1.. _sec-bibliography:
2
3============
4Bibliography
5============
6
7.. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski,
8   **Bundle Adjustment in the Large**, *Proceedings of the European
9   Conference on Computer Vision*, pp. 29--42, 2010.
10
11.. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares
12   Problems**, SIAM, 1996
13
14.. [Brown] D. C. Brown, **A solution to the general problem of
15   multiple station analytical stereo triangulation**,  Technical
16   Report 43, Patrick Airforce Base, Florida, 1958.
17
18.. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel,
19   **Representations of Quasi-Newton Matrices and their use in Limited
20   Memory Methods**, *Mathematical Programming* 63(4):129–-156, 1994.
21
22.. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate
23   solution of the trust region problem by minimization over
24   two dimensional subspaces**, *Mathematical programming*,
25   40(1):247–263, 1988.
26
27.. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and
28   S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse
29   Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008.
30
31.. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region
32   methods**, *Society for Industrial Mathematics*, 2000.
33
34.. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of
35   pseudo-inverses and nonlinear least squares problems whose
36   variables separate**, *SIAM Journal on numerical analysis*,
37   10(2):413–432, 1973.
38
39.. [HartleyZisserman] R.I. Hartley & A. Zisserman, **Multiview
40   Geometry in Computer Vision**, Cambridge University Press, 2004.
41
42.. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge
43   transformations for uncertainty description of geometric structure
44   with indeterminacy**, *IEEE Transactions on Information Theory*
45   47(5):2017-2028, 2001.
46
47.. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based
48   preconditioning for bundle adjustment**, *In Proceedings of the
49   IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
50
51.. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima,
52   **Levenberg–Marquardt methods with strong local convergence
53   properties for solving nonlinear equations with convex
54   constraints**, *Journal of Computational and Applied Mathematics*,
55   177(2):375–397, 2005.
56
57.. [Levenberg] K. Levenberg, **A method for the solution of certain
58   nonlinear problems in least squares**, *Quart. Appl.  Math*,
59   2(2):164–168, 1944.
60
61.. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr
62   preconditioner for large sparse least squares problems**, *SIAM
63   Journal on Matrix Analysis and Applications*, 28(2):524–550, 2007.
64
65.. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for
66   nonlinear least squares problems**, 2004.
67
68.. [Mandel] J. Mandel, **On block diagonal and Schur complement
69   preconditioning**, *Numer. Math.*, 58(1):79–93, 1990.
70
71.. [Marquardt] D.W. Marquardt, **An algorithm for least squares
72   estimation of nonlinear parameters**, *J. SIAM*, 11(2):431–441,
73   1963.
74
75.. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the
76   numerical solution of partial differential equations**, Springer
77   Verlag, 2008.
78
79.. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction
80   within a truncated newton method**, *Operations Research Letters*,
81   9(4):219–221, 1990.
82
83.. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited
84   Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980.
85
86.. [NocedalWright] J. Nocedal & S. Wright, **Numerical Optimization**,
87   Springer, 2004.
88
89.. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms
90   Part II: Implementation and Experiments**, Management Science,
91   20(5), 863-874, 1974.
92
93.. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable
94   nonlinear least squares problems**, Siam Review, 22(3):318–337,
95   1980.
96
97.. [Saad] Y. Saad, **Iterative methods for sparse linear
98   systems**, SIAM, 2003.
99
100.. [Stigler] S. M. Stigler, **Gauss and the invention of least
101   squares**, *The Annals of Statistics*, 9(3):465-474, 1981.
102
103.. [TenenbaumDirector] J. Tenenbaum & B. Director, **How Gauss
104   Determined the Orbit of Ceres**.
105
106.. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear
107   Algebra**, SIAM, 1997.
108
109.. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley &
110   A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**,
111   Proceedings of the International Workshop on Vision Algorithms:
112   Theory and Practice, pp. 298-372, 1999.
113
114.. [Wiberg] T. Wiberg, **Computation of principal components when data
115   are missing**, In Proc. *Second Symp. Computational Statistics*,
116   pages 229–236, 1976.
117
118.. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact
119   Levenberg Marquardt Method for Large Sparse Nonlinear Least
120   Squares**, *Journal of the Australian Mathematical Society Series
121   B*, 26(4):387–403, 1985.
122