4308 case tok::kw_half:
4309 case tok::kw_float:
4310 case tok::kw_double:
4311 case tok::kw_bool:
4312 case tok::kw__Bool:
4313 case tok::kw__Decimal32:
4314 case tok::kw__Decimal64:
4315 case tok::kw__Decimal128:
4316 case tok::kw___vector:
4317
4318 // struct-or-union-specifier (C99) or class-specifier (C++)
4319 case tok::kw_class:
4320 case tok::kw_struct:
4321 case tok::kw_union:
4322 case tok::kw___interface:
4323 // enum-specifier
4324 case tok::kw_enum:
4325
4326 // type-qualifier
4327 case tok::kw_const:
4328 case tok::kw_volatile:
4329 case tok::kw_restrict:
4330
4331 // function-specifier
4332 case tok::kw_inline:
4333 case tok::kw_virtual:
4334 case tok::kw_explicit:
4335 case tok::kw__Noreturn:
4336
4337 // alignment-specifier
4338 case tok::kw__Alignas:
4339
4340 // friend keyword.
4341 case tok::kw_friend:
4342
4343 // static_assert-declaration
4344 case tok::kw__Static_assert:
4345
4346 // GNU typeof support.
4347 case tok::kw_typeof:
4348
4349 // GNU attributes.
4350 case tok::kw___attribute:
4351
4352 // C++11 decltype and constexpr.
4353 case tok::annot_decltype:
4354 case tok::kw_constexpr:
4355
4356 // C11 _Atomic
4357 case tok::kw__Atomic:
4358 return true;
4359
4360 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4361 case tok::less:
4362 return getLangOpts().ObjC1;
4363
4364 // typedef-name
4365 case tok::annot_typename:
4366 return !DisambiguatingWithExpression ||
4367 !isStartOfObjCClassMessageMissingOpenBracket();
4368
4369 case tok::kw___declspec:
4370 case tok::kw___cdecl:
4371 case tok::kw___stdcall:
4372 case tok::kw___fastcall:
4373 case tok::kw___thiscall:
4374 case tok::kw___vectorcall:
4375 case tok::kw___w64:
4376 case tok::kw___sptr:
4377 case tok::kw___uptr:
4378 case tok::kw___ptr64:
4379 case tok::kw___ptr32:
4380 case tok::kw___forceinline:
4381 case tok::kw___pascal:
4382 case tok::kw___unaligned:
4383
4384 case tok::kw___private:
4385 case tok::kw___local:
4386 case tok::kw___global:
4387 case tok::kw___constant:
4388 case tok::kw___generic:
4389 case tok::kw___read_only:
4390 case tok::kw___read_write:
4391 case tok::kw___write_only:
4392
4393 return true;
4394 }
4395 }
4396
isConstructorDeclarator(bool IsUnqualified)4397 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4398 TentativeParsingAction TPA(*this);
4399
4400 // Parse the C++ scope specifier.
4401 CXXScopeSpec SS;
4402 if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4403 /*EnteringContext=*/true)) {
4404 TPA.Revert();
4405 return false;
4406 }
4407
4408 // Parse the constructor name.
4409 if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4410 // We already know that we have a constructor name; just consume
4411 // the token.
4412 ConsumeToken();
4413 } else {
4414 TPA.Revert();
4415 return false;
4416 }
4417
4418 // Current class name must be followed by a left parenthesis.
4419 if (Tok.isNot(tok::l_paren)) {
4420 TPA.Revert();
4421 return false;
4422 }
4423 ConsumeParen();
4424
4425 // A right parenthesis, or ellipsis followed by a right parenthesis signals
4426 // that we have a constructor.
4427 if (Tok.is(tok::r_paren) ||
4428 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4429 TPA.Revert();
4430 return true;
4431 }
4432
4433 // A C++11 attribute here signals that we have a constructor, and is an
4434 // attribute on the first constructor parameter.
4435 if (getLangOpts().CPlusPlus11 &&
4436 isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4437 /*OuterMightBeMessageSend*/ true)) {
4438 TPA.Revert();
4439 return true;
4440 }
4441
4442 // If we need to, enter the specified scope.
4443 DeclaratorScopeObj DeclScopeObj(*this, SS);
4444 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4445 DeclScopeObj.EnterDeclaratorScope();
4446
4447 // Optionally skip Microsoft attributes.
4448 ParsedAttributes Attrs(AttrFactory);
4449 MaybeParseMicrosoftAttributes(Attrs);
4450
4451 // Check whether the next token(s) are part of a declaration
4452 // specifier, in which case we have the start of a parameter and,
4453 // therefore, we know that this is a constructor.
4454 bool IsConstructor = false;
4455 if (isDeclarationSpecifier())
4456 IsConstructor = true;
4457 else if (Tok.is(tok::identifier) ||
4458 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4459 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4460 // This might be a parenthesized member name, but is more likely to
4461 // be a constructor declaration with an invalid argument type. Keep
4462 // looking.
4463 if (Tok.is(tok::annot_cxxscope))
4464 ConsumeToken();
4465 ConsumeToken();
4466
4467 // If this is not a constructor, we must be parsing a declarator,
4468 // which must have one of the following syntactic forms (see the
4469 // grammar extract at the start of ParseDirectDeclarator):
4470 switch (Tok.getKind()) {
4471 case tok::l_paren:
4472 // C(X ( int));
4473 case tok::l_square:
4474 // C(X [ 5]);
4475 // C(X [ [attribute]]);
4476 case tok::coloncolon:
4477 // C(X :: Y);
4478 // C(X :: *p);
4479 // Assume this isn't a constructor, rather than assuming it's a
4480 // constructor with an unnamed parameter of an ill-formed type.
4481 break;
4482
4483 case tok::r_paren:
4484 // C(X )
4485 if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4486 // Assume these were meant to be constructors:
4487 // C(X) : (the name of a bit-field cannot be parenthesized).
4488 // C(X) try (this is otherwise ill-formed).
4489 IsConstructor = true;
4490 }
4491 if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4492 // If we have a constructor name within the class definition,
4493 // assume these were meant to be constructors:
4494 // C(X) {
4495 // C(X) ;
4496 // ... because otherwise we would be declaring a non-static data
4497 // member that is ill-formed because it's of the same type as its
4498 // surrounding class.
4499 //
4500 // FIXME: We can actually do this whether or not the name is qualified,
4501 // because if it is qualified in this context it must be being used as
4502 // a constructor name. However, we do not implement that rule correctly
4503 // currently, so we're somewhat conservative here.
4504 IsConstructor = IsUnqualified;
4505 }
4506 break;
4507
4508 default:
4509 IsConstructor = true;
4510 break;
4511 }
4512 }
4513
4514 TPA.Revert();
4515 return IsConstructor;
4516 }
4517
4518 /// ParseTypeQualifierListOpt
4519 /// type-qualifier-list: [C99 6.7.5]
4520 /// type-qualifier
4521 /// [vendor] attributes
4522 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4523 /// type-qualifier-list type-qualifier
4524 /// [vendor] type-qualifier-list attributes
4525 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4526 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
4527 /// [ only if AttReqs & AR_CXX11AttributesParsed ]
4528 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4529 /// AttrRequirements bitmask values.
ParseTypeQualifierListOpt(DeclSpec & DS,unsigned AttrReqs,bool AtomicAllowed,bool IdentifierRequired)4530 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4531 bool AtomicAllowed,
4532 bool IdentifierRequired) {
4533 if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4534 isCXX11AttributeSpecifier()) {
4535 ParsedAttributesWithRange attrs(AttrFactory);
4536 ParseCXX11Attributes(attrs);
4537 DS.takeAttributesFrom(attrs);
4538 }
4539
4540 SourceLocation EndLoc;
4541
4542 while (1) {
4543 bool isInvalid = false;
4544 const char *PrevSpec = nullptr;
4545 unsigned DiagID = 0;
4546 SourceLocation Loc = Tok.getLocation();
4547
4548 switch (Tok.getKind()) {
4549 case tok::code_completion:
4550 Actions.CodeCompleteTypeQualifiers(DS);
4551 return cutOffParsing();
4552
4553 case tok::kw_const:
4554 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
4555 getLangOpts());
4556 break;
4557 case tok::kw_volatile:
4558 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4559 getLangOpts());
4560 break;
4561 case tok::kw_restrict:
4562 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4563 getLangOpts());
4564 break;
4565 case tok::kw__Atomic:
4566 if (!AtomicAllowed)
4567 goto DoneWithTypeQuals;
4568 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4569 getLangOpts());
4570 break;
4571
4572 // OpenCL qualifiers:
4573 case tok::kw___private:
4574 case tok::kw___global:
4575 case tok::kw___local:
4576 case tok::kw___constant:
4577 case tok::kw___generic:
4578 case tok::kw___read_only:
4579 case tok::kw___write_only:
4580 case tok::kw___read_write:
4581 ParseOpenCLQualifiers(DS.getAttributes());
4582 break;
4583
4584 case tok::kw___uptr:
4585 // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4586 // with the MS modifier keyword.
4587 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4588 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4589 if (TryKeywordIdentFallback(false))
4590 continue;
4591 }
4592 case tok::kw___sptr:
4593 case tok::kw___w64:
4594 case tok::kw___ptr64:
4595 case tok::kw___ptr32:
4596 case tok::kw___cdecl:
4597 case tok::kw___stdcall:
4598 case tok::kw___fastcall:
4599 case tok::kw___thiscall:
4600 case tok::kw___vectorcall:
4601 case tok::kw___unaligned:
4602 if (AttrReqs & AR_DeclspecAttributesParsed) {
4603 ParseMicrosoftTypeAttributes(DS.getAttributes());
4604 continue;
4605 }
4606 goto DoneWithTypeQuals;
4607 case tok::kw___pascal:
4608 if (AttrReqs & AR_VendorAttributesParsed) {
4609 ParseBorlandTypeAttributes(DS.getAttributes());
4610 continue;
4611 }
4612 goto DoneWithTypeQuals;
4613 case tok::kw___attribute:
4614 if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4615 // When GNU attributes are expressly forbidden, diagnose their usage.
4616 Diag(Tok, diag::err_attributes_not_allowed);
4617
4618 // Parse the attributes even if they are rejected to ensure that error
4619 // recovery is graceful.
4620 if (AttrReqs & AR_GNUAttributesParsed ||
4621 AttrReqs & AR_GNUAttributesParsedAndRejected) {
4622 ParseGNUAttributes(DS.getAttributes());
4623 continue; // do *not* consume the next token!
4624 }
4625 // otherwise, FALL THROUGH!
4626 default:
4627 DoneWithTypeQuals:
4628 // If this is not a type-qualifier token, we're done reading type
4629 // qualifiers. First verify that DeclSpec's are consistent.
4630 DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4631 if (EndLoc.isValid())
4632 DS.SetRangeEnd(EndLoc);
4633 return;
4634 }
4635
4636 // If the specifier combination wasn't legal, issue a diagnostic.
4637 if (isInvalid) {
4638 assert(PrevSpec && "Method did not return previous specifier!");
4639 Diag(Tok, DiagID) << PrevSpec;
4640 }
4641 EndLoc = ConsumeToken();
4642 }
4643 }
4644
4645
4646 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4647 ///
ParseDeclarator(Declarator & D)4648 void Parser::ParseDeclarator(Declarator &D) {
4649 /// This implements the 'declarator' production in the C grammar, then checks
4650 /// for well-formedness and issues diagnostics.
4651 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4652 }
4653
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang,unsigned TheContext)4654 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4655 unsigned TheContext) {
4656 if (Kind == tok::star || Kind == tok::caret)
4657 return true;
4658
4659 if (!Lang.CPlusPlus)
4660 return false;
4661
4662 if (Kind == tok::amp)
4663 return true;
4664
4665 // We parse rvalue refs in C++03, because otherwise the errors are scary.
4666 // But we must not parse them in conversion-type-ids and new-type-ids, since
4667 // those can be legitimately followed by a && operator.
4668 // (The same thing can in theory happen after a trailing-return-type, but
4669 // since those are a C++11 feature, there is no rejects-valid issue there.)
4670 if (Kind == tok::ampamp)
4671 return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4672 TheContext != Declarator::CXXNewContext);
4673
4674 return false;
4675 }
4676
4677 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4678 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4679 /// isn't parsed at all, making this function effectively parse the C++
4680 /// ptr-operator production.
4681 ///
4682 /// If the grammar of this construct is extended, matching changes must also be
4683 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4684 /// isConstructorDeclarator.
4685 ///
4686 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4687 /// [C] pointer[opt] direct-declarator
4688 /// [C++] direct-declarator
4689 /// [C++] ptr-operator declarator
4690 ///
4691 /// pointer: [C99 6.7.5]
4692 /// '*' type-qualifier-list[opt]
4693 /// '*' type-qualifier-list[opt] pointer
4694 ///
4695 /// ptr-operator:
4696 /// '*' cv-qualifier-seq[opt]
4697 /// '&'
4698 /// [C++0x] '&&'
4699 /// [GNU] '&' restrict[opt] attributes[opt]
4700 /// [GNU?] '&&' restrict[opt] attributes[opt]
4701 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4702 void Parser::ParseDeclaratorInternal(Declarator &D,
4703 DirectDeclParseFunction DirectDeclParser) {
4704 if (Diags.hasAllExtensionsSilenced())
4705 D.setExtension();
4706
4707 // C++ member pointers start with a '::' or a nested-name.
4708 // Member pointers get special handling, since there's no place for the
4709 // scope spec in the generic path below.
4710 if (getLangOpts().CPlusPlus &&
4711 (Tok.is(tok::coloncolon) ||
4712 (Tok.is(tok::identifier) &&
4713 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
4714 Tok.is(tok::annot_cxxscope))) {
4715 bool EnteringContext = D.getContext() == Declarator::FileContext ||
4716 D.getContext() == Declarator::MemberContext;
4717 CXXScopeSpec SS;
4718 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4719
4720 if (SS.isNotEmpty()) {
4721 if (Tok.isNot(tok::star)) {
4722 // The scope spec really belongs to the direct-declarator.
4723 if (D.mayHaveIdentifier())
4724 D.getCXXScopeSpec() = SS;
4725 else
4726 AnnotateScopeToken(SS, true);
4727
4728 if (DirectDeclParser)
4729 (this->*DirectDeclParser)(D);
4730 return;
4731 }
4732
4733 SourceLocation Loc = ConsumeToken();
4734 D.SetRangeEnd(Loc);
4735 DeclSpec DS(AttrFactory);
4736 ParseTypeQualifierListOpt(DS);
4737 D.ExtendWithDeclSpec(DS);
4738
4739 // Recurse to parse whatever is left.
4740 ParseDeclaratorInternal(D, DirectDeclParser);
4741
4742 // Sema will have to catch (syntactically invalid) pointers into global
4743 // scope. It has to catch pointers into namespace scope anyway.
4744 D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4745 DS.getLocEnd()),
4746 DS.getAttributes(),
4747 /* Don't replace range end. */SourceLocation());
4748 return;
4749 }
4750 }
4751
4752 tok::TokenKind Kind = Tok.getKind();
4753 // Not a pointer, C++ reference, or block.
4754 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
4755 if (DirectDeclParser)
4756 (this->*DirectDeclParser)(D);
4757 return;
4758 }
4759
4760 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4761 // '&&' -> rvalue reference
4762 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
4763 D.SetRangeEnd(Loc);
4764
4765 if (Kind == tok::star || Kind == tok::caret) {
4766 // Is a pointer.
4767 DeclSpec DS(AttrFactory);
4768
4769 // GNU attributes are not allowed here in a new-type-id, but Declspec and
4770 // C++11 attributes are allowed.
4771 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
4772 ((D.getContext() != Declarator::CXXNewContext)
4773 ? AR_GNUAttributesParsed
4774 : AR_GNUAttributesParsedAndRejected);
4775 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
4776 D.ExtendWithDeclSpec(DS);
4777
4778 // Recursively parse the declarator.
4779 ParseDeclaratorInternal(D, DirectDeclParser);
4780 if (Kind == tok::star)
4781 // Remember that we parsed a pointer type, and remember the type-quals.
4782 D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4783 DS.getConstSpecLoc(),
4784 DS.getVolatileSpecLoc(),
4785 DS.getRestrictSpecLoc(),
4786 DS.getAtomicSpecLoc()),
4787 DS.getAttributes(),
4788 SourceLocation());
4789 else
4790 // Remember that we parsed a Block type, and remember the type-quals.
4791 D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4792 Loc),
4793 DS.getAttributes(),
4794 SourceLocation());
4795 } else {
4796 // Is a reference
4797 DeclSpec DS(AttrFactory);
4798
4799 // Complain about rvalue references in C++03, but then go on and build
4800 // the declarator.
4801 if (Kind == tok::ampamp)
4802 Diag(Loc, getLangOpts().CPlusPlus11 ?
4803 diag::warn_cxx98_compat_rvalue_reference :
4804 diag::ext_rvalue_reference);
4805
4806 // GNU-style and C++11 attributes are allowed here, as is restrict.
4807 ParseTypeQualifierListOpt(DS);
4808 D.ExtendWithDeclSpec(DS);
4809
4810 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4811 // cv-qualifiers are introduced through the use of a typedef or of a
4812 // template type argument, in which case the cv-qualifiers are ignored.
4813 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4814 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4815 Diag(DS.getConstSpecLoc(),
4816 diag::err_invalid_reference_qualifier_application) << "const";
4817 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4818 Diag(DS.getVolatileSpecLoc(),
4819 diag::err_invalid_reference_qualifier_application) << "volatile";
4820 // 'restrict' is permitted as an extension.
4821 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4822 Diag(DS.getAtomicSpecLoc(),
4823 diag::err_invalid_reference_qualifier_application) << "_Atomic";
4824 }
4825
4826 // Recursively parse the declarator.
4827 ParseDeclaratorInternal(D, DirectDeclParser);
4828
4829 if (D.getNumTypeObjects() > 0) {
4830 // C++ [dcl.ref]p4: There shall be no references to references.
4831 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4832 if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4833 if (const IdentifierInfo *II = D.getIdentifier())
4834 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4835 << II;
4836 else
4837 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4838 << "type name";
4839
4840 // Once we've complained about the reference-to-reference, we
4841 // can go ahead and build the (technically ill-formed)
4842 // declarator: reference collapsing will take care of it.
4843 }
4844 }
4845
4846 // Remember that we parsed a reference type.
4847 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4848 Kind == tok::amp),
4849 DS.getAttributes(),
4850 SourceLocation());
4851 }
4852 }
4853
4854 // When correcting from misplaced brackets before the identifier, the location
4855 // is saved inside the declarator so that other diagnostic messages can use
4856 // them. This extracts and returns that location, or returns the provided
4857 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)4858 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4859 SourceLocation Loc) {
4860 if (D.getName().StartLocation.isInvalid() &&
4861 D.getName().EndLocation.isValid())
4862 return D.getName().EndLocation;
4863
4864 return Loc;
4865 }
4866
4867 /// ParseDirectDeclarator
4868 /// direct-declarator: [C99 6.7.5]
4869 /// [C99] identifier
4870 /// '(' declarator ')'
4871 /// [GNU] '(' attributes declarator ')'
4872 /// [C90] direct-declarator '[' constant-expression[opt] ']'
4873 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4874 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4875 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4876 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
4877 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
4878 /// attribute-specifier-seq[opt]
4879 /// direct-declarator '(' parameter-type-list ')'
4880 /// direct-declarator '(' identifier-list[opt] ')'
4881 /// [GNU] direct-declarator '(' parameter-forward-declarations
4882 /// parameter-type-list[opt] ')'
4883 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
4884 /// cv-qualifier-seq[opt] exception-specification[opt]
4885 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4886 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4887 /// ref-qualifier[opt] exception-specification[opt]
4888 /// [C++] declarator-id
4889 /// [C++11] declarator-id attribute-specifier-seq[opt]
4890 ///
4891 /// declarator-id: [C++ 8]
4892 /// '...'[opt] id-expression
4893 /// '::'[opt] nested-name-specifier[opt] type-name
4894 ///
4895 /// id-expression: [C++ 5.1]
4896 /// unqualified-id
4897 /// qualified-id
4898 ///
4899 /// unqualified-id: [C++ 5.1]
4900 /// identifier
4901 /// operator-function-id
4902 /// conversion-function-id
4903 /// '~' class-name
4904 /// template-id
4905 ///
4906 /// Note, any additional constructs added here may need corresponding changes
4907 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)4908 void Parser::ParseDirectDeclarator(Declarator &D) {
4909 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4910
4911 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4912 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
4913 // this context it is a bitfield. Also in range-based for statement colon
4914 // may delimit for-range-declaration.
4915 ColonProtectionRAIIObject X(*this,
4916 D.getContext() == Declarator::MemberContext ||
4917 (D.getContext() == Declarator::ForContext &&
4918 getLangOpts().CPlusPlus11));
4919
4920 // ParseDeclaratorInternal might already have parsed the scope.
4921 if (D.getCXXScopeSpec().isEmpty()) {
4922 bool EnteringContext = D.getContext() == Declarator::FileContext ||
4923 D.getContext() == Declarator::MemberContext;
4924 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4925 EnteringContext);
4926 }
4927
4928 if (D.getCXXScopeSpec().isValid()) {
4929 if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
4930 D.getCXXScopeSpec()))
4931 // Change the declaration context for name lookup, until this function
4932 // is exited (and the declarator has been parsed).
4933 DeclScopeObj.EnterDeclaratorScope();
4934 }
4935
4936 // C++0x [dcl.fct]p14:
4937 // There is a syntactic ambiguity when an ellipsis occurs at the end of a
4938 // parameter-declaration-clause without a preceding comma. In this case,
4939 // the ellipsis is parsed as part of the abstract-declarator if the type
4940 // of the parameter either names a template parameter pack that has not
4941 // been expanded or contains auto; otherwise, it is parsed as part of the
4942 // parameter-declaration-clause.
4943 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4944 !((D.getContext() == Declarator::PrototypeContext ||
4945 D.getContext() == Declarator::LambdaExprParameterContext ||
4946 D.getContext() == Declarator::BlockLiteralContext) &&
4947 NextToken().is(tok::r_paren) &&
4948 !D.hasGroupingParens() &&
4949 !Actions.containsUnexpandedParameterPacks(D) &&
4950 D.getDeclSpec().getTypeSpecType() != TST_auto)) {
4951 SourceLocation EllipsisLoc = ConsumeToken();
4952 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
4953 // The ellipsis was put in the wrong place. Recover, and explain to
4954 // the user what they should have done.
4955 ParseDeclarator(D);
4956 if (EllipsisLoc.isValid())
4957 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4958 return;
4959 } else
4960 D.setEllipsisLoc(EllipsisLoc);
4961
4962 // The ellipsis can't be followed by a parenthesized declarator. We
4963 // check for that in ParseParenDeclarator, after we have disambiguated
4964 // the l_paren token.
4965 }
4966
4967 if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4968 Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4969 // We found something that indicates the start of an unqualified-id.
4970 // Parse that unqualified-id.
4971 bool AllowConstructorName;
4972 if (D.getDeclSpec().hasTypeSpecifier())
4973 AllowConstructorName = false;
4974 else if (D.getCXXScopeSpec().isSet())
4975 AllowConstructorName =
4976 (D.getContext() == Declarator::FileContext ||
4977 D.getContext() == Declarator::MemberContext);
4978 else
4979 AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4980
4981 SourceLocation TemplateKWLoc;
4982 bool HadScope = D.getCXXScopeSpec().isValid();
4983 if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4984 /*EnteringContext=*/true,
4985 /*AllowDestructorName=*/true,
4986 AllowConstructorName,
4987 ParsedType(),
4988 TemplateKWLoc,
4989 D.getName()) ||
4990 // Once we're past the identifier, if the scope was bad, mark the
4991 // whole declarator bad.
4992 D.getCXXScopeSpec().isInvalid()) {
4993 D.SetIdentifier(nullptr, Tok.getLocation());
4994 D.setInvalidType(true);
4995 } else {
4996 // ParseUnqualifiedId might have parsed a scope specifier during error
4997 // recovery. If it did so, enter that scope.
4998 if (!HadScope && D.getCXXScopeSpec().isValid() &&
4999 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5000 D.getCXXScopeSpec()))
5001 DeclScopeObj.EnterDeclaratorScope();
5002
5003 // Parsed the unqualified-id; update range information and move along.
5004 if (D.getSourceRange().getBegin().isInvalid())
5005 D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5006 D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5007 }
5008 goto PastIdentifier;
5009 }
5010 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5011 assert(!getLangOpts().CPlusPlus &&
5012 "There's a C++-specific check for tok::identifier above");
5013 assert(Tok.getIdentifierInfo() && "Not an identifier?");
5014 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5015 D.SetRangeEnd(Tok.getLocation());
5016 ConsumeToken();
5017 goto PastIdentifier;
5018 } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5019 // A virt-specifier isn't treated as an identifier if it appears after a
5020 // trailing-return-type.
5021 if (D.getContext() != Declarator::TrailingReturnContext ||
5022 !isCXX11VirtSpecifier(Tok)) {
5023 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5024 << FixItHint::CreateRemoval(Tok.getLocation());
5025 D.SetIdentifier(nullptr, Tok.getLocation());
5026 ConsumeToken();
5027 goto PastIdentifier;
5028 }
5029 }
5030
5031 if (Tok.is(tok::l_paren)) {
5032 // direct-declarator: '(' declarator ')'
5033 // direct-declarator: '(' attributes declarator ')'
5034 // Example: 'char (*X)' or 'int (*XX)(void)'
5035 ParseParenDeclarator(D);
5036
5037 // If the declarator was parenthesized, we entered the declarator
5038 // scope when parsing the parenthesized declarator, then exited
5039 // the scope already. Re-enter the scope, if we need to.
5040 if (D.getCXXScopeSpec().isSet()) {
5041 // If there was an error parsing parenthesized declarator, declarator
5042 // scope may have been entered before. Don't do it again.
5043 if (!D.isInvalidType() &&
5044 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5045 D.getCXXScopeSpec()))
5046 // Change the declaration context for name lookup, until this function
5047 // is exited (and the declarator has been parsed).
5048 DeclScopeObj.EnterDeclaratorScope();
5049 }
5050 } else if (D.mayOmitIdentifier()) {
5051 // This could be something simple like "int" (in which case the declarator
5052 // portion is empty), if an abstract-declarator is allowed.
5053 D.SetIdentifier(nullptr, Tok.getLocation());
5054
5055 // The grammar for abstract-pack-declarator does not allow grouping parens.
5056 // FIXME: Revisit this once core issue 1488 is resolved.
5057 if (D.hasEllipsis() && D.hasGroupingParens())
5058 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5059 diag::ext_abstract_pack_declarator_parens);
5060 } else {
5061 if (Tok.getKind() == tok::annot_pragma_parser_crash)
5062 LLVM_BUILTIN_TRAP;
5063 if (Tok.is(tok::l_square))
5064 return ParseMisplacedBracketDeclarator(D);
5065 if (D.getContext() == Declarator::MemberContext) {
5066 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5067 diag::err_expected_member_name_or_semi)
5068 << (D.getDeclSpec().isEmpty() ? SourceRange()
5069 : D.getDeclSpec().getSourceRange());
5070 } else if (getLangOpts().CPlusPlus) {
5071 if (Tok.is(tok::period) || Tok.is(tok::arrow))
5072 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5073 else {
5074 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5075 if (Tok.isAtStartOfLine() && Loc.isValid())
5076 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5077 << getLangOpts().CPlusPlus;
5078 else
5079 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5080 diag::err_expected_unqualified_id)
5081 << getLangOpts().CPlusPlus;
5082 }
5083 } else {
5084 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5085 diag::err_expected_either)
5086 << tok::identifier << tok::l_paren;
5087 }
5088 D.SetIdentifier(nullptr, Tok.getLocation());
5089 D.setInvalidType(true);
5090 }
5091
5092 PastIdentifier:
5093 assert(D.isPastIdentifier() &&
5094 "Haven't past the location of the identifier yet?");
5095
5096 // Don't parse attributes unless we have parsed an unparenthesized name.
5097 if (D.hasName() && !D.getNumTypeObjects())
5098 MaybeParseCXX11Attributes(D);
5099
5100 while (1) {
5101 if (Tok.is(tok::l_paren)) {
5102 // Enter function-declaration scope, limiting any declarators to the
5103 // function prototype scope, including parameter declarators.
5104 ParseScope PrototypeScope(this,
5105 Scope::FunctionPrototypeScope|Scope::DeclScope|
5106 (D.isFunctionDeclaratorAFunctionDeclaration()
5107 ? Scope::FunctionDeclarationScope : 0));
5108
5109 // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5110 // In such a case, check if we actually have a function declarator; if it
5111 // is not, the declarator has been fully parsed.
5112 bool IsAmbiguous = false;
5113 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5114 // The name of the declarator, if any, is tentatively declared within
5115 // a possible direct initializer.
5116 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5117 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5118 TentativelyDeclaredIdentifiers.pop_back();
5119 if (!IsFunctionDecl)
5120 break;
5121 }
5122 ParsedAttributes attrs(AttrFactory);
5123 BalancedDelimiterTracker T(*this, tok::l_paren);
5124 T.consumeOpen();
5125 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5126 PrototypeScope.Exit();
5127 } else if (Tok.is(tok::l_square)) {
5128 ParseBracketDeclarator(D);
5129 } else {
5130 break;
5131 }
5132 }
5133 }
5134
5135 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
5136 /// only called before the identifier, so these are most likely just grouping
5137 /// parens for precedence. If we find that these are actually function
5138 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5139 ///
5140 /// direct-declarator:
5141 /// '(' declarator ')'
5142 /// [GNU] '(' attributes declarator ')'
5143 /// direct-declarator '(' parameter-type-list ')'
5144 /// direct-declarator '(' identifier-list[opt] ')'
5145 /// [GNU] direct-declarator '(' parameter-forward-declarations
5146 /// parameter-type-list[opt] ')'
5147 ///
ParseParenDeclarator(Declarator & D)5148 void Parser::ParseParenDeclarator(Declarator &D) {
5149 BalancedDelimiterTracker T(*this, tok::l_paren);
5150 T.consumeOpen();
5151
5152 assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5153
5154 // Eat any attributes before we look at whether this is a grouping or function
5155 // declarator paren. If this is a grouping paren, the attribute applies to
5156 // the type being built up, for example:
5157 // int (__attribute__(()) *x)(long y)
5158 // If this ends up not being a grouping paren, the attribute applies to the
5159 // first argument, for example:
5160 // int (__attribute__(()) int x)
5161 // In either case, we need to eat any attributes to be able to determine what
5162 // sort of paren this is.
5163 //
5164 ParsedAttributes attrs(AttrFactory);
5165 bool RequiresArg = false;
5166 if (Tok.is(tok::kw___attribute)) {
5167 ParseGNUAttributes(attrs);
5168
5169 // We require that the argument list (if this is a non-grouping paren) be
5170 // present even if the attribute list was empty.
5171 RequiresArg = true;
5172 }
5173
5174 // Eat any Microsoft extensions.
5175 ParseMicrosoftTypeAttributes(attrs);
5176
5177 // Eat any Borland extensions.
5178 if (Tok.is(tok::kw___pascal))
5179 ParseBorlandTypeAttributes(attrs);
5180
5181 // If we haven't past the identifier yet (or where the identifier would be
5182 // stored, if this is an abstract declarator), then this is probably just
5183 // grouping parens. However, if this could be an abstract-declarator, then
5184 // this could also be the start of function arguments (consider 'void()').
5185 bool isGrouping;
5186
5187 if (!D.mayOmitIdentifier()) {
5188 // If this can't be an abstract-declarator, this *must* be a grouping
5189 // paren, because we haven't seen the identifier yet.
5190 isGrouping = true;
5191 } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
5192 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5193 NextToken().is(tok::r_paren)) || // C++ int(...)
5194 isDeclarationSpecifier() || // 'int(int)' is a function.
5195 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
5196 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5197 // considered to be a type, not a K&R identifier-list.
5198 isGrouping = false;
5199 } else {
5200 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5201 isGrouping = true;
5202 }
5203
5204 // If this is a grouping paren, handle:
5205 // direct-declarator: '(' declarator ')'
5206 // direct-declarator: '(' attributes declarator ')'
5207 if (isGrouping) {
5208 SourceLocation EllipsisLoc = D.getEllipsisLoc();
5209 D.setEllipsisLoc(SourceLocation());
5210
5211 bool hadGroupingParens = D.hasGroupingParens();
5212 D.setGroupingParens(true);
5213 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5214 // Match the ')'.
5215 T.consumeClose();
5216 D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5217 T.getCloseLocation()),
5218 attrs, T.getCloseLocation());
5219
5220 D.setGroupingParens(hadGroupingParens);
5221
5222 // An ellipsis cannot be placed outside parentheses.
5223 if (EllipsisLoc.isValid())
5224 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5225
5226 return;
5227 }
5228
5229 // Okay, if this wasn't a grouping paren, it must be the start of a function
5230 // argument list. Recognize that this declarator will never have an
5231 // identifier (and remember where it would have been), then call into
5232 // ParseFunctionDeclarator to handle of argument list.
5233 D.SetIdentifier(nullptr, Tok.getLocation());
5234
5235 // Enter function-declaration scope, limiting any declarators to the
5236 // function prototype scope, including parameter declarators.
5237 ParseScope PrototypeScope(this,
5238 Scope::FunctionPrototypeScope | Scope::DeclScope |
5239 (D.isFunctionDeclaratorAFunctionDeclaration()
5240 ? Scope::FunctionDeclarationScope : 0));
5241 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5242 PrototypeScope.Exit();
5243 }
5244
5245 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5246 /// declarator D up to a paren, which indicates that we are parsing function
5247 /// arguments.
5248 ///
5249 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5250 /// immediately after the open paren - they should be considered to be the
5251 /// first argument of a parameter.
5252 ///
5253 /// If RequiresArg is true, then the first argument of the function is required
5254 /// to be present and required to not be an identifier list.
5255 ///
5256 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5257 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5258 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5259 ///
5260 /// [C++11] exception-specification:
5261 /// dynamic-exception-specification
5262 /// noexcept-specification
5263 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5264 void Parser::ParseFunctionDeclarator(Declarator &D,
5265 ParsedAttributes &FirstArgAttrs,
5266 BalancedDelimiterTracker &Tracker,
5267 bool IsAmbiguous,
5268 bool RequiresArg) {
5269 assert(getCurScope()->isFunctionPrototypeScope() &&
5270 "Should call from a Function scope");
5271 // lparen is already consumed!
5272 assert(D.isPastIdentifier() && "Should not call before identifier!");
5273
5274 // This should be true when the function has typed arguments.
5275 // Otherwise, it is treated as a K&R-style function.
5276 bool HasProto = false;
5277 // Build up an array of information about the parsed arguments.
5278 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5279 // Remember where we see an ellipsis, if any.
5280 SourceLocation EllipsisLoc;
5281
5282 DeclSpec DS(AttrFactory);
5283 bool RefQualifierIsLValueRef = true;
5284 SourceLocation RefQualifierLoc;
5285 SourceLocation ConstQualifierLoc;
5286 SourceLocation VolatileQualifierLoc;
5287 SourceLocation RestrictQualifierLoc;
5288 ExceptionSpecificationType ESpecType = EST_None;
5289 SourceRange ESpecRange;
5290 SmallVector<ParsedType, 2> DynamicExceptions;
5291 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5292 ExprResult NoexceptExpr;
5293 CachedTokens *ExceptionSpecTokens = 0;
5294 ParsedAttributes FnAttrs(AttrFactory);
5295 TypeResult TrailingReturnType;
5296
5297 /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5298 EndLoc is the end location for the function declarator.
5299 They differ for trailing return types. */
5300 SourceLocation StartLoc, LocalEndLoc, EndLoc;
5301 SourceLocation LParenLoc, RParenLoc;
5302 LParenLoc = Tracker.getOpenLocation();
5303 StartLoc = LParenLoc;
5304
5305 if (isFunctionDeclaratorIdentifierList()) {
5306 if (RequiresArg)
5307 Diag(Tok, diag::err_argument_required_after_attribute);
5308
5309 ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5310
5311 Tracker.consumeClose();
5312 RParenLoc = Tracker.getCloseLocation();
5313 LocalEndLoc = RParenLoc;
5314 EndLoc = RParenLoc;
5315 } else {
5316 if (Tok.isNot(tok::r_paren))
5317 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5318 EllipsisLoc);
5319 else if (RequiresArg)
5320 Diag(Tok, diag::err_argument_required_after_attribute);
5321
5322 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5323
5324 // If we have the closing ')', eat it.
5325 Tracker.consumeClose();
5326 RParenLoc = Tracker.getCloseLocation();
5327 LocalEndLoc = RParenLoc;
5328 EndLoc = RParenLoc;
5329
5330 if (getLangOpts().CPlusPlus) {
5331 // FIXME: Accept these components in any order, and produce fixits to
5332 // correct the order if the user gets it wrong. Ideally we should deal
5333 // with the pure-specifier in the same way.
5334
5335 // Parse cv-qualifier-seq[opt].
5336 ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5337 /*AtomicAllowed*/ false);
5338 if (!DS.getSourceRange().getEnd().isInvalid()) {
5339 EndLoc = DS.getSourceRange().getEnd();
5340 ConstQualifierLoc = DS.getConstSpecLoc();
5341 VolatileQualifierLoc = DS.getVolatileSpecLoc();
5342 RestrictQualifierLoc = DS.getRestrictSpecLoc();
5343 }
5344
5345 // Parse ref-qualifier[opt].
5346 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
5347 EndLoc = RefQualifierLoc;
5348
5349 // C++11 [expr.prim.general]p3:
5350 // If a declaration declares a member function or member function
5351 // template of a class X, the expression this is a prvalue of type
5352 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5353 // and the end of the function-definition, member-declarator, or
5354 // declarator.
5355 // FIXME: currently, "static" case isn't handled correctly.
5356 bool IsCXX11MemberFunction =
5357 getLangOpts().CPlusPlus11 &&
5358 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5359 (D.getContext() == Declarator::MemberContext
5360 ? !D.getDeclSpec().isFriendSpecified()
5361 : D.getContext() == Declarator::FileContext &&
5362 D.getCXXScopeSpec().isValid() &&
5363 Actions.CurContext->isRecord());
5364 Sema::CXXThisScopeRAII ThisScope(Actions,
5365 dyn_cast<CXXRecordDecl>(Actions.CurContext),
5366 DS.getTypeQualifiers() |
5367 (D.getDeclSpec().isConstexprSpecified() &&
5368 !getLangOpts().CPlusPlus14
5369 ? Qualifiers::Const : 0),
5370 IsCXX11MemberFunction);
5371
5372 // Parse exception-specification[opt].
5373 bool Delayed = D.isFirstDeclarationOfMember() &&
5374 D.isFunctionDeclaratorAFunctionDeclaration();
5375 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5376 GetLookAheadToken(0).is(tok::kw_noexcept) &&
5377 GetLookAheadToken(1).is(tok::l_paren) &&
5378 GetLookAheadToken(2).is(tok::kw_noexcept) &&
5379 GetLookAheadToken(3).is(tok::l_paren) &&
5380 GetLookAheadToken(4).is(tok::identifier) &&
5381 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5382 // HACK: We've got an exception-specification
5383 // noexcept(noexcept(swap(...)))
5384 // or
5385 // noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5386 // on a 'swap' member function. This is a libstdc++ bug; the lookup
5387 // for 'swap' will only find the function we're currently declaring,
5388 // whereas it expects to find a non-member swap through ADL. Turn off
5389 // delayed parsing to give it a chance to find what it expects.
5390 Delayed = false;
5391 }
5392 ESpecType = tryParseExceptionSpecification(Delayed,
5393 ESpecRange,
5394 DynamicExceptions,
5395 DynamicExceptionRanges,
5396 NoexceptExpr,
5397 ExceptionSpecTokens);
5398 if (ESpecType != EST_None)
5399 EndLoc = ESpecRange.getEnd();
5400
5401 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5402 // after the exception-specification.
5403 MaybeParseCXX11Attributes(FnAttrs);
5404
5405 // Parse trailing-return-type[opt].
5406 LocalEndLoc = EndLoc;
5407 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5408 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5409 if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5410 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5411 LocalEndLoc = Tok.getLocation();
5412 SourceRange Range;
5413 TrailingReturnType = ParseTrailingReturnType(Range);
5414 EndLoc = Range.getEnd();
5415 }
5416 }
5417 }
5418
5419 // Remember that we parsed a function type, and remember the attributes.
5420 D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5421 IsAmbiguous,
5422 LParenLoc,
5423 ParamInfo.data(), ParamInfo.size(),
5424 EllipsisLoc, RParenLoc,
5425 DS.getTypeQualifiers(),
5426 RefQualifierIsLValueRef,
5427 RefQualifierLoc, ConstQualifierLoc,
5428 VolatileQualifierLoc,
5429 RestrictQualifierLoc,
5430 /*MutableLoc=*/SourceLocation(),
5431 ESpecType, ESpecRange.getBegin(),
5432 DynamicExceptions.data(),
5433 DynamicExceptionRanges.data(),
5434 DynamicExceptions.size(),
5435 NoexceptExpr.isUsable() ?
5436 NoexceptExpr.get() : nullptr,
5437 ExceptionSpecTokens,
5438 StartLoc, LocalEndLoc, D,
5439 TrailingReturnType),
5440 FnAttrs, EndLoc);
5441 }
5442
5443 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
5444 /// true if a ref-qualifier is found.
ParseRefQualifier(bool & RefQualifierIsLValueRef,SourceLocation & RefQualifierLoc)5445 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
5446 SourceLocation &RefQualifierLoc) {
5447 if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5448 Diag(Tok, getLangOpts().CPlusPlus11 ?
5449 diag::warn_cxx98_compat_ref_qualifier :
5450 diag::ext_ref_qualifier);
5451
5452 RefQualifierIsLValueRef = Tok.is(tok::amp);
5453 RefQualifierLoc = ConsumeToken();
5454 return true;
5455 }
5456 return false;
5457 }
5458
5459 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5460 /// identifier list form for a K&R-style function: void foo(a,b,c)
5461 ///
5462 /// Note that identifier-lists are only allowed for normal declarators, not for
5463 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5464 bool Parser::isFunctionDeclaratorIdentifierList() {
5465 return !getLangOpts().CPlusPlus
5466 && Tok.is(tok::identifier)
5467 && !TryAltiVecVectorToken()
5468 // K&R identifier lists can't have typedefs as identifiers, per C99
5469 // 6.7.5.3p11.
5470 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5471 // Identifier lists follow a really simple grammar: the identifiers can
5472 // be followed *only* by a ", identifier" or ")". However, K&R
5473 // identifier lists are really rare in the brave new modern world, and
5474 // it is very common for someone to typo a type in a non-K&R style
5475 // list. If we are presented with something like: "void foo(intptr x,
5476 // float y)", we don't want to start parsing the function declarator as
5477 // though it is a K&R style declarator just because intptr is an
5478 // invalid type.
5479 //
5480 // To handle this, we check to see if the token after the first
5481 // identifier is a "," or ")". Only then do we parse it as an
5482 // identifier list.
5483 && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5484 }
5485
5486 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5487 /// we found a K&R-style identifier list instead of a typed parameter list.
5488 ///
5489 /// After returning, ParamInfo will hold the parsed parameters.
5490 ///
5491 /// identifier-list: [C99 6.7.5]
5492 /// identifier
5493 /// identifier-list ',' identifier
5494 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5495 void Parser::ParseFunctionDeclaratorIdentifierList(
5496 Declarator &D,
5497 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5498 // If there was no identifier specified for the declarator, either we are in
5499 // an abstract-declarator, or we are in a parameter declarator which was found
5500 // to be abstract. In abstract-declarators, identifier lists are not valid:
5501 // diagnose this.
5502 if (!D.getIdentifier())
5503 Diag(Tok, diag::ext_ident_list_in_param);
5504
5505 // Maintain an efficient lookup of params we have seen so far.
5506 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5507
5508 do {
5509 // If this isn't an identifier, report the error and skip until ')'.
5510 if (Tok.isNot(tok::identifier)) {
5511 Diag(Tok, diag::err_expected) << tok::identifier;
5512 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5513 // Forget we parsed anything.
5514 ParamInfo.clear();
5515 return;
5516 }
5517
5518 IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5519
5520 // Reject 'typedef int y; int test(x, y)', but continue parsing.
5521 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5522 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5523
5524 // Verify that the argument identifier has not already been mentioned.
5525 if (!ParamsSoFar.insert(ParmII).second) {
5526 Diag(Tok, diag::err_param_redefinition) << ParmII;
5527 } else {
5528 // Remember this identifier in ParamInfo.
5529 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5530 Tok.getLocation(),
5531 nullptr));
5532 }
5533
5534 // Eat the identifier.
5535 ConsumeToken();
5536 // The list continues if we see a comma.
5537 } while (TryConsumeToken(tok::comma));
5538 }
5539
5540 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5541 /// after the opening parenthesis. This function will not parse a K&R-style
5542 /// identifier list.
5543 ///
5544 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
5545 /// caller parsed those arguments immediately after the open paren - they should
5546 /// be considered to be part of the first parameter.
5547 ///
5548 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5549 /// be the location of the ellipsis, if any was parsed.
5550 ///
5551 /// parameter-type-list: [C99 6.7.5]
5552 /// parameter-list
5553 /// parameter-list ',' '...'
5554 /// [C++] parameter-list '...'
5555 ///
5556 /// parameter-list: [C99 6.7.5]
5557 /// parameter-declaration
5558 /// parameter-list ',' parameter-declaration
5559 ///
5560 /// parameter-declaration: [C99 6.7.5]
5561 /// declaration-specifiers declarator
5562 /// [C++] declaration-specifiers declarator '=' assignment-expression
5563 /// [C++11] initializer-clause
5564 /// [GNU] declaration-specifiers declarator attributes
5565 /// declaration-specifiers abstract-declarator[opt]
5566 /// [C++] declaration-specifiers abstract-declarator[opt]
5567 /// '=' assignment-expression
5568 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes
5569 /// [C++11] attribute-specifier-seq parameter-declaration
5570 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5571 void Parser::ParseParameterDeclarationClause(
5572 Declarator &D,
5573 ParsedAttributes &FirstArgAttrs,
5574 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5575 SourceLocation &EllipsisLoc) {
5576 do {
5577 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5578 // before deciding this was a parameter-declaration-clause.
5579 if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5580 break;
5581
5582 // Parse the declaration-specifiers.
5583 // Just use the ParsingDeclaration "scope" of the declarator.
5584 DeclSpec DS(AttrFactory);
5585
5586 // Parse any C++11 attributes.
5587 MaybeParseCXX11Attributes(DS.getAttributes());
5588
5589 // Skip any Microsoft attributes before a param.
5590 MaybeParseMicrosoftAttributes(DS.getAttributes());
5591
5592 SourceLocation DSStart = Tok.getLocation();
5593
5594 // If the caller parsed attributes for the first argument, add them now.
5595 // Take them so that we only apply the attributes to the first parameter.
5596 // FIXME: If we can leave the attributes in the token stream somehow, we can
5597 // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5598 // too much hassle.
5599 DS.takeAttributesFrom(FirstArgAttrs);
5600
5601 ParseDeclarationSpecifiers(DS);
5602
5603
5604 // Parse the declarator. This is "PrototypeContext" or
5605 // "LambdaExprParameterContext", because we must accept either
5606 // 'declarator' or 'abstract-declarator' here.
5607 Declarator ParmDeclarator(DS,
5608 D.getContext() == Declarator::LambdaExprContext ?
5609 Declarator::LambdaExprParameterContext :
5610 Declarator::PrototypeContext);
5611 ParseDeclarator(ParmDeclarator);
5612
5613 // Parse GNU attributes, if present.
5614 MaybeParseGNUAttributes(ParmDeclarator);
5615
5616 // Remember this parsed parameter in ParamInfo.
5617 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5618
5619 // DefArgToks is used when the parsing of default arguments needs
5620 // to be delayed.
5621 CachedTokens *DefArgToks = nullptr;
5622
5623 // If no parameter was specified, verify that *something* was specified,
5624 // otherwise we have a missing type and identifier.
5625 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5626 ParmDeclarator.getNumTypeObjects() == 0) {
5627 // Completely missing, emit error.
5628 Diag(DSStart, diag::err_missing_param);
5629 } else {
5630 // Otherwise, we have something. Add it and let semantic analysis try
5631 // to grok it and add the result to the ParamInfo we are building.
5632
5633 // Last chance to recover from a misplaced ellipsis in an attempted
5634 // parameter pack declaration.
5635 if (Tok.is(tok::ellipsis) &&
5636 (NextToken().isNot(tok::r_paren) ||
5637 (!ParmDeclarator.getEllipsisLoc().isValid() &&
5638 !Actions.isUnexpandedParameterPackPermitted())) &&
5639 Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5640 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5641
5642 // Inform the actions module about the parameter declarator, so it gets
5643 // added to the current scope.
5644 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5645 // Parse the default argument, if any. We parse the default
5646 // arguments in all dialects; the semantic analysis in
5647 // ActOnParamDefaultArgument will reject the default argument in
5648 // C.
5649 if (Tok.is(tok::equal)) {
5650 SourceLocation EqualLoc = Tok.getLocation();
5651
5652 // Parse the default argument
5653 if (D.getContext() == Declarator::MemberContext) {
5654 // If we're inside a class definition, cache the tokens
5655 // corresponding to the default argument. We'll actually parse
5656 // them when we see the end of the class definition.
5657 // FIXME: Can we use a smart pointer for Toks?
5658 DefArgToks = new CachedTokens;
5659
5660 SourceLocation ArgStartLoc = NextToken().getLocation();
5661 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5662 delete DefArgToks;
5663 DefArgToks = nullptr;
5664 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5665 } else {
5666 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5667 ArgStartLoc);
5668 }
5669 } else {
5670 // Consume the '='.
5671 ConsumeToken();
5672
5673 // The argument isn't actually potentially evaluated unless it is
5674 // used.
5675 EnterExpressionEvaluationContext Eval(Actions,
5676 Sema::PotentiallyEvaluatedIfUsed,
5677 Param);
5678
5679 ExprResult DefArgResult;
5680 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5681 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5682 DefArgResult = ParseBraceInitializer();
5683 } else
5684 DefArgResult = ParseAssignmentExpression();
5685 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5686 if (DefArgResult.isInvalid()) {
5687 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5688 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5689 } else {
5690 // Inform the actions module about the default argument
5691 Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5692 DefArgResult.get());
5693 }
5694 }
5695 }
5696
5697 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5698 ParmDeclarator.getIdentifierLoc(),
5699 Param, DefArgToks));
5700 }
5701
5702 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
5703 if (!getLangOpts().CPlusPlus) {
5704 // We have ellipsis without a preceding ',', which is ill-formed
5705 // in C. Complain and provide the fix.
5706 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5707 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5708 } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
5709 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
5710 // It looks like this was supposed to be a parameter pack. Warn and
5711 // point out where the ellipsis should have gone.
5712 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
5713 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
5714 << ParmEllipsis.isValid() << ParmEllipsis;
5715 if (ParmEllipsis.isValid()) {
5716 Diag(ParmEllipsis,
5717 diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
5718 } else {
5719 Diag(ParmDeclarator.getIdentifierLoc(),
5720 diag::note_misplaced_ellipsis_vararg_add_ellipsis)
5721 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
5722 "...")
5723 << !ParmDeclarator.hasName();
5724 }
5725 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
5726 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5727 }
5728
5729 // We can't have any more parameters after an ellipsis.
5730 break;
5731 }
5732
5733 // If the next token is a comma, consume it and keep reading arguments.
5734 } while (TryConsumeToken(tok::comma));
5735 }
5736
5737 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5738 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5739 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5740 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5741 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5742 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5743 /// attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5744 void Parser::ParseBracketDeclarator(Declarator &D) {
5745 if (CheckProhibitedCXX11Attribute())
5746 return;
5747
5748 BalancedDelimiterTracker T(*this, tok::l_square);
5749 T.consumeOpen();
5750
5751 // C array syntax has many features, but by-far the most common is [] and [4].
5752 // This code does a fast path to handle some of the most obvious cases.
5753 if (Tok.getKind() == tok::r_square) {
5754 T.consumeClose();
5755 ParsedAttributes attrs(AttrFactory);
5756 MaybeParseCXX11Attributes(attrs);
5757
5758 // Remember that we parsed the empty array type.
5759 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5760 T.getOpenLocation(),
5761 T.getCloseLocation()),
5762 attrs, T.getCloseLocation());
5763 return;
5764 } else if (Tok.getKind() == tok::numeric_constant &&
5765 GetLookAheadToken(1).is(tok::r_square)) {
5766 // [4] is very common. Parse the numeric constant expression.
5767 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5768 ConsumeToken();
5769
5770 T.consumeClose();
5771 ParsedAttributes attrs(AttrFactory);
5772 MaybeParseCXX11Attributes(attrs);
5773
5774 // Remember that we parsed a array type, and remember its features.
5775 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5776 ExprRes.get(),
5777 T.getOpenLocation(),
5778 T.getCloseLocation()),
5779 attrs, T.getCloseLocation());
5780 return;
5781 }
5782
5783 // If valid, this location is the position where we read the 'static' keyword.
5784 SourceLocation StaticLoc;
5785 TryConsumeToken(tok::kw_static, StaticLoc);
5786
5787 // If there is a type-qualifier-list, read it now.
5788 // Type qualifiers in an array subscript are a C99 feature.
5789 DeclSpec DS(AttrFactory);
5790 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
5791
5792 // If we haven't already read 'static', check to see if there is one after the
5793 // type-qualifier-list.
5794 if (!StaticLoc.isValid())
5795 TryConsumeToken(tok::kw_static, StaticLoc);
5796
5797 // Handle "direct-declarator [ type-qual-list[opt] * ]".
5798 bool isStar = false;
5799 ExprResult NumElements;
5800
5801 // Handle the case where we have '[*]' as the array size. However, a leading
5802 // star could be the start of an expression, for example 'X[*p + 4]'. Verify
5803 // the token after the star is a ']'. Since stars in arrays are
5804 // infrequent, use of lookahead is not costly here.
5805 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5806 ConsumeToken(); // Eat the '*'.
5807
5808 if (StaticLoc.isValid()) {
5809 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5810 StaticLoc = SourceLocation(); // Drop the static.
5811 }
5812 isStar = true;
5813 } else if (Tok.isNot(tok::r_square)) {
5814 // Note, in C89, this production uses the constant-expr production instead
5815 // of assignment-expr. The only difference is that assignment-expr allows
5816 // things like '=' and '*='. Sema rejects these in C89 mode because they
5817 // are not i-c-e's, so we don't need to distinguish between the two here.
5818
5819 // Parse the constant-expression or assignment-expression now (depending
5820 // on dialect).
5821 if (getLangOpts().CPlusPlus) {
5822 NumElements = ParseConstantExpression();
5823 } else {
5824 EnterExpressionEvaluationContext Unevaluated(Actions,
5825 Sema::ConstantEvaluated);
5826 NumElements =
5827 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
5828 }
5829 } else {
5830 if (StaticLoc.isValid()) {
5831 Diag(StaticLoc, diag::err_unspecified_size_with_static);
5832 StaticLoc = SourceLocation(); // Drop the static.
5833 }
5834 }
5835
5836 // If there was an error parsing the assignment-expression, recover.
5837 if (NumElements.isInvalid()) {
5838 D.setInvalidType(true);
5839 // If the expression was invalid, skip it.
5840 SkipUntil(tok::r_square, StopAtSemi);
5841 return;
5842 }
5843
5844 T.consumeClose();
5845
5846 ParsedAttributes attrs(AttrFactory);
5847 MaybeParseCXX11Attributes(attrs);
5848
5849 // Remember that we parsed a array type, and remember its features.
5850 D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5851 StaticLoc.isValid(), isStar,
5852 NumElements.get(),
5853 T.getOpenLocation(),
5854 T.getCloseLocation()),
5855 attrs, T.getCloseLocation());
5856 }
5857
5858 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)5859 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5860 assert(Tok.is(tok::l_square) && "Missing opening bracket");
5861 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5862
5863 SourceLocation StartBracketLoc = Tok.getLocation();
5864 Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5865
5866 while (Tok.is(tok::l_square)) {
5867 ParseBracketDeclarator(TempDeclarator);
5868 }
5869
5870 // Stuff the location of the start of the brackets into the Declarator.
5871 // The diagnostics from ParseDirectDeclarator will make more sense if
5872 // they use this location instead.
5873 if (Tok.is(tok::semi))
5874 D.getName().EndLocation = StartBracketLoc;
5875
5876 SourceLocation SuggestParenLoc = Tok.getLocation();
5877
5878 // Now that the brackets are removed, try parsing the declarator again.
5879 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5880
5881 // Something went wrong parsing the brackets, in which case,
5882 // ParseBracketDeclarator has emitted an error, and we don't need to emit
5883 // one here.
5884 if (TempDeclarator.getNumTypeObjects() == 0)
5885 return;
5886
5887 // Determine if parens will need to be suggested in the diagnostic.
5888 bool NeedParens = false;
5889 if (D.getNumTypeObjects() != 0) {
5890 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5891 case DeclaratorChunk::Pointer:
5892 case DeclaratorChunk::Reference:
5893 case DeclaratorChunk::BlockPointer:
5894 case DeclaratorChunk::MemberPointer:
5895 NeedParens = true;
5896 break;
5897 case DeclaratorChunk::Array:
5898 case DeclaratorChunk::Function:
5899 case DeclaratorChunk::Paren:
5900 break;
5901 }
5902 }
5903
5904 if (NeedParens) {
5905 // Create a DeclaratorChunk for the inserted parens.
5906 ParsedAttributes attrs(AttrFactory);
5907 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5908 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5909 SourceLocation());
5910 }
5911
5912 // Adding back the bracket info to the end of the Declarator.
5913 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5914 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5915 ParsedAttributes attrs(AttrFactory);
5916 attrs.set(Chunk.Common.AttrList);
5917 D.AddTypeInfo(Chunk, attrs, SourceLocation());
5918 }
5919
5920 // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5921 // If parentheses are required, always suggest them.
5922 if (!D.getIdentifier() && !NeedParens)
5923 return;
5924
5925 SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5926
5927 // Generate the move bracket error message.
5928 SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5929 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5930
5931 if (NeedParens) {
5932 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5933 << getLangOpts().CPlusPlus
5934 << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5935 << FixItHint::CreateInsertion(EndLoc, ")")
5936 << FixItHint::CreateInsertionFromRange(
5937 EndLoc, CharSourceRange(BracketRange, true))
5938 << FixItHint::CreateRemoval(BracketRange);
5939 } else {
5940 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5941 << getLangOpts().CPlusPlus
5942 << FixItHint::CreateInsertionFromRange(
5943 EndLoc, CharSourceRange(BracketRange, true))
5944 << FixItHint::CreateRemoval(BracketRange);
5945 }
5946 }
5947
5948 /// [GNU] typeof-specifier:
5949 /// typeof ( expressions )
5950 /// typeof ( type-name )
5951 /// [GNU/C++] typeof unary-expression
5952 ///
ParseTypeofSpecifier(DeclSpec & DS)5953 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5954 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5955 Token OpTok = Tok;
5956 SourceLocation StartLoc = ConsumeToken();
5957
5958 const bool hasParens = Tok.is(tok::l_paren);
5959
5960 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5961 Sema::ReuseLambdaContextDecl);
5962
5963 bool isCastExpr;
5964 ParsedType CastTy;
5965 SourceRange CastRange;
5966 ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
5967 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
5968 if (hasParens)
5969 DS.setTypeofParensRange(CastRange);
5970
5971 if (CastRange.getEnd().isInvalid())
5972 // FIXME: Not accurate, the range gets one token more than it should.
5973 DS.SetRangeEnd(Tok.getLocation());
5974 else
5975 DS.SetRangeEnd(CastRange.getEnd());
5976
5977 if (isCastExpr) {
5978 if (!CastTy) {
5979 DS.SetTypeSpecError();
5980 return;
5981 }
5982
5983 const char *PrevSpec = nullptr;
5984 unsigned DiagID;
5985 // Check for duplicate type specifiers (e.g. "int typeof(int)").
5986 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5987 DiagID, CastTy,
5988 Actions.getASTContext().getPrintingPolicy()))
5989 Diag(StartLoc, DiagID) << PrevSpec;
5990 return;
5991 }
5992
5993 // If we get here, the operand to the typeof was an expresion.
5994 if (Operand.isInvalid()) {
5995 DS.SetTypeSpecError();
5996 return;
5997 }
5998
5999 // We might need to transform the operand if it is potentially evaluated.
6000 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6001 if (Operand.isInvalid()) {
6002 DS.SetTypeSpecError();
6003 return;
6004 }
6005
6006 const char *PrevSpec = nullptr;
6007 unsigned DiagID;
6008 // Check for duplicate type specifiers (e.g. "int typeof(int)").
6009 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6010 DiagID, Operand.get(),
6011 Actions.getASTContext().getPrintingPolicy()))
6012 Diag(StartLoc, DiagID) << PrevSpec;
6013 }
6014
6015 /// [C11] atomic-specifier:
6016 /// _Atomic ( type-name )
6017 ///
ParseAtomicSpecifier(DeclSpec & DS)6018 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6019 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6020 "Not an atomic specifier");
6021
6022 SourceLocation StartLoc = ConsumeToken();
6023 BalancedDelimiterTracker T(*this, tok::l_paren);
6024 if (T.consumeOpen())
6025 return;
6026
6027 TypeResult Result = ParseTypeName();
6028 if (Result.isInvalid()) {
6029 SkipUntil(tok::r_paren, StopAtSemi);
6030 return;
6031 }
6032
6033 // Match the ')'
6034 T.consumeClose();
6035
6036 if (T.getCloseLocation().isInvalid())
6037 return;
6038
6039 DS.setTypeofParensRange(T.getRange());
6040 DS.SetRangeEnd(T.getCloseLocation());
6041
6042 const char *PrevSpec = nullptr;
6043 unsigned DiagID;
6044 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6045 DiagID, Result.get(),
6046 Actions.getASTContext().getPrintingPolicy()))
6047 Diag(StartLoc, DiagID) << PrevSpec;
6048 }
6049
6050
6051 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6052 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()6053 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6054 Token Next = NextToken();
6055 switch (Next.getKind()) {
6056 default: return false;
6057 case tok::kw_short:
6058 case tok::kw_long:
6059 case tok::kw_signed:
6060 case tok::kw_unsigned:
6061 case tok::kw_void:
6062 case tok::kw_char:
6063 case tok::kw_int:
6064 case tok::kw_float:
6065 case tok::kw_double:
6066 case tok::kw_bool:
6067 case tok::kw___bool:
6068 case tok::kw___pixel:
6069 Tok.setKind(tok::kw___vector);
6070 return true;
6071 case tok::identifier:
6072 if (Next.getIdentifierInfo() == Ident_pixel) {
6073 Tok.setKind(tok::kw___vector);
6074 return true;
6075 }
6076 if (Next.getIdentifierInfo() == Ident_bool) {
6077 Tok.setKind(tok::kw___vector);
6078 return true;
6079 }
6080 return false;
6081 }
6082 }
6083
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)6084 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6085 const char *&PrevSpec, unsigned &DiagID,
6086 bool &isInvalid) {
6087 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6088 if (Tok.getIdentifierInfo() == Ident_vector) {
6089 Token Next = NextToken();
6090 switch (Next.getKind()) {
6091 case tok::kw_short:
6092 case tok::kw_long:
6093 case tok::kw_signed:
6094 case tok::kw_unsigned:
6095 case tok::kw_void:
6096 case tok::kw_char:
6097 case tok::kw_int:
6098 case tok::kw_float:
6099 case tok::kw_double:
6100 case tok::kw_bool:
6101 case tok::kw___bool:
6102 case tok::kw___pixel:
6103 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6104 return true;
6105 case tok::identifier:
6106 if (Next.getIdentifierInfo() == Ident_pixel) {
6107 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6108 return true;
6109 }
6110 if (Next.getIdentifierInfo() == Ident_bool) {
6111 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6112 return true;
6113 }
6114 break;
6115 default:
6116 break;
6117 }
6118 } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6119 DS.isTypeAltiVecVector()) {
6120 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6121 return true;
6122 } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6123 DS.isTypeAltiVecVector()) {
6124 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6125 return true;
6126 }
6127 return false;
6128 }
6129