1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/IR/ValueMap.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/BuildLibCalls.h"
47 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52
53 #define DEBUG_TYPE "codegenprepare"
54
55 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
59 "sunken Cmps");
60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
61 "of sunken Casts");
62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
63 "computations were sunk");
64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
66 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
71
72 static cl::opt<bool> DisableBranchOpts(
73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
74 cl::desc("Disable branch optimizations in CodeGenPrepare"));
75
76 static cl::opt<bool>
77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
78 cl::desc("Disable GC optimizations in CodeGenPrepare"));
79
80 static cl::opt<bool> DisableSelectToBranch(
81 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
82 cl::desc("Disable select to branch conversion."));
83
84 static cl::opt<bool> AddrSinkUsingGEPs(
85 "addr-sink-using-gep", cl::Hidden, cl::init(false),
86 cl::desc("Address sinking in CGP using GEPs."));
87
88 static cl::opt<bool> EnableAndCmpSinking(
89 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
90 cl::desc("Enable sinkinig and/cmp into branches."));
91
92 static cl::opt<bool> DisableStoreExtract(
93 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
95
96 static cl::opt<bool> StressStoreExtract(
97 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
99
100 static cl::opt<bool> DisableExtLdPromotion(
101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
103 "CodeGenPrepare"));
104
105 static cl::opt<bool> StressExtLdPromotion(
106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
108 "optimization in CodeGenPrepare"));
109
110 namespace {
111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
112 struct TypeIsSExt {
113 Type *Ty;
114 bool IsSExt;
TypeIsSExt__anonebd7bfba0111::TypeIsSExt115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {}
116 };
117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
118 class TypePromotionTransaction;
119
120 class CodeGenPrepare : public FunctionPass {
121 /// TLI - Keep a pointer of a TargetLowering to consult for determining
122 /// transformation profitability.
123 const TargetMachine *TM;
124 const TargetLowering *TLI;
125 const TargetTransformInfo *TTI;
126 const TargetLibraryInfo *TLInfo;
127
128 /// CurInstIterator - As we scan instructions optimizing them, this is the
129 /// next instruction to optimize. Xforms that can invalidate this should
130 /// update it.
131 BasicBlock::iterator CurInstIterator;
132
133 /// Keeps track of non-local addresses that have been sunk into a block.
134 /// This allows us to avoid inserting duplicate code for blocks with
135 /// multiple load/stores of the same address.
136 ValueMap<Value*, Value*> SunkAddrs;
137
138 /// Keeps track of all truncates inserted for the current function.
139 SetOfInstrs InsertedTruncsSet;
140 /// Keeps track of the type of the related instruction before their
141 /// promotion for the current function.
142 InstrToOrigTy PromotedInsts;
143
144 /// ModifiedDT - If CFG is modified in anyway.
145 bool ModifiedDT;
146
147 /// OptSize - True if optimizing for size.
148 bool OptSize;
149
150 public:
151 static char ID; // Pass identification, replacement for typeid
CodeGenPrepare(const TargetMachine * TM=nullptr)152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) {
154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
155 }
156 bool runOnFunction(Function &F) override;
157
getPassName() const158 const char *getPassName() const override { return "CodeGen Prepare"; }
159
getAnalysisUsage(AnalysisUsage & AU) const160 void getAnalysisUsage(AnalysisUsage &AU) const override {
161 AU.addPreserved<DominatorTreeWrapperPass>();
162 AU.addRequired<TargetLibraryInfoWrapperPass>();
163 AU.addRequired<TargetTransformInfoWrapperPass>();
164 }
165
166 private:
167 bool EliminateFallThrough(Function &F);
168 bool EliminateMostlyEmptyBlocks(Function &F);
169 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
170 void EliminateMostlyEmptyBlock(BasicBlock *BB);
171 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT);
172 bool OptimizeInst(Instruction *I, bool& ModifiedDT);
173 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
174 bool OptimizeInlineAsmInst(CallInst *CS);
175 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT);
176 bool MoveExtToFormExtLoad(Instruction *&I);
177 bool OptimizeExtUses(Instruction *I);
178 bool OptimizeSelectInst(SelectInst *SI);
179 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
180 bool OptimizeExtractElementInst(Instruction *Inst);
181 bool DupRetToEnableTailCallOpts(BasicBlock *BB);
182 bool PlaceDbgValues(Function &F);
183 bool sinkAndCmp(Function &F);
184 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
185 Instruction *&Inst,
186 const SmallVectorImpl<Instruction *> &Exts,
187 unsigned CreatedInstCost);
188 bool splitBranchCondition(Function &F);
189 bool simplifyOffsetableRelocate(Instruction &I);
190 };
191 }
192
193 char CodeGenPrepare::ID = 0;
194 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
195 "Optimize for code generation", false, false)
196
createCodeGenPreparePass(const TargetMachine * TM)197 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
198 return new CodeGenPrepare(TM);
199 }
200
runOnFunction(Function & F)201 bool CodeGenPrepare::runOnFunction(Function &F) {
202 if (skipOptnoneFunction(F))
203 return false;
204
205 bool EverMadeChange = false;
206 // Clear per function information.
207 InsertedTruncsSet.clear();
208 PromotedInsts.clear();
209
210 ModifiedDT = false;
211 if (TM)
212 TLI = TM->getSubtargetImpl(F)->getTargetLowering();
213 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
214 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
215 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize);
216
217 /// This optimization identifies DIV instructions that can be
218 /// profitably bypassed and carried out with a shorter, faster divide.
219 if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
220 const DenseMap<unsigned int, unsigned int> &BypassWidths =
221 TLI->getBypassSlowDivWidths();
222 for (Function::iterator I = F.begin(); I != F.end(); I++)
223 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
224 }
225
226 // Eliminate blocks that contain only PHI nodes and an
227 // unconditional branch.
228 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
229
230 // llvm.dbg.value is far away from the value then iSel may not be able
231 // handle it properly. iSel will drop llvm.dbg.value if it can not
232 // find a node corresponding to the value.
233 EverMadeChange |= PlaceDbgValues(F);
234
235 // If there is a mask, compare against zero, and branch that can be combined
236 // into a single target instruction, push the mask and compare into branch
237 // users. Do this before OptimizeBlock -> OptimizeInst ->
238 // OptimizeCmpExpression, which perturbs the pattern being searched for.
239 if (!DisableBranchOpts) {
240 EverMadeChange |= sinkAndCmp(F);
241 EverMadeChange |= splitBranchCondition(F);
242 }
243
244 bool MadeChange = true;
245 while (MadeChange) {
246 MadeChange = false;
247 for (Function::iterator I = F.begin(); I != F.end(); ) {
248 BasicBlock *BB = I++;
249 bool ModifiedDTOnIteration = false;
250 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration);
251
252 // Restart BB iteration if the dominator tree of the Function was changed
253 if (ModifiedDTOnIteration)
254 break;
255 }
256 EverMadeChange |= MadeChange;
257 }
258
259 SunkAddrs.clear();
260
261 if (!DisableBranchOpts) {
262 MadeChange = false;
263 SmallPtrSet<BasicBlock*, 8> WorkList;
264 for (BasicBlock &BB : F) {
265 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
266 MadeChange |= ConstantFoldTerminator(&BB, true);
267 if (!MadeChange) continue;
268
269 for (SmallVectorImpl<BasicBlock*>::iterator
270 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
271 if (pred_begin(*II) == pred_end(*II))
272 WorkList.insert(*II);
273 }
274
275 // Delete the dead blocks and any of their dead successors.
276 MadeChange |= !WorkList.empty();
277 while (!WorkList.empty()) {
278 BasicBlock *BB = *WorkList.begin();
279 WorkList.erase(BB);
280 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
281
282 DeleteDeadBlock(BB);
283
284 for (SmallVectorImpl<BasicBlock*>::iterator
285 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
286 if (pred_begin(*II) == pred_end(*II))
287 WorkList.insert(*II);
288 }
289
290 // Merge pairs of basic blocks with unconditional branches, connected by
291 // a single edge.
292 if (EverMadeChange || MadeChange)
293 MadeChange |= EliminateFallThrough(F);
294
295 EverMadeChange |= MadeChange;
296 }
297
298 if (!DisableGCOpts) {
299 SmallVector<Instruction *, 2> Statepoints;
300 for (BasicBlock &BB : F)
301 for (Instruction &I : BB)
302 if (isStatepoint(I))
303 Statepoints.push_back(&I);
304 for (auto &I : Statepoints)
305 EverMadeChange |= simplifyOffsetableRelocate(*I);
306 }
307
308 return EverMadeChange;
309 }
310
311 /// EliminateFallThrough - Merge basic blocks which are connected
312 /// by a single edge, where one of the basic blocks has a single successor
313 /// pointing to the other basic block, which has a single predecessor.
EliminateFallThrough(Function & F)314 bool CodeGenPrepare::EliminateFallThrough(Function &F) {
315 bool Changed = false;
316 // Scan all of the blocks in the function, except for the entry block.
317 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
318 BasicBlock *BB = I++;
319 // If the destination block has a single pred, then this is a trivial
320 // edge, just collapse it.
321 BasicBlock *SinglePred = BB->getSinglePredecessor();
322
323 // Don't merge if BB's address is taken.
324 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
325
326 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
327 if (Term && !Term->isConditional()) {
328 Changed = true;
329 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
330 // Remember if SinglePred was the entry block of the function.
331 // If so, we will need to move BB back to the entry position.
332 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
333 MergeBasicBlockIntoOnlyPred(BB, nullptr);
334
335 if (isEntry && BB != &BB->getParent()->getEntryBlock())
336 BB->moveBefore(&BB->getParent()->getEntryBlock());
337
338 // We have erased a block. Update the iterator.
339 I = BB;
340 }
341 }
342 return Changed;
343 }
344
345 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
346 /// debug info directives, and an unconditional branch. Passes before isel
347 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
348 /// isel. Start by eliminating these blocks so we can split them the way we
349 /// want them.
EliminateMostlyEmptyBlocks(Function & F)350 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
351 bool MadeChange = false;
352 // Note that this intentionally skips the entry block.
353 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
354 BasicBlock *BB = I++;
355
356 // If this block doesn't end with an uncond branch, ignore it.
357 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
358 if (!BI || !BI->isUnconditional())
359 continue;
360
361 // If the instruction before the branch (skipping debug info) isn't a phi
362 // node, then other stuff is happening here.
363 BasicBlock::iterator BBI = BI;
364 if (BBI != BB->begin()) {
365 --BBI;
366 while (isa<DbgInfoIntrinsic>(BBI)) {
367 if (BBI == BB->begin())
368 break;
369 --BBI;
370 }
371 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
372 continue;
373 }
374
375 // Do not break infinite loops.
376 BasicBlock *DestBB = BI->getSuccessor(0);
377 if (DestBB == BB)
378 continue;
379
380 if (!CanMergeBlocks(BB, DestBB))
381 continue;
382
383 EliminateMostlyEmptyBlock(BB);
384 MadeChange = true;
385 }
386 return MadeChange;
387 }
388
389 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
390 /// single uncond branch between them, and BB contains no other non-phi
391 /// instructions.
CanMergeBlocks(const BasicBlock * BB,const BasicBlock * DestBB) const392 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
393 const BasicBlock *DestBB) const {
394 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
395 // the successor. If there are more complex condition (e.g. preheaders),
396 // don't mess around with them.
397 BasicBlock::const_iterator BBI = BB->begin();
398 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
399 for (const User *U : PN->users()) {
400 const Instruction *UI = cast<Instruction>(U);
401 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
402 return false;
403 // If User is inside DestBB block and it is a PHINode then check
404 // incoming value. If incoming value is not from BB then this is
405 // a complex condition (e.g. preheaders) we want to avoid here.
406 if (UI->getParent() == DestBB) {
407 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
408 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
409 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
410 if (Insn && Insn->getParent() == BB &&
411 Insn->getParent() != UPN->getIncomingBlock(I))
412 return false;
413 }
414 }
415 }
416 }
417
418 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
419 // and DestBB may have conflicting incoming values for the block. If so, we
420 // can't merge the block.
421 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
422 if (!DestBBPN) return true; // no conflict.
423
424 // Collect the preds of BB.
425 SmallPtrSet<const BasicBlock*, 16> BBPreds;
426 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
427 // It is faster to get preds from a PHI than with pred_iterator.
428 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
429 BBPreds.insert(BBPN->getIncomingBlock(i));
430 } else {
431 BBPreds.insert(pred_begin(BB), pred_end(BB));
432 }
433
434 // Walk the preds of DestBB.
435 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
436 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
437 if (BBPreds.count(Pred)) { // Common predecessor?
438 BBI = DestBB->begin();
439 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
440 const Value *V1 = PN->getIncomingValueForBlock(Pred);
441 const Value *V2 = PN->getIncomingValueForBlock(BB);
442
443 // If V2 is a phi node in BB, look up what the mapped value will be.
444 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
445 if (V2PN->getParent() == BB)
446 V2 = V2PN->getIncomingValueForBlock(Pred);
447
448 // If there is a conflict, bail out.
449 if (V1 != V2) return false;
450 }
451 }
452 }
453
454 return true;
455 }
456
457
458 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
459 /// an unconditional branch in it.
EliminateMostlyEmptyBlock(BasicBlock * BB)460 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
461 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
462 BasicBlock *DestBB = BI->getSuccessor(0);
463
464 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
465
466 // If the destination block has a single pred, then this is a trivial edge,
467 // just collapse it.
468 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
469 if (SinglePred != DestBB) {
470 // Remember if SinglePred was the entry block of the function. If so, we
471 // will need to move BB back to the entry position.
472 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
473 MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
474
475 if (isEntry && BB != &BB->getParent()->getEntryBlock())
476 BB->moveBefore(&BB->getParent()->getEntryBlock());
477
478 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
479 return;
480 }
481 }
482
483 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
484 // to handle the new incoming edges it is about to have.
485 PHINode *PN;
486 for (BasicBlock::iterator BBI = DestBB->begin();
487 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
488 // Remove the incoming value for BB, and remember it.
489 Value *InVal = PN->removeIncomingValue(BB, false);
490
491 // Two options: either the InVal is a phi node defined in BB or it is some
492 // value that dominates BB.
493 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
494 if (InValPhi && InValPhi->getParent() == BB) {
495 // Add all of the input values of the input PHI as inputs of this phi.
496 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
497 PN->addIncoming(InValPhi->getIncomingValue(i),
498 InValPhi->getIncomingBlock(i));
499 } else {
500 // Otherwise, add one instance of the dominating value for each edge that
501 // we will be adding.
502 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
503 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
504 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
505 } else {
506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
507 PN->addIncoming(InVal, *PI);
508 }
509 }
510 }
511
512 // The PHIs are now updated, change everything that refers to BB to use
513 // DestBB and remove BB.
514 BB->replaceAllUsesWith(DestBB);
515 BB->eraseFromParent();
516 ++NumBlocksElim;
517
518 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
519 }
520
521 // Computes a map of base pointer relocation instructions to corresponding
522 // derived pointer relocation instructions given a vector of all relocate calls
computeBaseDerivedRelocateMap(const SmallVectorImpl<User * > & AllRelocateCalls,DenseMap<IntrinsicInst *,SmallVector<IntrinsicInst *,2>> & RelocateInstMap)523 static void computeBaseDerivedRelocateMap(
524 const SmallVectorImpl<User *> &AllRelocateCalls,
525 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
526 RelocateInstMap) {
527 // Collect information in two maps: one primarily for locating the base object
528 // while filling the second map; the second map is the final structure holding
529 // a mapping between Base and corresponding Derived relocate calls
530 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
531 for (auto &U : AllRelocateCalls) {
532 GCRelocateOperands ThisRelocate(U);
533 IntrinsicInst *I = cast<IntrinsicInst>(U);
534 auto K = std::make_pair(ThisRelocate.basePtrIndex(),
535 ThisRelocate.derivedPtrIndex());
536 RelocateIdxMap.insert(std::make_pair(K, I));
537 }
538 for (auto &Item : RelocateIdxMap) {
539 std::pair<unsigned, unsigned> Key = Item.first;
540 if (Key.first == Key.second)
541 // Base relocation: nothing to insert
542 continue;
543
544 IntrinsicInst *I = Item.second;
545 auto BaseKey = std::make_pair(Key.first, Key.first);
546
547 // We're iterating over RelocateIdxMap so we cannot modify it.
548 auto MaybeBase = RelocateIdxMap.find(BaseKey);
549 if (MaybeBase == RelocateIdxMap.end())
550 // TODO: We might want to insert a new base object relocate and gep off
551 // that, if there are enough derived object relocates.
552 continue;
553
554 RelocateInstMap[MaybeBase->second].push_back(I);
555 }
556 }
557
558 // Accepts a GEP and extracts the operands into a vector provided they're all
559 // small integer constants
getGEPSmallConstantIntOffsetV(GetElementPtrInst * GEP,SmallVectorImpl<Value * > & OffsetV)560 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
561 SmallVectorImpl<Value *> &OffsetV) {
562 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
563 // Only accept small constant integer operands
564 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
565 if (!Op || Op->getZExtValue() > 20)
566 return false;
567 }
568
569 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
570 OffsetV.push_back(GEP->getOperand(i));
571 return true;
572 }
573
574 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
575 // replace, computes a replacement, and affects it.
576 static bool
simplifyRelocatesOffABase(IntrinsicInst * RelocatedBase,const SmallVectorImpl<IntrinsicInst * > & Targets)577 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
578 const SmallVectorImpl<IntrinsicInst *> &Targets) {
579 bool MadeChange = false;
580 for (auto &ToReplace : Targets) {
581 GCRelocateOperands MasterRelocate(RelocatedBase);
582 GCRelocateOperands ThisRelocate(ToReplace);
583
584 assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() &&
585 "Not relocating a derived object of the original base object");
586 if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) {
587 // A duplicate relocate call. TODO: coalesce duplicates.
588 continue;
589 }
590
591 Value *Base = ThisRelocate.basePtr();
592 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr());
593 if (!Derived || Derived->getPointerOperand() != Base)
594 continue;
595
596 SmallVector<Value *, 2> OffsetV;
597 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
598 continue;
599
600 // Create a Builder and replace the target callsite with a gep
601 IRBuilder<> Builder(ToReplace);
602 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
603 Value *Replacement = Builder.CreateGEP(
604 Derived->getSourceElementType(), RelocatedBase, makeArrayRef(OffsetV));
605 Instruction *ReplacementInst = cast<Instruction>(Replacement);
606 ReplacementInst->removeFromParent();
607 ReplacementInst->insertAfter(RelocatedBase);
608 Replacement->takeName(ToReplace);
609 ToReplace->replaceAllUsesWith(Replacement);
610 ToReplace->eraseFromParent();
611
612 MadeChange = true;
613 }
614 return MadeChange;
615 }
616
617 // Turns this:
618 //
619 // %base = ...
620 // %ptr = gep %base + 15
621 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
622 // %base' = relocate(%tok, i32 4, i32 4)
623 // %ptr' = relocate(%tok, i32 4, i32 5)
624 // %val = load %ptr'
625 //
626 // into this:
627 //
628 // %base = ...
629 // %ptr = gep %base + 15
630 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
631 // %base' = gc.relocate(%tok, i32 4, i32 4)
632 // %ptr' = gep %base' + 15
633 // %val = load %ptr'
simplifyOffsetableRelocate(Instruction & I)634 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
635 bool MadeChange = false;
636 SmallVector<User *, 2> AllRelocateCalls;
637
638 for (auto *U : I.users())
639 if (isGCRelocate(dyn_cast<Instruction>(U)))
640 // Collect all the relocate calls associated with a statepoint
641 AllRelocateCalls.push_back(U);
642
643 // We need atleast one base pointer relocation + one derived pointer
644 // relocation to mangle
645 if (AllRelocateCalls.size() < 2)
646 return false;
647
648 // RelocateInstMap is a mapping from the base relocate instruction to the
649 // corresponding derived relocate instructions
650 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
651 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
652 if (RelocateInstMap.empty())
653 return false;
654
655 for (auto &Item : RelocateInstMap)
656 // Item.first is the RelocatedBase to offset against
657 // Item.second is the vector of Targets to replace
658 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
659 return MadeChange;
660 }
661
662 /// SinkCast - Sink the specified cast instruction into its user blocks
SinkCast(CastInst * CI)663 static bool SinkCast(CastInst *CI) {
664 BasicBlock *DefBB = CI->getParent();
665
666 /// InsertedCasts - Only insert a cast in each block once.
667 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
668
669 bool MadeChange = false;
670 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
671 UI != E; ) {
672 Use &TheUse = UI.getUse();
673 Instruction *User = cast<Instruction>(*UI);
674
675 // Figure out which BB this cast is used in. For PHI's this is the
676 // appropriate predecessor block.
677 BasicBlock *UserBB = User->getParent();
678 if (PHINode *PN = dyn_cast<PHINode>(User)) {
679 UserBB = PN->getIncomingBlock(TheUse);
680 }
681
682 // Preincrement use iterator so we don't invalidate it.
683 ++UI;
684
685 // If this user is in the same block as the cast, don't change the cast.
686 if (UserBB == DefBB) continue;
687
688 // If we have already inserted a cast into this block, use it.
689 CastInst *&InsertedCast = InsertedCasts[UserBB];
690
691 if (!InsertedCast) {
692 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
693 InsertedCast =
694 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
695 InsertPt);
696 }
697
698 // Replace a use of the cast with a use of the new cast.
699 TheUse = InsertedCast;
700 MadeChange = true;
701 ++NumCastUses;
702 }
703
704 // If we removed all uses, nuke the cast.
705 if (CI->use_empty()) {
706 CI->eraseFromParent();
707 MadeChange = true;
708 }
709
710 return MadeChange;
711 }
712
713 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
714 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
715 /// sink it into user blocks to reduce the number of virtual
716 /// registers that must be created and coalesced.
717 ///
718 /// Return true if any changes are made.
719 ///
OptimizeNoopCopyExpression(CastInst * CI,const TargetLowering & TLI)720 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
721 // If this is a noop copy,
722 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
723 EVT DstVT = TLI.getValueType(CI->getType());
724
725 // This is an fp<->int conversion?
726 if (SrcVT.isInteger() != DstVT.isInteger())
727 return false;
728
729 // If this is an extension, it will be a zero or sign extension, which
730 // isn't a noop.
731 if (SrcVT.bitsLT(DstVT)) return false;
732
733 // If these values will be promoted, find out what they will be promoted
734 // to. This helps us consider truncates on PPC as noop copies when they
735 // are.
736 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
737 TargetLowering::TypePromoteInteger)
738 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
739 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
740 TargetLowering::TypePromoteInteger)
741 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
742
743 // If, after promotion, these are the same types, this is a noop copy.
744 if (SrcVT != DstVT)
745 return false;
746
747 return SinkCast(CI);
748 }
749
750 /// CombineUAddWithOverflow - try to combine CI into a call to the
751 /// llvm.uadd.with.overflow intrinsic if possible.
752 ///
753 /// Return true if any changes were made.
CombineUAddWithOverflow(CmpInst * CI)754 static bool CombineUAddWithOverflow(CmpInst *CI) {
755 Value *A, *B;
756 Instruction *AddI;
757 if (!match(CI,
758 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
759 return false;
760
761 Type *Ty = AddI->getType();
762 if (!isa<IntegerType>(Ty))
763 return false;
764
765 // We don't want to move around uses of condition values this late, so we we
766 // check if it is legal to create the call to the intrinsic in the basic
767 // block containing the icmp:
768
769 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
770 return false;
771
772 #ifndef NDEBUG
773 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
774 // for now:
775 if (AddI->hasOneUse())
776 assert(*AddI->user_begin() == CI && "expected!");
777 #endif
778
779 Module *M = CI->getParent()->getParent()->getParent();
780 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
781
782 auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
783
784 auto *UAddWithOverflow =
785 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
786 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
787 auto *Overflow =
788 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
789
790 CI->replaceAllUsesWith(Overflow);
791 AddI->replaceAllUsesWith(UAdd);
792 CI->eraseFromParent();
793 AddI->eraseFromParent();
794 return true;
795 }
796
797 /// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce
798 /// the number of virtual registers that must be created and coalesced. This is
799 /// a clear win except on targets with multiple condition code registers
800 /// (PowerPC), where it might lose; some adjustment may be wanted there.
801 ///
802 /// Return true if any changes are made.
SinkCmpExpression(CmpInst * CI)803 static bool SinkCmpExpression(CmpInst *CI) {
804 BasicBlock *DefBB = CI->getParent();
805
806 /// InsertedCmp - Only insert a cmp in each block once.
807 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
808
809 bool MadeChange = false;
810 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
811 UI != E; ) {
812 Use &TheUse = UI.getUse();
813 Instruction *User = cast<Instruction>(*UI);
814
815 // Preincrement use iterator so we don't invalidate it.
816 ++UI;
817
818 // Don't bother for PHI nodes.
819 if (isa<PHINode>(User))
820 continue;
821
822 // Figure out which BB this cmp is used in.
823 BasicBlock *UserBB = User->getParent();
824
825 // If this user is in the same block as the cmp, don't change the cmp.
826 if (UserBB == DefBB) continue;
827
828 // If we have already inserted a cmp into this block, use it.
829 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
830
831 if (!InsertedCmp) {
832 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
833 InsertedCmp =
834 CmpInst::Create(CI->getOpcode(),
835 CI->getPredicate(), CI->getOperand(0),
836 CI->getOperand(1), "", InsertPt);
837 }
838
839 // Replace a use of the cmp with a use of the new cmp.
840 TheUse = InsertedCmp;
841 MadeChange = true;
842 ++NumCmpUses;
843 }
844
845 // If we removed all uses, nuke the cmp.
846 if (CI->use_empty()) {
847 CI->eraseFromParent();
848 MadeChange = true;
849 }
850
851 return MadeChange;
852 }
853
OptimizeCmpExpression(CmpInst * CI)854 static bool OptimizeCmpExpression(CmpInst *CI) {
855 if (SinkCmpExpression(CI))
856 return true;
857
858 if (CombineUAddWithOverflow(CI))
859 return true;
860
861 return false;
862 }
863
864 /// isExtractBitsCandidateUse - Check if the candidates could
865 /// be combined with shift instruction, which includes:
866 /// 1. Truncate instruction
867 /// 2. And instruction and the imm is a mask of the low bits:
868 /// imm & (imm+1) == 0
isExtractBitsCandidateUse(Instruction * User)869 static bool isExtractBitsCandidateUse(Instruction *User) {
870 if (!isa<TruncInst>(User)) {
871 if (User->getOpcode() != Instruction::And ||
872 !isa<ConstantInt>(User->getOperand(1)))
873 return false;
874
875 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
876
877 if ((Cimm & (Cimm + 1)).getBoolValue())
878 return false;
879 }
880 return true;
881 }
882
883 /// SinkShiftAndTruncate - sink both shift and truncate instruction
884 /// to the use of truncate's BB.
885 static bool
SinkShiftAndTruncate(BinaryOperator * ShiftI,Instruction * User,ConstantInt * CI,DenseMap<BasicBlock *,BinaryOperator * > & InsertedShifts,const TargetLowering & TLI)886 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
887 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
888 const TargetLowering &TLI) {
889 BasicBlock *UserBB = User->getParent();
890 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
891 TruncInst *TruncI = dyn_cast<TruncInst>(User);
892 bool MadeChange = false;
893
894 for (Value::user_iterator TruncUI = TruncI->user_begin(),
895 TruncE = TruncI->user_end();
896 TruncUI != TruncE;) {
897
898 Use &TruncTheUse = TruncUI.getUse();
899 Instruction *TruncUser = cast<Instruction>(*TruncUI);
900 // Preincrement use iterator so we don't invalidate it.
901
902 ++TruncUI;
903
904 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
905 if (!ISDOpcode)
906 continue;
907
908 // If the use is actually a legal node, there will not be an
909 // implicit truncate.
910 // FIXME: always querying the result type is just an
911 // approximation; some nodes' legality is determined by the
912 // operand or other means. There's no good way to find out though.
913 if (TLI.isOperationLegalOrCustom(
914 ISDOpcode, TLI.getValueType(TruncUser->getType(), true)))
915 continue;
916
917 // Don't bother for PHI nodes.
918 if (isa<PHINode>(TruncUser))
919 continue;
920
921 BasicBlock *TruncUserBB = TruncUser->getParent();
922
923 if (UserBB == TruncUserBB)
924 continue;
925
926 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
927 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
928
929 if (!InsertedShift && !InsertedTrunc) {
930 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
931 // Sink the shift
932 if (ShiftI->getOpcode() == Instruction::AShr)
933 InsertedShift =
934 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
935 else
936 InsertedShift =
937 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
938
939 // Sink the trunc
940 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
941 TruncInsertPt++;
942
943 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
944 TruncI->getType(), "", TruncInsertPt);
945
946 MadeChange = true;
947
948 TruncTheUse = InsertedTrunc;
949 }
950 }
951 return MadeChange;
952 }
953
954 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
955 /// the uses could potentially be combined with this shift instruction and
956 /// generate BitExtract instruction. It will only be applied if the architecture
957 /// supports BitExtract instruction. Here is an example:
958 /// BB1:
959 /// %x.extract.shift = lshr i64 %arg1, 32
960 /// BB2:
961 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
962 /// ==>
963 ///
964 /// BB2:
965 /// %x.extract.shift.1 = lshr i64 %arg1, 32
966 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
967 ///
968 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
969 /// instruction.
970 /// Return true if any changes are made.
OptimizeExtractBits(BinaryOperator * ShiftI,ConstantInt * CI,const TargetLowering & TLI)971 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
972 const TargetLowering &TLI) {
973 BasicBlock *DefBB = ShiftI->getParent();
974
975 /// Only insert instructions in each block once.
976 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
977
978 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
979
980 bool MadeChange = false;
981 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
982 UI != E;) {
983 Use &TheUse = UI.getUse();
984 Instruction *User = cast<Instruction>(*UI);
985 // Preincrement use iterator so we don't invalidate it.
986 ++UI;
987
988 // Don't bother for PHI nodes.
989 if (isa<PHINode>(User))
990 continue;
991
992 if (!isExtractBitsCandidateUse(User))
993 continue;
994
995 BasicBlock *UserBB = User->getParent();
996
997 if (UserBB == DefBB) {
998 // If the shift and truncate instruction are in the same BB. The use of
999 // the truncate(TruncUse) may still introduce another truncate if not
1000 // legal. In this case, we would like to sink both shift and truncate
1001 // instruction to the BB of TruncUse.
1002 // for example:
1003 // BB1:
1004 // i64 shift.result = lshr i64 opnd, imm
1005 // trunc.result = trunc shift.result to i16
1006 //
1007 // BB2:
1008 // ----> We will have an implicit truncate here if the architecture does
1009 // not have i16 compare.
1010 // cmp i16 trunc.result, opnd2
1011 //
1012 if (isa<TruncInst>(User) && shiftIsLegal
1013 // If the type of the truncate is legal, no trucate will be
1014 // introduced in other basic blocks.
1015 && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
1016 MadeChange =
1017 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
1018
1019 continue;
1020 }
1021 // If we have already inserted a shift into this block, use it.
1022 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1023
1024 if (!InsertedShift) {
1025 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1026
1027 if (ShiftI->getOpcode() == Instruction::AShr)
1028 InsertedShift =
1029 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
1030 else
1031 InsertedShift =
1032 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
1033
1034 MadeChange = true;
1035 }
1036
1037 // Replace a use of the shift with a use of the new shift.
1038 TheUse = InsertedShift;
1039 }
1040
1041 // If we removed all uses, nuke the shift.
1042 if (ShiftI->use_empty())
1043 ShiftI->eraseFromParent();
1044
1045 return MadeChange;
1046 }
1047
1048 // ScalarizeMaskedLoad() translates masked load intrinsic, like
1049 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1050 // <16 x i1> %mask, <16 x i32> %passthru)
1051 // to a chain of basic blocks, whith loading element one-by-one if
1052 // the appropriate mask bit is set
1053 //
1054 // %1 = bitcast i8* %addr to i32*
1055 // %2 = extractelement <16 x i1> %mask, i32 0
1056 // %3 = icmp eq i1 %2, true
1057 // br i1 %3, label %cond.load, label %else
1058 //
1059 //cond.load: ; preds = %0
1060 // %4 = getelementptr i32* %1, i32 0
1061 // %5 = load i32* %4
1062 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1063 // br label %else
1064 //
1065 //else: ; preds = %0, %cond.load
1066 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1067 // %7 = extractelement <16 x i1> %mask, i32 1
1068 // %8 = icmp eq i1 %7, true
1069 // br i1 %8, label %cond.load1, label %else2
1070 //
1071 //cond.load1: ; preds = %else
1072 // %9 = getelementptr i32* %1, i32 1
1073 // %10 = load i32* %9
1074 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1075 // br label %else2
1076 //
1077 //else2: ; preds = %else, %cond.load1
1078 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1079 // %12 = extractelement <16 x i1> %mask, i32 2
1080 // %13 = icmp eq i1 %12, true
1081 // br i1 %13, label %cond.load4, label %else5
1082 //
ScalarizeMaskedLoad(CallInst * CI)1083 static void ScalarizeMaskedLoad(CallInst *CI) {
1084 Value *Ptr = CI->getArgOperand(0);
1085 Value *Src0 = CI->getArgOperand(3);
1086 Value *Mask = CI->getArgOperand(2);
1087 VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1088 Type *EltTy = VecType->getElementType();
1089
1090 assert(VecType && "Unexpected return type of masked load intrinsic");
1091
1092 IRBuilder<> Builder(CI->getContext());
1093 Instruction *InsertPt = CI;
1094 BasicBlock *IfBlock = CI->getParent();
1095 BasicBlock *CondBlock = nullptr;
1096 BasicBlock *PrevIfBlock = CI->getParent();
1097 Builder.SetInsertPoint(InsertPt);
1098
1099 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1100
1101 // Bitcast %addr fron i8* to EltTy*
1102 Type *NewPtrType =
1103 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1104 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1105 Value *UndefVal = UndefValue::get(VecType);
1106
1107 // The result vector
1108 Value *VResult = UndefVal;
1109
1110 PHINode *Phi = nullptr;
1111 Value *PrevPhi = UndefVal;
1112
1113 unsigned VectorWidth = VecType->getNumElements();
1114 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1115
1116 // Fill the "else" block, created in the previous iteration
1117 //
1118 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1119 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1120 // %to_load = icmp eq i1 %mask_1, true
1121 // br i1 %to_load, label %cond.load, label %else
1122 //
1123 if (Idx > 0) {
1124 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1125 Phi->addIncoming(VResult, CondBlock);
1126 Phi->addIncoming(PrevPhi, PrevIfBlock);
1127 PrevPhi = Phi;
1128 VResult = Phi;
1129 }
1130
1131 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1132 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1133 ConstantInt::get(Predicate->getType(), 1));
1134
1135 // Create "cond" block
1136 //
1137 // %EltAddr = getelementptr i32* %1, i32 0
1138 // %Elt = load i32* %EltAddr
1139 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1140 //
1141 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1142 Builder.SetInsertPoint(InsertPt);
1143
1144 Value *Gep =
1145 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1146 LoadInst* Load = Builder.CreateLoad(Gep, false);
1147 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1148
1149 // Create "else" block, fill it in the next iteration
1150 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1151 Builder.SetInsertPoint(InsertPt);
1152 Instruction *OldBr = IfBlock->getTerminator();
1153 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1154 OldBr->eraseFromParent();
1155 PrevIfBlock = IfBlock;
1156 IfBlock = NewIfBlock;
1157 }
1158
1159 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1160 Phi->addIncoming(VResult, CondBlock);
1161 Phi->addIncoming(PrevPhi, PrevIfBlock);
1162 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1163 CI->replaceAllUsesWith(NewI);
1164 CI->eraseFromParent();
1165 }
1166
1167 // ScalarizeMaskedStore() translates masked store intrinsic, like
1168 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1169 // <16 x i1> %mask)
1170 // to a chain of basic blocks, that stores element one-by-one if
1171 // the appropriate mask bit is set
1172 //
1173 // %1 = bitcast i8* %addr to i32*
1174 // %2 = extractelement <16 x i1> %mask, i32 0
1175 // %3 = icmp eq i1 %2, true
1176 // br i1 %3, label %cond.store, label %else
1177 //
1178 // cond.store: ; preds = %0
1179 // %4 = extractelement <16 x i32> %val, i32 0
1180 // %5 = getelementptr i32* %1, i32 0
1181 // store i32 %4, i32* %5
1182 // br label %else
1183 //
1184 // else: ; preds = %0, %cond.store
1185 // %6 = extractelement <16 x i1> %mask, i32 1
1186 // %7 = icmp eq i1 %6, true
1187 // br i1 %7, label %cond.store1, label %else2
1188 //
1189 // cond.store1: ; preds = %else
1190 // %8 = extractelement <16 x i32> %val, i32 1
1191 // %9 = getelementptr i32* %1, i32 1
1192 // store i32 %8, i32* %9
1193 // br label %else2
1194 // . . .
ScalarizeMaskedStore(CallInst * CI)1195 static void ScalarizeMaskedStore(CallInst *CI) {
1196 Value *Ptr = CI->getArgOperand(1);
1197 Value *Src = CI->getArgOperand(0);
1198 Value *Mask = CI->getArgOperand(3);
1199
1200 VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1201 Type *EltTy = VecType->getElementType();
1202
1203 assert(VecType && "Unexpected data type in masked store intrinsic");
1204
1205 IRBuilder<> Builder(CI->getContext());
1206 Instruction *InsertPt = CI;
1207 BasicBlock *IfBlock = CI->getParent();
1208 Builder.SetInsertPoint(InsertPt);
1209 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1210
1211 // Bitcast %addr fron i8* to EltTy*
1212 Type *NewPtrType =
1213 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1214 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1215
1216 unsigned VectorWidth = VecType->getNumElements();
1217 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1218
1219 // Fill the "else" block, created in the previous iteration
1220 //
1221 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1222 // %to_store = icmp eq i1 %mask_1, true
1223 // br i1 %to_load, label %cond.store, label %else
1224 //
1225 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1226 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1227 ConstantInt::get(Predicate->getType(), 1));
1228
1229 // Create "cond" block
1230 //
1231 // %OneElt = extractelement <16 x i32> %Src, i32 Idx
1232 // %EltAddr = getelementptr i32* %1, i32 0
1233 // %store i32 %OneElt, i32* %EltAddr
1234 //
1235 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1236 Builder.SetInsertPoint(InsertPt);
1237
1238 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1239 Value *Gep =
1240 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1241 Builder.CreateStore(OneElt, Gep);
1242
1243 // Create "else" block, fill it in the next iteration
1244 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1245 Builder.SetInsertPoint(InsertPt);
1246 Instruction *OldBr = IfBlock->getTerminator();
1247 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1248 OldBr->eraseFromParent();
1249 IfBlock = NewIfBlock;
1250 }
1251 CI->eraseFromParent();
1252 }
1253
OptimizeCallInst(CallInst * CI,bool & ModifiedDT)1254 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1255 BasicBlock *BB = CI->getParent();
1256
1257 // Lower inline assembly if we can.
1258 // If we found an inline asm expession, and if the target knows how to
1259 // lower it to normal LLVM code, do so now.
1260 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1261 if (TLI->ExpandInlineAsm(CI)) {
1262 // Avoid invalidating the iterator.
1263 CurInstIterator = BB->begin();
1264 // Avoid processing instructions out of order, which could cause
1265 // reuse before a value is defined.
1266 SunkAddrs.clear();
1267 return true;
1268 }
1269 // Sink address computing for memory operands into the block.
1270 if (OptimizeInlineAsmInst(CI))
1271 return true;
1272 }
1273
1274 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
1275
1276 // Align the pointer arguments to this call if the target thinks it's a good
1277 // idea
1278 unsigned MinSize, PrefAlign;
1279 if (TLI && TD && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1280 for (auto &Arg : CI->arg_operands()) {
1281 // We want to align both objects whose address is used directly and
1282 // objects whose address is used in casts and GEPs, though it only makes
1283 // sense for GEPs if the offset is a multiple of the desired alignment and
1284 // if size - offset meets the size threshold.
1285 if (!Arg->getType()->isPointerTy())
1286 continue;
1287 APInt Offset(TD->getPointerSizeInBits(
1288 cast<PointerType>(Arg->getType())->getAddressSpace()), 0);
1289 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*TD, Offset);
1290 uint64_t Offset2 = Offset.getLimitedValue();
1291 if ((Offset2 & (PrefAlign-1)) != 0)
1292 continue;
1293 AllocaInst *AI;
1294 if ((AI = dyn_cast<AllocaInst>(Val)) &&
1295 AI->getAlignment() < PrefAlign &&
1296 TD->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1297 AI->setAlignment(PrefAlign);
1298 // Global variables can only be aligned if they are defined in this
1299 // object (i.e. they are uniquely initialized in this object), and
1300 // over-aligning global variables that have an explicit section is
1301 // forbidden.
1302 GlobalVariable *GV;
1303 if ((GV = dyn_cast<GlobalVariable>(Val)) &&
1304 GV->hasUniqueInitializer() &&
1305 !GV->hasSection() &&
1306 GV->getAlignment() < PrefAlign &&
1307 TD->getTypeAllocSize(
1308 GV->getType()->getElementType()) >= MinSize + Offset2)
1309 GV->setAlignment(PrefAlign);
1310 }
1311 // If this is a memcpy (or similar) then we may be able to improve the
1312 // alignment
1313 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1314 unsigned Align = getKnownAlignment(MI->getDest(), *TD);
1315 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1316 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *TD));
1317 if (Align > MI->getAlignment())
1318 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1319 }
1320 }
1321
1322 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1323 if (II) {
1324 switch (II->getIntrinsicID()) {
1325 default: break;
1326 case Intrinsic::objectsize: {
1327 // Lower all uses of llvm.objectsize.*
1328 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1329 Type *ReturnTy = CI->getType();
1330 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1331
1332 // Substituting this can cause recursive simplifications, which can
1333 // invalidate our iterator. Use a WeakVH to hold onto it in case this
1334 // happens.
1335 WeakVH IterHandle(CurInstIterator);
1336
1337 replaceAndRecursivelySimplify(CI, RetVal,
1338 TLInfo, nullptr);
1339
1340 // If the iterator instruction was recursively deleted, start over at the
1341 // start of the block.
1342 if (IterHandle != CurInstIterator) {
1343 CurInstIterator = BB->begin();
1344 SunkAddrs.clear();
1345 }
1346 return true;
1347 }
1348 case Intrinsic::masked_load: {
1349 // Scalarize unsupported vector masked load
1350 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) {
1351 ScalarizeMaskedLoad(CI);
1352 ModifiedDT = true;
1353 return true;
1354 }
1355 return false;
1356 }
1357 case Intrinsic::masked_store: {
1358 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) {
1359 ScalarizeMaskedStore(CI);
1360 ModifiedDT = true;
1361 return true;
1362 }
1363 return false;
1364 }
1365 }
1366
1367 if (TLI) {
1368 SmallVector<Value*, 2> PtrOps;
1369 Type *AccessTy;
1370 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
1371 while (!PtrOps.empty())
1372 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
1373 return true;
1374 }
1375 }
1376
1377 // From here on out we're working with named functions.
1378 if (!CI->getCalledFunction()) return false;
1379
1380 // Lower all default uses of _chk calls. This is very similar
1381 // to what InstCombineCalls does, but here we are only lowering calls
1382 // to fortified library functions (e.g. __memcpy_chk) that have the default
1383 // "don't know" as the objectsize. Anything else should be left alone.
1384 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1385 if (Value *V = Simplifier.optimizeCall(CI)) {
1386 CI->replaceAllUsesWith(V);
1387 CI->eraseFromParent();
1388 return true;
1389 }
1390 return false;
1391 }
1392
1393 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
1394 /// instructions to the predecessor to enable tail call optimizations. The
1395 /// case it is currently looking for is:
1396 /// @code
1397 /// bb0:
1398 /// %tmp0 = tail call i32 @f0()
1399 /// br label %return
1400 /// bb1:
1401 /// %tmp1 = tail call i32 @f1()
1402 /// br label %return
1403 /// bb2:
1404 /// %tmp2 = tail call i32 @f2()
1405 /// br label %return
1406 /// return:
1407 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1408 /// ret i32 %retval
1409 /// @endcode
1410 ///
1411 /// =>
1412 ///
1413 /// @code
1414 /// bb0:
1415 /// %tmp0 = tail call i32 @f0()
1416 /// ret i32 %tmp0
1417 /// bb1:
1418 /// %tmp1 = tail call i32 @f1()
1419 /// ret i32 %tmp1
1420 /// bb2:
1421 /// %tmp2 = tail call i32 @f2()
1422 /// ret i32 %tmp2
1423 /// @endcode
DupRetToEnableTailCallOpts(BasicBlock * BB)1424 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
1425 if (!TLI)
1426 return false;
1427
1428 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1429 if (!RI)
1430 return false;
1431
1432 PHINode *PN = nullptr;
1433 BitCastInst *BCI = nullptr;
1434 Value *V = RI->getReturnValue();
1435 if (V) {
1436 BCI = dyn_cast<BitCastInst>(V);
1437 if (BCI)
1438 V = BCI->getOperand(0);
1439
1440 PN = dyn_cast<PHINode>(V);
1441 if (!PN)
1442 return false;
1443 }
1444
1445 if (PN && PN->getParent() != BB)
1446 return false;
1447
1448 // It's not safe to eliminate the sign / zero extension of the return value.
1449 // See llvm::isInTailCallPosition().
1450 const Function *F = BB->getParent();
1451 AttributeSet CallerAttrs = F->getAttributes();
1452 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1453 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1454 return false;
1455
1456 // Make sure there are no instructions between the PHI and return, or that the
1457 // return is the first instruction in the block.
1458 if (PN) {
1459 BasicBlock::iterator BI = BB->begin();
1460 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1461 if (&*BI == BCI)
1462 // Also skip over the bitcast.
1463 ++BI;
1464 if (&*BI != RI)
1465 return false;
1466 } else {
1467 BasicBlock::iterator BI = BB->begin();
1468 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1469 if (&*BI != RI)
1470 return false;
1471 }
1472
1473 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1474 /// call.
1475 SmallVector<CallInst*, 4> TailCalls;
1476 if (PN) {
1477 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1478 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1479 // Make sure the phi value is indeed produced by the tail call.
1480 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1481 TLI->mayBeEmittedAsTailCall(CI))
1482 TailCalls.push_back(CI);
1483 }
1484 } else {
1485 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1486 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1487 if (!VisitedBBs.insert(*PI).second)
1488 continue;
1489
1490 BasicBlock::InstListType &InstList = (*PI)->getInstList();
1491 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1492 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1493 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1494 if (RI == RE)
1495 continue;
1496
1497 CallInst *CI = dyn_cast<CallInst>(&*RI);
1498 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1499 TailCalls.push_back(CI);
1500 }
1501 }
1502
1503 bool Changed = false;
1504 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1505 CallInst *CI = TailCalls[i];
1506 CallSite CS(CI);
1507
1508 // Conservatively require the attributes of the call to match those of the
1509 // return. Ignore noalias because it doesn't affect the call sequence.
1510 AttributeSet CalleeAttrs = CS.getAttributes();
1511 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1512 removeAttribute(Attribute::NoAlias) !=
1513 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1514 removeAttribute(Attribute::NoAlias))
1515 continue;
1516
1517 // Make sure the call instruction is followed by an unconditional branch to
1518 // the return block.
1519 BasicBlock *CallBB = CI->getParent();
1520 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1521 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1522 continue;
1523
1524 // Duplicate the return into CallBB.
1525 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
1526 ModifiedDT = Changed = true;
1527 ++NumRetsDup;
1528 }
1529
1530 // If we eliminated all predecessors of the block, delete the block now.
1531 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1532 BB->eraseFromParent();
1533
1534 return Changed;
1535 }
1536
1537 //===----------------------------------------------------------------------===//
1538 // Memory Optimization
1539 //===----------------------------------------------------------------------===//
1540
1541 namespace {
1542
1543 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
1544 /// which holds actual Value*'s for register values.
1545 struct ExtAddrMode : public TargetLowering::AddrMode {
1546 Value *BaseReg;
1547 Value *ScaledReg;
ExtAddrMode__anonebd7bfba0211::ExtAddrMode1548 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
1549 void print(raw_ostream &OS) const;
1550 void dump() const;
1551
operator ==__anonebd7bfba0211::ExtAddrMode1552 bool operator==(const ExtAddrMode& O) const {
1553 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
1554 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
1555 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
1556 }
1557 };
1558
1559 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ExtAddrMode & AM)1560 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
1561 AM.print(OS);
1562 return OS;
1563 }
1564 #endif
1565
print(raw_ostream & OS) const1566 void ExtAddrMode::print(raw_ostream &OS) const {
1567 bool NeedPlus = false;
1568 OS << "[";
1569 if (BaseGV) {
1570 OS << (NeedPlus ? " + " : "")
1571 << "GV:";
1572 BaseGV->printAsOperand(OS, /*PrintType=*/false);
1573 NeedPlus = true;
1574 }
1575
1576 if (BaseOffs) {
1577 OS << (NeedPlus ? " + " : "")
1578 << BaseOffs;
1579 NeedPlus = true;
1580 }
1581
1582 if (BaseReg) {
1583 OS << (NeedPlus ? " + " : "")
1584 << "Base:";
1585 BaseReg->printAsOperand(OS, /*PrintType=*/false);
1586 NeedPlus = true;
1587 }
1588 if (Scale) {
1589 OS << (NeedPlus ? " + " : "")
1590 << Scale << "*";
1591 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
1592 }
1593
1594 OS << ']';
1595 }
1596
1597 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1598 void ExtAddrMode::dump() const {
1599 print(dbgs());
1600 dbgs() << '\n';
1601 }
1602 #endif
1603
1604 /// \brief This class provides transaction based operation on the IR.
1605 /// Every change made through this class is recorded in the internal state and
1606 /// can be undone (rollback) until commit is called.
1607 class TypePromotionTransaction {
1608
1609 /// \brief This represents the common interface of the individual transaction.
1610 /// Each class implements the logic for doing one specific modification on
1611 /// the IR via the TypePromotionTransaction.
1612 class TypePromotionAction {
1613 protected:
1614 /// The Instruction modified.
1615 Instruction *Inst;
1616
1617 public:
1618 /// \brief Constructor of the action.
1619 /// The constructor performs the related action on the IR.
TypePromotionAction(Instruction * Inst)1620 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
1621
~TypePromotionAction()1622 virtual ~TypePromotionAction() {}
1623
1624 /// \brief Undo the modification done by this action.
1625 /// When this method is called, the IR must be in the same state as it was
1626 /// before this action was applied.
1627 /// \pre Undoing the action works if and only if the IR is in the exact same
1628 /// state as it was directly after this action was applied.
1629 virtual void undo() = 0;
1630
1631 /// \brief Advocate every change made by this action.
1632 /// When the results on the IR of the action are to be kept, it is important
1633 /// to call this function, otherwise hidden information may be kept forever.
commit()1634 virtual void commit() {
1635 // Nothing to be done, this action is not doing anything.
1636 }
1637 };
1638
1639 /// \brief Utility to remember the position of an instruction.
1640 class InsertionHandler {
1641 /// Position of an instruction.
1642 /// Either an instruction:
1643 /// - Is the first in a basic block: BB is used.
1644 /// - Has a previous instructon: PrevInst is used.
1645 union {
1646 Instruction *PrevInst;
1647 BasicBlock *BB;
1648 } Point;
1649 /// Remember whether or not the instruction had a previous instruction.
1650 bool HasPrevInstruction;
1651
1652 public:
1653 /// \brief Record the position of \p Inst.
InsertionHandler(Instruction * Inst)1654 InsertionHandler(Instruction *Inst) {
1655 BasicBlock::iterator It = Inst;
1656 HasPrevInstruction = (It != (Inst->getParent()->begin()));
1657 if (HasPrevInstruction)
1658 Point.PrevInst = --It;
1659 else
1660 Point.BB = Inst->getParent();
1661 }
1662
1663 /// \brief Insert \p Inst at the recorded position.
insert(Instruction * Inst)1664 void insert(Instruction *Inst) {
1665 if (HasPrevInstruction) {
1666 if (Inst->getParent())
1667 Inst->removeFromParent();
1668 Inst->insertAfter(Point.PrevInst);
1669 } else {
1670 Instruction *Position = Point.BB->getFirstInsertionPt();
1671 if (Inst->getParent())
1672 Inst->moveBefore(Position);
1673 else
1674 Inst->insertBefore(Position);
1675 }
1676 }
1677 };
1678
1679 /// \brief Move an instruction before another.
1680 class InstructionMoveBefore : public TypePromotionAction {
1681 /// Original position of the instruction.
1682 InsertionHandler Position;
1683
1684 public:
1685 /// \brief Move \p Inst before \p Before.
InstructionMoveBefore(Instruction * Inst,Instruction * Before)1686 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
1687 : TypePromotionAction(Inst), Position(Inst) {
1688 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
1689 Inst->moveBefore(Before);
1690 }
1691
1692 /// \brief Move the instruction back to its original position.
undo()1693 void undo() override {
1694 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
1695 Position.insert(Inst);
1696 }
1697 };
1698
1699 /// \brief Set the operand of an instruction with a new value.
1700 class OperandSetter : public TypePromotionAction {
1701 /// Original operand of the instruction.
1702 Value *Origin;
1703 /// Index of the modified instruction.
1704 unsigned Idx;
1705
1706 public:
1707 /// \brief Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction * Inst,unsigned Idx,Value * NewVal)1708 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
1709 : TypePromotionAction(Inst), Idx(Idx) {
1710 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
1711 << "for:" << *Inst << "\n"
1712 << "with:" << *NewVal << "\n");
1713 Origin = Inst->getOperand(Idx);
1714 Inst->setOperand(Idx, NewVal);
1715 }
1716
1717 /// \brief Restore the original value of the instruction.
undo()1718 void undo() override {
1719 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
1720 << "for: " << *Inst << "\n"
1721 << "with: " << *Origin << "\n");
1722 Inst->setOperand(Idx, Origin);
1723 }
1724 };
1725
1726 /// \brief Hide the operands of an instruction.
1727 /// Do as if this instruction was not using any of its operands.
1728 class OperandsHider : public TypePromotionAction {
1729 /// The list of original operands.
1730 SmallVector<Value *, 4> OriginalValues;
1731
1732 public:
1733 /// \brief Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction * Inst)1734 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
1735 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
1736 unsigned NumOpnds = Inst->getNumOperands();
1737 OriginalValues.reserve(NumOpnds);
1738 for (unsigned It = 0; It < NumOpnds; ++It) {
1739 // Save the current operand.
1740 Value *Val = Inst->getOperand(It);
1741 OriginalValues.push_back(Val);
1742 // Set a dummy one.
1743 // We could use OperandSetter here, but that would implied an overhead
1744 // that we are not willing to pay.
1745 Inst->setOperand(It, UndefValue::get(Val->getType()));
1746 }
1747 }
1748
1749 /// \brief Restore the original list of uses.
undo()1750 void undo() override {
1751 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
1752 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
1753 Inst->setOperand(It, OriginalValues[It]);
1754 }
1755 };
1756
1757 /// \brief Build a truncate instruction.
1758 class TruncBuilder : public TypePromotionAction {
1759 Value *Val;
1760 public:
1761 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
1762 /// result.
1763 /// trunc Opnd to Ty.
TruncBuilder(Instruction * Opnd,Type * Ty)1764 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
1765 IRBuilder<> Builder(Opnd);
1766 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
1767 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
1768 }
1769
1770 /// \brief Get the built value.
getBuiltValue()1771 Value *getBuiltValue() { return Val; }
1772
1773 /// \brief Remove the built instruction.
undo()1774 void undo() override {
1775 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
1776 if (Instruction *IVal = dyn_cast<Instruction>(Val))
1777 IVal->eraseFromParent();
1778 }
1779 };
1780
1781 /// \brief Build a sign extension instruction.
1782 class SExtBuilder : public TypePromotionAction {
1783 Value *Val;
1784 public:
1785 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
1786 /// result.
1787 /// sext Opnd to Ty.
SExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)1788 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1789 : TypePromotionAction(InsertPt) {
1790 IRBuilder<> Builder(InsertPt);
1791 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
1792 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
1793 }
1794
1795 /// \brief Get the built value.
getBuiltValue()1796 Value *getBuiltValue() { return Val; }
1797
1798 /// \brief Remove the built instruction.
undo()1799 void undo() override {
1800 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
1801 if (Instruction *IVal = dyn_cast<Instruction>(Val))
1802 IVal->eraseFromParent();
1803 }
1804 };
1805
1806 /// \brief Build a zero extension instruction.
1807 class ZExtBuilder : public TypePromotionAction {
1808 Value *Val;
1809 public:
1810 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
1811 /// result.
1812 /// zext Opnd to Ty.
ZExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)1813 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1814 : TypePromotionAction(InsertPt) {
1815 IRBuilder<> Builder(InsertPt);
1816 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
1817 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
1818 }
1819
1820 /// \brief Get the built value.
getBuiltValue()1821 Value *getBuiltValue() { return Val; }
1822
1823 /// \brief Remove the built instruction.
undo()1824 void undo() override {
1825 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
1826 if (Instruction *IVal = dyn_cast<Instruction>(Val))
1827 IVal->eraseFromParent();
1828 }
1829 };
1830
1831 /// \brief Mutate an instruction to another type.
1832 class TypeMutator : public TypePromotionAction {
1833 /// Record the original type.
1834 Type *OrigTy;
1835
1836 public:
1837 /// \brief Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction * Inst,Type * NewTy)1838 TypeMutator(Instruction *Inst, Type *NewTy)
1839 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
1840 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
1841 << "\n");
1842 Inst->mutateType(NewTy);
1843 }
1844
1845 /// \brief Mutate the instruction back to its original type.
undo()1846 void undo() override {
1847 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
1848 << "\n");
1849 Inst->mutateType(OrigTy);
1850 }
1851 };
1852
1853 /// \brief Replace the uses of an instruction by another instruction.
1854 class UsesReplacer : public TypePromotionAction {
1855 /// Helper structure to keep track of the replaced uses.
1856 struct InstructionAndIdx {
1857 /// The instruction using the instruction.
1858 Instruction *Inst;
1859 /// The index where this instruction is used for Inst.
1860 unsigned Idx;
InstructionAndIdx__anonebd7bfba0211::TypePromotionTransaction::UsesReplacer::InstructionAndIdx1861 InstructionAndIdx(Instruction *Inst, unsigned Idx)
1862 : Inst(Inst), Idx(Idx) {}
1863 };
1864
1865 /// Keep track of the original uses (pair Instruction, Index).
1866 SmallVector<InstructionAndIdx, 4> OriginalUses;
1867 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
1868
1869 public:
1870 /// \brief Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction * Inst,Value * New)1871 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
1872 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
1873 << "\n");
1874 // Record the original uses.
1875 for (Use &U : Inst->uses()) {
1876 Instruction *UserI = cast<Instruction>(U.getUser());
1877 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
1878 }
1879 // Now, we can replace the uses.
1880 Inst->replaceAllUsesWith(New);
1881 }
1882
1883 /// \brief Reassign the original uses of Inst to Inst.
undo()1884 void undo() override {
1885 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
1886 for (use_iterator UseIt = OriginalUses.begin(),
1887 EndIt = OriginalUses.end();
1888 UseIt != EndIt; ++UseIt) {
1889 UseIt->Inst->setOperand(UseIt->Idx, Inst);
1890 }
1891 }
1892 };
1893
1894 /// \brief Remove an instruction from the IR.
1895 class InstructionRemover : public TypePromotionAction {
1896 /// Original position of the instruction.
1897 InsertionHandler Inserter;
1898 /// Helper structure to hide all the link to the instruction. In other
1899 /// words, this helps to do as if the instruction was removed.
1900 OperandsHider Hider;
1901 /// Keep track of the uses replaced, if any.
1902 UsesReplacer *Replacer;
1903
1904 public:
1905 /// \brief Remove all reference of \p Inst and optinally replace all its
1906 /// uses with New.
1907 /// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction * Inst,Value * New=nullptr)1908 InstructionRemover(Instruction *Inst, Value *New = nullptr)
1909 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
1910 Replacer(nullptr) {
1911 if (New)
1912 Replacer = new UsesReplacer(Inst, New);
1913 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
1914 Inst->removeFromParent();
1915 }
1916
~InstructionRemover()1917 ~InstructionRemover() override { delete Replacer; }
1918
1919 /// \brief Really remove the instruction.
commit()1920 void commit() override { delete Inst; }
1921
1922 /// \brief Resurrect the instruction and reassign it to the proper uses if
1923 /// new value was provided when build this action.
undo()1924 void undo() override {
1925 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
1926 Inserter.insert(Inst);
1927 if (Replacer)
1928 Replacer->undo();
1929 Hider.undo();
1930 }
1931 };
1932
1933 public:
1934 /// Restoration point.
1935 /// The restoration point is a pointer to an action instead of an iterator
1936 /// because the iterator may be invalidated but not the pointer.
1937 typedef const TypePromotionAction *ConstRestorationPt;
1938 /// Advocate every changes made in that transaction.
1939 void commit();
1940 /// Undo all the changes made after the given point.
1941 void rollback(ConstRestorationPt Point);
1942 /// Get the current restoration point.
1943 ConstRestorationPt getRestorationPoint() const;
1944
1945 /// \name API for IR modification with state keeping to support rollback.
1946 /// @{
1947 /// Same as Instruction::setOperand.
1948 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
1949 /// Same as Instruction::eraseFromParent.
1950 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
1951 /// Same as Value::replaceAllUsesWith.
1952 void replaceAllUsesWith(Instruction *Inst, Value *New);
1953 /// Same as Value::mutateType.
1954 void mutateType(Instruction *Inst, Type *NewTy);
1955 /// Same as IRBuilder::createTrunc.
1956 Value *createTrunc(Instruction *Opnd, Type *Ty);
1957 /// Same as IRBuilder::createSExt.
1958 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
1959 /// Same as IRBuilder::createZExt.
1960 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
1961 /// Same as Instruction::moveBefore.
1962 void moveBefore(Instruction *Inst, Instruction *Before);
1963 /// @}
1964
1965 private:
1966 /// The ordered list of actions made so far.
1967 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
1968 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
1969 };
1970
setOperand(Instruction * Inst,unsigned Idx,Value * NewVal)1971 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
1972 Value *NewVal) {
1973 Actions.push_back(
1974 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
1975 }
1976
eraseInstruction(Instruction * Inst,Value * NewVal)1977 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
1978 Value *NewVal) {
1979 Actions.push_back(
1980 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
1981 }
1982
replaceAllUsesWith(Instruction * Inst,Value * New)1983 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
1984 Value *New) {
1985 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
1986 }
1987
mutateType(Instruction * Inst,Type * NewTy)1988 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
1989 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
1990 }
1991
createTrunc(Instruction * Opnd,Type * Ty)1992 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
1993 Type *Ty) {
1994 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
1995 Value *Val = Ptr->getBuiltValue();
1996 Actions.push_back(std::move(Ptr));
1997 return Val;
1998 }
1999
createSExt(Instruction * Inst,Value * Opnd,Type * Ty)2000 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2001 Value *Opnd, Type *Ty) {
2002 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2003 Value *Val = Ptr->getBuiltValue();
2004 Actions.push_back(std::move(Ptr));
2005 return Val;
2006 }
2007
createZExt(Instruction * Inst,Value * Opnd,Type * Ty)2008 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2009 Value *Opnd, Type *Ty) {
2010 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2011 Value *Val = Ptr->getBuiltValue();
2012 Actions.push_back(std::move(Ptr));
2013 return Val;
2014 }
2015
moveBefore(Instruction * Inst,Instruction * Before)2016 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2017 Instruction *Before) {
2018 Actions.push_back(
2019 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2020 }
2021
2022 TypePromotionTransaction::ConstRestorationPt
getRestorationPoint() const2023 TypePromotionTransaction::getRestorationPoint() const {
2024 return !Actions.empty() ? Actions.back().get() : nullptr;
2025 }
2026
commit()2027 void TypePromotionTransaction::commit() {
2028 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2029 ++It)
2030 (*It)->commit();
2031 Actions.clear();
2032 }
2033
rollback(TypePromotionTransaction::ConstRestorationPt Point)2034 void TypePromotionTransaction::rollback(
2035 TypePromotionTransaction::ConstRestorationPt Point) {
2036 while (!Actions.empty() && Point != Actions.back().get()) {
2037 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2038 Curr->undo();
2039 }
2040 }
2041
2042 /// \brief A helper class for matching addressing modes.
2043 ///
2044 /// This encapsulates the logic for matching the target-legal addressing modes.
2045 class AddressingModeMatcher {
2046 SmallVectorImpl<Instruction*> &AddrModeInsts;
2047 const TargetMachine &TM;
2048 const TargetLowering &TLI;
2049
2050 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2051 /// the memory instruction that we're computing this address for.
2052 Type *AccessTy;
2053 Instruction *MemoryInst;
2054
2055 /// AddrMode - This is the addressing mode that we're building up. This is
2056 /// part of the return value of this addressing mode matching stuff.
2057 ExtAddrMode &AddrMode;
2058
2059 /// The truncate instruction inserted by other CodeGenPrepare optimizations.
2060 const SetOfInstrs &InsertedTruncs;
2061 /// A map from the instructions to their type before promotion.
2062 InstrToOrigTy &PromotedInsts;
2063 /// The ongoing transaction where every action should be registered.
2064 TypePromotionTransaction &TPT;
2065
2066 /// IgnoreProfitability - This is set to true when we should not do
2067 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
2068 /// always returns true.
2069 bool IgnoreProfitability;
2070
AddressingModeMatcher(SmallVectorImpl<Instruction * > & AMI,const TargetMachine & TM,Type * AT,Instruction * MI,ExtAddrMode & AM,const SetOfInstrs & InsertedTruncs,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT)2071 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2072 const TargetMachine &TM, Type *AT, Instruction *MI,
2073 ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs,
2074 InstrToOrigTy &PromotedInsts,
2075 TypePromotionTransaction &TPT)
2076 : AddrModeInsts(AMI), TM(TM),
2077 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2078 ->getTargetLowering()),
2079 AccessTy(AT), MemoryInst(MI), AddrMode(AM),
2080 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
2081 IgnoreProfitability = false;
2082 }
2083 public:
2084
2085 /// Match - Find the maximal addressing mode that a load/store of V can fold,
2086 /// give an access type of AccessTy. This returns a list of involved
2087 /// instructions in AddrModeInsts.
2088 /// \p InsertedTruncs The truncate instruction inserted by other
2089 /// CodeGenPrepare
2090 /// optimizations.
2091 /// \p PromotedInsts maps the instructions to their type before promotion.
2092 /// \p The ongoing transaction where every action should be registered.
Match(Value * V,Type * AccessTy,Instruction * MemoryInst,SmallVectorImpl<Instruction * > & AddrModeInsts,const TargetMachine & TM,const SetOfInstrs & InsertedTruncs,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT)2093 static ExtAddrMode Match(Value *V, Type *AccessTy,
2094 Instruction *MemoryInst,
2095 SmallVectorImpl<Instruction*> &AddrModeInsts,
2096 const TargetMachine &TM,
2097 const SetOfInstrs &InsertedTruncs,
2098 InstrToOrigTy &PromotedInsts,
2099 TypePromotionTransaction &TPT) {
2100 ExtAddrMode Result;
2101
2102 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy,
2103 MemoryInst, Result, InsertedTruncs,
2104 PromotedInsts, TPT).MatchAddr(V, 0);
2105 (void)Success; assert(Success && "Couldn't select *anything*?");
2106 return Result;
2107 }
2108 private:
2109 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2110 bool MatchAddr(Value *V, unsigned Depth);
2111 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2112 bool *MovedAway = nullptr);
2113 bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
2114 ExtAddrMode &AMBefore,
2115 ExtAddrMode &AMAfter);
2116 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2117 bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost,
2118 Value *PromotedOperand) const;
2119 };
2120
2121 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
2122 /// Return true and update AddrMode if this addr mode is legal for the target,
2123 /// false if not.
MatchScaledValue(Value * ScaleReg,int64_t Scale,unsigned Depth)2124 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
2125 unsigned Depth) {
2126 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2127 // mode. Just process that directly.
2128 if (Scale == 1)
2129 return MatchAddr(ScaleReg, Depth);
2130
2131 // If the scale is 0, it takes nothing to add this.
2132 if (Scale == 0)
2133 return true;
2134
2135 // If we already have a scale of this value, we can add to it, otherwise, we
2136 // need an available scale field.
2137 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2138 return false;
2139
2140 ExtAddrMode TestAddrMode = AddrMode;
2141
2142 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
2143 // [A+B + A*7] -> [B+A*8].
2144 TestAddrMode.Scale += Scale;
2145 TestAddrMode.ScaledReg = ScaleReg;
2146
2147 // If the new address isn't legal, bail out.
2148 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
2149 return false;
2150
2151 // It was legal, so commit it.
2152 AddrMode = TestAddrMode;
2153
2154 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
2155 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
2156 // X*Scale + C*Scale to addr mode.
2157 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2158 if (isa<Instruction>(ScaleReg) && // not a constant expr.
2159 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2160 TestAddrMode.ScaledReg = AddLHS;
2161 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2162
2163 // If this addressing mode is legal, commit it and remember that we folded
2164 // this instruction.
2165 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
2166 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2167 AddrMode = TestAddrMode;
2168 return true;
2169 }
2170 }
2171
2172 // Otherwise, not (x+c)*scale, just return what we have.
2173 return true;
2174 }
2175
2176 /// MightBeFoldableInst - This is a little filter, which returns true if an
2177 /// addressing computation involving I might be folded into a load/store
2178 /// accessing it. This doesn't need to be perfect, but needs to accept at least
2179 /// the set of instructions that MatchOperationAddr can.
MightBeFoldableInst(Instruction * I)2180 static bool MightBeFoldableInst(Instruction *I) {
2181 switch (I->getOpcode()) {
2182 case Instruction::BitCast:
2183 case Instruction::AddrSpaceCast:
2184 // Don't touch identity bitcasts.
2185 if (I->getType() == I->getOperand(0)->getType())
2186 return false;
2187 return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2188 case Instruction::PtrToInt:
2189 // PtrToInt is always a noop, as we know that the int type is pointer sized.
2190 return true;
2191 case Instruction::IntToPtr:
2192 // We know the input is intptr_t, so this is foldable.
2193 return true;
2194 case Instruction::Add:
2195 return true;
2196 case Instruction::Mul:
2197 case Instruction::Shl:
2198 // Can only handle X*C and X << C.
2199 return isa<ConstantInt>(I->getOperand(1));
2200 case Instruction::GetElementPtr:
2201 return true;
2202 default:
2203 return false;
2204 }
2205 }
2206
2207 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2208 /// \note \p Val is assumed to be the product of some type promotion.
2209 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2210 /// to be legal, as the non-promoted value would have had the same state.
isPromotedInstructionLegal(const TargetLowering & TLI,Value * Val)2211 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) {
2212 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2213 if (!PromotedInst)
2214 return false;
2215 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2216 // If the ISDOpcode is undefined, it was undefined before the promotion.
2217 if (!ISDOpcode)
2218 return true;
2219 // Otherwise, check if the promoted instruction is legal or not.
2220 return TLI.isOperationLegalOrCustom(
2221 ISDOpcode, TLI.getValueType(PromotedInst->getType()));
2222 }
2223
2224 /// \brief Hepler class to perform type promotion.
2225 class TypePromotionHelper {
2226 /// \brief Utility function to check whether or not a sign or zero extension
2227 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2228 /// either using the operands of \p Inst or promoting \p Inst.
2229 /// The type of the extension is defined by \p IsSExt.
2230 /// In other words, check if:
2231 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2232 /// #1 Promotion applies:
2233 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2234 /// #2 Operand reuses:
2235 /// ext opnd1 to ConsideredExtType.
2236 /// \p PromotedInsts maps the instructions to their type before promotion.
2237 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2238 const InstrToOrigTy &PromotedInsts, bool IsSExt);
2239
2240 /// \brief Utility function to determine if \p OpIdx should be promoted when
2241 /// promoting \p Inst.
shouldExtOperand(const Instruction * Inst,int OpIdx)2242 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2243 if (isa<SelectInst>(Inst) && OpIdx == 0)
2244 return false;
2245 return true;
2246 }
2247
2248 /// \brief Utility function to promote the operand of \p Ext when this
2249 /// operand is a promotable trunc or sext or zext.
2250 /// \p PromotedInsts maps the instructions to their type before promotion.
2251 /// \p CreatedInstsCost[out] contains the cost of all instructions
2252 /// created to promote the operand of Ext.
2253 /// Newly added extensions are inserted in \p Exts.
2254 /// Newly added truncates are inserted in \p Truncs.
2255 /// Should never be called directly.
2256 /// \return The promoted value which is used instead of Ext.
2257 static Value *promoteOperandForTruncAndAnyExt(
2258 Instruction *Ext, TypePromotionTransaction &TPT,
2259 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2260 SmallVectorImpl<Instruction *> *Exts,
2261 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2262
2263 /// \brief Utility function to promote the operand of \p Ext when this
2264 /// operand is promotable and is not a supported trunc or sext.
2265 /// \p PromotedInsts maps the instructions to their type before promotion.
2266 /// \p CreatedInstsCost[out] contains the cost of all the instructions
2267 /// created to promote the operand of Ext.
2268 /// Newly added extensions are inserted in \p Exts.
2269 /// Newly added truncates are inserted in \p Truncs.
2270 /// Should never be called directly.
2271 /// \return The promoted value which is used instead of Ext.
2272 static Value *promoteOperandForOther(Instruction *Ext,
2273 TypePromotionTransaction &TPT,
2274 InstrToOrigTy &PromotedInsts,
2275 unsigned &CreatedInstsCost,
2276 SmallVectorImpl<Instruction *> *Exts,
2277 SmallVectorImpl<Instruction *> *Truncs,
2278 const TargetLowering &TLI, bool IsSExt);
2279
2280 /// \see promoteOperandForOther.
signExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2281 static Value *signExtendOperandForOther(
2282 Instruction *Ext, TypePromotionTransaction &TPT,
2283 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2284 SmallVectorImpl<Instruction *> *Exts,
2285 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2286 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2287 Exts, Truncs, TLI, true);
2288 }
2289
2290 /// \see promoteOperandForOther.
zeroExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2291 static Value *zeroExtendOperandForOther(
2292 Instruction *Ext, TypePromotionTransaction &TPT,
2293 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2294 SmallVectorImpl<Instruction *> *Exts,
2295 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2296 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2297 Exts, Truncs, TLI, false);
2298 }
2299
2300 public:
2301 /// Type for the utility function that promotes the operand of Ext.
2302 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2303 InstrToOrigTy &PromotedInsts,
2304 unsigned &CreatedInstsCost,
2305 SmallVectorImpl<Instruction *> *Exts,
2306 SmallVectorImpl<Instruction *> *Truncs,
2307 const TargetLowering &TLI);
2308 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2309 /// action to promote the operand of \p Ext instead of using Ext.
2310 /// \return NULL if no promotable action is possible with the current
2311 /// sign extension.
2312 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
2313 /// the others CodeGenPrepare optimizations. This information is important
2314 /// because we do not want to promote these instructions as CodeGenPrepare
2315 /// will reinsert them later. Thus creating an infinite loop: create/remove.
2316 /// \p PromotedInsts maps the instructions to their type before promotion.
2317 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs,
2318 const TargetLowering &TLI,
2319 const InstrToOrigTy &PromotedInsts);
2320 };
2321
canGetThrough(const Instruction * Inst,Type * ConsideredExtType,const InstrToOrigTy & PromotedInsts,bool IsSExt)2322 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2323 Type *ConsideredExtType,
2324 const InstrToOrigTy &PromotedInsts,
2325 bool IsSExt) {
2326 // The promotion helper does not know how to deal with vector types yet.
2327 // To be able to fix that, we would need to fix the places where we
2328 // statically extend, e.g., constants and such.
2329 if (Inst->getType()->isVectorTy())
2330 return false;
2331
2332 // We can always get through zext.
2333 if (isa<ZExtInst>(Inst))
2334 return true;
2335
2336 // sext(sext) is ok too.
2337 if (IsSExt && isa<SExtInst>(Inst))
2338 return true;
2339
2340 // We can get through binary operator, if it is legal. In other words, the
2341 // binary operator must have a nuw or nsw flag.
2342 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2343 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2344 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2345 (IsSExt && BinOp->hasNoSignedWrap())))
2346 return true;
2347
2348 // Check if we can do the following simplification.
2349 // ext(trunc(opnd)) --> ext(opnd)
2350 if (!isa<TruncInst>(Inst))
2351 return false;
2352
2353 Value *OpndVal = Inst->getOperand(0);
2354 // Check if we can use this operand in the extension.
2355 // If the type is larger than the result type of the extension,
2356 // we cannot.
2357 if (!OpndVal->getType()->isIntegerTy() ||
2358 OpndVal->getType()->getIntegerBitWidth() >
2359 ConsideredExtType->getIntegerBitWidth())
2360 return false;
2361
2362 // If the operand of the truncate is not an instruction, we will not have
2363 // any information on the dropped bits.
2364 // (Actually we could for constant but it is not worth the extra logic).
2365 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2366 if (!Opnd)
2367 return false;
2368
2369 // Check if the source of the type is narrow enough.
2370 // I.e., check that trunc just drops extended bits of the same kind of
2371 // the extension.
2372 // #1 get the type of the operand and check the kind of the extended bits.
2373 const Type *OpndType;
2374 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2375 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt)
2376 OpndType = It->second.Ty;
2377 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2378 OpndType = Opnd->getOperand(0)->getType();
2379 else
2380 return false;
2381
2382 // #2 check that the truncate just drop extended bits.
2383 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
2384 return true;
2385
2386 return false;
2387 }
2388
getAction(Instruction * Ext,const SetOfInstrs & InsertedTruncs,const TargetLowering & TLI,const InstrToOrigTy & PromotedInsts)2389 TypePromotionHelper::Action TypePromotionHelper::getAction(
2390 Instruction *Ext, const SetOfInstrs &InsertedTruncs,
2391 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2392 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2393 "Unexpected instruction type");
2394 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2395 Type *ExtTy = Ext->getType();
2396 bool IsSExt = isa<SExtInst>(Ext);
2397 // If the operand of the extension is not an instruction, we cannot
2398 // get through.
2399 // If it, check we can get through.
2400 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2401 return nullptr;
2402
2403 // Do not promote if the operand has been added by codegenprepare.
2404 // Otherwise, it means we are undoing an optimization that is likely to be
2405 // redone, thus causing potential infinite loop.
2406 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd))
2407 return nullptr;
2408
2409 // SExt or Trunc instructions.
2410 // Return the related handler.
2411 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2412 isa<ZExtInst>(ExtOpnd))
2413 return promoteOperandForTruncAndAnyExt;
2414
2415 // Regular instruction.
2416 // Abort early if we will have to insert non-free instructions.
2417 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2418 return nullptr;
2419 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2420 }
2421
promoteOperandForTruncAndAnyExt(llvm::Instruction * SExt,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2422 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2423 llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2424 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2425 SmallVectorImpl<Instruction *> *Exts,
2426 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2427 // By construction, the operand of SExt is an instruction. Otherwise we cannot
2428 // get through it and this method should not be called.
2429 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2430 Value *ExtVal = SExt;
2431 bool HasMergedNonFreeExt = false;
2432 if (isa<ZExtInst>(SExtOpnd)) {
2433 // Replace s|zext(zext(opnd))
2434 // => zext(opnd).
2435 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2436 Value *ZExt =
2437 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2438 TPT.replaceAllUsesWith(SExt, ZExt);
2439 TPT.eraseInstruction(SExt);
2440 ExtVal = ZExt;
2441 } else {
2442 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2443 // => z|sext(opnd).
2444 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2445 }
2446 CreatedInstsCost = 0;
2447
2448 // Remove dead code.
2449 if (SExtOpnd->use_empty())
2450 TPT.eraseInstruction(SExtOpnd);
2451
2452 // Check if the extension is still needed.
2453 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2454 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2455 if (ExtInst) {
2456 if (Exts)
2457 Exts->push_back(ExtInst);
2458 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2459 }
2460 return ExtVal;
2461 }
2462
2463 // At this point we have: ext ty opnd to ty.
2464 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2465 Value *NextVal = ExtInst->getOperand(0);
2466 TPT.eraseInstruction(ExtInst, NextVal);
2467 return NextVal;
2468 }
2469
promoteOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI,bool IsSExt)2470 Value *TypePromotionHelper::promoteOperandForOther(
2471 Instruction *Ext, TypePromotionTransaction &TPT,
2472 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2473 SmallVectorImpl<Instruction *> *Exts,
2474 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2475 bool IsSExt) {
2476 // By construction, the operand of Ext is an instruction. Otherwise we cannot
2477 // get through it and this method should not be called.
2478 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
2479 CreatedInstsCost = 0;
2480 if (!ExtOpnd->hasOneUse()) {
2481 // ExtOpnd will be promoted.
2482 // All its uses, but Ext, will need to use a truncated value of the
2483 // promoted version.
2484 // Create the truncate now.
2485 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
2486 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
2487 ITrunc->removeFromParent();
2488 // Insert it just after the definition.
2489 ITrunc->insertAfter(ExtOpnd);
2490 if (Truncs)
2491 Truncs->push_back(ITrunc);
2492 }
2493
2494 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
2495 // Restore the operand of Ext (which has been replace by the previous call
2496 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
2497 TPT.setOperand(Ext, 0, ExtOpnd);
2498 }
2499
2500 // Get through the Instruction:
2501 // 1. Update its type.
2502 // 2. Replace the uses of Ext by Inst.
2503 // 3. Extend each operand that needs to be extended.
2504
2505 // Remember the original type of the instruction before promotion.
2506 // This is useful to know that the high bits are sign extended bits.
2507 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
2508 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
2509 // Step #1.
2510 TPT.mutateType(ExtOpnd, Ext->getType());
2511 // Step #2.
2512 TPT.replaceAllUsesWith(Ext, ExtOpnd);
2513 // Step #3.
2514 Instruction *ExtForOpnd = Ext;
2515
2516 DEBUG(dbgs() << "Propagate Ext to operands\n");
2517 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
2518 ++OpIdx) {
2519 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
2520 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
2521 !shouldExtOperand(ExtOpnd, OpIdx)) {
2522 DEBUG(dbgs() << "No need to propagate\n");
2523 continue;
2524 }
2525 // Check if we can statically extend the operand.
2526 Value *Opnd = ExtOpnd->getOperand(OpIdx);
2527 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
2528 DEBUG(dbgs() << "Statically extend\n");
2529 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
2530 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
2531 : Cst->getValue().zext(BitWidth);
2532 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
2533 continue;
2534 }
2535 // UndefValue are typed, so we have to statically sign extend them.
2536 if (isa<UndefValue>(Opnd)) {
2537 DEBUG(dbgs() << "Statically extend\n");
2538 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
2539 continue;
2540 }
2541
2542 // Otherwise we have to explicity sign extend the operand.
2543 // Check if Ext was reused to extend an operand.
2544 if (!ExtForOpnd) {
2545 // If yes, create a new one.
2546 DEBUG(dbgs() << "More operands to ext\n");
2547 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
2548 : TPT.createZExt(Ext, Opnd, Ext->getType());
2549 if (!isa<Instruction>(ValForExtOpnd)) {
2550 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
2551 continue;
2552 }
2553 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
2554 }
2555 if (Exts)
2556 Exts->push_back(ExtForOpnd);
2557 TPT.setOperand(ExtForOpnd, 0, Opnd);
2558
2559 // Move the sign extension before the insertion point.
2560 TPT.moveBefore(ExtForOpnd, ExtOpnd);
2561 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
2562 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
2563 // If more sext are required, new instructions will have to be created.
2564 ExtForOpnd = nullptr;
2565 }
2566 if (ExtForOpnd == Ext) {
2567 DEBUG(dbgs() << "Extension is useless now\n");
2568 TPT.eraseInstruction(Ext);
2569 }
2570 return ExtOpnd;
2571 }
2572
2573 /// IsPromotionProfitable - Check whether or not promoting an instruction
2574 /// to a wider type was profitable.
2575 /// \p NewCost gives the cost of extension instructions created by the
2576 /// promotion.
2577 /// \p OldCost gives the cost of extension instructions before the promotion
2578 /// plus the number of instructions that have been
2579 /// matched in the addressing mode the promotion.
2580 /// \p PromotedOperand is the value that has been promoted.
2581 /// \return True if the promotion is profitable, false otherwise.
IsPromotionProfitable(unsigned NewCost,unsigned OldCost,Value * PromotedOperand) const2582 bool AddressingModeMatcher::IsPromotionProfitable(
2583 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
2584 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
2585 // The cost of the new extensions is greater than the cost of the
2586 // old extension plus what we folded.
2587 // This is not profitable.
2588 if (NewCost > OldCost)
2589 return false;
2590 if (NewCost < OldCost)
2591 return true;
2592 // The promotion is neutral but it may help folding the sign extension in
2593 // loads for instance.
2594 // Check that we did not create an illegal instruction.
2595 return isPromotedInstructionLegal(TLI, PromotedOperand);
2596 }
2597
2598 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
2599 /// fold the operation into the addressing mode. If so, update the addressing
2600 /// mode and return true, otherwise return false without modifying AddrMode.
2601 /// If \p MovedAway is not NULL, it contains the information of whether or
2602 /// not AddrInst has to be folded into the addressing mode on success.
2603 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
2604 /// because it has been moved away.
2605 /// Thus AddrInst must not be added in the matched instructions.
2606 /// This state can happen when AddrInst is a sext, since it may be moved away.
2607 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
2608 /// not be referenced anymore.
MatchOperationAddr(User * AddrInst,unsigned Opcode,unsigned Depth,bool * MovedAway)2609 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
2610 unsigned Depth,
2611 bool *MovedAway) {
2612 // Avoid exponential behavior on extremely deep expression trees.
2613 if (Depth >= 5) return false;
2614
2615 // By default, all matched instructions stay in place.
2616 if (MovedAway)
2617 *MovedAway = false;
2618
2619 switch (Opcode) {
2620 case Instruction::PtrToInt:
2621 // PtrToInt is always a noop, as we know that the int type is pointer sized.
2622 return MatchAddr(AddrInst->getOperand(0), Depth);
2623 case Instruction::IntToPtr:
2624 // This inttoptr is a no-op if the integer type is pointer sized.
2625 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
2626 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
2627 return MatchAddr(AddrInst->getOperand(0), Depth);
2628 return false;
2629 case Instruction::BitCast:
2630 case Instruction::AddrSpaceCast:
2631 // BitCast is always a noop, and we can handle it as long as it is
2632 // int->int or pointer->pointer (we don't want int<->fp or something).
2633 if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
2634 AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
2635 // Don't touch identity bitcasts. These were probably put here by LSR,
2636 // and we don't want to mess around with them. Assume it knows what it
2637 // is doing.
2638 AddrInst->getOperand(0)->getType() != AddrInst->getType())
2639 return MatchAddr(AddrInst->getOperand(0), Depth);
2640 return false;
2641 case Instruction::Add: {
2642 // Check to see if we can merge in the RHS then the LHS. If so, we win.
2643 ExtAddrMode BackupAddrMode = AddrMode;
2644 unsigned OldSize = AddrModeInsts.size();
2645 // Start a transaction at this point.
2646 // The LHS may match but not the RHS.
2647 // Therefore, we need a higher level restoration point to undo partially
2648 // matched operation.
2649 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2650 TPT.getRestorationPoint();
2651
2652 if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
2653 MatchAddr(AddrInst->getOperand(0), Depth+1))
2654 return true;
2655
2656 // Restore the old addr mode info.
2657 AddrMode = BackupAddrMode;
2658 AddrModeInsts.resize(OldSize);
2659 TPT.rollback(LastKnownGood);
2660
2661 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
2662 if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
2663 MatchAddr(AddrInst->getOperand(1), Depth+1))
2664 return true;
2665
2666 // Otherwise we definitely can't merge the ADD in.
2667 AddrMode = BackupAddrMode;
2668 AddrModeInsts.resize(OldSize);
2669 TPT.rollback(LastKnownGood);
2670 break;
2671 }
2672 //case Instruction::Or:
2673 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
2674 //break;
2675 case Instruction::Mul:
2676 case Instruction::Shl: {
2677 // Can only handle X*C and X << C.
2678 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
2679 if (!RHS)
2680 return false;
2681 int64_t Scale = RHS->getSExtValue();
2682 if (Opcode == Instruction::Shl)
2683 Scale = 1LL << Scale;
2684
2685 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
2686 }
2687 case Instruction::GetElementPtr: {
2688 // Scan the GEP. We check it if it contains constant offsets and at most
2689 // one variable offset.
2690 int VariableOperand = -1;
2691 unsigned VariableScale = 0;
2692
2693 int64_t ConstantOffset = 0;
2694 const DataLayout *TD = TLI.getDataLayout();
2695 gep_type_iterator GTI = gep_type_begin(AddrInst);
2696 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
2697 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
2698 const StructLayout *SL = TD->getStructLayout(STy);
2699 unsigned Idx =
2700 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
2701 ConstantOffset += SL->getElementOffset(Idx);
2702 } else {
2703 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
2704 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
2705 ConstantOffset += CI->getSExtValue()*TypeSize;
2706 } else if (TypeSize) { // Scales of zero don't do anything.
2707 // We only allow one variable index at the moment.
2708 if (VariableOperand != -1)
2709 return false;
2710
2711 // Remember the variable index.
2712 VariableOperand = i;
2713 VariableScale = TypeSize;
2714 }
2715 }
2716 }
2717
2718 // A common case is for the GEP to only do a constant offset. In this case,
2719 // just add it to the disp field and check validity.
2720 if (VariableOperand == -1) {
2721 AddrMode.BaseOffs += ConstantOffset;
2722 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
2723 // Check to see if we can fold the base pointer in too.
2724 if (MatchAddr(AddrInst->getOperand(0), Depth+1))
2725 return true;
2726 }
2727 AddrMode.BaseOffs -= ConstantOffset;
2728 return false;
2729 }
2730
2731 // Save the valid addressing mode in case we can't match.
2732 ExtAddrMode BackupAddrMode = AddrMode;
2733 unsigned OldSize = AddrModeInsts.size();
2734
2735 // See if the scale and offset amount is valid for this target.
2736 AddrMode.BaseOffs += ConstantOffset;
2737
2738 // Match the base operand of the GEP.
2739 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
2740 // If it couldn't be matched, just stuff the value in a register.
2741 if (AddrMode.HasBaseReg) {
2742 AddrMode = BackupAddrMode;
2743 AddrModeInsts.resize(OldSize);
2744 return false;
2745 }
2746 AddrMode.HasBaseReg = true;
2747 AddrMode.BaseReg = AddrInst->getOperand(0);
2748 }
2749
2750 // Match the remaining variable portion of the GEP.
2751 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
2752 Depth)) {
2753 // If it couldn't be matched, try stuffing the base into a register
2754 // instead of matching it, and retrying the match of the scale.
2755 AddrMode = BackupAddrMode;
2756 AddrModeInsts.resize(OldSize);
2757 if (AddrMode.HasBaseReg)
2758 return false;
2759 AddrMode.HasBaseReg = true;
2760 AddrMode.BaseReg = AddrInst->getOperand(0);
2761 AddrMode.BaseOffs += ConstantOffset;
2762 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
2763 VariableScale, Depth)) {
2764 // If even that didn't work, bail.
2765 AddrMode = BackupAddrMode;
2766 AddrModeInsts.resize(OldSize);
2767 return false;
2768 }
2769 }
2770
2771 return true;
2772 }
2773 case Instruction::SExt:
2774 case Instruction::ZExt: {
2775 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
2776 if (!Ext)
2777 return false;
2778
2779 // Try to move this ext out of the way of the addressing mode.
2780 // Ask for a method for doing so.
2781 TypePromotionHelper::Action TPH =
2782 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts);
2783 if (!TPH)
2784 return false;
2785
2786 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2787 TPT.getRestorationPoint();
2788 unsigned CreatedInstsCost = 0;
2789 unsigned ExtCost = !TLI.isExtFree(Ext);
2790 Value *PromotedOperand =
2791 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
2792 // SExt has been moved away.
2793 // Thus either it will be rematched later in the recursive calls or it is
2794 // gone. Anyway, we must not fold it into the addressing mode at this point.
2795 // E.g.,
2796 // op = add opnd, 1
2797 // idx = ext op
2798 // addr = gep base, idx
2799 // is now:
2800 // promotedOpnd = ext opnd <- no match here
2801 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
2802 // addr = gep base, op <- match
2803 if (MovedAway)
2804 *MovedAway = true;
2805
2806 assert(PromotedOperand &&
2807 "TypePromotionHelper should have filtered out those cases");
2808
2809 ExtAddrMode BackupAddrMode = AddrMode;
2810 unsigned OldSize = AddrModeInsts.size();
2811
2812 if (!MatchAddr(PromotedOperand, Depth) ||
2813 // The total of the new cost is equals to the cost of the created
2814 // instructions.
2815 // The total of the old cost is equals to the cost of the extension plus
2816 // what we have saved in the addressing mode.
2817 !IsPromotionProfitable(CreatedInstsCost,
2818 ExtCost + (AddrModeInsts.size() - OldSize),
2819 PromotedOperand)) {
2820 AddrMode = BackupAddrMode;
2821 AddrModeInsts.resize(OldSize);
2822 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
2823 TPT.rollback(LastKnownGood);
2824 return false;
2825 }
2826 return true;
2827 }
2828 }
2829 return false;
2830 }
2831
2832 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
2833 /// addressing mode. If Addr can't be added to AddrMode this returns false and
2834 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
2835 /// or intptr_t for the target.
2836 ///
MatchAddr(Value * Addr,unsigned Depth)2837 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
2838 // Start a transaction at this point that we will rollback if the matching
2839 // fails.
2840 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2841 TPT.getRestorationPoint();
2842 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
2843 // Fold in immediates if legal for the target.
2844 AddrMode.BaseOffs += CI->getSExtValue();
2845 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2846 return true;
2847 AddrMode.BaseOffs -= CI->getSExtValue();
2848 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
2849 // If this is a global variable, try to fold it into the addressing mode.
2850 if (!AddrMode.BaseGV) {
2851 AddrMode.BaseGV = GV;
2852 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2853 return true;
2854 AddrMode.BaseGV = nullptr;
2855 }
2856 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
2857 ExtAddrMode BackupAddrMode = AddrMode;
2858 unsigned OldSize = AddrModeInsts.size();
2859
2860 // Check to see if it is possible to fold this operation.
2861 bool MovedAway = false;
2862 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
2863 // This instruction may have been move away. If so, there is nothing
2864 // to check here.
2865 if (MovedAway)
2866 return true;
2867 // Okay, it's possible to fold this. Check to see if it is actually
2868 // *profitable* to do so. We use a simple cost model to avoid increasing
2869 // register pressure too much.
2870 if (I->hasOneUse() ||
2871 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
2872 AddrModeInsts.push_back(I);
2873 return true;
2874 }
2875
2876 // It isn't profitable to do this, roll back.
2877 //cerr << "NOT FOLDING: " << *I;
2878 AddrMode = BackupAddrMode;
2879 AddrModeInsts.resize(OldSize);
2880 TPT.rollback(LastKnownGood);
2881 }
2882 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2883 if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
2884 return true;
2885 TPT.rollback(LastKnownGood);
2886 } else if (isa<ConstantPointerNull>(Addr)) {
2887 // Null pointer gets folded without affecting the addressing mode.
2888 return true;
2889 }
2890
2891 // Worse case, the target should support [reg] addressing modes. :)
2892 if (!AddrMode.HasBaseReg) {
2893 AddrMode.HasBaseReg = true;
2894 AddrMode.BaseReg = Addr;
2895 // Still check for legality in case the target supports [imm] but not [i+r].
2896 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2897 return true;
2898 AddrMode.HasBaseReg = false;
2899 AddrMode.BaseReg = nullptr;
2900 }
2901
2902 // If the base register is already taken, see if we can do [r+r].
2903 if (AddrMode.Scale == 0) {
2904 AddrMode.Scale = 1;
2905 AddrMode.ScaledReg = Addr;
2906 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2907 return true;
2908 AddrMode.Scale = 0;
2909 AddrMode.ScaledReg = nullptr;
2910 }
2911 // Couldn't match.
2912 TPT.rollback(LastKnownGood);
2913 return false;
2914 }
2915
2916 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
2917 /// inline asm call are due to memory operands. If so, return true, otherwise
2918 /// return false.
IsOperandAMemoryOperand(CallInst * CI,InlineAsm * IA,Value * OpVal,const TargetMachine & TM)2919 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
2920 const TargetMachine &TM) {
2921 const Function *F = CI->getParent()->getParent();
2922 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
2923 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
2924 TargetLowering::AsmOperandInfoVector TargetConstraints =
2925 TLI->ParseConstraints(TRI, ImmutableCallSite(CI));
2926 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2927 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2928
2929 // Compute the constraint code and ConstraintType to use.
2930 TLI->ComputeConstraintToUse(OpInfo, SDValue());
2931
2932 // If this asm operand is our Value*, and if it isn't an indirect memory
2933 // operand, we can't fold it!
2934 if (OpInfo.CallOperandVal == OpVal &&
2935 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
2936 !OpInfo.isIndirect))
2937 return false;
2938 }
2939
2940 return true;
2941 }
2942
2943 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
2944 /// memory use. If we find an obviously non-foldable instruction, return true.
2945 /// Add the ultimately found memory instructions to MemoryUses.
FindAllMemoryUses(Instruction * I,SmallVectorImpl<std::pair<Instruction *,unsigned>> & MemoryUses,SmallPtrSetImpl<Instruction * > & ConsideredInsts,const TargetMachine & TM)2946 static bool FindAllMemoryUses(
2947 Instruction *I,
2948 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
2949 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
2950 // If we already considered this instruction, we're done.
2951 if (!ConsideredInsts.insert(I).second)
2952 return false;
2953
2954 // If this is an obviously unfoldable instruction, bail out.
2955 if (!MightBeFoldableInst(I))
2956 return true;
2957
2958 // Loop over all the uses, recursively processing them.
2959 for (Use &U : I->uses()) {
2960 Instruction *UserI = cast<Instruction>(U.getUser());
2961
2962 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
2963 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
2964 continue;
2965 }
2966
2967 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
2968 unsigned opNo = U.getOperandNo();
2969 if (opNo == 0) return true; // Storing addr, not into addr.
2970 MemoryUses.push_back(std::make_pair(SI, opNo));
2971 continue;
2972 }
2973
2974 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
2975 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
2976 if (!IA) return true;
2977
2978 // If this is a memory operand, we're cool, otherwise bail out.
2979 if (!IsOperandAMemoryOperand(CI, IA, I, TM))
2980 return true;
2981 continue;
2982 }
2983
2984 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
2985 return true;
2986 }
2987
2988 return false;
2989 }
2990
2991 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
2992 /// the use site that we're folding it into. If so, there is no cost to
2993 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
2994 /// that we know are live at the instruction already.
ValueAlreadyLiveAtInst(Value * Val,Value * KnownLive1,Value * KnownLive2)2995 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
2996 Value *KnownLive2) {
2997 // If Val is either of the known-live values, we know it is live!
2998 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
2999 return true;
3000
3001 // All values other than instructions and arguments (e.g. constants) are live.
3002 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3003
3004 // If Val is a constant sized alloca in the entry block, it is live, this is
3005 // true because it is just a reference to the stack/frame pointer, which is
3006 // live for the whole function.
3007 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3008 if (AI->isStaticAlloca())
3009 return true;
3010
3011 // Check to see if this value is already used in the memory instruction's
3012 // block. If so, it's already live into the block at the very least, so we
3013 // can reasonably fold it.
3014 return Val->isUsedInBasicBlock(MemoryInst->getParent());
3015 }
3016
3017 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
3018 /// mode of the machine to fold the specified instruction into a load or store
3019 /// that ultimately uses it. However, the specified instruction has multiple
3020 /// uses. Given this, it may actually increase register pressure to fold it
3021 /// into the load. For example, consider this code:
3022 ///
3023 /// X = ...
3024 /// Y = X+1
3025 /// use(Y) -> nonload/store
3026 /// Z = Y+1
3027 /// load Z
3028 ///
3029 /// In this case, Y has multiple uses, and can be folded into the load of Z
3030 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
3031 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
3032 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
3033 /// number of computations either.
3034 ///
3035 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
3036 /// X was live across 'load Z' for other reasons, we actually *would* want to
3037 /// fold the addressing mode in the Z case. This would make Y die earlier.
3038 bool AddressingModeMatcher::
IsProfitableToFoldIntoAddressingMode(Instruction * I,ExtAddrMode & AMBefore,ExtAddrMode & AMAfter)3039 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3040 ExtAddrMode &AMAfter) {
3041 if (IgnoreProfitability) return true;
3042
3043 // AMBefore is the addressing mode before this instruction was folded into it,
3044 // and AMAfter is the addressing mode after the instruction was folded. Get
3045 // the set of registers referenced by AMAfter and subtract out those
3046 // referenced by AMBefore: this is the set of values which folding in this
3047 // address extends the lifetime of.
3048 //
3049 // Note that there are only two potential values being referenced here,
3050 // BaseReg and ScaleReg (global addresses are always available, as are any
3051 // folded immediates).
3052 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3053
3054 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3055 // lifetime wasn't extended by adding this instruction.
3056 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3057 BaseReg = nullptr;
3058 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3059 ScaledReg = nullptr;
3060
3061 // If folding this instruction (and it's subexprs) didn't extend any live
3062 // ranges, we're ok with it.
3063 if (!BaseReg && !ScaledReg)
3064 return true;
3065
3066 // If all uses of this instruction are ultimately load/store/inlineasm's,
3067 // check to see if their addressing modes will include this instruction. If
3068 // so, we can fold it into all uses, so it doesn't matter if it has multiple
3069 // uses.
3070 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3071 SmallPtrSet<Instruction*, 16> ConsideredInsts;
3072 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3073 return false; // Has a non-memory, non-foldable use!
3074
3075 // Now that we know that all uses of this instruction are part of a chain of
3076 // computation involving only operations that could theoretically be folded
3077 // into a memory use, loop over each of these uses and see if they could
3078 // *actually* fold the instruction.
3079 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3080 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3081 Instruction *User = MemoryUses[i].first;
3082 unsigned OpNo = MemoryUses[i].second;
3083
3084 // Get the access type of this use. If the use isn't a pointer, we don't
3085 // know what it accesses.
3086 Value *Address = User->getOperand(OpNo);
3087 if (!Address->getType()->isPointerTy())
3088 return false;
3089 Type *AddressAccessTy = Address->getType()->getPointerElementType();
3090
3091 // Do a match against the root of this address, ignoring profitability. This
3092 // will tell us if the addressing mode for the memory operation will
3093 // *actually* cover the shared instruction.
3094 ExtAddrMode Result;
3095 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3096 TPT.getRestorationPoint();
3097 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy,
3098 MemoryInst, Result, InsertedTruncs,
3099 PromotedInsts, TPT);
3100 Matcher.IgnoreProfitability = true;
3101 bool Success = Matcher.MatchAddr(Address, 0);
3102 (void)Success; assert(Success && "Couldn't select *anything*?");
3103
3104 // The match was to check the profitability, the changes made are not
3105 // part of the original matcher. Therefore, they should be dropped
3106 // otherwise the original matcher will not present the right state.
3107 TPT.rollback(LastKnownGood);
3108
3109 // If the match didn't cover I, then it won't be shared by it.
3110 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3111 I) == MatchedAddrModeInsts.end())
3112 return false;
3113
3114 MatchedAddrModeInsts.clear();
3115 }
3116
3117 return true;
3118 }
3119
3120 } // end anonymous namespace
3121
3122 /// IsNonLocalValue - Return true if the specified values are defined in a
3123 /// different basic block than BB.
IsNonLocalValue(Value * V,BasicBlock * BB)3124 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3125 if (Instruction *I = dyn_cast<Instruction>(V))
3126 return I->getParent() != BB;
3127 return false;
3128 }
3129
3130 /// OptimizeMemoryInst - Load and Store Instructions often have
3131 /// addressing modes that can do significant amounts of computation. As such,
3132 /// instruction selection will try to get the load or store to do as much
3133 /// computation as possible for the program. The problem is that isel can only
3134 /// see within a single block. As such, we sink as much legal addressing mode
3135 /// stuff into the block as possible.
3136 ///
3137 /// This method is used to optimize both load/store and inline asms with memory
3138 /// operands.
OptimizeMemoryInst(Instruction * MemoryInst,Value * Addr,Type * AccessTy)3139 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3140 Type *AccessTy) {
3141 Value *Repl = Addr;
3142
3143 // Try to collapse single-value PHI nodes. This is necessary to undo
3144 // unprofitable PRE transformations.
3145 SmallVector<Value*, 8> worklist;
3146 SmallPtrSet<Value*, 16> Visited;
3147 worklist.push_back(Addr);
3148
3149 // Use a worklist to iteratively look through PHI nodes, and ensure that
3150 // the addressing mode obtained from the non-PHI roots of the graph
3151 // are equivalent.
3152 Value *Consensus = nullptr;
3153 unsigned NumUsesConsensus = 0;
3154 bool IsNumUsesConsensusValid = false;
3155 SmallVector<Instruction*, 16> AddrModeInsts;
3156 ExtAddrMode AddrMode;
3157 TypePromotionTransaction TPT;
3158 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3159 TPT.getRestorationPoint();
3160 while (!worklist.empty()) {
3161 Value *V = worklist.back();
3162 worklist.pop_back();
3163
3164 // Break use-def graph loops.
3165 if (!Visited.insert(V).second) {
3166 Consensus = nullptr;
3167 break;
3168 }
3169
3170 // For a PHI node, push all of its incoming values.
3171 if (PHINode *P = dyn_cast<PHINode>(V)) {
3172 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
3173 worklist.push_back(P->getIncomingValue(i));
3174 continue;
3175 }
3176
3177 // For non-PHIs, determine the addressing mode being computed.
3178 SmallVector<Instruction*, 16> NewAddrModeInsts;
3179 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3180 V, AccessTy, MemoryInst, NewAddrModeInsts, *TM, InsertedTruncsSet,
3181 PromotedInsts, TPT);
3182
3183 // This check is broken into two cases with very similar code to avoid using
3184 // getNumUses() as much as possible. Some values have a lot of uses, so
3185 // calling getNumUses() unconditionally caused a significant compile-time
3186 // regression.
3187 if (!Consensus) {
3188 Consensus = V;
3189 AddrMode = NewAddrMode;
3190 AddrModeInsts = NewAddrModeInsts;
3191 continue;
3192 } else if (NewAddrMode == AddrMode) {
3193 if (!IsNumUsesConsensusValid) {
3194 NumUsesConsensus = Consensus->getNumUses();
3195 IsNumUsesConsensusValid = true;
3196 }
3197
3198 // Ensure that the obtained addressing mode is equivalent to that obtained
3199 // for all other roots of the PHI traversal. Also, when choosing one
3200 // such root as representative, select the one with the most uses in order
3201 // to keep the cost modeling heuristics in AddressingModeMatcher
3202 // applicable.
3203 unsigned NumUses = V->getNumUses();
3204 if (NumUses > NumUsesConsensus) {
3205 Consensus = V;
3206 NumUsesConsensus = NumUses;
3207 AddrModeInsts = NewAddrModeInsts;
3208 }
3209 continue;
3210 }
3211
3212 Consensus = nullptr;
3213 break;
3214 }
3215
3216 // If the addressing mode couldn't be determined, or if multiple different
3217 // ones were determined, bail out now.
3218 if (!Consensus) {
3219 TPT.rollback(LastKnownGood);
3220 return false;
3221 }
3222 TPT.commit();
3223
3224 // Check to see if any of the instructions supersumed by this addr mode are
3225 // non-local to I's BB.
3226 bool AnyNonLocal = false;
3227 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3228 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3229 AnyNonLocal = true;
3230 break;
3231 }
3232 }
3233
3234 // If all the instructions matched are already in this BB, don't do anything.
3235 if (!AnyNonLocal) {
3236 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
3237 return false;
3238 }
3239
3240 // Insert this computation right after this user. Since our caller is
3241 // scanning from the top of the BB to the bottom, reuse of the expr are
3242 // guaranteed to happen later.
3243 IRBuilder<> Builder(MemoryInst);
3244
3245 // Now that we determined the addressing expression we want to use and know
3246 // that we have to sink it into this block. Check to see if we have already
3247 // done this for some other load/store instr in this block. If so, reuse the
3248 // computation.
3249 Value *&SunkAddr = SunkAddrs[Addr];
3250 if (SunkAddr) {
3251 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3252 << *MemoryInst << "\n");
3253 if (SunkAddr->getType() != Addr->getType())
3254 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3255 } else if (AddrSinkUsingGEPs ||
3256 (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3257 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3258 ->useAA())) {
3259 // By default, we use the GEP-based method when AA is used later. This
3260 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3261 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3262 << *MemoryInst << "\n");
3263 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
3264 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3265
3266 // First, find the pointer.
3267 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3268 ResultPtr = AddrMode.BaseReg;
3269 AddrMode.BaseReg = nullptr;
3270 }
3271
3272 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3273 // We can't add more than one pointer together, nor can we scale a
3274 // pointer (both of which seem meaningless).
3275 if (ResultPtr || AddrMode.Scale != 1)
3276 return false;
3277
3278 ResultPtr = AddrMode.ScaledReg;
3279 AddrMode.Scale = 0;
3280 }
3281
3282 if (AddrMode.BaseGV) {
3283 if (ResultPtr)
3284 return false;
3285
3286 ResultPtr = AddrMode.BaseGV;
3287 }
3288
3289 // If the real base value actually came from an inttoptr, then the matcher
3290 // will look through it and provide only the integer value. In that case,
3291 // use it here.
3292 if (!ResultPtr && AddrMode.BaseReg) {
3293 ResultPtr =
3294 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3295 AddrMode.BaseReg = nullptr;
3296 } else if (!ResultPtr && AddrMode.Scale == 1) {
3297 ResultPtr =
3298 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3299 AddrMode.Scale = 0;
3300 }
3301
3302 if (!ResultPtr &&
3303 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3304 SunkAddr = Constant::getNullValue(Addr->getType());
3305 } else if (!ResultPtr) {
3306 return false;
3307 } else {
3308 Type *I8PtrTy =
3309 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3310 Type *I8Ty = Builder.getInt8Ty();
3311
3312 // Start with the base register. Do this first so that subsequent address
3313 // matching finds it last, which will prevent it from trying to match it
3314 // as the scaled value in case it happens to be a mul. That would be
3315 // problematic if we've sunk a different mul for the scale, because then
3316 // we'd end up sinking both muls.
3317 if (AddrMode.BaseReg) {
3318 Value *V = AddrMode.BaseReg;
3319 if (V->getType() != IntPtrTy)
3320 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3321
3322 ResultIndex = V;
3323 }
3324
3325 // Add the scale value.
3326 if (AddrMode.Scale) {
3327 Value *V = AddrMode.ScaledReg;
3328 if (V->getType() == IntPtrTy) {
3329 // done.
3330 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3331 cast<IntegerType>(V->getType())->getBitWidth()) {
3332 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3333 } else {
3334 // It is only safe to sign extend the BaseReg if we know that the math
3335 // required to create it did not overflow before we extend it. Since
3336 // the original IR value was tossed in favor of a constant back when
3337 // the AddrMode was created we need to bail out gracefully if widths
3338 // do not match instead of extending it.
3339 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3340 if (I && (ResultIndex != AddrMode.BaseReg))
3341 I->eraseFromParent();
3342 return false;
3343 }
3344
3345 if (AddrMode.Scale != 1)
3346 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3347 "sunkaddr");
3348 if (ResultIndex)
3349 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3350 else
3351 ResultIndex = V;
3352 }
3353
3354 // Add in the Base Offset if present.
3355 if (AddrMode.BaseOffs) {
3356 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3357 if (ResultIndex) {
3358 // We need to add this separately from the scale above to help with
3359 // SDAG consecutive load/store merging.
3360 if (ResultPtr->getType() != I8PtrTy)
3361 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3362 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3363 }
3364
3365 ResultIndex = V;
3366 }
3367
3368 if (!ResultIndex) {
3369 SunkAddr = ResultPtr;
3370 } else {
3371 if (ResultPtr->getType() != I8PtrTy)
3372 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3373 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3374 }
3375
3376 if (SunkAddr->getType() != Addr->getType())
3377 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3378 }
3379 } else {
3380 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3381 << *MemoryInst << "\n");
3382 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
3383 Value *Result = nullptr;
3384
3385 // Start with the base register. Do this first so that subsequent address
3386 // matching finds it last, which will prevent it from trying to match it
3387 // as the scaled value in case it happens to be a mul. That would be
3388 // problematic if we've sunk a different mul for the scale, because then
3389 // we'd end up sinking both muls.
3390 if (AddrMode.BaseReg) {
3391 Value *V = AddrMode.BaseReg;
3392 if (V->getType()->isPointerTy())
3393 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3394 if (V->getType() != IntPtrTy)
3395 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3396 Result = V;
3397 }
3398
3399 // Add the scale value.
3400 if (AddrMode.Scale) {
3401 Value *V = AddrMode.ScaledReg;
3402 if (V->getType() == IntPtrTy) {
3403 // done.
3404 } else if (V->getType()->isPointerTy()) {
3405 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3406 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3407 cast<IntegerType>(V->getType())->getBitWidth()) {
3408 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3409 } else {
3410 // It is only safe to sign extend the BaseReg if we know that the math
3411 // required to create it did not overflow before we extend it. Since
3412 // the original IR value was tossed in favor of a constant back when
3413 // the AddrMode was created we need to bail out gracefully if widths
3414 // do not match instead of extending it.
3415 Instruction *I = dyn_cast_or_null<Instruction>(Result);
3416 if (I && (Result != AddrMode.BaseReg))
3417 I->eraseFromParent();
3418 return false;
3419 }
3420 if (AddrMode.Scale != 1)
3421 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3422 "sunkaddr");
3423 if (Result)
3424 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3425 else
3426 Result = V;
3427 }
3428
3429 // Add in the BaseGV if present.
3430 if (AddrMode.BaseGV) {
3431 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3432 if (Result)
3433 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3434 else
3435 Result = V;
3436 }
3437
3438 // Add in the Base Offset if present.
3439 if (AddrMode.BaseOffs) {
3440 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3441 if (Result)
3442 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3443 else
3444 Result = V;
3445 }
3446
3447 if (!Result)
3448 SunkAddr = Constant::getNullValue(Addr->getType());
3449 else
3450 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
3451 }
3452
3453 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
3454
3455 // If we have no uses, recursively delete the value and all dead instructions
3456 // using it.
3457 if (Repl->use_empty()) {
3458 // This can cause recursive deletion, which can invalidate our iterator.
3459 // Use a WeakVH to hold onto it in case this happens.
3460 WeakVH IterHandle(CurInstIterator);
3461 BasicBlock *BB = CurInstIterator->getParent();
3462
3463 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
3464
3465 if (IterHandle != CurInstIterator) {
3466 // If the iterator instruction was recursively deleted, start over at the
3467 // start of the block.
3468 CurInstIterator = BB->begin();
3469 SunkAddrs.clear();
3470 }
3471 }
3472 ++NumMemoryInsts;
3473 return true;
3474 }
3475
3476 /// OptimizeInlineAsmInst - If there are any memory operands, use
3477 /// OptimizeMemoryInst to sink their address computing into the block when
3478 /// possible / profitable.
OptimizeInlineAsmInst(CallInst * CS)3479 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
3480 bool MadeChange = false;
3481
3482 const TargetRegisterInfo *TRI =
3483 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
3484 TargetLowering::AsmOperandInfoVector
3485 TargetConstraints = TLI->ParseConstraints(TRI, CS);
3486 unsigned ArgNo = 0;
3487 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3488 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3489
3490 // Compute the constraint code and ConstraintType to use.
3491 TLI->ComputeConstraintToUse(OpInfo, SDValue());
3492
3493 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3494 OpInfo.isIndirect) {
3495 Value *OpVal = CS->getArgOperand(ArgNo++);
3496 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
3497 } else if (OpInfo.Type == InlineAsm::isInput)
3498 ArgNo++;
3499 }
3500
3501 return MadeChange;
3502 }
3503
3504 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
3505 /// sign extensions.
hasSameExtUse(Instruction * Inst,const TargetLowering & TLI)3506 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
3507 assert(!Inst->use_empty() && "Input must have at least one use");
3508 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
3509 bool IsSExt = isa<SExtInst>(FirstUser);
3510 Type *ExtTy = FirstUser->getType();
3511 for (const User *U : Inst->users()) {
3512 const Instruction *UI = cast<Instruction>(U);
3513 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
3514 return false;
3515 Type *CurTy = UI->getType();
3516 // Same input and output types: Same instruction after CSE.
3517 if (CurTy == ExtTy)
3518 continue;
3519
3520 // If IsSExt is true, we are in this situation:
3521 // a = Inst
3522 // b = sext ty1 a to ty2
3523 // c = sext ty1 a to ty3
3524 // Assuming ty2 is shorter than ty3, this could be turned into:
3525 // a = Inst
3526 // b = sext ty1 a to ty2
3527 // c = sext ty2 b to ty3
3528 // However, the last sext is not free.
3529 if (IsSExt)
3530 return false;
3531
3532 // This is a ZExt, maybe this is free to extend from one type to another.
3533 // In that case, we would not account for a different use.
3534 Type *NarrowTy;
3535 Type *LargeTy;
3536 if (ExtTy->getScalarType()->getIntegerBitWidth() >
3537 CurTy->getScalarType()->getIntegerBitWidth()) {
3538 NarrowTy = CurTy;
3539 LargeTy = ExtTy;
3540 } else {
3541 NarrowTy = ExtTy;
3542 LargeTy = CurTy;
3543 }
3544
3545 if (!TLI.isZExtFree(NarrowTy, LargeTy))
3546 return false;
3547 }
3548 // All uses are the same or can be derived from one another for free.
3549 return true;
3550 }
3551
3552 /// \brief Try to form ExtLd by promoting \p Exts until they reach a
3553 /// load instruction.
3554 /// If an ext(load) can be formed, it is returned via \p LI for the load
3555 /// and \p Inst for the extension.
3556 /// Otherwise LI == nullptr and Inst == nullptr.
3557 /// When some promotion happened, \p TPT contains the proper state to
3558 /// revert them.
3559 ///
3560 /// \return true when promoting was necessary to expose the ext(load)
3561 /// opportunity, false otherwise.
3562 ///
3563 /// Example:
3564 /// \code
3565 /// %ld = load i32* %addr
3566 /// %add = add nuw i32 %ld, 4
3567 /// %zext = zext i32 %add to i64
3568 /// \endcode
3569 /// =>
3570 /// \code
3571 /// %ld = load i32* %addr
3572 /// %zext = zext i32 %ld to i64
3573 /// %add = add nuw i64 %zext, 4
3574 /// \encode
3575 /// Thanks to the promotion, we can match zext(load i32*) to i64.
ExtLdPromotion(TypePromotionTransaction & TPT,LoadInst * & LI,Instruction * & Inst,const SmallVectorImpl<Instruction * > & Exts,unsigned CreatedInstsCost=0)3576 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT,
3577 LoadInst *&LI, Instruction *&Inst,
3578 const SmallVectorImpl<Instruction *> &Exts,
3579 unsigned CreatedInstsCost = 0) {
3580 // Iterate over all the extensions to see if one form an ext(load).
3581 for (auto I : Exts) {
3582 // Check if we directly have ext(load).
3583 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
3584 Inst = I;
3585 // No promotion happened here.
3586 return false;
3587 }
3588 // Check whether or not we want to do any promotion.
3589 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
3590 continue;
3591 // Get the action to perform the promotion.
3592 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
3593 I, InsertedTruncsSet, *TLI, PromotedInsts);
3594 // Check if we can promote.
3595 if (!TPH)
3596 continue;
3597 // Save the current state.
3598 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3599 TPT.getRestorationPoint();
3600 SmallVector<Instruction *, 4> NewExts;
3601 unsigned NewCreatedInstsCost = 0;
3602 unsigned ExtCost = !TLI->isExtFree(I);
3603 // Promote.
3604 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
3605 &NewExts, nullptr, *TLI);
3606 assert(PromotedVal &&
3607 "TypePromotionHelper should have filtered out those cases");
3608
3609 // We would be able to merge only one extension in a load.
3610 // Therefore, if we have more than 1 new extension we heuristically
3611 // cut this search path, because it means we degrade the code quality.
3612 // With exactly 2, the transformation is neutral, because we will merge
3613 // one extension but leave one. However, we optimistically keep going,
3614 // because the new extension may be removed too.
3615 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
3616 TotalCreatedInstsCost -= ExtCost;
3617 if (!StressExtLdPromotion &&
3618 (TotalCreatedInstsCost > 1 ||
3619 !isPromotedInstructionLegal(*TLI, PromotedVal))) {
3620 // The promotion is not profitable, rollback to the previous state.
3621 TPT.rollback(LastKnownGood);
3622 continue;
3623 }
3624 // The promotion is profitable.
3625 // Check if it exposes an ext(load).
3626 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
3627 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
3628 // If we have created a new extension, i.e., now we have two
3629 // extensions. We must make sure one of them is merged with
3630 // the load, otherwise we may degrade the code quality.
3631 (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
3632 // Promotion happened.
3633 return true;
3634 // If this does not help to expose an ext(load) then, rollback.
3635 TPT.rollback(LastKnownGood);
3636 }
3637 // None of the extension can form an ext(load).
3638 LI = nullptr;
3639 Inst = nullptr;
3640 return false;
3641 }
3642
3643 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
3644 /// basic block as the load, unless conditions are unfavorable. This allows
3645 /// SelectionDAG to fold the extend into the load.
3646 /// \p I[in/out] the extension may be modified during the process if some
3647 /// promotions apply.
3648 ///
MoveExtToFormExtLoad(Instruction * & I)3649 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) {
3650 // Try to promote a chain of computation if it allows to form
3651 // an extended load.
3652 TypePromotionTransaction TPT;
3653 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3654 TPT.getRestorationPoint();
3655 SmallVector<Instruction *, 1> Exts;
3656 Exts.push_back(I);
3657 // Look for a load being extended.
3658 LoadInst *LI = nullptr;
3659 Instruction *OldExt = I;
3660 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts);
3661 if (!LI || !I) {
3662 assert(!HasPromoted && !LI && "If we did not match any load instruction "
3663 "the code must remain the same");
3664 I = OldExt;
3665 return false;
3666 }
3667
3668 // If they're already in the same block, there's nothing to do.
3669 // Make the cheap checks first if we did not promote.
3670 // If we promoted, we need to check if it is indeed profitable.
3671 if (!HasPromoted && LI->getParent() == I->getParent())
3672 return false;
3673
3674 EVT VT = TLI->getValueType(I->getType());
3675 EVT LoadVT = TLI->getValueType(LI->getType());
3676
3677 // If the load has other users and the truncate is not free, this probably
3678 // isn't worthwhile.
3679 if (!LI->hasOneUse() && TLI &&
3680 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
3681 !TLI->isTruncateFree(I->getType(), LI->getType())) {
3682 I = OldExt;
3683 TPT.rollback(LastKnownGood);
3684 return false;
3685 }
3686
3687 // Check whether the target supports casts folded into loads.
3688 unsigned LType;
3689 if (isa<ZExtInst>(I))
3690 LType = ISD::ZEXTLOAD;
3691 else {
3692 assert(isa<SExtInst>(I) && "Unexpected ext type!");
3693 LType = ISD::SEXTLOAD;
3694 }
3695 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
3696 I = OldExt;
3697 TPT.rollback(LastKnownGood);
3698 return false;
3699 }
3700
3701 // Move the extend into the same block as the load, so that SelectionDAG
3702 // can fold it.
3703 TPT.commit();
3704 I->removeFromParent();
3705 I->insertAfter(LI);
3706 ++NumExtsMoved;
3707 return true;
3708 }
3709
OptimizeExtUses(Instruction * I)3710 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
3711 BasicBlock *DefBB = I->getParent();
3712
3713 // If the result of a {s|z}ext and its source are both live out, rewrite all
3714 // other uses of the source with result of extension.
3715 Value *Src = I->getOperand(0);
3716 if (Src->hasOneUse())
3717 return false;
3718
3719 // Only do this xform if truncating is free.
3720 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
3721 return false;
3722
3723 // Only safe to perform the optimization if the source is also defined in
3724 // this block.
3725 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
3726 return false;
3727
3728 bool DefIsLiveOut = false;
3729 for (User *U : I->users()) {
3730 Instruction *UI = cast<Instruction>(U);
3731
3732 // Figure out which BB this ext is used in.
3733 BasicBlock *UserBB = UI->getParent();
3734 if (UserBB == DefBB) continue;
3735 DefIsLiveOut = true;
3736 break;
3737 }
3738 if (!DefIsLiveOut)
3739 return false;
3740
3741 // Make sure none of the uses are PHI nodes.
3742 for (User *U : Src->users()) {
3743 Instruction *UI = cast<Instruction>(U);
3744 BasicBlock *UserBB = UI->getParent();
3745 if (UserBB == DefBB) continue;
3746 // Be conservative. We don't want this xform to end up introducing
3747 // reloads just before load / store instructions.
3748 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
3749 return false;
3750 }
3751
3752 // InsertedTruncs - Only insert one trunc in each block once.
3753 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
3754
3755 bool MadeChange = false;
3756 for (Use &U : Src->uses()) {
3757 Instruction *User = cast<Instruction>(U.getUser());
3758
3759 // Figure out which BB this ext is used in.
3760 BasicBlock *UserBB = User->getParent();
3761 if (UserBB == DefBB) continue;
3762
3763 // Both src and def are live in this block. Rewrite the use.
3764 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
3765
3766 if (!InsertedTrunc) {
3767 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3768 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
3769 InsertedTruncsSet.insert(InsertedTrunc);
3770 }
3771
3772 // Replace a use of the {s|z}ext source with a use of the result.
3773 U = InsertedTrunc;
3774 ++NumExtUses;
3775 MadeChange = true;
3776 }
3777
3778 return MadeChange;
3779 }
3780
3781 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
3782 /// turned into an explicit branch.
isFormingBranchFromSelectProfitable(SelectInst * SI)3783 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
3784 // FIXME: This should use the same heuristics as IfConversion to determine
3785 // whether a select is better represented as a branch. This requires that
3786 // branch probability metadata is preserved for the select, which is not the
3787 // case currently.
3788
3789 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
3790
3791 // If the branch is predicted right, an out of order CPU can avoid blocking on
3792 // the compare. Emit cmovs on compares with a memory operand as branches to
3793 // avoid stalls on the load from memory. If the compare has more than one use
3794 // there's probably another cmov or setcc around so it's not worth emitting a
3795 // branch.
3796 if (!Cmp)
3797 return false;
3798
3799 Value *CmpOp0 = Cmp->getOperand(0);
3800 Value *CmpOp1 = Cmp->getOperand(1);
3801
3802 // We check that the memory operand has one use to avoid uses of the loaded
3803 // value directly after the compare, making branches unprofitable.
3804 return Cmp->hasOneUse() &&
3805 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
3806 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
3807 }
3808
3809
3810 /// If we have a SelectInst that will likely profit from branch prediction,
3811 /// turn it into a branch.
OptimizeSelectInst(SelectInst * SI)3812 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
3813 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
3814
3815 // Can we convert the 'select' to CF ?
3816 if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
3817 return false;
3818
3819 TargetLowering::SelectSupportKind SelectKind;
3820 if (VectorCond)
3821 SelectKind = TargetLowering::VectorMaskSelect;
3822 else if (SI->getType()->isVectorTy())
3823 SelectKind = TargetLowering::ScalarCondVectorVal;
3824 else
3825 SelectKind = TargetLowering::ScalarValSelect;
3826
3827 // Do we have efficient codegen support for this kind of 'selects' ?
3828 if (TLI->isSelectSupported(SelectKind)) {
3829 // We have efficient codegen support for the select instruction.
3830 // Check if it is profitable to keep this 'select'.
3831 if (!TLI->isPredictableSelectExpensive() ||
3832 !isFormingBranchFromSelectProfitable(SI))
3833 return false;
3834 }
3835
3836 ModifiedDT = true;
3837
3838 // First, we split the block containing the select into 2 blocks.
3839 BasicBlock *StartBlock = SI->getParent();
3840 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
3841 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
3842
3843 // Create a new block serving as the landing pad for the branch.
3844 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
3845 NextBlock->getParent(), NextBlock);
3846
3847 // Move the unconditional branch from the block with the select in it into our
3848 // landing pad block.
3849 StartBlock->getTerminator()->eraseFromParent();
3850 BranchInst::Create(NextBlock, SmallBlock);
3851
3852 // Insert the real conditional branch based on the original condition.
3853 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
3854
3855 // The select itself is replaced with a PHI Node.
3856 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
3857 PN->takeName(SI);
3858 PN->addIncoming(SI->getTrueValue(), StartBlock);
3859 PN->addIncoming(SI->getFalseValue(), SmallBlock);
3860 SI->replaceAllUsesWith(PN);
3861 SI->eraseFromParent();
3862
3863 // Instruct OptimizeBlock to skip to the next block.
3864 CurInstIterator = StartBlock->end();
3865 ++NumSelectsExpanded;
3866 return true;
3867 }
3868
isBroadcastShuffle(ShuffleVectorInst * SVI)3869 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
3870 SmallVector<int, 16> Mask(SVI->getShuffleMask());
3871 int SplatElem = -1;
3872 for (unsigned i = 0; i < Mask.size(); ++i) {
3873 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
3874 return false;
3875 SplatElem = Mask[i];
3876 }
3877
3878 return true;
3879 }
3880
3881 /// Some targets have expensive vector shifts if the lanes aren't all the same
3882 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
3883 /// it's often worth sinking a shufflevector splat down to its use so that
3884 /// codegen can spot all lanes are identical.
OptimizeShuffleVectorInst(ShuffleVectorInst * SVI)3885 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
3886 BasicBlock *DefBB = SVI->getParent();
3887
3888 // Only do this xform if variable vector shifts are particularly expensive.
3889 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
3890 return false;
3891
3892 // We only expect better codegen by sinking a shuffle if we can recognise a
3893 // constant splat.
3894 if (!isBroadcastShuffle(SVI))
3895 return false;
3896
3897 // InsertedShuffles - Only insert a shuffle in each block once.
3898 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
3899
3900 bool MadeChange = false;
3901 for (User *U : SVI->users()) {
3902 Instruction *UI = cast<Instruction>(U);
3903
3904 // Figure out which BB this ext is used in.
3905 BasicBlock *UserBB = UI->getParent();
3906 if (UserBB == DefBB) continue;
3907
3908 // For now only apply this when the splat is used by a shift instruction.
3909 if (!UI->isShift()) continue;
3910
3911 // Everything checks out, sink the shuffle if the user's block doesn't
3912 // already have a copy.
3913 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
3914
3915 if (!InsertedShuffle) {
3916 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3917 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
3918 SVI->getOperand(1),
3919 SVI->getOperand(2), "", InsertPt);
3920 }
3921
3922 UI->replaceUsesOfWith(SVI, InsertedShuffle);
3923 MadeChange = true;
3924 }
3925
3926 // If we removed all uses, nuke the shuffle.
3927 if (SVI->use_empty()) {
3928 SVI->eraseFromParent();
3929 MadeChange = true;
3930 }
3931
3932 return MadeChange;
3933 }
3934
3935 namespace {
3936 /// \brief Helper class to promote a scalar operation to a vector one.
3937 /// This class is used to move downward extractelement transition.
3938 /// E.g.,
3939 /// a = vector_op <2 x i32>
3940 /// b = extractelement <2 x i32> a, i32 0
3941 /// c = scalar_op b
3942 /// store c
3943 ///
3944 /// =>
3945 /// a = vector_op <2 x i32>
3946 /// c = vector_op a (equivalent to scalar_op on the related lane)
3947 /// * d = extractelement <2 x i32> c, i32 0
3948 /// * store d
3949 /// Assuming both extractelement and store can be combine, we get rid of the
3950 /// transition.
3951 class VectorPromoteHelper {
3952 /// Used to perform some checks on the legality of vector operations.
3953 const TargetLowering &TLI;
3954
3955 /// Used to estimated the cost of the promoted chain.
3956 const TargetTransformInfo &TTI;
3957
3958 /// The transition being moved downwards.
3959 Instruction *Transition;
3960 /// The sequence of instructions to be promoted.
3961 SmallVector<Instruction *, 4> InstsToBePromoted;
3962 /// Cost of combining a store and an extract.
3963 unsigned StoreExtractCombineCost;
3964 /// Instruction that will be combined with the transition.
3965 Instruction *CombineInst;
3966
3967 /// \brief The instruction that represents the current end of the transition.
3968 /// Since we are faking the promotion until we reach the end of the chain
3969 /// of computation, we need a way to get the current end of the transition.
getEndOfTransition() const3970 Instruction *getEndOfTransition() const {
3971 if (InstsToBePromoted.empty())
3972 return Transition;
3973 return InstsToBePromoted.back();
3974 }
3975
3976 /// \brief Return the index of the original value in the transition.
3977 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
3978 /// c, is at index 0.
getTransitionOriginalValueIdx() const3979 unsigned getTransitionOriginalValueIdx() const {
3980 assert(isa<ExtractElementInst>(Transition) &&
3981 "Other kind of transitions are not supported yet");
3982 return 0;
3983 }
3984
3985 /// \brief Return the index of the index in the transition.
3986 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
3987 /// is at index 1.
getTransitionIdx() const3988 unsigned getTransitionIdx() const {
3989 assert(isa<ExtractElementInst>(Transition) &&
3990 "Other kind of transitions are not supported yet");
3991 return 1;
3992 }
3993
3994 /// \brief Get the type of the transition.
3995 /// This is the type of the original value.
3996 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
3997 /// transition is <2 x i32>.
getTransitionType() const3998 Type *getTransitionType() const {
3999 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4000 }
4001
4002 /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4003 /// I.e., we have the following sequence:
4004 /// Def = Transition <ty1> a to <ty2>
4005 /// b = ToBePromoted <ty2> Def, ...
4006 /// =>
4007 /// b = ToBePromoted <ty1> a, ...
4008 /// Def = Transition <ty1> ToBePromoted to <ty2>
4009 void promoteImpl(Instruction *ToBePromoted);
4010
4011 /// \brief Check whether or not it is profitable to promote all the
4012 /// instructions enqueued to be promoted.
isProfitableToPromote()4013 bool isProfitableToPromote() {
4014 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4015 unsigned Index = isa<ConstantInt>(ValIdx)
4016 ? cast<ConstantInt>(ValIdx)->getZExtValue()
4017 : -1;
4018 Type *PromotedType = getTransitionType();
4019
4020 StoreInst *ST = cast<StoreInst>(CombineInst);
4021 unsigned AS = ST->getPointerAddressSpace();
4022 unsigned Align = ST->getAlignment();
4023 // Check if this store is supported.
4024 if (!TLI.allowsMisalignedMemoryAccesses(
4025 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) {
4026 // If this is not supported, there is no way we can combine
4027 // the extract with the store.
4028 return false;
4029 }
4030
4031 // The scalar chain of computation has to pay for the transition
4032 // scalar to vector.
4033 // The vector chain has to account for the combining cost.
4034 uint64_t ScalarCost =
4035 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4036 uint64_t VectorCost = StoreExtractCombineCost;
4037 for (const auto &Inst : InstsToBePromoted) {
4038 // Compute the cost.
4039 // By construction, all instructions being promoted are arithmetic ones.
4040 // Moreover, one argument is a constant that can be viewed as a splat
4041 // constant.
4042 Value *Arg0 = Inst->getOperand(0);
4043 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4044 isa<ConstantFP>(Arg0);
4045 TargetTransformInfo::OperandValueKind Arg0OVK =
4046 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4047 : TargetTransformInfo::OK_AnyValue;
4048 TargetTransformInfo::OperandValueKind Arg1OVK =
4049 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4050 : TargetTransformInfo::OK_AnyValue;
4051 ScalarCost += TTI.getArithmeticInstrCost(
4052 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4053 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4054 Arg0OVK, Arg1OVK);
4055 }
4056 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4057 << ScalarCost << "\nVector: " << VectorCost << '\n');
4058 return ScalarCost > VectorCost;
4059 }
4060
4061 /// \brief Generate a constant vector with \p Val with the same
4062 /// number of elements as the transition.
4063 /// \p UseSplat defines whether or not \p Val should be replicated
4064 /// accross the whole vector.
4065 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4066 /// otherwise we generate a vector with as many undef as possible:
4067 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4068 /// used at the index of the extract.
getConstantVector(Constant * Val,bool UseSplat) const4069 Value *getConstantVector(Constant *Val, bool UseSplat) const {
4070 unsigned ExtractIdx = UINT_MAX;
4071 if (!UseSplat) {
4072 // If we cannot determine where the constant must be, we have to
4073 // use a splat constant.
4074 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4075 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4076 ExtractIdx = CstVal->getSExtValue();
4077 else
4078 UseSplat = true;
4079 }
4080
4081 unsigned End = getTransitionType()->getVectorNumElements();
4082 if (UseSplat)
4083 return ConstantVector::getSplat(End, Val);
4084
4085 SmallVector<Constant *, 4> ConstVec;
4086 UndefValue *UndefVal = UndefValue::get(Val->getType());
4087 for (unsigned Idx = 0; Idx != End; ++Idx) {
4088 if (Idx == ExtractIdx)
4089 ConstVec.push_back(Val);
4090 else
4091 ConstVec.push_back(UndefVal);
4092 }
4093 return ConstantVector::get(ConstVec);
4094 }
4095
4096 /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4097 /// in \p Use can trigger undefined behavior.
canCauseUndefinedBehavior(const Instruction * Use,unsigned OperandIdx)4098 static bool canCauseUndefinedBehavior(const Instruction *Use,
4099 unsigned OperandIdx) {
4100 // This is not safe to introduce undef when the operand is on
4101 // the right hand side of a division-like instruction.
4102 if (OperandIdx != 1)
4103 return false;
4104 switch (Use->getOpcode()) {
4105 default:
4106 return false;
4107 case Instruction::SDiv:
4108 case Instruction::UDiv:
4109 case Instruction::SRem:
4110 case Instruction::URem:
4111 return true;
4112 case Instruction::FDiv:
4113 case Instruction::FRem:
4114 return !Use->hasNoNaNs();
4115 }
4116 llvm_unreachable(nullptr);
4117 }
4118
4119 public:
VectorPromoteHelper(const TargetLowering & TLI,const TargetTransformInfo & TTI,Instruction * Transition,unsigned CombineCost)4120 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI,
4121 Instruction *Transition, unsigned CombineCost)
4122 : TLI(TLI), TTI(TTI), Transition(Transition),
4123 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4124 assert(Transition && "Do not know how to promote null");
4125 }
4126
4127 /// \brief Check if we can promote \p ToBePromoted to \p Type.
canPromote(const Instruction * ToBePromoted) const4128 bool canPromote(const Instruction *ToBePromoted) const {
4129 // We could support CastInst too.
4130 return isa<BinaryOperator>(ToBePromoted);
4131 }
4132
4133 /// \brief Check if it is profitable to promote \p ToBePromoted
4134 /// by moving downward the transition through.
shouldPromote(const Instruction * ToBePromoted) const4135 bool shouldPromote(const Instruction *ToBePromoted) const {
4136 // Promote only if all the operands can be statically expanded.
4137 // Indeed, we do not want to introduce any new kind of transitions.
4138 for (const Use &U : ToBePromoted->operands()) {
4139 const Value *Val = U.get();
4140 if (Val == getEndOfTransition()) {
4141 // If the use is a division and the transition is on the rhs,
4142 // we cannot promote the operation, otherwise we may create a
4143 // division by zero.
4144 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
4145 return false;
4146 continue;
4147 }
4148 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
4149 !isa<ConstantFP>(Val))
4150 return false;
4151 }
4152 // Check that the resulting operation is legal.
4153 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
4154 if (!ISDOpcode)
4155 return false;
4156 return StressStoreExtract ||
4157 TLI.isOperationLegalOrCustom(
4158 ISDOpcode, TLI.getValueType(getTransitionType(), true));
4159 }
4160
4161 /// \brief Check whether or not \p Use can be combined
4162 /// with the transition.
4163 /// I.e., is it possible to do Use(Transition) => AnotherUse?
canCombine(const Instruction * Use)4164 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
4165
4166 /// \brief Record \p ToBePromoted as part of the chain to be promoted.
enqueueForPromotion(Instruction * ToBePromoted)4167 void enqueueForPromotion(Instruction *ToBePromoted) {
4168 InstsToBePromoted.push_back(ToBePromoted);
4169 }
4170
4171 /// \brief Set the instruction that will be combined with the transition.
recordCombineInstruction(Instruction * ToBeCombined)4172 void recordCombineInstruction(Instruction *ToBeCombined) {
4173 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
4174 CombineInst = ToBeCombined;
4175 }
4176
4177 /// \brief Promote all the instructions enqueued for promotion if it is
4178 /// is profitable.
4179 /// \return True if the promotion happened, false otherwise.
promote()4180 bool promote() {
4181 // Check if there is something to promote.
4182 // Right now, if we do not have anything to combine with,
4183 // we assume the promotion is not profitable.
4184 if (InstsToBePromoted.empty() || !CombineInst)
4185 return false;
4186
4187 // Check cost.
4188 if (!StressStoreExtract && !isProfitableToPromote())
4189 return false;
4190
4191 // Promote.
4192 for (auto &ToBePromoted : InstsToBePromoted)
4193 promoteImpl(ToBePromoted);
4194 InstsToBePromoted.clear();
4195 return true;
4196 }
4197 };
4198 } // End of anonymous namespace.
4199
promoteImpl(Instruction * ToBePromoted)4200 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
4201 // At this point, we know that all the operands of ToBePromoted but Def
4202 // can be statically promoted.
4203 // For Def, we need to use its parameter in ToBePromoted:
4204 // b = ToBePromoted ty1 a
4205 // Def = Transition ty1 b to ty2
4206 // Move the transition down.
4207 // 1. Replace all uses of the promoted operation by the transition.
4208 // = ... b => = ... Def.
4209 assert(ToBePromoted->getType() == Transition->getType() &&
4210 "The type of the result of the transition does not match "
4211 "the final type");
4212 ToBePromoted->replaceAllUsesWith(Transition);
4213 // 2. Update the type of the uses.
4214 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
4215 Type *TransitionTy = getTransitionType();
4216 ToBePromoted->mutateType(TransitionTy);
4217 // 3. Update all the operands of the promoted operation with promoted
4218 // operands.
4219 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
4220 for (Use &U : ToBePromoted->operands()) {
4221 Value *Val = U.get();
4222 Value *NewVal = nullptr;
4223 if (Val == Transition)
4224 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
4225 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
4226 isa<ConstantFP>(Val)) {
4227 // Use a splat constant if it is not safe to use undef.
4228 NewVal = getConstantVector(
4229 cast<Constant>(Val),
4230 isa<UndefValue>(Val) ||
4231 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
4232 } else
4233 llvm_unreachable("Did you modified shouldPromote and forgot to update "
4234 "this?");
4235 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
4236 }
4237 Transition->removeFromParent();
4238 Transition->insertAfter(ToBePromoted);
4239 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
4240 }
4241
4242 /// Some targets can do store(extractelement) with one instruction.
4243 /// Try to push the extractelement towards the stores when the target
4244 /// has this feature and this is profitable.
OptimizeExtractElementInst(Instruction * Inst)4245 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
4246 unsigned CombineCost = UINT_MAX;
4247 if (DisableStoreExtract || !TLI ||
4248 (!StressStoreExtract &&
4249 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
4250 Inst->getOperand(1), CombineCost)))
4251 return false;
4252
4253 // At this point we know that Inst is a vector to scalar transition.
4254 // Try to move it down the def-use chain, until:
4255 // - We can combine the transition with its single use
4256 // => we got rid of the transition.
4257 // - We escape the current basic block
4258 // => we would need to check that we are moving it at a cheaper place and
4259 // we do not do that for now.
4260 BasicBlock *Parent = Inst->getParent();
4261 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
4262 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost);
4263 // If the transition has more than one use, assume this is not going to be
4264 // beneficial.
4265 while (Inst->hasOneUse()) {
4266 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
4267 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
4268
4269 if (ToBePromoted->getParent() != Parent) {
4270 DEBUG(dbgs() << "Instruction to promote is in a different block ("
4271 << ToBePromoted->getParent()->getName()
4272 << ") than the transition (" << Parent->getName() << ").\n");
4273 return false;
4274 }
4275
4276 if (VPH.canCombine(ToBePromoted)) {
4277 DEBUG(dbgs() << "Assume " << *Inst << '\n'
4278 << "will be combined with: " << *ToBePromoted << '\n');
4279 VPH.recordCombineInstruction(ToBePromoted);
4280 bool Changed = VPH.promote();
4281 NumStoreExtractExposed += Changed;
4282 return Changed;
4283 }
4284
4285 DEBUG(dbgs() << "Try promoting.\n");
4286 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
4287 return false;
4288
4289 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
4290
4291 VPH.enqueueForPromotion(ToBePromoted);
4292 Inst = ToBePromoted;
4293 }
4294 return false;
4295 }
4296
OptimizeInst(Instruction * I,bool & ModifiedDT)4297 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) {
4298 if (PHINode *P = dyn_cast<PHINode>(I)) {
4299 // It is possible for very late stage optimizations (such as SimplifyCFG)
4300 // to introduce PHI nodes too late to be cleaned up. If we detect such a
4301 // trivial PHI, go ahead and zap it here.
4302 const DataLayout &DL = I->getModule()->getDataLayout();
4303 if (Value *V = SimplifyInstruction(P, DL, TLInfo, nullptr)) {
4304 P->replaceAllUsesWith(V);
4305 P->eraseFromParent();
4306 ++NumPHIsElim;
4307 return true;
4308 }
4309 return false;
4310 }
4311
4312 if (CastInst *CI = dyn_cast<CastInst>(I)) {
4313 // If the source of the cast is a constant, then this should have
4314 // already been constant folded. The only reason NOT to constant fold
4315 // it is if something (e.g. LSR) was careful to place the constant
4316 // evaluation in a block other than then one that uses it (e.g. to hoist
4317 // the address of globals out of a loop). If this is the case, we don't
4318 // want to forward-subst the cast.
4319 if (isa<Constant>(CI->getOperand(0)))
4320 return false;
4321
4322 if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
4323 return true;
4324
4325 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
4326 /// Sink a zext or sext into its user blocks if the target type doesn't
4327 /// fit in one register
4328 if (TLI && TLI->getTypeAction(CI->getContext(),
4329 TLI->getValueType(CI->getType())) ==
4330 TargetLowering::TypeExpandInteger) {
4331 return SinkCast(CI);
4332 } else {
4333 bool MadeChange = MoveExtToFormExtLoad(I);
4334 return MadeChange | OptimizeExtUses(I);
4335 }
4336 }
4337 return false;
4338 }
4339
4340 if (CmpInst *CI = dyn_cast<CmpInst>(I))
4341 if (!TLI || !TLI->hasMultipleConditionRegisters())
4342 return OptimizeCmpExpression(CI);
4343
4344 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4345 if (TLI)
4346 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
4347 return false;
4348 }
4349
4350 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
4351 if (TLI)
4352 return OptimizeMemoryInst(I, SI->getOperand(1),
4353 SI->getOperand(0)->getType());
4354 return false;
4355 }
4356
4357 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
4358
4359 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
4360 BinOp->getOpcode() == Instruction::LShr)) {
4361 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
4362 if (TLI && CI && TLI->hasExtractBitsInsn())
4363 return OptimizeExtractBits(BinOp, CI, *TLI);
4364
4365 return false;
4366 }
4367
4368 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
4369 if (GEPI->hasAllZeroIndices()) {
4370 /// The GEP operand must be a pointer, so must its result -> BitCast
4371 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
4372 GEPI->getName(), GEPI);
4373 GEPI->replaceAllUsesWith(NC);
4374 GEPI->eraseFromParent();
4375 ++NumGEPsElim;
4376 OptimizeInst(NC, ModifiedDT);
4377 return true;
4378 }
4379 return false;
4380 }
4381
4382 if (CallInst *CI = dyn_cast<CallInst>(I))
4383 return OptimizeCallInst(CI, ModifiedDT);
4384
4385 if (SelectInst *SI = dyn_cast<SelectInst>(I))
4386 return OptimizeSelectInst(SI);
4387
4388 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
4389 return OptimizeShuffleVectorInst(SVI);
4390
4391 if (isa<ExtractElementInst>(I))
4392 return OptimizeExtractElementInst(I);
4393
4394 return false;
4395 }
4396
4397 // In this pass we look for GEP and cast instructions that are used
4398 // across basic blocks and rewrite them to improve basic-block-at-a-time
4399 // selection.
OptimizeBlock(BasicBlock & BB,bool & ModifiedDT)4400 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
4401 SunkAddrs.clear();
4402 bool MadeChange = false;
4403
4404 CurInstIterator = BB.begin();
4405 while (CurInstIterator != BB.end()) {
4406 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT);
4407 if (ModifiedDT)
4408 return true;
4409 }
4410 MadeChange |= DupRetToEnableTailCallOpts(&BB);
4411
4412 return MadeChange;
4413 }
4414
4415 // llvm.dbg.value is far away from the value then iSel may not be able
4416 // handle it properly. iSel will drop llvm.dbg.value if it can not
4417 // find a node corresponding to the value.
PlaceDbgValues(Function & F)4418 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
4419 bool MadeChange = false;
4420 for (BasicBlock &BB : F) {
4421 Instruction *PrevNonDbgInst = nullptr;
4422 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
4423 Instruction *Insn = BI++;
4424 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
4425 // Leave dbg.values that refer to an alloca alone. These
4426 // instrinsics describe the address of a variable (= the alloca)
4427 // being taken. They should not be moved next to the alloca
4428 // (and to the beginning of the scope), but rather stay close to
4429 // where said address is used.
4430 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
4431 PrevNonDbgInst = Insn;
4432 continue;
4433 }
4434
4435 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
4436 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
4437 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
4438 DVI->removeFromParent();
4439 if (isa<PHINode>(VI))
4440 DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
4441 else
4442 DVI->insertAfter(VI);
4443 MadeChange = true;
4444 ++NumDbgValueMoved;
4445 }
4446 }
4447 }
4448 return MadeChange;
4449 }
4450
4451 // If there is a sequence that branches based on comparing a single bit
4452 // against zero that can be combined into a single instruction, and the
4453 // target supports folding these into a single instruction, sink the
4454 // mask and compare into the branch uses. Do this before OptimizeBlock ->
4455 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
4456 // searched for.
sinkAndCmp(Function & F)4457 bool CodeGenPrepare::sinkAndCmp(Function &F) {
4458 if (!EnableAndCmpSinking)
4459 return false;
4460 if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
4461 return false;
4462 bool MadeChange = false;
4463 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
4464 BasicBlock *BB = I++;
4465
4466 // Does this BB end with the following?
4467 // %andVal = and %val, #single-bit-set
4468 // %icmpVal = icmp %andResult, 0
4469 // br i1 %cmpVal label %dest1, label %dest2"
4470 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
4471 if (!Brcc || !Brcc->isConditional())
4472 continue;
4473 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
4474 if (!Cmp || Cmp->getParent() != BB)
4475 continue;
4476 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
4477 if (!Zero || !Zero->isZero())
4478 continue;
4479 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
4480 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
4481 continue;
4482 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
4483 if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
4484 continue;
4485 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
4486
4487 // Push the "and; icmp" for any users that are conditional branches.
4488 // Since there can only be one branch use per BB, we don't need to keep
4489 // track of which BBs we insert into.
4490 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
4491 UI != E; ) {
4492 Use &TheUse = *UI;
4493 // Find brcc use.
4494 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
4495 ++UI;
4496 if (!BrccUser || !BrccUser->isConditional())
4497 continue;
4498 BasicBlock *UserBB = BrccUser->getParent();
4499 if (UserBB == BB) continue;
4500 DEBUG(dbgs() << "found Brcc use\n");
4501
4502 // Sink the "and; icmp" to use.
4503 MadeChange = true;
4504 BinaryOperator *NewAnd =
4505 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
4506 BrccUser);
4507 CmpInst *NewCmp =
4508 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
4509 "", BrccUser);
4510 TheUse = NewCmp;
4511 ++NumAndCmpsMoved;
4512 DEBUG(BrccUser->getParent()->dump());
4513 }
4514 }
4515 return MadeChange;
4516 }
4517
4518 /// \brief Retrieve the probabilities of a conditional branch. Returns true on
4519 /// success, or returns false if no or invalid metadata was found.
extractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)4520 static bool extractBranchMetadata(BranchInst *BI,
4521 uint64_t &ProbTrue, uint64_t &ProbFalse) {
4522 assert(BI->isConditional() &&
4523 "Looking for probabilities on unconditional branch?");
4524 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
4525 if (!ProfileData || ProfileData->getNumOperands() != 3)
4526 return false;
4527
4528 const auto *CITrue =
4529 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
4530 const auto *CIFalse =
4531 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
4532 if (!CITrue || !CIFalse)
4533 return false;
4534
4535 ProbTrue = CITrue->getValue().getZExtValue();
4536 ProbFalse = CIFalse->getValue().getZExtValue();
4537
4538 return true;
4539 }
4540
4541 /// \brief Scale down both weights to fit into uint32_t.
scaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)4542 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
4543 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
4544 uint32_t Scale = (NewMax / UINT32_MAX) + 1;
4545 NewTrue = NewTrue / Scale;
4546 NewFalse = NewFalse / Scale;
4547 }
4548
4549 /// \brief Some targets prefer to split a conditional branch like:
4550 /// \code
4551 /// %0 = icmp ne i32 %a, 0
4552 /// %1 = icmp ne i32 %b, 0
4553 /// %or.cond = or i1 %0, %1
4554 /// br i1 %or.cond, label %TrueBB, label %FalseBB
4555 /// \endcode
4556 /// into multiple branch instructions like:
4557 /// \code
4558 /// bb1:
4559 /// %0 = icmp ne i32 %a, 0
4560 /// br i1 %0, label %TrueBB, label %bb2
4561 /// bb2:
4562 /// %1 = icmp ne i32 %b, 0
4563 /// br i1 %1, label %TrueBB, label %FalseBB
4564 /// \endcode
4565 /// This usually allows instruction selection to do even further optimizations
4566 /// and combine the compare with the branch instruction. Currently this is
4567 /// applied for targets which have "cheap" jump instructions.
4568 ///
4569 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
4570 ///
splitBranchCondition(Function & F)4571 bool CodeGenPrepare::splitBranchCondition(Function &F) {
4572 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
4573 return false;
4574
4575 bool MadeChange = false;
4576 for (auto &BB : F) {
4577 // Does this BB end with the following?
4578 // %cond1 = icmp|fcmp|binary instruction ...
4579 // %cond2 = icmp|fcmp|binary instruction ...
4580 // %cond.or = or|and i1 %cond1, cond2
4581 // br i1 %cond.or label %dest1, label %dest2"
4582 BinaryOperator *LogicOp;
4583 BasicBlock *TBB, *FBB;
4584 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
4585 continue;
4586
4587 unsigned Opc;
4588 Value *Cond1, *Cond2;
4589 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
4590 m_OneUse(m_Value(Cond2)))))
4591 Opc = Instruction::And;
4592 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
4593 m_OneUse(m_Value(Cond2)))))
4594 Opc = Instruction::Or;
4595 else
4596 continue;
4597
4598 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
4599 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
4600 continue;
4601
4602 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
4603
4604 // Create a new BB.
4605 auto *InsertBefore = std::next(Function::iterator(BB))
4606 .getNodePtrUnchecked();
4607 auto TmpBB = BasicBlock::Create(BB.getContext(),
4608 BB.getName() + ".cond.split",
4609 BB.getParent(), InsertBefore);
4610
4611 // Update original basic block by using the first condition directly by the
4612 // branch instruction and removing the no longer needed and/or instruction.
4613 auto *Br1 = cast<BranchInst>(BB.getTerminator());
4614 Br1->setCondition(Cond1);
4615 LogicOp->eraseFromParent();
4616
4617 // Depending on the conditon we have to either replace the true or the false
4618 // successor of the original branch instruction.
4619 if (Opc == Instruction::And)
4620 Br1->setSuccessor(0, TmpBB);
4621 else
4622 Br1->setSuccessor(1, TmpBB);
4623
4624 // Fill in the new basic block.
4625 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
4626 if (auto *I = dyn_cast<Instruction>(Cond2)) {
4627 I->removeFromParent();
4628 I->insertBefore(Br2);
4629 }
4630
4631 // Update PHI nodes in both successors. The original BB needs to be
4632 // replaced in one succesor's PHI nodes, because the branch comes now from
4633 // the newly generated BB (NewBB). In the other successor we need to add one
4634 // incoming edge to the PHI nodes, because both branch instructions target
4635 // now the same successor. Depending on the original branch condition
4636 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
4637 // we perfrom the correct update for the PHI nodes.
4638 // This doesn't change the successor order of the just created branch
4639 // instruction (or any other instruction).
4640 if (Opc == Instruction::Or)
4641 std::swap(TBB, FBB);
4642
4643 // Replace the old BB with the new BB.
4644 for (auto &I : *TBB) {
4645 PHINode *PN = dyn_cast<PHINode>(&I);
4646 if (!PN)
4647 break;
4648 int i;
4649 while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
4650 PN->setIncomingBlock(i, TmpBB);
4651 }
4652
4653 // Add another incoming edge form the new BB.
4654 for (auto &I : *FBB) {
4655 PHINode *PN = dyn_cast<PHINode>(&I);
4656 if (!PN)
4657 break;
4658 auto *Val = PN->getIncomingValueForBlock(&BB);
4659 PN->addIncoming(Val, TmpBB);
4660 }
4661
4662 // Update the branch weights (from SelectionDAGBuilder::
4663 // FindMergedConditions).
4664 if (Opc == Instruction::Or) {
4665 // Codegen X | Y as:
4666 // BB1:
4667 // jmp_if_X TBB
4668 // jmp TmpBB
4669 // TmpBB:
4670 // jmp_if_Y TBB
4671 // jmp FBB
4672 //
4673
4674 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
4675 // The requirement is that
4676 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
4677 // = TrueProb for orignal BB.
4678 // Assuming the orignal weights are A and B, one choice is to set BB1's
4679 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
4680 // assumes that
4681 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
4682 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
4683 // TmpBB, but the math is more complicated.
4684 uint64_t TrueWeight, FalseWeight;
4685 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
4686 uint64_t NewTrueWeight = TrueWeight;
4687 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
4688 scaleWeights(NewTrueWeight, NewFalseWeight);
4689 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
4690 .createBranchWeights(TrueWeight, FalseWeight));
4691
4692 NewTrueWeight = TrueWeight;
4693 NewFalseWeight = 2 * FalseWeight;
4694 scaleWeights(NewTrueWeight, NewFalseWeight);
4695 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
4696 .createBranchWeights(TrueWeight, FalseWeight));
4697 }
4698 } else {
4699 // Codegen X & Y as:
4700 // BB1:
4701 // jmp_if_X TmpBB
4702 // jmp FBB
4703 // TmpBB:
4704 // jmp_if_Y TBB
4705 // jmp FBB
4706 //
4707 // This requires creation of TmpBB after CurBB.
4708
4709 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
4710 // The requirement is that
4711 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
4712 // = FalseProb for orignal BB.
4713 // Assuming the orignal weights are A and B, one choice is to set BB1's
4714 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
4715 // assumes that
4716 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
4717 uint64_t TrueWeight, FalseWeight;
4718 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
4719 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
4720 uint64_t NewFalseWeight = FalseWeight;
4721 scaleWeights(NewTrueWeight, NewFalseWeight);
4722 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
4723 .createBranchWeights(TrueWeight, FalseWeight));
4724
4725 NewTrueWeight = 2 * TrueWeight;
4726 NewFalseWeight = FalseWeight;
4727 scaleWeights(NewTrueWeight, NewFalseWeight);
4728 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
4729 .createBranchWeights(TrueWeight, FalseWeight));
4730 }
4731 }
4732
4733 // Note: No point in getting fancy here, since the DT info is never
4734 // available to CodeGenPrepare.
4735 ModifiedDT = true;
4736
4737 MadeChange = true;
4738
4739 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
4740 TmpBB->dump());
4741 }
4742 return MadeChange;
4743 }
4744