1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Linker/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/DiagnosticPrinter.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/TypeFinder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include <cctype>
34 #include <tuple>
35 using namespace llvm;
36
37
38 //===----------------------------------------------------------------------===//
39 // TypeMap implementation.
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 class TypeMapTy : public ValueMapTypeRemapper {
44 /// This is a mapping from a source type to a destination type to use.
45 DenseMap<Type*, Type*> MappedTypes;
46
47 /// When checking to see if two subgraphs are isomorphic, we speculatively
48 /// add types to MappedTypes, but keep track of them here in case we need to
49 /// roll back.
50 SmallVector<Type*, 16> SpeculativeTypes;
51
52 SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
53
54 /// This is a list of non-opaque structs in the source module that are mapped
55 /// to an opaque struct in the destination module.
56 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
57
58 /// This is the set of opaque types in the destination modules who are
59 /// getting a body from the source module.
60 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
61
62 public:
TypeMapTy(Linker::IdentifiedStructTypeSet & DstStructTypesSet)63 TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
64 : DstStructTypesSet(DstStructTypesSet) {}
65
66 Linker::IdentifiedStructTypeSet &DstStructTypesSet;
67 /// Indicate that the specified type in the destination module is conceptually
68 /// equivalent to the specified type in the source module.
69 void addTypeMapping(Type *DstTy, Type *SrcTy);
70
71 /// Produce a body for an opaque type in the dest module from a type
72 /// definition in the source module.
73 void linkDefinedTypeBodies();
74
75 /// Return the mapped type to use for the specified input type from the
76 /// source module.
77 Type *get(Type *SrcTy);
78 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
79
80 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
81
get(FunctionType * T)82 FunctionType *get(FunctionType *T) {
83 return cast<FunctionType>(get((Type *)T));
84 }
85
86 /// Dump out the type map for debugging purposes.
dump() const87 void dump() const {
88 for (auto &Pair : MappedTypes) {
89 dbgs() << "TypeMap: ";
90 Pair.first->print(dbgs());
91 dbgs() << " => ";
92 Pair.second->print(dbgs());
93 dbgs() << '\n';
94 }
95 }
96
97 private:
remapType(Type * SrcTy)98 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
99
100 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
101 };
102 }
103
addTypeMapping(Type * DstTy,Type * SrcTy)104 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
105 assert(SpeculativeTypes.empty());
106 assert(SpeculativeDstOpaqueTypes.empty());
107
108 // Check to see if these types are recursively isomorphic and establish a
109 // mapping between them if so.
110 if (!areTypesIsomorphic(DstTy, SrcTy)) {
111 // Oops, they aren't isomorphic. Just discard this request by rolling out
112 // any speculative mappings we've established.
113 for (Type *Ty : SpeculativeTypes)
114 MappedTypes.erase(Ty);
115
116 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
117 SpeculativeDstOpaqueTypes.size());
118 for (StructType *Ty : SpeculativeDstOpaqueTypes)
119 DstResolvedOpaqueTypes.erase(Ty);
120 } else {
121 for (Type *Ty : SpeculativeTypes)
122 if (auto *STy = dyn_cast<StructType>(Ty))
123 if (STy->hasName())
124 STy->setName("");
125 }
126 SpeculativeTypes.clear();
127 SpeculativeDstOpaqueTypes.clear();
128 }
129
130 /// Recursively walk this pair of types, returning true if they are isomorphic,
131 /// false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)132 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
133 // Two types with differing kinds are clearly not isomorphic.
134 if (DstTy->getTypeID() != SrcTy->getTypeID())
135 return false;
136
137 // If we have an entry in the MappedTypes table, then we have our answer.
138 Type *&Entry = MappedTypes[SrcTy];
139 if (Entry)
140 return Entry == DstTy;
141
142 // Two identical types are clearly isomorphic. Remember this
143 // non-speculatively.
144 if (DstTy == SrcTy) {
145 Entry = DstTy;
146 return true;
147 }
148
149 // Okay, we have two types with identical kinds that we haven't seen before.
150
151 // If this is an opaque struct type, special case it.
152 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
153 // Mapping an opaque type to any struct, just keep the dest struct.
154 if (SSTy->isOpaque()) {
155 Entry = DstTy;
156 SpeculativeTypes.push_back(SrcTy);
157 return true;
158 }
159
160 // Mapping a non-opaque source type to an opaque dest. If this is the first
161 // type that we're mapping onto this destination type then we succeed. Keep
162 // the dest, but fill it in later. If this is the second (different) type
163 // that we're trying to map onto the same opaque type then we fail.
164 if (cast<StructType>(DstTy)->isOpaque()) {
165 // We can only map one source type onto the opaque destination type.
166 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
167 return false;
168 SrcDefinitionsToResolve.push_back(SSTy);
169 SpeculativeTypes.push_back(SrcTy);
170 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
171 Entry = DstTy;
172 return true;
173 }
174 }
175
176 // If the number of subtypes disagree between the two types, then we fail.
177 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
178 return false;
179
180 // Fail if any of the extra properties (e.g. array size) of the type disagree.
181 if (isa<IntegerType>(DstTy))
182 return false; // bitwidth disagrees.
183 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
184 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
185 return false;
186
187 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
188 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
189 return false;
190 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
191 StructType *SSTy = cast<StructType>(SrcTy);
192 if (DSTy->isLiteral() != SSTy->isLiteral() ||
193 DSTy->isPacked() != SSTy->isPacked())
194 return false;
195 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
196 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
197 return false;
198 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
199 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
200 return false;
201 }
202
203 // Otherwise, we speculate that these two types will line up and recursively
204 // check the subelements.
205 Entry = DstTy;
206 SpeculativeTypes.push_back(SrcTy);
207
208 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
209 if (!areTypesIsomorphic(DstTy->getContainedType(I),
210 SrcTy->getContainedType(I)))
211 return false;
212
213 // If everything seems to have lined up, then everything is great.
214 return true;
215 }
216
linkDefinedTypeBodies()217 void TypeMapTy::linkDefinedTypeBodies() {
218 SmallVector<Type*, 16> Elements;
219 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
220 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
221 assert(DstSTy->isOpaque());
222
223 // Map the body of the source type over to a new body for the dest type.
224 Elements.resize(SrcSTy->getNumElements());
225 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
226 Elements[I] = get(SrcSTy->getElementType(I));
227
228 DstSTy->setBody(Elements, SrcSTy->isPacked());
229 DstStructTypesSet.switchToNonOpaque(DstSTy);
230 }
231 SrcDefinitionsToResolve.clear();
232 DstResolvedOpaqueTypes.clear();
233 }
234
finishType(StructType * DTy,StructType * STy,ArrayRef<Type * > ETypes)235 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
236 ArrayRef<Type *> ETypes) {
237 DTy->setBody(ETypes, STy->isPacked());
238
239 // Steal STy's name.
240 if (STy->hasName()) {
241 SmallString<16> TmpName = STy->getName();
242 STy->setName("");
243 DTy->setName(TmpName);
244 }
245
246 DstStructTypesSet.addNonOpaque(DTy);
247 }
248
get(Type * Ty)249 Type *TypeMapTy::get(Type *Ty) {
250 SmallPtrSet<StructType *, 8> Visited;
251 return get(Ty, Visited);
252 }
253
get(Type * Ty,SmallPtrSet<StructType *,8> & Visited)254 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
255 // If we already have an entry for this type, return it.
256 Type **Entry = &MappedTypes[Ty];
257 if (*Entry)
258 return *Entry;
259
260 // These are types that LLVM itself will unique.
261 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
262
263 #ifndef NDEBUG
264 if (!IsUniqued) {
265 for (auto &Pair : MappedTypes) {
266 assert(!(Pair.first != Ty && Pair.second == Ty) &&
267 "mapping to a source type");
268 }
269 }
270 #endif
271
272 if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
273 StructType *DTy = StructType::create(Ty->getContext());
274 return *Entry = DTy;
275 }
276
277 // If this is not a recursive type, then just map all of the elements and
278 // then rebuild the type from inside out.
279 SmallVector<Type *, 4> ElementTypes;
280
281 // If there are no element types to map, then the type is itself. This is
282 // true for the anonymous {} struct, things like 'float', integers, etc.
283 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
284 return *Entry = Ty;
285
286 // Remap all of the elements, keeping track of whether any of them change.
287 bool AnyChange = false;
288 ElementTypes.resize(Ty->getNumContainedTypes());
289 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
290 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
291 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
292 }
293
294 // If we found our type while recursively processing stuff, just use it.
295 Entry = &MappedTypes[Ty];
296 if (*Entry) {
297 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
298 if (DTy->isOpaque()) {
299 auto *STy = cast<StructType>(Ty);
300 finishType(DTy, STy, ElementTypes);
301 }
302 }
303 return *Entry;
304 }
305
306 // If all of the element types mapped directly over and the type is not
307 // a nomed struct, then the type is usable as-is.
308 if (!AnyChange && IsUniqued)
309 return *Entry = Ty;
310
311 // Otherwise, rebuild a modified type.
312 switch (Ty->getTypeID()) {
313 default:
314 llvm_unreachable("unknown derived type to remap");
315 case Type::ArrayTyID:
316 return *Entry = ArrayType::get(ElementTypes[0],
317 cast<ArrayType>(Ty)->getNumElements());
318 case Type::VectorTyID:
319 return *Entry = VectorType::get(ElementTypes[0],
320 cast<VectorType>(Ty)->getNumElements());
321 case Type::PointerTyID:
322 return *Entry = PointerType::get(ElementTypes[0],
323 cast<PointerType>(Ty)->getAddressSpace());
324 case Type::FunctionTyID:
325 return *Entry = FunctionType::get(ElementTypes[0],
326 makeArrayRef(ElementTypes).slice(1),
327 cast<FunctionType>(Ty)->isVarArg());
328 case Type::StructTyID: {
329 auto *STy = cast<StructType>(Ty);
330 bool IsPacked = STy->isPacked();
331 if (IsUniqued)
332 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
333
334 // If the type is opaque, we can just use it directly.
335 if (STy->isOpaque()) {
336 DstStructTypesSet.addOpaque(STy);
337 return *Entry = Ty;
338 }
339
340 if (StructType *OldT =
341 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
342 STy->setName("");
343 return *Entry = OldT;
344 }
345
346 if (!AnyChange) {
347 DstStructTypesSet.addNonOpaque(STy);
348 return *Entry = Ty;
349 }
350
351 StructType *DTy = StructType::create(Ty->getContext());
352 finishType(DTy, STy, ElementTypes);
353 return *Entry = DTy;
354 }
355 }
356 }
357
358 //===----------------------------------------------------------------------===//
359 // ModuleLinker implementation.
360 //===----------------------------------------------------------------------===//
361
362 namespace {
363 class ModuleLinker;
364
365 /// Creates prototypes for functions that are lazily linked on the fly. This
366 /// speeds up linking for modules with many/ lazily linked functions of which
367 /// few get used.
368 class ValueMaterializerTy : public ValueMaterializer {
369 TypeMapTy &TypeMap;
370 Module *DstM;
371 std::vector<GlobalValue *> &LazilyLinkGlobalValues;
372
373 public:
ValueMaterializerTy(TypeMapTy & TypeMap,Module * DstM,std::vector<GlobalValue * > & LazilyLinkGlobalValues)374 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
375 std::vector<GlobalValue *> &LazilyLinkGlobalValues)
376 : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
377 LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
378
379 Value *materializeValueFor(Value *V) override;
380 };
381
382 class LinkDiagnosticInfo : public DiagnosticInfo {
383 const Twine &Msg;
384
385 public:
386 LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
387 void print(DiagnosticPrinter &DP) const override;
388 };
LinkDiagnosticInfo(DiagnosticSeverity Severity,const Twine & Msg)389 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
390 const Twine &Msg)
391 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
print(DiagnosticPrinter & DP) const392 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
393
394 /// This is an implementation class for the LinkModules function, which is the
395 /// entrypoint for this file.
396 class ModuleLinker {
397 Module *DstM, *SrcM;
398
399 TypeMapTy TypeMap;
400 ValueMaterializerTy ValMaterializer;
401
402 /// Mapping of values from what they used to be in Src, to what they are now
403 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
404 /// due to the use of Value handles which the Linker doesn't actually need,
405 /// but this allows us to reuse the ValueMapper code.
406 ValueToValueMapTy ValueMap;
407
408 struct AppendingVarInfo {
409 GlobalVariable *NewGV; // New aggregate global in dest module.
410 const Constant *DstInit; // Old initializer from dest module.
411 const Constant *SrcInit; // Old initializer from src module.
412 };
413
414 std::vector<AppendingVarInfo> AppendingVars;
415
416 // Set of items not to link in from source.
417 SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
418
419 // Vector of GlobalValues to lazily link in.
420 std::vector<GlobalValue *> LazilyLinkGlobalValues;
421
422 /// Functions that have replaced other functions.
423 SmallPtrSet<const Function *, 16> OverridingFunctions;
424
425 DiagnosticHandlerFunction DiagnosticHandler;
426
427 public:
ModuleLinker(Module * dstM,Linker::IdentifiedStructTypeSet & Set,Module * srcM,DiagnosticHandlerFunction DiagnosticHandler)428 ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
429 DiagnosticHandlerFunction DiagnosticHandler)
430 : DstM(dstM), SrcM(srcM), TypeMap(Set),
431 ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
432 DiagnosticHandler(DiagnosticHandler) {}
433
434 bool run();
435
436 private:
437 bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
438 const GlobalValue &Src);
439
440 /// Helper method for setting a message and returning an error code.
emitError(const Twine & Message)441 bool emitError(const Twine &Message) {
442 DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
443 return true;
444 }
445
emitWarning(const Twine & Message)446 void emitWarning(const Twine &Message) {
447 DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
448 }
449
450 bool getComdatLeader(Module *M, StringRef ComdatName,
451 const GlobalVariable *&GVar);
452 bool computeResultingSelectionKind(StringRef ComdatName,
453 Comdat::SelectionKind Src,
454 Comdat::SelectionKind Dst,
455 Comdat::SelectionKind &Result,
456 bool &LinkFromSrc);
457 std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
458 ComdatsChosen;
459 bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
460 bool &LinkFromSrc);
461
462 /// Given a global in the source module, return the global in the
463 /// destination module that is being linked to, if any.
getLinkedToGlobal(const GlobalValue * SrcGV)464 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
465 // If the source has no name it can't link. If it has local linkage,
466 // there is no name match-up going on.
467 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
468 return nullptr;
469
470 // Otherwise see if we have a match in the destination module's symtab.
471 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
472 if (!DGV)
473 return nullptr;
474
475 // If we found a global with the same name in the dest module, but it has
476 // internal linkage, we are really not doing any linkage here.
477 if (DGV->hasLocalLinkage())
478 return nullptr;
479
480 // Otherwise, we do in fact link to the destination global.
481 return DGV;
482 }
483
484 void computeTypeMapping();
485
486 void upgradeMismatchedGlobalArray(StringRef Name);
487 void upgradeMismatchedGlobals();
488
489 bool linkAppendingVarProto(GlobalVariable *DstGV,
490 const GlobalVariable *SrcGV);
491
492 bool linkGlobalValueProto(GlobalValue *GV);
493 bool linkModuleFlagsMetadata();
494
495 void linkAppendingVarInit(const AppendingVarInfo &AVI);
496
497 void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
498 bool linkFunctionBody(Function &Dst, Function &Src);
499 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
500 bool linkGlobalValueBody(GlobalValue &Src);
501
502 void linkNamedMDNodes();
503 void stripReplacedSubprograms();
504 };
505 }
506
507 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
508 /// table. This is good for all clients except for us. Go through the trouble
509 /// to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)510 static void forceRenaming(GlobalValue *GV, StringRef Name) {
511 // If the global doesn't force its name or if it already has the right name,
512 // there is nothing for us to do.
513 if (GV->hasLocalLinkage() || GV->getName() == Name)
514 return;
515
516 Module *M = GV->getParent();
517
518 // If there is a conflict, rename the conflict.
519 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
520 GV->takeName(ConflictGV);
521 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
522 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
523 } else {
524 GV->setName(Name); // Force the name back
525 }
526 }
527
528 /// copy additional attributes (those not needed to construct a GlobalValue)
529 /// from the SrcGV to the DestGV.
copyGVAttributes(GlobalValue * DestGV,const GlobalValue * SrcGV)530 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
531 DestGV->copyAttributesFrom(SrcGV);
532 forceRenaming(DestGV, SrcGV->getName());
533 }
534
isLessConstraining(GlobalValue::VisibilityTypes a,GlobalValue::VisibilityTypes b)535 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
536 GlobalValue::VisibilityTypes b) {
537 if (a == GlobalValue::HiddenVisibility)
538 return false;
539 if (b == GlobalValue::HiddenVisibility)
540 return true;
541 if (a == GlobalValue::ProtectedVisibility)
542 return false;
543 if (b == GlobalValue::ProtectedVisibility)
544 return true;
545 return false;
546 }
547
548 /// Loop through the global variables in the src module and merge them into the
549 /// dest module.
copyGlobalVariableProto(TypeMapTy & TypeMap,Module & DstM,const GlobalVariable * SGVar)550 static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
551 const GlobalVariable *SGVar) {
552 // No linking to be performed or linking from the source: simply create an
553 // identical version of the symbol over in the dest module... the
554 // initializer will be filled in later by LinkGlobalInits.
555 GlobalVariable *NewDGV = new GlobalVariable(
556 DstM, TypeMap.get(SGVar->getType()->getElementType()),
557 SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
558 SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
559 SGVar->getType()->getAddressSpace());
560
561 return NewDGV;
562 }
563
564 /// Link the function in the source module into the destination module if
565 /// needed, setting up mapping information.
copyFunctionProto(TypeMapTy & TypeMap,Module & DstM,const Function * SF)566 static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
567 const Function *SF) {
568 // If there is no linkage to be performed or we are linking from the source,
569 // bring SF over.
570 return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
571 SF->getName(), &DstM);
572 }
573
574 /// Set up prototypes for any aliases that come over from the source module.
copyGlobalAliasProto(TypeMapTy & TypeMap,Module & DstM,const GlobalAlias * SGA)575 static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
576 const GlobalAlias *SGA) {
577 // If there is no linkage to be performed or we're linking from the source,
578 // bring over SGA.
579 auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
580 return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
581 SGA->getLinkage(), SGA->getName(), &DstM);
582 }
583
copyGlobalValueProto(TypeMapTy & TypeMap,Module & DstM,const GlobalValue * SGV)584 static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
585 const GlobalValue *SGV) {
586 GlobalValue *NewGV;
587 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
588 NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
589 else if (auto *SF = dyn_cast<Function>(SGV))
590 NewGV = copyFunctionProto(TypeMap, DstM, SF);
591 else
592 NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
593 copyGVAttributes(NewGV, SGV);
594 return NewGV;
595 }
596
materializeValueFor(Value * V)597 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
598 auto *SGV = dyn_cast<GlobalValue>(V);
599 if (!SGV)
600 return nullptr;
601
602 GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
603
604 if (Comdat *SC = SGV->getComdat()) {
605 if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
606 Comdat *DC = DstM->getOrInsertComdat(SC->getName());
607 DGO->setComdat(DC);
608 }
609 }
610
611 LazilyLinkGlobalValues.push_back(SGV);
612 return DGV;
613 }
614
getComdatLeader(Module * M,StringRef ComdatName,const GlobalVariable * & GVar)615 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
616 const GlobalVariable *&GVar) {
617 const GlobalValue *GVal = M->getNamedValue(ComdatName);
618 if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
619 GVal = GA->getBaseObject();
620 if (!GVal)
621 // We cannot resolve the size of the aliasee yet.
622 return emitError("Linking COMDATs named '" + ComdatName +
623 "': COMDAT key involves incomputable alias size.");
624 }
625
626 GVar = dyn_cast_or_null<GlobalVariable>(GVal);
627 if (!GVar)
628 return emitError(
629 "Linking COMDATs named '" + ComdatName +
630 "': GlobalVariable required for data dependent selection!");
631
632 return false;
633 }
634
computeResultingSelectionKind(StringRef ComdatName,Comdat::SelectionKind Src,Comdat::SelectionKind Dst,Comdat::SelectionKind & Result,bool & LinkFromSrc)635 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
636 Comdat::SelectionKind Src,
637 Comdat::SelectionKind Dst,
638 Comdat::SelectionKind &Result,
639 bool &LinkFromSrc) {
640 // The ability to mix Comdat::SelectionKind::Any with
641 // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
642 bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
643 Dst == Comdat::SelectionKind::Largest;
644 bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
645 Src == Comdat::SelectionKind::Largest;
646 if (DstAnyOrLargest && SrcAnyOrLargest) {
647 if (Dst == Comdat::SelectionKind::Largest ||
648 Src == Comdat::SelectionKind::Largest)
649 Result = Comdat::SelectionKind::Largest;
650 else
651 Result = Comdat::SelectionKind::Any;
652 } else if (Src == Dst) {
653 Result = Dst;
654 } else {
655 return emitError("Linking COMDATs named '" + ComdatName +
656 "': invalid selection kinds!");
657 }
658
659 switch (Result) {
660 case Comdat::SelectionKind::Any:
661 // Go with Dst.
662 LinkFromSrc = false;
663 break;
664 case Comdat::SelectionKind::NoDuplicates:
665 return emitError("Linking COMDATs named '" + ComdatName +
666 "': noduplicates has been violated!");
667 case Comdat::SelectionKind::ExactMatch:
668 case Comdat::SelectionKind::Largest:
669 case Comdat::SelectionKind::SameSize: {
670 const GlobalVariable *DstGV;
671 const GlobalVariable *SrcGV;
672 if (getComdatLeader(DstM, ComdatName, DstGV) ||
673 getComdatLeader(SrcM, ComdatName, SrcGV))
674 return true;
675
676 const DataLayout &DstDL = DstM->getDataLayout();
677 const DataLayout &SrcDL = SrcM->getDataLayout();
678 uint64_t DstSize =
679 DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
680 uint64_t SrcSize =
681 SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
682 if (Result == Comdat::SelectionKind::ExactMatch) {
683 if (SrcGV->getInitializer() != DstGV->getInitializer())
684 return emitError("Linking COMDATs named '" + ComdatName +
685 "': ExactMatch violated!");
686 LinkFromSrc = false;
687 } else if (Result == Comdat::SelectionKind::Largest) {
688 LinkFromSrc = SrcSize > DstSize;
689 } else if (Result == Comdat::SelectionKind::SameSize) {
690 if (SrcSize != DstSize)
691 return emitError("Linking COMDATs named '" + ComdatName +
692 "': SameSize violated!");
693 LinkFromSrc = false;
694 } else {
695 llvm_unreachable("unknown selection kind");
696 }
697 break;
698 }
699 }
700
701 return false;
702 }
703
getComdatResult(const Comdat * SrcC,Comdat::SelectionKind & Result,bool & LinkFromSrc)704 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
705 Comdat::SelectionKind &Result,
706 bool &LinkFromSrc) {
707 Comdat::SelectionKind SSK = SrcC->getSelectionKind();
708 StringRef ComdatName = SrcC->getName();
709 Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
710 Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
711
712 if (DstCI == ComdatSymTab.end()) {
713 // Use the comdat if it is only available in one of the modules.
714 LinkFromSrc = true;
715 Result = SSK;
716 return false;
717 }
718
719 const Comdat *DstC = &DstCI->second;
720 Comdat::SelectionKind DSK = DstC->getSelectionKind();
721 return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
722 LinkFromSrc);
723 }
724
shouldLinkFromSource(bool & LinkFromSrc,const GlobalValue & Dest,const GlobalValue & Src)725 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
726 const GlobalValue &Dest,
727 const GlobalValue &Src) {
728 // We always have to add Src if it has appending linkage.
729 if (Src.hasAppendingLinkage()) {
730 LinkFromSrc = true;
731 return false;
732 }
733
734 bool SrcIsDeclaration = Src.isDeclarationForLinker();
735 bool DestIsDeclaration = Dest.isDeclarationForLinker();
736
737 if (SrcIsDeclaration) {
738 // If Src is external or if both Src & Dest are external.. Just link the
739 // external globals, we aren't adding anything.
740 if (Src.hasDLLImportStorageClass()) {
741 // If one of GVs is marked as DLLImport, result should be dllimport'ed.
742 LinkFromSrc = DestIsDeclaration;
743 return false;
744 }
745 // If the Dest is weak, use the source linkage.
746 LinkFromSrc = Dest.hasExternalWeakLinkage();
747 return false;
748 }
749
750 if (DestIsDeclaration) {
751 // If Dest is external but Src is not:
752 LinkFromSrc = true;
753 return false;
754 }
755
756 if (Src.hasCommonLinkage()) {
757 if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
758 LinkFromSrc = true;
759 return false;
760 }
761
762 if (!Dest.hasCommonLinkage()) {
763 LinkFromSrc = false;
764 return false;
765 }
766
767 const DataLayout &DL = Dest.getParent()->getDataLayout();
768 uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
769 uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
770 LinkFromSrc = SrcSize > DestSize;
771 return false;
772 }
773
774 if (Src.isWeakForLinker()) {
775 assert(!Dest.hasExternalWeakLinkage());
776 assert(!Dest.hasAvailableExternallyLinkage());
777
778 if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
779 LinkFromSrc = true;
780 return false;
781 }
782
783 LinkFromSrc = false;
784 return false;
785 }
786
787 if (Dest.isWeakForLinker()) {
788 assert(Src.hasExternalLinkage());
789 LinkFromSrc = true;
790 return false;
791 }
792
793 assert(!Src.hasExternalWeakLinkage());
794 assert(!Dest.hasExternalWeakLinkage());
795 assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
796 "Unexpected linkage type!");
797 return emitError("Linking globals named '" + Src.getName() +
798 "': symbol multiply defined!");
799 }
800
801 /// Loop over all of the linked values to compute type mappings. For example,
802 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
803 /// types 'Foo' but one got renamed when the module was loaded into the same
804 /// LLVMContext.
computeTypeMapping()805 void ModuleLinker::computeTypeMapping() {
806 for (GlobalValue &SGV : SrcM->globals()) {
807 GlobalValue *DGV = getLinkedToGlobal(&SGV);
808 if (!DGV)
809 continue;
810
811 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
812 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
813 continue;
814 }
815
816 // Unify the element type of appending arrays.
817 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
818 ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
819 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
820 }
821
822 for (GlobalValue &SGV : *SrcM) {
823 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
824 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
825 }
826
827 for (GlobalValue &SGV : SrcM->aliases()) {
828 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
829 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
830 }
831
832 // Incorporate types by name, scanning all the types in the source module.
833 // At this point, the destination module may have a type "%foo = { i32 }" for
834 // example. When the source module got loaded into the same LLVMContext, if
835 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
836 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
837 for (StructType *ST : Types) {
838 if (!ST->hasName())
839 continue;
840
841 // Check to see if there is a dot in the name followed by a digit.
842 size_t DotPos = ST->getName().rfind('.');
843 if (DotPos == 0 || DotPos == StringRef::npos ||
844 ST->getName().back() == '.' ||
845 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
846 continue;
847
848 // Check to see if the destination module has a struct with the prefix name.
849 StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
850 if (!DST)
851 continue;
852
853 // Don't use it if this actually came from the source module. They're in
854 // the same LLVMContext after all. Also don't use it unless the type is
855 // actually used in the destination module. This can happen in situations
856 // like this:
857 //
858 // Module A Module B
859 // -------- --------
860 // %Z = type { %A } %B = type { %C.1 }
861 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
862 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
863 // %C = type { i8* } %B.3 = type { %C.1 }
864 //
865 // When we link Module B with Module A, the '%B' in Module B is
866 // used. However, that would then use '%C.1'. But when we process '%C.1',
867 // we prefer to take the '%C' version. So we are then left with both
868 // '%C.1' and '%C' being used for the same types. This leads to some
869 // variables using one type and some using the other.
870 if (TypeMap.DstStructTypesSet.hasType(DST))
871 TypeMap.addTypeMapping(DST, ST);
872 }
873
874 // Now that we have discovered all of the type equivalences, get a body for
875 // any 'opaque' types in the dest module that are now resolved.
876 TypeMap.linkDefinedTypeBodies();
877 }
878
upgradeGlobalArray(GlobalVariable * GV)879 static void upgradeGlobalArray(GlobalVariable *GV) {
880 ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
881 StructType *OldTy = cast<StructType>(ATy->getElementType());
882 assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
883
884 // Get the upgraded 3 element type.
885 PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
886 Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
887 VoidPtrTy};
888 StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
889
890 // Build new constants with a null third field filled in.
891 Constant *OldInitC = GV->getInitializer();
892 ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
893 if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
894 // Invalid initializer; give up.
895 return;
896 std::vector<Constant *> Initializers;
897 if (OldInit && OldInit->getNumOperands()) {
898 Value *Null = Constant::getNullValue(VoidPtrTy);
899 for (Use &U : OldInit->operands()) {
900 ConstantStruct *Init = cast<ConstantStruct>(U.get());
901 Initializers.push_back(ConstantStruct::get(
902 NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
903 }
904 }
905 assert(Initializers.size() == ATy->getNumElements() &&
906 "Failed to copy all array elements");
907
908 // Replace the old GV with a new one.
909 ATy = ArrayType::get(NewTy, Initializers.size());
910 Constant *NewInit = ConstantArray::get(ATy, Initializers);
911 GlobalVariable *NewGV = new GlobalVariable(
912 *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
913 GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
914 GV->isExternallyInitialized());
915 NewGV->copyAttributesFrom(GV);
916 NewGV->takeName(GV);
917 assert(GV->use_empty() && "program cannot use initializer list");
918 GV->eraseFromParent();
919 }
920
upgradeMismatchedGlobalArray(StringRef Name)921 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
922 // Look for the global arrays.
923 auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
924 if (!DstGV)
925 return;
926 auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
927 if (!SrcGV)
928 return;
929
930 // Check if the types already match.
931 auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
932 auto *SrcTy =
933 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
934 if (DstTy == SrcTy)
935 return;
936
937 // Grab the element types. We can only upgrade an array of a two-field
938 // struct. Only bother if the other one has three-fields.
939 auto *DstEltTy = cast<StructType>(DstTy->getElementType());
940 auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
941 if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
942 upgradeGlobalArray(DstGV);
943 return;
944 }
945 if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
946 upgradeGlobalArray(SrcGV);
947
948 // We can't upgrade any other differences.
949 }
950
upgradeMismatchedGlobals()951 void ModuleLinker::upgradeMismatchedGlobals() {
952 upgradeMismatchedGlobalArray("llvm.global_ctors");
953 upgradeMismatchedGlobalArray("llvm.global_dtors");
954 }
955
956 /// If there were any appending global variables, link them together now.
957 /// Return true on error.
linkAppendingVarProto(GlobalVariable * DstGV,const GlobalVariable * SrcGV)958 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
959 const GlobalVariable *SrcGV) {
960
961 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
962 return emitError("Linking globals named '" + SrcGV->getName() +
963 "': can only link appending global with another appending global!");
964
965 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
966 ArrayType *SrcTy =
967 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
968 Type *EltTy = DstTy->getElementType();
969
970 // Check to see that they two arrays agree on type.
971 if (EltTy != SrcTy->getElementType())
972 return emitError("Appending variables with different element types!");
973 if (DstGV->isConstant() != SrcGV->isConstant())
974 return emitError("Appending variables linked with different const'ness!");
975
976 if (DstGV->getAlignment() != SrcGV->getAlignment())
977 return emitError(
978 "Appending variables with different alignment need to be linked!");
979
980 if (DstGV->getVisibility() != SrcGV->getVisibility())
981 return emitError(
982 "Appending variables with different visibility need to be linked!");
983
984 if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
985 return emitError(
986 "Appending variables with different unnamed_addr need to be linked!");
987
988 if (StringRef(DstGV->getSection()) != SrcGV->getSection())
989 return emitError(
990 "Appending variables with different section name need to be linked!");
991
992 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
993 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
994
995 // Create the new global variable.
996 GlobalVariable *NG =
997 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
998 DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
999 DstGV->getThreadLocalMode(),
1000 DstGV->getType()->getAddressSpace());
1001
1002 // Propagate alignment, visibility and section info.
1003 copyGVAttributes(NG, DstGV);
1004
1005 AppendingVarInfo AVI;
1006 AVI.NewGV = NG;
1007 AVI.DstInit = DstGV->getInitializer();
1008 AVI.SrcInit = SrcGV->getInitializer();
1009 AppendingVars.push_back(AVI);
1010
1011 // Replace any uses of the two global variables with uses of the new
1012 // global.
1013 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
1014
1015 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
1016 DstGV->eraseFromParent();
1017
1018 // Track the source variable so we don't try to link it.
1019 DoNotLinkFromSource.insert(SrcGV);
1020
1021 return false;
1022 }
1023
linkGlobalValueProto(GlobalValue * SGV)1024 bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
1025 GlobalValue *DGV = getLinkedToGlobal(SGV);
1026
1027 // Handle the ultra special appending linkage case first.
1028 if (DGV && DGV->hasAppendingLinkage())
1029 return linkAppendingVarProto(cast<GlobalVariable>(DGV),
1030 cast<GlobalVariable>(SGV));
1031
1032 bool LinkFromSrc = true;
1033 Comdat *C = nullptr;
1034 GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
1035 bool HasUnnamedAddr = SGV->hasUnnamedAddr();
1036
1037 if (const Comdat *SC = SGV->getComdat()) {
1038 Comdat::SelectionKind SK;
1039 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1040 C = DstM->getOrInsertComdat(SC->getName());
1041 C->setSelectionKind(SK);
1042 } else if (DGV) {
1043 if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
1044 return true;
1045 }
1046
1047 if (!LinkFromSrc) {
1048 // Track the source global so that we don't attempt to copy it over when
1049 // processing global initializers.
1050 DoNotLinkFromSource.insert(SGV);
1051
1052 if (DGV)
1053 // Make sure to remember this mapping.
1054 ValueMap[SGV] =
1055 ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
1056 }
1057
1058 if (DGV) {
1059 Visibility = isLessConstraining(Visibility, DGV->getVisibility())
1060 ? DGV->getVisibility()
1061 : Visibility;
1062 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1063 }
1064
1065 if (!LinkFromSrc && !DGV)
1066 return false;
1067
1068 GlobalValue *NewGV;
1069 if (!LinkFromSrc) {
1070 NewGV = DGV;
1071 } else {
1072 // If the GV is to be lazily linked, don't create it just yet.
1073 // The ValueMaterializerTy will deal with creating it if it's used.
1074 if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
1075 SGV->hasAvailableExternallyLinkage())) {
1076 DoNotLinkFromSource.insert(SGV);
1077 return false;
1078 }
1079
1080 NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
1081
1082 if (DGV && isa<Function>(DGV))
1083 if (auto *NewF = dyn_cast<Function>(NewGV))
1084 OverridingFunctions.insert(NewF);
1085 }
1086
1087 NewGV->setUnnamedAddr(HasUnnamedAddr);
1088 NewGV->setVisibility(Visibility);
1089
1090 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
1091 if (C)
1092 NewGO->setComdat(C);
1093
1094 if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
1095 NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
1096 }
1097
1098 if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
1099 auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
1100 auto *SGVar = dyn_cast<GlobalVariable>(SGV);
1101 if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
1102 (!DGVar->isConstant() || !SGVar->isConstant()))
1103 NewGVar->setConstant(false);
1104 }
1105
1106 // Make sure to remember this mapping.
1107 if (NewGV != DGV) {
1108 if (DGV) {
1109 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
1110 DGV->eraseFromParent();
1111 }
1112 ValueMap[SGV] = NewGV;
1113 }
1114
1115 return false;
1116 }
1117
getArrayElements(const Constant * C,SmallVectorImpl<Constant * > & Dest)1118 static void getArrayElements(const Constant *C,
1119 SmallVectorImpl<Constant *> &Dest) {
1120 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
1121
1122 for (unsigned i = 0; i != NumElements; ++i)
1123 Dest.push_back(C->getAggregateElement(i));
1124 }
1125
linkAppendingVarInit(const AppendingVarInfo & AVI)1126 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
1127 // Merge the initializer.
1128 SmallVector<Constant *, 16> DstElements;
1129 getArrayElements(AVI.DstInit, DstElements);
1130
1131 SmallVector<Constant *, 16> SrcElements;
1132 getArrayElements(AVI.SrcInit, SrcElements);
1133
1134 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
1135
1136 StringRef Name = AVI.NewGV->getName();
1137 bool IsNewStructor =
1138 (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
1139 cast<StructType>(NewType->getElementType())->getNumElements() == 3;
1140
1141 for (auto *V : SrcElements) {
1142 if (IsNewStructor) {
1143 Constant *Key = V->getAggregateElement(2);
1144 if (DoNotLinkFromSource.count(Key))
1145 continue;
1146 }
1147 DstElements.push_back(
1148 MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
1149 }
1150 if (IsNewStructor) {
1151 NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
1152 AVI.NewGV->mutateType(PointerType::get(NewType, 0));
1153 }
1154
1155 AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
1156 }
1157
1158 /// Update the initializers in the Dest module now that all globals that may be
1159 /// referenced are in Dest.
linkGlobalInit(GlobalVariable & Dst,GlobalVariable & Src)1160 void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
1161 // Figure out what the initializer looks like in the dest module.
1162 Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
1163 &ValMaterializer));
1164 }
1165
1166 /// Copy the source function over into the dest function and fix up references
1167 /// to values. At this point we know that Dest is an external function, and
1168 /// that Src is not.
linkFunctionBody(Function & Dst,Function & Src)1169 bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
1170 assert(Dst.isDeclaration() && !Src.isDeclaration());
1171
1172 // Materialize if needed.
1173 if (std::error_code EC = Src.materialize())
1174 return emitError(EC.message());
1175
1176 // Link in the prefix data.
1177 if (Src.hasPrefixData())
1178 Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
1179 &ValMaterializer));
1180
1181 // Link in the prologue data.
1182 if (Src.hasPrologueData())
1183 Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
1184 &TypeMap, &ValMaterializer));
1185
1186 // Go through and convert function arguments over, remembering the mapping.
1187 Function::arg_iterator DI = Dst.arg_begin();
1188 for (Argument &Arg : Src.args()) {
1189 DI->setName(Arg.getName()); // Copy the name over.
1190
1191 // Add a mapping to our mapping.
1192 ValueMap[&Arg] = DI;
1193 ++DI;
1194 }
1195
1196 // Splice the body of the source function into the dest function.
1197 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1198
1199 // At this point, all of the instructions and values of the function are now
1200 // copied over. The only problem is that they are still referencing values in
1201 // the Source function as operands. Loop through all of the operands of the
1202 // functions and patch them up to point to the local versions.
1203 for (BasicBlock &BB : Dst)
1204 for (Instruction &I : BB)
1205 RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
1206 &ValMaterializer);
1207
1208 // There is no need to map the arguments anymore.
1209 for (Argument &Arg : Src.args())
1210 ValueMap.erase(&Arg);
1211
1212 Src.Dematerialize();
1213 return false;
1214 }
1215
linkAliasBody(GlobalAlias & Dst,GlobalAlias & Src)1216 void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1217 Constant *Aliasee = Src.getAliasee();
1218 Constant *Val =
1219 MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1220 Dst.setAliasee(Val);
1221 }
1222
linkGlobalValueBody(GlobalValue & Src)1223 bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
1224 Value *Dst = ValueMap[&Src];
1225 assert(Dst);
1226 if (auto *F = dyn_cast<Function>(&Src))
1227 return linkFunctionBody(cast<Function>(*Dst), *F);
1228 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1229 linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
1230 return false;
1231 }
1232 linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
1233 return false;
1234 }
1235
1236 /// Insert all of the named MDNodes in Src into the Dest module.
linkNamedMDNodes()1237 void ModuleLinker::linkNamedMDNodes() {
1238 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1239 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1240 E = SrcM->named_metadata_end(); I != E; ++I) {
1241 // Don't link module flags here. Do them separately.
1242 if (&*I == SrcModFlags) continue;
1243 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1244 // Add Src elements into Dest node.
1245 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1246 DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
1247 &TypeMap, &ValMaterializer));
1248 }
1249 }
1250
1251 /// Drop DISubprograms that have been superseded.
1252 ///
1253 /// FIXME: this creates an asymmetric result: we strip functions from losing
1254 /// subprograms in DstM, but leave losing subprograms in SrcM.
1255 /// TODO: Remove this logic once the backend can correctly determine canonical
1256 /// subprograms.
stripReplacedSubprograms()1257 void ModuleLinker::stripReplacedSubprograms() {
1258 // Avoid quadratic runtime by returning early when there's nothing to do.
1259 if (OverridingFunctions.empty())
1260 return;
1261
1262 // Move the functions now, so the set gets cleared even on early returns.
1263 auto Functions = std::move(OverridingFunctions);
1264 OverridingFunctions.clear();
1265
1266 // Drop functions from subprograms if they've been overridden by the new
1267 // compile unit.
1268 NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
1269 if (!CompileUnits)
1270 return;
1271 for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
1272 DICompileUnit CU = cast<MDCompileUnit>(CompileUnits->getOperand(I));
1273 assert(CU && "Expected valid compile unit");
1274
1275 for (MDSubprogram *SP : CU->getSubprograms()) {
1276 if (!SP || !SP->getFunction() || !Functions.count(SP->getFunction()))
1277 continue;
1278
1279 // Prevent DebugInfoFinder from tagging this as the canonical subprogram,
1280 // since the canonical one is in the incoming module.
1281 SP->replaceFunction(nullptr);
1282 }
1283 }
1284 }
1285
1286 /// Merge the linker flags in Src into the Dest module.
linkModuleFlagsMetadata()1287 bool ModuleLinker::linkModuleFlagsMetadata() {
1288 // If the source module has no module flags, we are done.
1289 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1290 if (!SrcModFlags) return false;
1291
1292 // If the destination module doesn't have module flags yet, then just copy
1293 // over the source module's flags.
1294 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1295 if (DstModFlags->getNumOperands() == 0) {
1296 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1297 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1298
1299 return false;
1300 }
1301
1302 // First build a map of the existing module flags and requirements.
1303 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1304 SmallSetVector<MDNode*, 16> Requirements;
1305 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1306 MDNode *Op = DstModFlags->getOperand(I);
1307 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1308 MDString *ID = cast<MDString>(Op->getOperand(1));
1309
1310 if (Behavior->getZExtValue() == Module::Require) {
1311 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1312 } else {
1313 Flags[ID] = std::make_pair(Op, I);
1314 }
1315 }
1316
1317 // Merge in the flags from the source module, and also collect its set of
1318 // requirements.
1319 bool HasErr = false;
1320 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1321 MDNode *SrcOp = SrcModFlags->getOperand(I);
1322 ConstantInt *SrcBehavior =
1323 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1324 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1325 MDNode *DstOp;
1326 unsigned DstIndex;
1327 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1328 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1329
1330 // If this is a requirement, add it and continue.
1331 if (SrcBehaviorValue == Module::Require) {
1332 // If the destination module does not already have this requirement, add
1333 // it.
1334 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1335 DstModFlags->addOperand(SrcOp);
1336 }
1337 continue;
1338 }
1339
1340 // If there is no existing flag with this ID, just add it.
1341 if (!DstOp) {
1342 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1343 DstModFlags->addOperand(SrcOp);
1344 continue;
1345 }
1346
1347 // Otherwise, perform a merge.
1348 ConstantInt *DstBehavior =
1349 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1350 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1351
1352 // If either flag has override behavior, handle it first.
1353 if (DstBehaviorValue == Module::Override) {
1354 // Diagnose inconsistent flags which both have override behavior.
1355 if (SrcBehaviorValue == Module::Override &&
1356 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1357 HasErr |= emitError("linking module flags '" + ID->getString() +
1358 "': IDs have conflicting override values");
1359 }
1360 continue;
1361 } else if (SrcBehaviorValue == Module::Override) {
1362 // Update the destination flag to that of the source.
1363 DstModFlags->setOperand(DstIndex, SrcOp);
1364 Flags[ID].first = SrcOp;
1365 continue;
1366 }
1367
1368 // Diagnose inconsistent merge behavior types.
1369 if (SrcBehaviorValue != DstBehaviorValue) {
1370 HasErr |= emitError("linking module flags '" + ID->getString() +
1371 "': IDs have conflicting behaviors");
1372 continue;
1373 }
1374
1375 auto replaceDstValue = [&](MDNode *New) {
1376 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1377 MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
1378 DstModFlags->setOperand(DstIndex, Flag);
1379 Flags[ID].first = Flag;
1380 };
1381
1382 // Perform the merge for standard behavior types.
1383 switch (SrcBehaviorValue) {
1384 case Module::Require:
1385 case Module::Override: llvm_unreachable("not possible");
1386 case Module::Error: {
1387 // Emit an error if the values differ.
1388 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1389 HasErr |= emitError("linking module flags '" + ID->getString() +
1390 "': IDs have conflicting values");
1391 }
1392 continue;
1393 }
1394 case Module::Warning: {
1395 // Emit a warning if the values differ.
1396 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1397 emitWarning("linking module flags '" + ID->getString() +
1398 "': IDs have conflicting values");
1399 }
1400 continue;
1401 }
1402 case Module::Append: {
1403 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1404 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1405 SmallVector<Metadata *, 8> MDs;
1406 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1407 MDs.append(DstValue->op_begin(), DstValue->op_end());
1408 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1409
1410 replaceDstValue(MDNode::get(DstM->getContext(), MDs));
1411 break;
1412 }
1413 case Module::AppendUnique: {
1414 SmallSetVector<Metadata *, 16> Elts;
1415 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1416 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1417 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1418 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1419
1420 replaceDstValue(MDNode::get(DstM->getContext(),
1421 makeArrayRef(Elts.begin(), Elts.end())));
1422 break;
1423 }
1424 }
1425 }
1426
1427 // Check all of the requirements.
1428 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1429 MDNode *Requirement = Requirements[I];
1430 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1431 Metadata *ReqValue = Requirement->getOperand(1);
1432
1433 MDNode *Op = Flags[Flag].first;
1434 if (!Op || Op->getOperand(2) != ReqValue) {
1435 HasErr |= emitError("linking module flags '" + Flag->getString() +
1436 "': does not have the required value");
1437 continue;
1438 }
1439 }
1440
1441 return HasErr;
1442 }
1443
1444 // This function returns true if the triples match.
triplesMatch(const Triple & T0,const Triple & T1)1445 static bool triplesMatch(const Triple &T0, const Triple &T1) {
1446 // If vendor is apple, ignore the version number.
1447 if (T0.getVendor() == Triple::Apple)
1448 return T0.getArch() == T1.getArch() &&
1449 T0.getSubArch() == T1.getSubArch() &&
1450 T0.getVendor() == T1.getVendor() &&
1451 T0.getOS() == T1.getOS();
1452
1453 return T0 == T1;
1454 }
1455
1456 // This function returns the merged triple.
mergeTriples(const Triple & SrcTriple,const Triple & DstTriple)1457 static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple) {
1458 // If vendor is apple, pick the triple with the larger version number.
1459 if (SrcTriple.getVendor() == Triple::Apple)
1460 if (DstTriple.isOSVersionLT(SrcTriple))
1461 return SrcTriple.str();
1462
1463 return DstTriple.str();
1464 }
1465
run()1466 bool ModuleLinker::run() {
1467 assert(DstM && "Null destination module");
1468 assert(SrcM && "Null source module");
1469
1470 // Inherit the target data from the source module if the destination module
1471 // doesn't have one already.
1472 if (DstM->getDataLayout().isDefault())
1473 DstM->setDataLayout(SrcM->getDataLayout());
1474
1475 if (SrcM->getDataLayout() != DstM->getDataLayout()) {
1476 emitWarning("Linking two modules of different data layouts: '" +
1477 SrcM->getModuleIdentifier() + "' is '" +
1478 SrcM->getDataLayoutStr() + "' whereas '" +
1479 DstM->getModuleIdentifier() + "' is '" +
1480 DstM->getDataLayoutStr() + "'\n");
1481 }
1482
1483 // Copy the target triple from the source to dest if the dest's is empty.
1484 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1485 DstM->setTargetTriple(SrcM->getTargetTriple());
1486
1487 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM->getTargetTriple());
1488
1489 if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
1490 emitWarning("Linking two modules of different target triples: " +
1491 SrcM->getModuleIdentifier() + "' is '" +
1492 SrcM->getTargetTriple() + "' whereas '" +
1493 DstM->getModuleIdentifier() + "' is '" +
1494 DstM->getTargetTriple() + "'\n");
1495
1496 DstM->setTargetTriple(mergeTriples(SrcTriple, DstTriple));
1497
1498 // Append the module inline asm string.
1499 if (!SrcM->getModuleInlineAsm().empty()) {
1500 if (DstM->getModuleInlineAsm().empty())
1501 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1502 else
1503 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1504 SrcM->getModuleInlineAsm());
1505 }
1506
1507 // Loop over all of the linked values to compute type mappings.
1508 computeTypeMapping();
1509
1510 ComdatsChosen.clear();
1511 for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
1512 const Comdat &C = SMEC.getValue();
1513 if (ComdatsChosen.count(&C))
1514 continue;
1515 Comdat::SelectionKind SK;
1516 bool LinkFromSrc;
1517 if (getComdatResult(&C, SK, LinkFromSrc))
1518 return true;
1519 ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
1520 }
1521
1522 // Upgrade mismatched global arrays.
1523 upgradeMismatchedGlobals();
1524
1525 // Insert all of the globals in src into the DstM module... without linking
1526 // initializers (which could refer to functions not yet mapped over).
1527 for (Module::global_iterator I = SrcM->global_begin(),
1528 E = SrcM->global_end(); I != E; ++I)
1529 if (linkGlobalValueProto(I))
1530 return true;
1531
1532 // Link the functions together between the two modules, without doing function
1533 // bodies... this just adds external function prototypes to the DstM
1534 // function... We do this so that when we begin processing function bodies,
1535 // all of the global values that may be referenced are available in our
1536 // ValueMap.
1537 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1538 if (linkGlobalValueProto(I))
1539 return true;
1540
1541 // If there were any aliases, link them now.
1542 for (Module::alias_iterator I = SrcM->alias_begin(),
1543 E = SrcM->alias_end(); I != E; ++I)
1544 if (linkGlobalValueProto(I))
1545 return true;
1546
1547 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1548 linkAppendingVarInit(AppendingVars[i]);
1549
1550 for (const auto &Entry : DstM->getComdatSymbolTable()) {
1551 const Comdat &C = Entry.getValue();
1552 if (C.getSelectionKind() == Comdat::Any)
1553 continue;
1554 const GlobalValue *GV = SrcM->getNamedValue(C.getName());
1555 assert(GV);
1556 MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1557 }
1558
1559 // Strip replaced subprograms before mapping any metadata -- so that we're
1560 // not changing metadata from the source module (note that
1561 // linkGlobalValueBody() eventually calls RemapInstruction() and therefore
1562 // MapMetadata()) -- but after linking global value protocols -- so that
1563 // OverridingFunctions has been built.
1564 stripReplacedSubprograms();
1565
1566 // Link in the function bodies that are defined in the source module into
1567 // DstM.
1568 for (Function &SF : *SrcM) {
1569 // Skip if no body (function is external).
1570 if (SF.isDeclaration())
1571 continue;
1572
1573 // Skip if not linking from source.
1574 if (DoNotLinkFromSource.count(&SF))
1575 continue;
1576
1577 if (linkGlobalValueBody(SF))
1578 return true;
1579 }
1580
1581 // Resolve all uses of aliases with aliasees.
1582 for (GlobalAlias &Src : SrcM->aliases()) {
1583 if (DoNotLinkFromSource.count(&Src))
1584 continue;
1585 linkGlobalValueBody(Src);
1586 }
1587
1588 // Remap all of the named MDNodes in Src into the DstM module. We do this
1589 // after linking GlobalValues so that MDNodes that reference GlobalValues
1590 // are properly remapped.
1591 linkNamedMDNodes();
1592
1593 // Merge the module flags into the DstM module.
1594 if (linkModuleFlagsMetadata())
1595 return true;
1596
1597 // Update the initializers in the DstM module now that all globals that may
1598 // be referenced are in DstM.
1599 for (GlobalVariable &Src : SrcM->globals()) {
1600 // Only process initialized GV's or ones not already in dest.
1601 if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
1602 continue;
1603 linkGlobalValueBody(Src);
1604 }
1605
1606 // Process vector of lazily linked in functions.
1607 while (!LazilyLinkGlobalValues.empty()) {
1608 GlobalValue *SGV = LazilyLinkGlobalValues.back();
1609 LazilyLinkGlobalValues.pop_back();
1610
1611 assert(!SGV->isDeclaration() && "users should not pass down decls");
1612 if (linkGlobalValueBody(*SGV))
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
KeyTy(ArrayRef<Type * > E,bool P)1619 Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1620 : ETypes(E), IsPacked(P) {}
1621
KeyTy(const StructType * ST)1622 Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1623 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1624
operator ==(const KeyTy & That) const1625 bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1626 if (IsPacked != That.IsPacked)
1627 return false;
1628 if (ETypes != That.ETypes)
1629 return false;
1630 return true;
1631 }
1632
operator !=(const KeyTy & That) const1633 bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1634 return !this->operator==(That);
1635 }
1636
getEmptyKey()1637 StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
1638 return DenseMapInfo<StructType *>::getEmptyKey();
1639 }
1640
getTombstoneKey()1641 StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
1642 return DenseMapInfo<StructType *>::getTombstoneKey();
1643 }
1644
getHashValue(const KeyTy & Key)1645 unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1646 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1647 Key.IsPacked);
1648 }
1649
getHashValue(const StructType * ST)1650 unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1651 return getHashValue(KeyTy(ST));
1652 }
1653
isEqual(const KeyTy & LHS,const StructType * RHS)1654 bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1655 const StructType *RHS) {
1656 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1657 return false;
1658 return LHS == KeyTy(RHS);
1659 }
1660
isEqual(const StructType * LHS,const StructType * RHS)1661 bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
1662 const StructType *RHS) {
1663 if (RHS == getEmptyKey())
1664 return LHS == getEmptyKey();
1665
1666 if (RHS == getTombstoneKey())
1667 return LHS == getTombstoneKey();
1668
1669 return KeyTy(LHS) == KeyTy(RHS);
1670 }
1671
addNonOpaque(StructType * Ty)1672 void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1673 assert(!Ty->isOpaque());
1674 NonOpaqueStructTypes.insert(Ty);
1675 }
1676
switchToNonOpaque(StructType * Ty)1677 void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1678 assert(!Ty->isOpaque());
1679 NonOpaqueStructTypes.insert(Ty);
1680 bool Removed = OpaqueStructTypes.erase(Ty);
1681 (void)Removed;
1682 assert(Removed);
1683 }
1684
addOpaque(StructType * Ty)1685 void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1686 assert(Ty->isOpaque());
1687 OpaqueStructTypes.insert(Ty);
1688 }
1689
1690 StructType *
findNonOpaque(ArrayRef<Type * > ETypes,bool IsPacked)1691 Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1692 bool IsPacked) {
1693 Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1694 auto I = NonOpaqueStructTypes.find_as(Key);
1695 if (I == NonOpaqueStructTypes.end())
1696 return nullptr;
1697 return *I;
1698 }
1699
hasType(StructType * Ty)1700 bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1701 if (Ty->isOpaque())
1702 return OpaqueStructTypes.count(Ty);
1703 auto I = NonOpaqueStructTypes.find(Ty);
1704 if (I == NonOpaqueStructTypes.end())
1705 return false;
1706 return *I == Ty;
1707 }
1708
init(Module * M,DiagnosticHandlerFunction DiagnosticHandler)1709 void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1710 this->Composite = M;
1711 this->DiagnosticHandler = DiagnosticHandler;
1712
1713 TypeFinder StructTypes;
1714 StructTypes.run(*M, true);
1715 for (StructType *Ty : StructTypes) {
1716 if (Ty->isOpaque())
1717 IdentifiedStructTypes.addOpaque(Ty);
1718 else
1719 IdentifiedStructTypes.addNonOpaque(Ty);
1720 }
1721 }
1722
Linker(Module * M,DiagnosticHandlerFunction DiagnosticHandler)1723 Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1724 init(M, DiagnosticHandler);
1725 }
1726
Linker(Module * M)1727 Linker::Linker(Module *M) {
1728 init(M, [this](const DiagnosticInfo &DI) {
1729 Composite->getContext().diagnose(DI);
1730 });
1731 }
1732
~Linker()1733 Linker::~Linker() {
1734 }
1735
deleteModule()1736 void Linker::deleteModule() {
1737 delete Composite;
1738 Composite = nullptr;
1739 }
1740
linkInModule(Module * Src)1741 bool Linker::linkInModule(Module *Src) {
1742 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
1743 DiagnosticHandler);
1744 bool RetCode = TheLinker.run();
1745 Composite->dropTriviallyDeadConstantArrays();
1746 return RetCode;
1747 }
1748
setModule(Module * Dst)1749 void Linker::setModule(Module *Dst) {
1750 init(Dst, DiagnosticHandler);
1751 }
1752
1753 //===----------------------------------------------------------------------===//
1754 // LinkModules entrypoint.
1755 //===----------------------------------------------------------------------===//
1756
1757 /// This function links two modules together, with the resulting Dest module
1758 /// modified to be the composite of the two input modules. If an error occurs,
1759 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
1760 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
1761 /// relied on to be consistent.
LinkModules(Module * Dest,Module * Src,DiagnosticHandlerFunction DiagnosticHandler)1762 bool Linker::LinkModules(Module *Dest, Module *Src,
1763 DiagnosticHandlerFunction DiagnosticHandler) {
1764 Linker L(Dest, DiagnosticHandler);
1765 return L.linkInModule(Src);
1766 }
1767
LinkModules(Module * Dest,Module * Src)1768 bool Linker::LinkModules(Module *Dest, Module *Src) {
1769 Linker L(Dest);
1770 return L.linkInModule(Src);
1771 }
1772
1773 //===----------------------------------------------------------------------===//
1774 // C API.
1775 //===----------------------------------------------------------------------===//
1776
LLVMLinkModules(LLVMModuleRef Dest,LLVMModuleRef Src,LLVMLinkerMode Unused,char ** OutMessages)1777 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1778 LLVMLinkerMode Unused, char **OutMessages) {
1779 Module *D = unwrap(Dest);
1780 std::string Message;
1781 raw_string_ostream Stream(Message);
1782 DiagnosticPrinterRawOStream DP(Stream);
1783
1784 LLVMBool Result = Linker::LinkModules(
1785 D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
1786
1787 if (OutMessages && Result)
1788 *OutMessages = strdup(Message.c_str());
1789 return Result;
1790 }
1791