1 // label_reachable.h
2 
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Copyright 2005-2010 Google, Inc.
16 // Author: riley@google.com (Michael Riley)
17 //
18 // \file
19 // Class to determine if a non-epsilon label can be read as the
20 // first non-epsilon symbol along some path from a given state.
21 
22 
23 #ifndef FST_LIB_LABEL_REACHABLE_H__
24 #define FST_LIB_LABEL_REACHABLE_H__
25 
26 #include <tr1/unordered_map>
27 using std::tr1::unordered_map;
28 using std::tr1::unordered_multimap;
29 #include <vector>
30 using std::vector;
31 
32 #include <fst/accumulator.h>
33 #include <fst/arcsort.h>
34 #include <fst/interval-set.h>
35 #include <fst/state-reachable.h>
36 #include <fst/vector-fst.h>
37 
38 
39 namespace fst {
40 
41 // Stores shareable data for label reachable class copies.
42 template <typename L>
43 class LabelReachableData {
44  public:
45   typedef L Label;
46   typedef typename IntervalSet<L>::Interval Interval;
47 
48   explicit LabelReachableData(bool reach_input, bool keep_relabel_data = true)
reach_input_(reach_input)49       : reach_input_(reach_input),
50         keep_relabel_data_(keep_relabel_data),
51         have_relabel_data_(true),
52         final_label_(kNoLabel) {}
53 
~LabelReachableData()54   ~LabelReachableData() {}
55 
ReachInput()56   bool ReachInput() const { return reach_input_; }
57 
IntervalSets()58   vector< IntervalSet<L> > *IntervalSets() { return &isets_; }
59 
Label2Index()60   unordered_map<L, L> *Label2Index() {
61     if (!have_relabel_data_)
62       FSTERROR() << "LabelReachableData: no relabeling data";
63     return &label2index_;
64   }
65 
FinalLabel()66   Label FinalLabel() {
67     if (final_label_ == kNoLabel)
68       final_label_ = label2index_[kNoLabel];
69     return final_label_;
70   }
71 
Read(istream & istrm)72   static LabelReachableData<L> *Read(istream &istrm) {
73     LabelReachableData<L> *data = new LabelReachableData<L>();
74 
75     ReadType(istrm, &data->reach_input_);
76     ReadType(istrm, &data->keep_relabel_data_);
77     data->have_relabel_data_ = data->keep_relabel_data_;
78     if (data->keep_relabel_data_)
79       ReadType(istrm, &data->label2index_);
80     ReadType(istrm, &data->final_label_);
81     ReadType(istrm, &data->isets_);
82     return data;
83   }
84 
Write(ostream & ostrm)85   bool Write(ostream &ostrm) {
86     WriteType(ostrm, reach_input_);
87     WriteType(ostrm, keep_relabel_data_);
88     if (keep_relabel_data_)
89       WriteType(ostrm, label2index_);
90     WriteType(ostrm, FinalLabel());
91     WriteType(ostrm, isets_);
92     return true;
93   }
94 
RefCount()95   int RefCount() const { return ref_count_.count(); }
IncrRefCount()96   int IncrRefCount() { return ref_count_.Incr(); }
DecrRefCount()97   int DecrRefCount() { return ref_count_.Decr(); }
98 
99  private:
LabelReachableData()100   LabelReachableData() {}
101 
102   bool reach_input_;                  // Input or output labels considered?
103   bool keep_relabel_data_;            // Save label2index_ to file?
104   bool have_relabel_data_;            // Using label2index_?
105   Label final_label_;                 // Final label
106   RefCounter ref_count_;              // Reference count.
107   unordered_map<L, L> label2index_;        // Finds index for a label.
108   vector<IntervalSet <L> > isets_;    // Interval sets per state.
109 
110   DISALLOW_COPY_AND_ASSIGN(LabelReachableData);
111 };
112 
113 
114 // Tests reachability of labels from a given state. If reach_input =
115 // true, then input labels are considered, o.w. output labels are
116 // considered. To test for reachability from a state s, first do
117 // SetState(s). Then a label l can be reached from state s of FST f
118 // iff Reach(r) is true where r = Relabel(l). The relabeling is
119 // required to ensure a compact representation of the reachable
120 // labels.
121 
122 // The whole FST can be relabeled instead with Relabel(&f,
123 // reach_input) so that the test Reach(r) applies directly to the
124 // labels of the transformed FST f. The relabeled FST will also be
125 // sorted appropriately for composition.
126 //
127 // Reachablity of a final state from state s (via an epsilon path)
128 // can be tested with ReachFinal();
129 //
130 // Reachability can also be tested on the set of labels specified by
131 // an arc iterator, useful for FST composition.  In particular,
132 // Reach(aiter, ...) is true if labels on the input (output) side of
133 // the transitions of the arc iterator, when iter_input is true
134 // (false), can be reached from the state s. The iterator labels must
135 // have already been relabeled.
136 //
137 // With the arc iterator test of reachability, the begin position, end
138 // position and accumulated arc weight of the matches can be
139 // returned. The optional template argument controls how reachable arc
140 // weights are accumulated.  The default uses the semiring
141 // Plus(). Alternative ones can be used to distribute the weights in
142 // composition in various ways.
143 template <class A, class S = DefaultAccumulator<A> >
144 class LabelReachable {
145  public:
146   typedef A Arc;
147   typedef typename A::StateId StateId;
148   typedef typename A::Label Label;
149   typedef typename A::Weight Weight;
150   typedef typename IntervalSet<Label>::Interval Interval;
151 
152   LabelReachable(const Fst<A> &fst, bool reach_input, S *s = 0,
153                  bool keep_relabel_data = true)
fst_(new VectorFst<Arc> (fst))154       : fst_(new VectorFst<Arc>(fst)),
155         s_(kNoStateId),
156         data_(new LabelReachableData<Label>(reach_input, keep_relabel_data)),
157         accumulator_(s ? s : new S()),
158         ncalls_(0),
159         nintervals_(0),
160         error_(false) {
161     StateId ins = fst_->NumStates();
162     TransformFst();
163     FindIntervals(ins);
164     delete fst_;
165   }
166 
167   explicit LabelReachable(LabelReachableData<Label> *data, S *s = 0)
168     : fst_(0),
169       s_(kNoStateId),
170       data_(data),
171       accumulator_(s ? s : new S()),
172       ncalls_(0),
173       nintervals_(0),
174       error_(false) {
175     data_->IncrRefCount();
176   }
177 
LabelReachable(const LabelReachable<A,S> & reachable)178   LabelReachable(const LabelReachable<A, S> &reachable) :
179       fst_(0),
180       s_(kNoStateId),
181       data_(reachable.data_),
182       accumulator_(new S(*reachable.accumulator_)),
183       ncalls_(0),
184       nintervals_(0),
185       error_(reachable.error_) {
186     data_->IncrRefCount();
187   }
188 
~LabelReachable()189   ~LabelReachable() {
190     if (!data_->DecrRefCount())
191       delete data_;
192     delete accumulator_;
193     if (ncalls_ > 0) {
194       VLOG(2) << "# of calls: " << ncalls_;
195       VLOG(2) << "# of intervals/call: " << (nintervals_ / ncalls_);
196     }
197   }
198 
199   // Relabels w.r.t labels that give compact label sets.
Relabel(Label label)200   Label Relabel(Label label) {
201     if (label == 0 || error_)
202       return label;
203     unordered_map<Label, Label> &label2index = *data_->Label2Index();
204     Label &relabel = label2index[label];
205     if (!relabel)  // Add new label
206       relabel = label2index.size() + 1;
207     return relabel;
208   }
209 
210   // Relabels Fst w.r.t to labels that give compact label sets.
Relabel(MutableFst<Arc> * fst,bool relabel_input)211   void Relabel(MutableFst<Arc> *fst, bool relabel_input) {
212     for (StateIterator< MutableFst<Arc> > siter(*fst);
213          !siter.Done(); siter.Next()) {
214       StateId s = siter.Value();
215       for (MutableArcIterator< MutableFst<Arc> > aiter(fst, s);
216            !aiter.Done();
217            aiter.Next()) {
218         Arc arc = aiter.Value();
219         if (relabel_input)
220           arc.ilabel = Relabel(arc.ilabel);
221         else
222           arc.olabel = Relabel(arc.olabel);
223         aiter.SetValue(arc);
224       }
225     }
226     if (relabel_input) {
227       ArcSort(fst, ILabelCompare<Arc>());
228       fst->SetInputSymbols(0);
229     } else {
230       ArcSort(fst, OLabelCompare<Arc>());
231       fst->SetOutputSymbols(0);
232     }
233   }
234 
235   // Returns relabeling pairs (cf. relabel.h::Relabel()).
236   // If 'avoid_collisions' is true, extra pairs are added to
237   // ensure no collisions when relabeling automata that have
238   // labels unseen here.
239   void RelabelPairs(vector<pair<Label, Label> > *pairs,
240                     bool avoid_collisions = false) {
241     pairs->clear();
242     unordered_map<Label, Label> &label2index = *data_->Label2Index();
243     // Maps labels to their new values in [1, label2index().size()]
244     for (typename unordered_map<Label, Label>::const_iterator
245              it = label2index.begin(); it != label2index.end(); ++it)
246       if (it->second != data_->FinalLabel())
247         pairs->push_back(pair<Label, Label>(it->first, it->second));
248     if (avoid_collisions) {
249       // Ensures any label in [1, label2index().size()] is mapped either
250       // by the above step or to label2index() + 1 (to avoid collisions).
251       for (int i = 1; i <= label2index.size(); ++i) {
252         typename unordered_map<Label, Label>::const_iterator
253             it = label2index.find(i);
254         if (it == label2index.end() || it->second == data_->FinalLabel())
255           pairs->push_back(pair<Label, Label>(i, label2index.size() + 1));
256       }
257     }
258   }
259 
260   // Set current state. Optionally set state associated
261   // with arc iterator to be passed to Reach.
262   void SetState(StateId s, StateId aiter_s = kNoStateId) {
263     s_ = s;
264     if (aiter_s != kNoStateId) {
265       accumulator_->SetState(aiter_s);
266       if (accumulator_->Error()) error_ = true;
267     }
268   }
269 
270   // Can reach this label from current state?
271   // Original labels must be transformed by the Relabel methods above.
Reach(Label label)272   bool Reach(Label label) {
273     if (label == 0 || error_)
274       return false;
275     vector< IntervalSet<Label> > &isets = *data_->IntervalSets();
276     return isets[s_].Member(label);
277 
278   }
279 
280   // Can reach final state (via epsilon transitions) from this state?
ReachFinal()281   bool ReachFinal() {
282     if (error_) return false;
283     vector< IntervalSet<Label> > &isets = *data_->IntervalSets();
284     return isets[s_].Member(data_->FinalLabel());
285   }
286 
287   // Initialize with secondary FST to be used with Reach(Iterator,...).
288   // If copy is true, then 'fst' is a copy of the FST used in the
289   // previous call to this method (useful to avoid unnecessary updates).
290   template <class F>
291   void ReachInit(const F &fst, bool copy = false) {
292     accumulator_->Init(fst, copy);
293     if (accumulator_->Error()) error_ = true;
294   }
295 
296   // Can reach any arc iterator label between iterator positions
297   // aiter_begin and aiter_end?  If aiter_input = true, then iterator
298   // input labels are considered, o.w. output labels are considered.
299   // Arc iterator labels must be transformed by the Relabel methods
300   // above. If compute_weight is true, user may call ReachWeight().
301   template <class Iterator>
Reach(Iterator * aiter,ssize_t aiter_begin,ssize_t aiter_end,bool aiter_input,bool compute_weight)302   bool Reach(Iterator *aiter, ssize_t aiter_begin,
303              ssize_t aiter_end, bool aiter_input, bool compute_weight) {
304     if (error_) return false;
305     vector< IntervalSet<Label> > &isets = *data_->IntervalSets();
306     const vector<Interval> *intervals = isets[s_].Intervals();
307     ++ncalls_;
308     nintervals_ += intervals->size();
309 
310     reach_begin_ = -1;
311     reach_end_ = -1;
312     reach_weight_ = Weight::Zero();
313 
314     uint32 flags = aiter->Flags();  // save flags to restore them on exit
315     aiter->SetFlags(kArcNoCache, kArcNoCache);  // make caching optional
316     aiter->Seek(aiter_begin);
317 
318     if (2 * (aiter_end - aiter_begin) < intervals->size()) {
319       // Check each arc against intervals.
320       // Set arc iterator flags to only compute the ilabel or olabel values,
321       // since they are the only values required for most of the arcs processed.
322       aiter->SetFlags(aiter_input ? kArcILabelValue : kArcOLabelValue,
323                       kArcValueFlags);
324       Label reach_label = kNoLabel;
325       for (ssize_t aiter_pos = aiter_begin;
326            aiter_pos < aiter_end; aiter->Next(), ++aiter_pos) {
327         const A &arc = aiter->Value();
328         Label label = aiter_input ? arc.ilabel : arc.olabel;
329         if (label == reach_label || Reach(label)) {
330           reach_label = label;
331           if (reach_begin_ < 0)
332             reach_begin_ = aiter_pos;
333           reach_end_ = aiter_pos + 1;
334           if (compute_weight) {
335             if (!(aiter->Flags() & kArcWeightValue)) {
336               // If the 'arc.weight' wasn't computed by the call
337               // to 'aiter->Value()' above, we need to call
338               // 'aiter->Value()' again after having set the arc iterator
339               // flags to compute the arc weight value.
340               aiter->SetFlags(kArcWeightValue, kArcValueFlags);
341               const A &arcb = aiter->Value();
342               // Call the accumulator.
343               reach_weight_ = accumulator_->Sum(reach_weight_, arcb.weight);
344               // Only ilabel or olabel required to process the following
345               // arcs.
346               aiter->SetFlags(aiter_input ? kArcILabelValue : kArcOLabelValue,
347                               kArcValueFlags);
348             } else {
349               // Call the accumulator.
350               reach_weight_ = accumulator_->Sum(reach_weight_, arc.weight);
351             }
352           }
353         }
354       }
355     } else {
356       // Check each interval against arcs
357       ssize_t begin_low, end_low = aiter_begin;
358       for (typename vector<Interval>::const_iterator
359                iiter = intervals->begin();
360            iiter != intervals->end(); ++iiter) {
361         begin_low = LowerBound(aiter, end_low, aiter_end,
362                                aiter_input, iiter->begin);
363         end_low = LowerBound(aiter, begin_low, aiter_end,
364                              aiter_input, iiter->end);
365         if (end_low - begin_low > 0) {
366           if (reach_begin_ < 0)
367             reach_begin_ = begin_low;
368           reach_end_ = end_low;
369           if (compute_weight) {
370             aiter->SetFlags(kArcWeightValue, kArcValueFlags);
371             reach_weight_ = accumulator_->Sum(reach_weight_, aiter,
372                                               begin_low, end_low);
373           }
374         }
375       }
376     }
377 
378     aiter->SetFlags(flags, kArcFlags);  // restore original flag values
379     return reach_begin_ >= 0;
380   }
381 
382   // Returns iterator position of first matching arc.
ReachBegin()383   ssize_t ReachBegin() const { return reach_begin_;  }
384 
385   // Returns iterator position one past last matching arc.
ReachEnd()386   ssize_t ReachEnd() const { return reach_end_; }
387 
388   // Return the sum of the weights for matching arcs.
389   // Valid only if compute_weight was true in Reach() call.
ReachWeight()390   Weight ReachWeight() const { return reach_weight_; }
391 
392   // Access to the relabeling map. Excludes epsilon (0) label but
393   // includes kNoLabel that is used internally for super-final
394   // transitons.
Label2Index()395   const unordered_map<Label, Label>& Label2Index() const {
396     return *data_->Label2Index();
397   }
398 
GetData()399   LabelReachableData<Label> *GetData() const { return data_; }
400 
Error()401   bool Error() const { return error_ || accumulator_->Error(); }
402 
403  private:
404   // Redirects labeled arcs (input or output labels determined by
405   // ReachInput()) to new label-specific final states.  Each original
406   // final state is redirected via a transition labeled with kNoLabel
407   // to a new kNoLabel-specific final state.  Creates super-initial
408   // state for all states with zero in-degree.
TransformFst()409   void TransformFst() {
410     StateId ins = fst_->NumStates();
411     StateId ons = ins;
412 
413     vector<ssize_t> indeg(ins, 0);
414 
415     // Redirects labeled arcs to new final states.
416     for (StateId s = 0; s < ins; ++s) {
417       for (MutableArcIterator< VectorFst<Arc> > aiter(fst_, s);
418            !aiter.Done();
419            aiter.Next()) {
420         Arc arc = aiter.Value();
421         Label label = data_->ReachInput() ? arc.ilabel : arc.olabel;
422         if (label) {
423           if (label2state_.find(label) == label2state_.end()) {
424             label2state_[label] = ons;
425             indeg.push_back(0);
426             ++ons;
427           }
428           arc.nextstate = label2state_[label];
429           aiter.SetValue(arc);
430         }
431         ++indeg[arc.nextstate];      // Finds in-degrees for next step.
432       }
433 
434       // Redirects final weights to new final state.
435       Weight final = fst_->Final(s);
436       if (final != Weight::Zero()) {
437         if (label2state_.find(kNoLabel) == label2state_.end()) {
438           label2state_[kNoLabel] = ons;
439           indeg.push_back(0);
440           ++ons;
441         }
442         Arc arc(kNoLabel, kNoLabel, final, label2state_[kNoLabel]);
443         fst_->AddArc(s, arc);
444         ++indeg[arc.nextstate];      // Finds in-degrees for next step.
445 
446         fst_->SetFinal(s, Weight::Zero());
447       }
448     }
449 
450     // Add new final states to Fst.
451     while (fst_->NumStates() < ons) {
452       StateId s = fst_->AddState();
453       fst_->SetFinal(s, Weight::One());
454     }
455 
456     // Creates a super-initial state for all states with zero in-degree.
457     StateId start = fst_->AddState();
458     fst_->SetStart(start);
459     for (StateId s = 0; s < start; ++s) {
460       if (indeg[s] == 0) {
461         Arc arc(0, 0, Weight::One(), s);
462         fst_->AddArc(start, arc);
463       }
464     }
465   }
466 
FindIntervals(StateId ins)467   void FindIntervals(StateId ins) {
468     StateReachable<A, Label> state_reachable(*fst_);
469     if (state_reachable.Error()) {
470       error_ = true;
471       return;
472     }
473 
474     vector<Label> &state2index = state_reachable.State2Index();
475     vector< IntervalSet<Label> > &isets = *data_->IntervalSets();
476     isets = state_reachable.IntervalSets();
477     isets.resize(ins);
478 
479     unordered_map<Label, Label> &label2index = *data_->Label2Index();
480     for (typename unordered_map<Label, StateId>::const_iterator
481              it = label2state_.begin();
482          it != label2state_.end();
483          ++it) {
484       Label l = it->first;
485       StateId s = it->second;
486       Label i = state2index[s];
487       label2index[l] = i;
488     }
489     label2state_.clear();
490 
491     double nintervals = 0;
492     ssize_t non_intervals = 0;
493     for (ssize_t s = 0; s < ins; ++s) {
494       nintervals += isets[s].Size();
495       if (isets[s].Size() > 1) {
496         ++non_intervals;
497         VLOG(3) << "state: " << s << " # of intervals: " << isets[s].Size();
498       }
499     }
500     VLOG(2) << "# of states: " << ins;
501     VLOG(2) << "# of intervals: " << nintervals;
502     VLOG(2) << "# of intervals/state: " << nintervals/ins;
503     VLOG(2) << "# of non-interval states: " << non_intervals;
504   }
505 
506   template <class Iterator>
LowerBound(Iterator * aiter,ssize_t aiter_begin,ssize_t aiter_end,bool aiter_input,Label match_label)507   ssize_t LowerBound(Iterator *aiter, ssize_t aiter_begin,
508                      ssize_t aiter_end, bool aiter_input,
509                      Label match_label) const {
510     // Only need to compute the ilabel or olabel of arcs when
511     // performing the binary search.
512     aiter->SetFlags(aiter_input ?  kArcILabelValue : kArcOLabelValue,
513                     kArcValueFlags);
514     ssize_t low = aiter_begin;
515     ssize_t high = aiter_end;
516     while (low < high) {
517       ssize_t mid = (low + high) / 2;
518       aiter->Seek(mid);
519       Label label = aiter_input ?
520           aiter->Value().ilabel : aiter->Value().olabel;
521       if (label > match_label) {
522         high = mid;
523       } else if (label < match_label) {
524         low = mid + 1;
525       } else {
526         // Find first matching label (when non-deterministic)
527         for (ssize_t i = mid; i > low; --i) {
528           aiter->Seek(i - 1);
529           label = aiter_input ? aiter->Value().ilabel : aiter->Value().olabel;
530           if (label != match_label) {
531             aiter->Seek(i);
532             aiter->SetFlags(kArcValueFlags, kArcValueFlags);
533             return i;
534           }
535         }
536         aiter->SetFlags(kArcValueFlags, kArcValueFlags);
537         return low;
538       }
539     }
540     aiter->Seek(low);
541     aiter->SetFlags(kArcValueFlags, kArcValueFlags);
542     return low;
543   }
544 
545   VectorFst<Arc> *fst_;
546   StateId s_;                             // Current state
547   unordered_map<Label, StateId> label2state_;  // Finds final state for a label
548 
549   ssize_t reach_begin_;                   // Iterator pos of first match
550   ssize_t reach_end_;                     // Iterator pos after last match
551   Weight reach_weight_;                   // Gives weight sum of arc iterator
552                                           // arcs with reachable labels.
553   LabelReachableData<Label> *data_;       // Shareable data between copies
554   S *accumulator_;                        // Sums arc weights
555 
556   double ncalls_;
557   double nintervals_;
558   bool error_;
559 
560   void operator=(const LabelReachable<A, S> &);   // Disallow
561 };
562 
563 }  // namespace fst
564 
565 #endif  // FST_LIB_LABEL_REACHABLE_H__
566