1.. _sec-bibliography: 2 3============ 4Bibliography 5============ 6 7.. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski, 8 **Bundle Adjustment in the Large**, *Proceedings of the European 9 Conference on Computer Vision*, pp. 29--42, 2010. 10 11.. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares 12 Problems**, SIAM, 1996 13 14.. [Brown] D. C. Brown, **A solution to the general problem of 15 multiple station analytical stereo triangulation**, Technical 16 Report 43, Patrick Airforce Base, Florida, 1958. 17 18.. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel, 19 **Representations of Quasi-Newton Matrices and their use in Limited 20 Memory Methods**, *Mathematical Programming* 63(4):129–-156, 1994. 21 22.. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate 23 solution of the trust region problem by minimization over 24 two dimensional subspaces**, *Mathematical programming*, 25 40(1):247–263, 1988. 26 27.. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and 28 S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse 29 Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008. 30 31.. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region 32 methods**, *Society for Industrial Mathematics*, 2000. 33 34.. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of 35 pseudo-inverses and nonlinear least squares problems whose 36 variables separate**, *SIAM Journal on numerical analysis*, 37 10(2):413–432, 1973. 38 39.. [HartleyZisserman] R.I. Hartley & A. Zisserman, **Multiview 40 Geometry in Computer Vision**, Cambridge University Press, 2004. 41 42.. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge 43 transformations for uncertainty description of geometric structure 44 with indeterminacy**, *IEEE Transactions on Information Theory* 45 47(5):2017-2028, 2001. 46 47.. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based 48 preconditioning for bundle adjustment**, *In Proceedings of the 49 IEEE Conference on Computer Vision and Pattern Recognition*, 2012. 50 51.. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima, 52 **Levenberg–Marquardt methods with strong local convergence 53 properties for solving nonlinear equations with convex 54 constraints**, *Journal of Computational and Applied Mathematics*, 55 177(2):375–397, 2005. 56 57.. [Levenberg] K. Levenberg, **A method for the solution of certain 58 nonlinear problems in least squares**, *Quart. Appl. Math*, 59 2(2):164–168, 1944. 60 61.. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr 62 preconditioner for large sparse least squares problems**, *SIAM 63 Journal on Matrix Analysis and Applications*, 28(2):524–550, 2007. 64 65.. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for 66 nonlinear least squares problems**, 2004. 67 68.. [Mandel] J. Mandel, **On block diagonal and Schur complement 69 preconditioning**, *Numer. Math.*, 58(1):79–93, 1990. 70 71.. [Marquardt] D.W. Marquardt, **An algorithm for least squares 72 estimation of nonlinear parameters**, *J. SIAM*, 11(2):431–441, 73 1963. 74 75.. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the 76 numerical solution of partial differential equations**, Springer 77 Verlag, 2008. 78 79.. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction 80 within a truncated newton method**, *Operations Research Letters*, 81 9(4):219–221, 1990. 82 83.. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited 84 Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980. 85 86.. [NocedalWright] J. Nocedal & S. Wright, **Numerical Optimization**, 87 Springer, 2004. 88 89.. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms 90 Part II: Implementation and Experiments**, Management Science, 91 20(5), 863-874, 1974. 92 93.. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable 94 nonlinear least squares problems**, Siam Review, 22(3):318–337, 95 1980. 96 97.. [Saad] Y. Saad, **Iterative methods for sparse linear 98 systems**, SIAM, 2003. 99 100.. [Stigler] S. M. Stigler, **Gauss and the invention of least 101 squares**, *The Annals of Statistics*, 9(3):465-474, 1981. 102 103.. [TenenbaumDirector] J. Tenenbaum & B. Director, **How Gauss 104 Determined the Orbit of Ceres**. 105 106.. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear 107 Algebra**, SIAM, 1997. 108 109.. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley & 110 A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**, 111 Proceedings of the International Workshop on Vision Algorithms: 112 Theory and Practice, pp. 298-372, 1999. 113 114.. [Wiberg] T. Wiberg, **Computation of principal components when data 115 are missing**, In Proc. *Second Symp. Computational Statistics*, 116 pages 229–236, 1976. 117 118.. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact 119 Levenberg Marquardt Method for Large Sparse Nonlinear Least 120 Squares**, *Journal of the Australian Mathematical Society Series 121 B*, 26(4):387–403, 1985. 122