1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ExternalSemaSource.h"
29 #include "clang/Sema/Overload.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Sema.h"
33 #include "clang/Sema/SemaInternal.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "clang/Sema/TypoCorrection.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringMap.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <limits>
46 #include <list>
47 #include <map>
48 #include <set>
49 #include <utility>
50 #include <vector>
51
52 using namespace clang;
53 using namespace sema;
54
55 namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
getCommonAncestor() const66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
getNominatedNamespace() const70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
operator ()__anon54059c910111::UnqualUsingEntry::Comparator76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
operator ()__anon54059c910111::UnqualUsingEntry::Comparator80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
operator ()__anon54059c910111::UnqualUsingEntry::Comparator84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
UnqualUsingDirectiveSet()99 UnqualUsingDirectiveSet() {}
100
visitScopeChain(Scope * S,Scope * InnermostFileScope)101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 visit(I, InnermostFileDC);
119 }
120 }
121 }
122
123 // Visits a context and collect all of its using directives
124 // recursively. Treats all using directives as if they were
125 // declared in the context.
126 //
127 // A given context is only every visited once, so it is important
128 // that contexts be visited from the inside out in order to get
129 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)130 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131 if (!visited.insert(DC).second)
132 return;
133
134 addUsingDirectives(DC, EffectiveDC);
135 }
136
137 // Visits a using directive and collects all of its using
138 // directives recursively. Treats all using directives as if they
139 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)140 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141 DeclContext *NS = UD->getNominatedNamespace();
142 if (!visited.insert(NS).second)
143 return;
144
145 addUsingDirective(UD, EffectiveDC);
146 addUsingDirectives(NS, EffectiveDC);
147 }
148
149 // Adds all the using directives in a context (and those nominated
150 // by its using directives, transitively) as if they appeared in
151 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)152 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153 SmallVector<DeclContext*,4> queue;
154 while (true) {
155 for (auto UD : DC->using_directives()) {
156 DeclContext *NS = UD->getNominatedNamespace();
157 if (visited.insert(NS).second) {
158 addUsingDirective(UD, EffectiveDC);
159 queue.push_back(NS);
160 }
161 }
162
163 if (queue.empty())
164 return;
165
166 DC = queue.pop_back_val();
167 }
168 }
169
170 // Add a using directive as if it had been declared in the given
171 // context. This helps implement C++ [namespace.udir]p3:
172 // The using-directive is transitive: if a scope contains a
173 // using-directive that nominates a second namespace that itself
174 // contains using-directives, the effect is as if the
175 // using-directives from the second namespace also appeared in
176 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)177 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178 // Find the common ancestor between the effective context and
179 // the nominated namespace.
180 DeclContext *Common = UD->getNominatedNamespace();
181 while (!Common->Encloses(EffectiveDC))
182 Common = Common->getParent();
183 Common = Common->getPrimaryContext();
184
185 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186 }
187
done()188 void done() {
189 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
190 }
191
192 typedef ListTy::const_iterator const_iterator;
193
begin() const194 const_iterator begin() const { return list.begin(); }
end() const195 const_iterator end() const { return list.end(); }
196
197 llvm::iterator_range<const_iterator>
getNamespacesFor(DeclContext * DC) const198 getNamespacesFor(DeclContext *DC) const {
199 return llvm::make_range(std::equal_range(begin(), end(),
200 DC->getPrimaryContext(),
201 UnqualUsingEntry::Comparator()));
202 }
203 };
204 }
205
206 // Retrieve the set of identifier namespaces that correspond to a
207 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)208 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
209 bool CPlusPlus,
210 bool Redeclaration) {
211 unsigned IDNS = 0;
212 switch (NameKind) {
213 case Sema::LookupObjCImplicitSelfParam:
214 case Sema::LookupOrdinaryName:
215 case Sema::LookupRedeclarationWithLinkage:
216 case Sema::LookupLocalFriendName:
217 IDNS = Decl::IDNS_Ordinary;
218 if (CPlusPlus) {
219 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
220 if (Redeclaration)
221 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
222 }
223 if (Redeclaration)
224 IDNS |= Decl::IDNS_LocalExtern;
225 break;
226
227 case Sema::LookupOperatorName:
228 // Operator lookup is its own crazy thing; it is not the same
229 // as (e.g.) looking up an operator name for redeclaration.
230 assert(!Redeclaration && "cannot do redeclaration operator lookup");
231 IDNS = Decl::IDNS_NonMemberOperator;
232 break;
233
234 case Sema::LookupTagName:
235 if (CPlusPlus) {
236 IDNS = Decl::IDNS_Type;
237
238 // When looking for a redeclaration of a tag name, we add:
239 // 1) TagFriend to find undeclared friend decls
240 // 2) Namespace because they can't "overload" with tag decls.
241 // 3) Tag because it includes class templates, which can't
242 // "overload" with tag decls.
243 if (Redeclaration)
244 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
245 } else {
246 IDNS = Decl::IDNS_Tag;
247 }
248 break;
249
250 case Sema::LookupLabel:
251 IDNS = Decl::IDNS_Label;
252 break;
253
254 case Sema::LookupMemberName:
255 IDNS = Decl::IDNS_Member;
256 if (CPlusPlus)
257 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258 break;
259
260 case Sema::LookupNestedNameSpecifierName:
261 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262 break;
263
264 case Sema::LookupNamespaceName:
265 IDNS = Decl::IDNS_Namespace;
266 break;
267
268 case Sema::LookupUsingDeclName:
269 assert(Redeclaration && "should only be used for redecl lookup");
270 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
271 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
272 Decl::IDNS_LocalExtern;
273 break;
274
275 case Sema::LookupObjCProtocolName:
276 IDNS = Decl::IDNS_ObjCProtocol;
277 break;
278
279 case Sema::LookupAnyName:
280 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
281 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
282 | Decl::IDNS_Type;
283 break;
284 }
285 return IDNS;
286 }
287
configure()288 void LookupResult::configure() {
289 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
290 isForRedeclaration());
291
292 // If we're looking for one of the allocation or deallocation
293 // operators, make sure that the implicitly-declared new and delete
294 // operators can be found.
295 switch (NameInfo.getName().getCXXOverloadedOperator()) {
296 case OO_New:
297 case OO_Delete:
298 case OO_Array_New:
299 case OO_Array_Delete:
300 getSema().DeclareGlobalNewDelete();
301 break;
302
303 default:
304 break;
305 }
306
307 // Compiler builtins are always visible, regardless of where they end
308 // up being declared.
309 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
310 if (unsigned BuiltinID = Id->getBuiltinID()) {
311 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
312 AllowHidden = true;
313 }
314 }
315 }
316
sanity() const317 bool LookupResult::sanity() const {
318 // This function is never called by NDEBUG builds.
319 assert(ResultKind != NotFound || Decls.size() == 0);
320 assert(ResultKind != Found || Decls.size() == 1);
321 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
322 (Decls.size() == 1 &&
323 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
324 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
325 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
326 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
327 Ambiguity == AmbiguousBaseSubobjectTypes)));
328 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
329 (Ambiguity == AmbiguousBaseSubobjectTypes ||
330 Ambiguity == AmbiguousBaseSubobjects)));
331 return true;
332 }
333
334 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)335 void LookupResult::deletePaths(CXXBasePaths *Paths) {
336 delete Paths;
337 }
338
339 /// Get a representative context for a declaration such that two declarations
340 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)341 static DeclContext *getContextForScopeMatching(Decl *D) {
342 // For function-local declarations, use that function as the context. This
343 // doesn't account for scopes within the function; the caller must deal with
344 // those.
345 DeclContext *DC = D->getLexicalDeclContext();
346 if (DC->isFunctionOrMethod())
347 return DC;
348
349 // Otherwise, look at the semantic context of the declaration. The
350 // declaration must have been found there.
351 return D->getDeclContext()->getRedeclContext();
352 }
353
354 /// Resolves the result kind of this lookup.
resolveKind()355 void LookupResult::resolveKind() {
356 unsigned N = Decls.size();
357
358 // Fast case: no possible ambiguity.
359 if (N == 0) {
360 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
361 return;
362 }
363
364 // If there's a single decl, we need to examine it to decide what
365 // kind of lookup this is.
366 if (N == 1) {
367 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
368 if (isa<FunctionTemplateDecl>(D))
369 ResultKind = FoundOverloaded;
370 else if (isa<UnresolvedUsingValueDecl>(D))
371 ResultKind = FoundUnresolvedValue;
372 return;
373 }
374
375 // Don't do any extra resolution if we've already resolved as ambiguous.
376 if (ResultKind == Ambiguous) return;
377
378 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
379 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
380
381 bool Ambiguous = false;
382 bool HasTag = false, HasFunction = false, HasNonFunction = false;
383 bool HasFunctionTemplate = false, HasUnresolved = false;
384
385 unsigned UniqueTagIndex = 0;
386
387 unsigned I = 0;
388 while (I < N) {
389 NamedDecl *D = Decls[I]->getUnderlyingDecl();
390 D = cast<NamedDecl>(D->getCanonicalDecl());
391
392 // Ignore an invalid declaration unless it's the only one left.
393 if (D->isInvalidDecl() && I < N-1) {
394 Decls[I] = Decls[--N];
395 continue;
396 }
397
398 // Redeclarations of types via typedef can occur both within a scope
399 // and, through using declarations and directives, across scopes. There is
400 // no ambiguity if they all refer to the same type, so unique based on the
401 // canonical type.
402 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
403 if (!TD->getDeclContext()->isRecord()) {
404 QualType T = getSema().Context.getTypeDeclType(TD);
405 if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T)).second) {
406 // The type is not unique; pull something off the back and continue
407 // at this index.
408 Decls[I] = Decls[--N];
409 continue;
410 }
411 }
412 }
413
414 if (!Unique.insert(D).second) {
415 // If it's not unique, pull something off the back (and
416 // continue at this index).
417 // FIXME: This is wrong. We need to take the more recent declaration in
418 // order to get the right type, default arguments, etc. We also need to
419 // prefer visible declarations to hidden ones (for redeclaration lookup
420 // in modules builds).
421 Decls[I] = Decls[--N];
422 continue;
423 }
424
425 // Otherwise, do some decl type analysis and then continue.
426
427 if (isa<UnresolvedUsingValueDecl>(D)) {
428 HasUnresolved = true;
429 } else if (isa<TagDecl>(D)) {
430 if (HasTag)
431 Ambiguous = true;
432 UniqueTagIndex = I;
433 HasTag = true;
434 } else if (isa<FunctionTemplateDecl>(D)) {
435 HasFunction = true;
436 HasFunctionTemplate = true;
437 } else if (isa<FunctionDecl>(D)) {
438 HasFunction = true;
439 } else {
440 if (HasNonFunction)
441 Ambiguous = true;
442 HasNonFunction = true;
443 }
444 I++;
445 }
446
447 // C++ [basic.scope.hiding]p2:
448 // A class name or enumeration name can be hidden by the name of
449 // an object, function, or enumerator declared in the same
450 // scope. If a class or enumeration name and an object, function,
451 // or enumerator are declared in the same scope (in any order)
452 // with the same name, the class or enumeration name is hidden
453 // wherever the object, function, or enumerator name is visible.
454 // But it's still an error if there are distinct tag types found,
455 // even if they're not visible. (ref?)
456 if (HideTags && HasTag && !Ambiguous &&
457 (HasFunction || HasNonFunction || HasUnresolved)) {
458 if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
459 getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
460 Decls[UniqueTagIndex] = Decls[--N];
461 else
462 Ambiguous = true;
463 }
464
465 Decls.set_size(N);
466
467 if (HasNonFunction && (HasFunction || HasUnresolved))
468 Ambiguous = true;
469
470 if (Ambiguous)
471 setAmbiguous(LookupResult::AmbiguousReference);
472 else if (HasUnresolved)
473 ResultKind = LookupResult::FoundUnresolvedValue;
474 else if (N > 1 || HasFunctionTemplate)
475 ResultKind = LookupResult::FoundOverloaded;
476 else
477 ResultKind = LookupResult::Found;
478 }
479
addDeclsFromBasePaths(const CXXBasePaths & P)480 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
481 CXXBasePaths::const_paths_iterator I, E;
482 for (I = P.begin(), E = P.end(); I != E; ++I)
483 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
484 DE = I->Decls.end(); DI != DE; ++DI)
485 addDecl(*DI);
486 }
487
setAmbiguousBaseSubobjects(CXXBasePaths & P)488 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
489 Paths = new CXXBasePaths;
490 Paths->swap(P);
491 addDeclsFromBasePaths(*Paths);
492 resolveKind();
493 setAmbiguous(AmbiguousBaseSubobjects);
494 }
495
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)496 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
497 Paths = new CXXBasePaths;
498 Paths->swap(P);
499 addDeclsFromBasePaths(*Paths);
500 resolveKind();
501 setAmbiguous(AmbiguousBaseSubobjectTypes);
502 }
503
print(raw_ostream & Out)504 void LookupResult::print(raw_ostream &Out) {
505 Out << Decls.size() << " result(s)";
506 if (isAmbiguous()) Out << ", ambiguous";
507 if (Paths) Out << ", base paths present";
508
509 for (iterator I = begin(), E = end(); I != E; ++I) {
510 Out << "\n";
511 (*I)->print(Out, 2);
512 }
513 }
514
515 /// \brief Lookup a builtin function, when name lookup would otherwise
516 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)517 static bool LookupBuiltin(Sema &S, LookupResult &R) {
518 Sema::LookupNameKind NameKind = R.getLookupKind();
519
520 // If we didn't find a use of this identifier, and if the identifier
521 // corresponds to a compiler builtin, create the decl object for the builtin
522 // now, injecting it into translation unit scope, and return it.
523 if (NameKind == Sema::LookupOrdinaryName ||
524 NameKind == Sema::LookupRedeclarationWithLinkage) {
525 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
526 if (II) {
527 if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
528 II == S.getFloat128Identifier()) {
529 // libstdc++4.7's type_traits expects type __float128 to exist, so
530 // insert a dummy type to make that header build in gnu++11 mode.
531 R.addDecl(S.getASTContext().getFloat128StubType());
532 return true;
533 }
534
535 // If this is a builtin on this (or all) targets, create the decl.
536 if (unsigned BuiltinID = II->getBuiltinID()) {
537 // In C++, we don't have any predefined library functions like
538 // 'malloc'. Instead, we'll just error.
539 if (S.getLangOpts().CPlusPlus &&
540 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
541 return false;
542
543 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
544 BuiltinID, S.TUScope,
545 R.isForRedeclaration(),
546 R.getNameLoc())) {
547 R.addDecl(D);
548 return true;
549 }
550 }
551 }
552 }
553
554 return false;
555 }
556
557 /// \brief Determine whether we can declare a special member function within
558 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)559 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
560 // We need to have a definition for the class.
561 if (!Class->getDefinition() || Class->isDependentContext())
562 return false;
563
564 // We can't be in the middle of defining the class.
565 return !Class->isBeingDefined();
566 }
567
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)568 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
569 if (!CanDeclareSpecialMemberFunction(Class))
570 return;
571
572 // If the default constructor has not yet been declared, do so now.
573 if (Class->needsImplicitDefaultConstructor())
574 DeclareImplicitDefaultConstructor(Class);
575
576 // If the copy constructor has not yet been declared, do so now.
577 if (Class->needsImplicitCopyConstructor())
578 DeclareImplicitCopyConstructor(Class);
579
580 // If the copy assignment operator has not yet been declared, do so now.
581 if (Class->needsImplicitCopyAssignment())
582 DeclareImplicitCopyAssignment(Class);
583
584 if (getLangOpts().CPlusPlus11) {
585 // If the move constructor has not yet been declared, do so now.
586 if (Class->needsImplicitMoveConstructor())
587 DeclareImplicitMoveConstructor(Class); // might not actually do it
588
589 // If the move assignment operator has not yet been declared, do so now.
590 if (Class->needsImplicitMoveAssignment())
591 DeclareImplicitMoveAssignment(Class); // might not actually do it
592 }
593
594 // If the destructor has not yet been declared, do so now.
595 if (Class->needsImplicitDestructor())
596 DeclareImplicitDestructor(Class);
597 }
598
599 /// \brief Determine whether this is the name of an implicitly-declared
600 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)601 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
602 switch (Name.getNameKind()) {
603 case DeclarationName::CXXConstructorName:
604 case DeclarationName::CXXDestructorName:
605 return true;
606
607 case DeclarationName::CXXOperatorName:
608 return Name.getCXXOverloadedOperator() == OO_Equal;
609
610 default:
611 break;
612 }
613
614 return false;
615 }
616
617 /// \brief If there are any implicit member functions with the given name
618 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)619 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
620 DeclarationName Name,
621 const DeclContext *DC) {
622 if (!DC)
623 return;
624
625 switch (Name.getNameKind()) {
626 case DeclarationName::CXXConstructorName:
627 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
628 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
629 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
630 if (Record->needsImplicitDefaultConstructor())
631 S.DeclareImplicitDefaultConstructor(Class);
632 if (Record->needsImplicitCopyConstructor())
633 S.DeclareImplicitCopyConstructor(Class);
634 if (S.getLangOpts().CPlusPlus11 &&
635 Record->needsImplicitMoveConstructor())
636 S.DeclareImplicitMoveConstructor(Class);
637 }
638 break;
639
640 case DeclarationName::CXXDestructorName:
641 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
642 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
643 CanDeclareSpecialMemberFunction(Record))
644 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
645 break;
646
647 case DeclarationName::CXXOperatorName:
648 if (Name.getCXXOverloadedOperator() != OO_Equal)
649 break;
650
651 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
652 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
653 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
654 if (Record->needsImplicitCopyAssignment())
655 S.DeclareImplicitCopyAssignment(Class);
656 if (S.getLangOpts().CPlusPlus11 &&
657 Record->needsImplicitMoveAssignment())
658 S.DeclareImplicitMoveAssignment(Class);
659 }
660 }
661 break;
662
663 default:
664 break;
665 }
666 }
667
668 // Adds all qualifying matches for a name within a decl context to the
669 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)670 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
671 bool Found = false;
672
673 // Lazily declare C++ special member functions.
674 if (S.getLangOpts().CPlusPlus)
675 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
676
677 // Perform lookup into this declaration context.
678 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
679 for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
680 ++I) {
681 NamedDecl *D = *I;
682 if ((D = R.getAcceptableDecl(D))) {
683 R.addDecl(D);
684 Found = true;
685 }
686 }
687
688 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
689 return true;
690
691 if (R.getLookupName().getNameKind()
692 != DeclarationName::CXXConversionFunctionName ||
693 R.getLookupName().getCXXNameType()->isDependentType() ||
694 !isa<CXXRecordDecl>(DC))
695 return Found;
696
697 // C++ [temp.mem]p6:
698 // A specialization of a conversion function template is not found by
699 // name lookup. Instead, any conversion function templates visible in the
700 // context of the use are considered. [...]
701 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
702 if (!Record->isCompleteDefinition())
703 return Found;
704
705 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
706 UEnd = Record->conversion_end(); U != UEnd; ++U) {
707 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
708 if (!ConvTemplate)
709 continue;
710
711 // When we're performing lookup for the purposes of redeclaration, just
712 // add the conversion function template. When we deduce template
713 // arguments for specializations, we'll end up unifying the return
714 // type of the new declaration with the type of the function template.
715 if (R.isForRedeclaration()) {
716 R.addDecl(ConvTemplate);
717 Found = true;
718 continue;
719 }
720
721 // C++ [temp.mem]p6:
722 // [...] For each such operator, if argument deduction succeeds
723 // (14.9.2.3), the resulting specialization is used as if found by
724 // name lookup.
725 //
726 // When referencing a conversion function for any purpose other than
727 // a redeclaration (such that we'll be building an expression with the
728 // result), perform template argument deduction and place the
729 // specialization into the result set. We do this to avoid forcing all
730 // callers to perform special deduction for conversion functions.
731 TemplateDeductionInfo Info(R.getNameLoc());
732 FunctionDecl *Specialization = nullptr;
733
734 const FunctionProtoType *ConvProto
735 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
736 assert(ConvProto && "Nonsensical conversion function template type");
737
738 // Compute the type of the function that we would expect the conversion
739 // function to have, if it were to match the name given.
740 // FIXME: Calling convention!
741 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
742 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
743 EPI.ExceptionSpec = EST_None;
744 QualType ExpectedType
745 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
746 None, EPI);
747
748 // Perform template argument deduction against the type that we would
749 // expect the function to have.
750 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
751 Specialization, Info)
752 == Sema::TDK_Success) {
753 R.addDecl(Specialization);
754 Found = true;
755 }
756 }
757
758 return Found;
759 }
760
761 // Performs C++ unqualified lookup into the given file context.
762 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)763 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
764 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
765
766 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
767
768 // Perform direct name lookup into the LookupCtx.
769 bool Found = LookupDirect(S, R, NS);
770
771 // Perform direct name lookup into the namespaces nominated by the
772 // using directives whose common ancestor is this namespace.
773 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
774 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
775 Found = true;
776
777 R.resolveKind();
778
779 return Found;
780 }
781
isNamespaceOrTranslationUnitScope(Scope * S)782 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
783 if (DeclContext *Ctx = S->getEntity())
784 return Ctx->isFileContext();
785 return false;
786 }
787
788 // Find the next outer declaration context from this scope. This
789 // routine actually returns the semantic outer context, which may
790 // differ from the lexical context (encoded directly in the Scope
791 // stack) when we are parsing a member of a class template. In this
792 // case, the second element of the pair will be true, to indicate that
793 // name lookup should continue searching in this semantic context when
794 // it leaves the current template parameter scope.
findOuterContext(Scope * S)795 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
796 DeclContext *DC = S->getEntity();
797 DeclContext *Lexical = nullptr;
798 for (Scope *OuterS = S->getParent(); OuterS;
799 OuterS = OuterS->getParent()) {
800 if (OuterS->getEntity()) {
801 Lexical = OuterS->getEntity();
802 break;
803 }
804 }
805
806 // C++ [temp.local]p8:
807 // In the definition of a member of a class template that appears
808 // outside of the namespace containing the class template
809 // definition, the name of a template-parameter hides the name of
810 // a member of this namespace.
811 //
812 // Example:
813 //
814 // namespace N {
815 // class C { };
816 //
817 // template<class T> class B {
818 // void f(T);
819 // };
820 // }
821 //
822 // template<class C> void N::B<C>::f(C) {
823 // C b; // C is the template parameter, not N::C
824 // }
825 //
826 // In this example, the lexical context we return is the
827 // TranslationUnit, while the semantic context is the namespace N.
828 if (!Lexical || !DC || !S->getParent() ||
829 !S->getParent()->isTemplateParamScope())
830 return std::make_pair(Lexical, false);
831
832 // Find the outermost template parameter scope.
833 // For the example, this is the scope for the template parameters of
834 // template<class C>.
835 Scope *OutermostTemplateScope = S->getParent();
836 while (OutermostTemplateScope->getParent() &&
837 OutermostTemplateScope->getParent()->isTemplateParamScope())
838 OutermostTemplateScope = OutermostTemplateScope->getParent();
839
840 // Find the namespace context in which the original scope occurs. In
841 // the example, this is namespace N.
842 DeclContext *Semantic = DC;
843 while (!Semantic->isFileContext())
844 Semantic = Semantic->getParent();
845
846 // Find the declaration context just outside of the template
847 // parameter scope. This is the context in which the template is
848 // being lexically declaration (a namespace context). In the
849 // example, this is the global scope.
850 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
851 Lexical->Encloses(Semantic))
852 return std::make_pair(Semantic, true);
853
854 return std::make_pair(Lexical, false);
855 }
856
857 namespace {
858 /// An RAII object to specify that we want to find block scope extern
859 /// declarations.
860 struct FindLocalExternScope {
FindLocalExternScope__anon54059c910211::FindLocalExternScope861 FindLocalExternScope(LookupResult &R)
862 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
863 Decl::IDNS_LocalExtern) {
864 R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
865 }
restore__anon54059c910211::FindLocalExternScope866 void restore() {
867 R.setFindLocalExtern(OldFindLocalExtern);
868 }
~FindLocalExternScope__anon54059c910211::FindLocalExternScope869 ~FindLocalExternScope() {
870 restore();
871 }
872 LookupResult &R;
873 bool OldFindLocalExtern;
874 };
875 }
876
CppLookupName(LookupResult & R,Scope * S)877 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
878 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
879
880 DeclarationName Name = R.getLookupName();
881 Sema::LookupNameKind NameKind = R.getLookupKind();
882
883 // If this is the name of an implicitly-declared special member function,
884 // go through the scope stack to implicitly declare
885 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
886 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
887 if (DeclContext *DC = PreS->getEntity())
888 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
889 }
890
891 // Implicitly declare member functions with the name we're looking for, if in
892 // fact we are in a scope where it matters.
893
894 Scope *Initial = S;
895 IdentifierResolver::iterator
896 I = IdResolver.begin(Name),
897 IEnd = IdResolver.end();
898
899 // First we lookup local scope.
900 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
901 // ...During unqualified name lookup (3.4.1), the names appear as if
902 // they were declared in the nearest enclosing namespace which contains
903 // both the using-directive and the nominated namespace.
904 // [Note: in this context, "contains" means "contains directly or
905 // indirectly".
906 //
907 // For example:
908 // namespace A { int i; }
909 // void foo() {
910 // int i;
911 // {
912 // using namespace A;
913 // ++i; // finds local 'i', A::i appears at global scope
914 // }
915 // }
916 //
917 UnqualUsingDirectiveSet UDirs;
918 bool VisitedUsingDirectives = false;
919 bool LeftStartingScope = false;
920 DeclContext *OutsideOfTemplateParamDC = nullptr;
921
922 // When performing a scope lookup, we want to find local extern decls.
923 FindLocalExternScope FindLocals(R);
924
925 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
926 DeclContext *Ctx = S->getEntity();
927
928 // Check whether the IdResolver has anything in this scope.
929 bool Found = false;
930 for (; I != IEnd && S->isDeclScope(*I); ++I) {
931 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
932 if (NameKind == LookupRedeclarationWithLinkage) {
933 // Determine whether this (or a previous) declaration is
934 // out-of-scope.
935 if (!LeftStartingScope && !Initial->isDeclScope(*I))
936 LeftStartingScope = true;
937
938 // If we found something outside of our starting scope that
939 // does not have linkage, skip it. If it's a template parameter,
940 // we still find it, so we can diagnose the invalid redeclaration.
941 if (LeftStartingScope && !((*I)->hasLinkage()) &&
942 !(*I)->isTemplateParameter()) {
943 R.setShadowed();
944 continue;
945 }
946 }
947
948 Found = true;
949 R.addDecl(ND);
950 }
951 }
952 if (Found) {
953 R.resolveKind();
954 if (S->isClassScope())
955 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
956 R.setNamingClass(Record);
957 return true;
958 }
959
960 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
961 // C++11 [class.friend]p11:
962 // If a friend declaration appears in a local class and the name
963 // specified is an unqualified name, a prior declaration is
964 // looked up without considering scopes that are outside the
965 // innermost enclosing non-class scope.
966 return false;
967 }
968
969 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
970 S->getParent() && !S->getParent()->isTemplateParamScope()) {
971 // We've just searched the last template parameter scope and
972 // found nothing, so look into the contexts between the
973 // lexical and semantic declaration contexts returned by
974 // findOuterContext(). This implements the name lookup behavior
975 // of C++ [temp.local]p8.
976 Ctx = OutsideOfTemplateParamDC;
977 OutsideOfTemplateParamDC = nullptr;
978 }
979
980 if (Ctx) {
981 DeclContext *OuterCtx;
982 bool SearchAfterTemplateScope;
983 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
984 if (SearchAfterTemplateScope)
985 OutsideOfTemplateParamDC = OuterCtx;
986
987 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
988 // We do not directly look into transparent contexts, since
989 // those entities will be found in the nearest enclosing
990 // non-transparent context.
991 if (Ctx->isTransparentContext())
992 continue;
993
994 // We do not look directly into function or method contexts,
995 // since all of the local variables and parameters of the
996 // function/method are present within the Scope.
997 if (Ctx->isFunctionOrMethod()) {
998 // If we have an Objective-C instance method, look for ivars
999 // in the corresponding interface.
1000 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1001 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1002 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1003 ObjCInterfaceDecl *ClassDeclared;
1004 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1005 Name.getAsIdentifierInfo(),
1006 ClassDeclared)) {
1007 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1008 R.addDecl(ND);
1009 R.resolveKind();
1010 return true;
1011 }
1012 }
1013 }
1014 }
1015
1016 continue;
1017 }
1018
1019 // If this is a file context, we need to perform unqualified name
1020 // lookup considering using directives.
1021 if (Ctx->isFileContext()) {
1022 // If we haven't handled using directives yet, do so now.
1023 if (!VisitedUsingDirectives) {
1024 // Add using directives from this context up to the top level.
1025 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1026 if (UCtx->isTransparentContext())
1027 continue;
1028
1029 UDirs.visit(UCtx, UCtx);
1030 }
1031
1032 // Find the innermost file scope, so we can add using directives
1033 // from local scopes.
1034 Scope *InnermostFileScope = S;
1035 while (InnermostFileScope &&
1036 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1037 InnermostFileScope = InnermostFileScope->getParent();
1038 UDirs.visitScopeChain(Initial, InnermostFileScope);
1039
1040 UDirs.done();
1041
1042 VisitedUsingDirectives = true;
1043 }
1044
1045 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1046 R.resolveKind();
1047 return true;
1048 }
1049
1050 continue;
1051 }
1052
1053 // Perform qualified name lookup into this context.
1054 // FIXME: In some cases, we know that every name that could be found by
1055 // this qualified name lookup will also be on the identifier chain. For
1056 // example, inside a class without any base classes, we never need to
1057 // perform qualified lookup because all of the members are on top of the
1058 // identifier chain.
1059 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1060 return true;
1061 }
1062 }
1063 }
1064
1065 // Stop if we ran out of scopes.
1066 // FIXME: This really, really shouldn't be happening.
1067 if (!S) return false;
1068
1069 // If we are looking for members, no need to look into global/namespace scope.
1070 if (NameKind == LookupMemberName)
1071 return false;
1072
1073 // Collect UsingDirectiveDecls in all scopes, and recursively all
1074 // nominated namespaces by those using-directives.
1075 //
1076 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1077 // don't build it for each lookup!
1078 if (!VisitedUsingDirectives) {
1079 UDirs.visitScopeChain(Initial, S);
1080 UDirs.done();
1081 }
1082
1083 // If we're not performing redeclaration lookup, do not look for local
1084 // extern declarations outside of a function scope.
1085 if (!R.isForRedeclaration())
1086 FindLocals.restore();
1087
1088 // Lookup namespace scope, and global scope.
1089 // Unqualified name lookup in C++ requires looking into scopes
1090 // that aren't strictly lexical, and therefore we walk through the
1091 // context as well as walking through the scopes.
1092 for (; S; S = S->getParent()) {
1093 // Check whether the IdResolver has anything in this scope.
1094 bool Found = false;
1095 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1096 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1097 // We found something. Look for anything else in our scope
1098 // with this same name and in an acceptable identifier
1099 // namespace, so that we can construct an overload set if we
1100 // need to.
1101 Found = true;
1102 R.addDecl(ND);
1103 }
1104 }
1105
1106 if (Found && S->isTemplateParamScope()) {
1107 R.resolveKind();
1108 return true;
1109 }
1110
1111 DeclContext *Ctx = S->getEntity();
1112 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1113 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1114 // We've just searched the last template parameter scope and
1115 // found nothing, so look into the contexts between the
1116 // lexical and semantic declaration contexts returned by
1117 // findOuterContext(). This implements the name lookup behavior
1118 // of C++ [temp.local]p8.
1119 Ctx = OutsideOfTemplateParamDC;
1120 OutsideOfTemplateParamDC = nullptr;
1121 }
1122
1123 if (Ctx) {
1124 DeclContext *OuterCtx;
1125 bool SearchAfterTemplateScope;
1126 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1127 if (SearchAfterTemplateScope)
1128 OutsideOfTemplateParamDC = OuterCtx;
1129
1130 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1131 // We do not directly look into transparent contexts, since
1132 // those entities will be found in the nearest enclosing
1133 // non-transparent context.
1134 if (Ctx->isTransparentContext())
1135 continue;
1136
1137 // If we have a context, and it's not a context stashed in the
1138 // template parameter scope for an out-of-line definition, also
1139 // look into that context.
1140 if (!(Found && S && S->isTemplateParamScope())) {
1141 assert(Ctx->isFileContext() &&
1142 "We should have been looking only at file context here already.");
1143
1144 // Look into context considering using-directives.
1145 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1146 Found = true;
1147 }
1148
1149 if (Found) {
1150 R.resolveKind();
1151 return true;
1152 }
1153
1154 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1155 return false;
1156 }
1157 }
1158
1159 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1160 return false;
1161 }
1162
1163 return !R.empty();
1164 }
1165
1166 /// \brief Find the declaration that a class temploid member specialization was
1167 /// instantiated from, or the member itself if it is an explicit specialization.
getInstantiatedFrom(Decl * D,MemberSpecializationInfo * MSInfo)1168 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1169 return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1170 }
1171
1172 /// \brief Find the module in which the given declaration was defined.
getDefiningModule(Decl * Entity)1173 static Module *getDefiningModule(Decl *Entity) {
1174 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1175 // If this function was instantiated from a template, the defining module is
1176 // the module containing the pattern.
1177 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1178 Entity = Pattern;
1179 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1180 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1181 Entity = Pattern;
1182 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1183 if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1184 Entity = getInstantiatedFrom(ED, MSInfo);
1185 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1186 // FIXME: Map from variable template specializations back to the template.
1187 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1188 Entity = getInstantiatedFrom(VD, MSInfo);
1189 }
1190
1191 // Walk up to the containing context. That might also have been instantiated
1192 // from a template.
1193 DeclContext *Context = Entity->getDeclContext();
1194 if (Context->isFileContext())
1195 return Entity->getOwningModule();
1196 return getDefiningModule(cast<Decl>(Context));
1197 }
1198
getLookupModules()1199 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1200 unsigned N = ActiveTemplateInstantiations.size();
1201 for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1202 I != N; ++I) {
1203 Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1204 if (M && !LookupModulesCache.insert(M).second)
1205 M = nullptr;
1206 ActiveTemplateInstantiationLookupModules.push_back(M);
1207 }
1208 return LookupModulesCache;
1209 }
1210
1211 /// \brief Determine whether a declaration is visible to name lookup.
1212 ///
1213 /// This routine determines whether the declaration D is visible in the current
1214 /// lookup context, taking into account the current template instantiation
1215 /// stack. During template instantiation, a declaration is visible if it is
1216 /// visible from a module containing any entity on the template instantiation
1217 /// path (by instantiating a template, you allow it to see the declarations that
1218 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1219 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1220 assert(D->isHidden() && "should not call this: not in slow case");
1221 Module *DeclModule = D->getOwningModule();
1222 assert(DeclModule && "hidden decl not from a module");
1223
1224 // If this declaration is not at namespace scope nor module-private,
1225 // then it is visible if its lexical parent has a visible definition.
1226 DeclContext *DC = D->getLexicalDeclContext();
1227 if (!D->isModulePrivate() &&
1228 DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
1229 if (SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1230 if (SemaRef.ActiveTemplateInstantiations.empty()) {
1231 // Cache the fact that this declaration is implicitly visible because
1232 // its parent has a visible definition.
1233 D->setHidden(false);
1234 }
1235 return true;
1236 }
1237 return false;
1238 }
1239
1240 // Find the extra places where we need to look.
1241 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1242 if (LookupModules.empty())
1243 return false;
1244
1245 // If our lookup set contains the decl's module, it's visible.
1246 if (LookupModules.count(DeclModule))
1247 return true;
1248
1249 // If the declaration isn't exported, it's not visible in any other module.
1250 if (D->isModulePrivate())
1251 return false;
1252
1253 // Check whether DeclModule is transitively exported to an import of
1254 // the lookup set.
1255 for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1256 E = LookupModules.end();
1257 I != E; ++I)
1258 if ((*I)->isModuleVisible(DeclModule))
1259 return true;
1260 return false;
1261 }
1262
1263 /// \brief Retrieve the visible declaration corresponding to D, if any.
1264 ///
1265 /// This routine determines whether the declaration D is visible in the current
1266 /// module, with the current imports. If not, it checks whether any
1267 /// redeclaration of D is visible, and if so, returns that declaration.
1268 ///
1269 /// \returns D, or a visible previous declaration of D, whichever is more recent
1270 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D)1271 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1272 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1273
1274 for (auto RD : D->redecls()) {
1275 if (auto ND = dyn_cast<NamedDecl>(RD)) {
1276 // FIXME: This is wrong in the case where the previous declaration is not
1277 // visible in the same scope as D. This needs to be done much more
1278 // carefully.
1279 if (LookupResult::isVisible(SemaRef, ND))
1280 return ND;
1281 }
1282 }
1283
1284 return nullptr;
1285 }
1286
getAcceptableDeclSlow(NamedDecl * D) const1287 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1288 return findAcceptableDecl(getSema(), D);
1289 }
1290
1291 /// @brief Perform unqualified name lookup starting from a given
1292 /// scope.
1293 ///
1294 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1295 /// used to find names within the current scope. For example, 'x' in
1296 /// @code
1297 /// int x;
1298 /// int f() {
1299 /// return x; // unqualified name look finds 'x' in the global scope
1300 /// }
1301 /// @endcode
1302 ///
1303 /// Different lookup criteria can find different names. For example, a
1304 /// particular scope can have both a struct and a function of the same
1305 /// name, and each can be found by certain lookup criteria. For more
1306 /// information about lookup criteria, see the documentation for the
1307 /// class LookupCriteria.
1308 ///
1309 /// @param S The scope from which unqualified name lookup will
1310 /// begin. If the lookup criteria permits, name lookup may also search
1311 /// in the parent scopes.
1312 ///
1313 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1314 /// look up and the lookup kind), and is updated with the results of lookup
1315 /// including zero or more declarations and possibly additional information
1316 /// used to diagnose ambiguities.
1317 ///
1318 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1319 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1320 DeclarationName Name = R.getLookupName();
1321 if (!Name) return false;
1322
1323 LookupNameKind NameKind = R.getLookupKind();
1324
1325 if (!getLangOpts().CPlusPlus) {
1326 // Unqualified name lookup in C/Objective-C is purely lexical, so
1327 // search in the declarations attached to the name.
1328 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1329 // Find the nearest non-transparent declaration scope.
1330 while (!(S->getFlags() & Scope::DeclScope) ||
1331 (S->getEntity() && S->getEntity()->isTransparentContext()))
1332 S = S->getParent();
1333 }
1334
1335 // When performing a scope lookup, we want to find local extern decls.
1336 FindLocalExternScope FindLocals(R);
1337
1338 // Scan up the scope chain looking for a decl that matches this
1339 // identifier that is in the appropriate namespace. This search
1340 // should not take long, as shadowing of names is uncommon, and
1341 // deep shadowing is extremely uncommon.
1342 bool LeftStartingScope = false;
1343
1344 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1345 IEnd = IdResolver.end();
1346 I != IEnd; ++I)
1347 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1348 if (NameKind == LookupRedeclarationWithLinkage) {
1349 // Determine whether this (or a previous) declaration is
1350 // out-of-scope.
1351 if (!LeftStartingScope && !S->isDeclScope(*I))
1352 LeftStartingScope = true;
1353
1354 // If we found something outside of our starting scope that
1355 // does not have linkage, skip it.
1356 if (LeftStartingScope && !((*I)->hasLinkage())) {
1357 R.setShadowed();
1358 continue;
1359 }
1360 }
1361 else if (NameKind == LookupObjCImplicitSelfParam &&
1362 !isa<ImplicitParamDecl>(*I))
1363 continue;
1364
1365 R.addDecl(D);
1366
1367 // Check whether there are any other declarations with the same name
1368 // and in the same scope.
1369 if (I != IEnd) {
1370 // Find the scope in which this declaration was declared (if it
1371 // actually exists in a Scope).
1372 while (S && !S->isDeclScope(D))
1373 S = S->getParent();
1374
1375 // If the scope containing the declaration is the translation unit,
1376 // then we'll need to perform our checks based on the matching
1377 // DeclContexts rather than matching scopes.
1378 if (S && isNamespaceOrTranslationUnitScope(S))
1379 S = nullptr;
1380
1381 // Compute the DeclContext, if we need it.
1382 DeclContext *DC = nullptr;
1383 if (!S)
1384 DC = (*I)->getDeclContext()->getRedeclContext();
1385
1386 IdentifierResolver::iterator LastI = I;
1387 for (++LastI; LastI != IEnd; ++LastI) {
1388 if (S) {
1389 // Match based on scope.
1390 if (!S->isDeclScope(*LastI))
1391 break;
1392 } else {
1393 // Match based on DeclContext.
1394 DeclContext *LastDC
1395 = (*LastI)->getDeclContext()->getRedeclContext();
1396 if (!LastDC->Equals(DC))
1397 break;
1398 }
1399
1400 // If the declaration is in the right namespace and visible, add it.
1401 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1402 R.addDecl(LastD);
1403 }
1404
1405 R.resolveKind();
1406 }
1407
1408 return true;
1409 }
1410 } else {
1411 // Perform C++ unqualified name lookup.
1412 if (CppLookupName(R, S))
1413 return true;
1414 }
1415
1416 // If we didn't find a use of this identifier, and if the identifier
1417 // corresponds to a compiler builtin, create the decl object for the builtin
1418 // now, injecting it into translation unit scope, and return it.
1419 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1420 return true;
1421
1422 // If we didn't find a use of this identifier, the ExternalSource
1423 // may be able to handle the situation.
1424 // Note: some lookup failures are expected!
1425 // See e.g. R.isForRedeclaration().
1426 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1427 }
1428
1429 /// @brief Perform qualified name lookup in the namespaces nominated by
1430 /// using directives by the given context.
1431 ///
1432 /// C++98 [namespace.qual]p2:
1433 /// Given X::m (where X is a user-declared namespace), or given \::m
1434 /// (where X is the global namespace), let S be the set of all
1435 /// declarations of m in X and in the transitive closure of all
1436 /// namespaces nominated by using-directives in X and its used
1437 /// namespaces, except that using-directives are ignored in any
1438 /// namespace, including X, directly containing one or more
1439 /// declarations of m. No namespace is searched more than once in
1440 /// the lookup of a name. If S is the empty set, the program is
1441 /// ill-formed. Otherwise, if S has exactly one member, or if the
1442 /// context of the reference is a using-declaration
1443 /// (namespace.udecl), S is the required set of declarations of
1444 /// m. Otherwise if the use of m is not one that allows a unique
1445 /// declaration to be chosen from S, the program is ill-formed.
1446 ///
1447 /// C++98 [namespace.qual]p5:
1448 /// During the lookup of a qualified namespace member name, if the
1449 /// lookup finds more than one declaration of the member, and if one
1450 /// declaration introduces a class name or enumeration name and the
1451 /// other declarations either introduce the same object, the same
1452 /// enumerator or a set of functions, the non-type name hides the
1453 /// class or enumeration name if and only if the declarations are
1454 /// from the same namespace; otherwise (the declarations are from
1455 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1456 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1457 DeclContext *StartDC) {
1458 assert(StartDC->isFileContext() && "start context is not a file context");
1459
1460 DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1461 if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1462
1463 // We have at least added all these contexts to the queue.
1464 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1465 Visited.insert(StartDC);
1466
1467 // We have not yet looked into these namespaces, much less added
1468 // their "using-children" to the queue.
1469 SmallVector<NamespaceDecl*, 8> Queue;
1470
1471 // We have already looked into the initial namespace; seed the queue
1472 // with its using-children.
1473 for (auto *I : UsingDirectives) {
1474 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1475 if (Visited.insert(ND).second)
1476 Queue.push_back(ND);
1477 }
1478
1479 // The easiest way to implement the restriction in [namespace.qual]p5
1480 // is to check whether any of the individual results found a tag
1481 // and, if so, to declare an ambiguity if the final result is not
1482 // a tag.
1483 bool FoundTag = false;
1484 bool FoundNonTag = false;
1485
1486 LookupResult LocalR(LookupResult::Temporary, R);
1487
1488 bool Found = false;
1489 while (!Queue.empty()) {
1490 NamespaceDecl *ND = Queue.pop_back_val();
1491
1492 // We go through some convolutions here to avoid copying results
1493 // between LookupResults.
1494 bool UseLocal = !R.empty();
1495 LookupResult &DirectR = UseLocal ? LocalR : R;
1496 bool FoundDirect = LookupDirect(S, DirectR, ND);
1497
1498 if (FoundDirect) {
1499 // First do any local hiding.
1500 DirectR.resolveKind();
1501
1502 // If the local result is a tag, remember that.
1503 if (DirectR.isSingleTagDecl())
1504 FoundTag = true;
1505 else
1506 FoundNonTag = true;
1507
1508 // Append the local results to the total results if necessary.
1509 if (UseLocal) {
1510 R.addAllDecls(LocalR);
1511 LocalR.clear();
1512 }
1513 }
1514
1515 // If we find names in this namespace, ignore its using directives.
1516 if (FoundDirect) {
1517 Found = true;
1518 continue;
1519 }
1520
1521 for (auto I : ND->using_directives()) {
1522 NamespaceDecl *Nom = I->getNominatedNamespace();
1523 if (Visited.insert(Nom).second)
1524 Queue.push_back(Nom);
1525 }
1526 }
1527
1528 if (Found) {
1529 if (FoundTag && FoundNonTag)
1530 R.setAmbiguousQualifiedTagHiding();
1531 else
1532 R.resolveKind();
1533 }
1534
1535 return Found;
1536 }
1537
1538 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1539 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1540 CXXBasePath &Path,
1541 void *Name) {
1542 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1543
1544 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1545 Path.Decls = BaseRecord->lookup(N);
1546 return !Path.Decls.empty();
1547 }
1548
1549 /// \brief Determine whether the given set of member declarations contains only
1550 /// static members, nested types, and enumerators.
1551 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1552 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1553 Decl *D = (*First)->getUnderlyingDecl();
1554 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1555 return true;
1556
1557 if (isa<CXXMethodDecl>(D)) {
1558 // Determine whether all of the methods are static.
1559 bool AllMethodsAreStatic = true;
1560 for(; First != Last; ++First) {
1561 D = (*First)->getUnderlyingDecl();
1562
1563 if (!isa<CXXMethodDecl>(D)) {
1564 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1565 break;
1566 }
1567
1568 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1569 AllMethodsAreStatic = false;
1570 break;
1571 }
1572 }
1573
1574 if (AllMethodsAreStatic)
1575 return true;
1576 }
1577
1578 return false;
1579 }
1580
1581 /// \brief Perform qualified name lookup into a given context.
1582 ///
1583 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1584 /// names when the context of those names is explicit specified, e.g.,
1585 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1586 ///
1587 /// Different lookup criteria can find different names. For example, a
1588 /// particular scope can have both a struct and a function of the same
1589 /// name, and each can be found by certain lookup criteria. For more
1590 /// information about lookup criteria, see the documentation for the
1591 /// class LookupCriteria.
1592 ///
1593 /// \param R captures both the lookup criteria and any lookup results found.
1594 ///
1595 /// \param LookupCtx The context in which qualified name lookup will
1596 /// search. If the lookup criteria permits, name lookup may also search
1597 /// in the parent contexts or (for C++ classes) base classes.
1598 ///
1599 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1600 /// occurs as part of unqualified name lookup.
1601 ///
1602 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1603 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1604 bool InUnqualifiedLookup) {
1605 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1606
1607 if (!R.getLookupName())
1608 return false;
1609
1610 // Make sure that the declaration context is complete.
1611 assert((!isa<TagDecl>(LookupCtx) ||
1612 LookupCtx->isDependentContext() ||
1613 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1614 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1615 "Declaration context must already be complete!");
1616
1617 // Perform qualified name lookup into the LookupCtx.
1618 if (LookupDirect(*this, R, LookupCtx)) {
1619 R.resolveKind();
1620 if (isa<CXXRecordDecl>(LookupCtx))
1621 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1622 return true;
1623 }
1624
1625 // Don't descend into implied contexts for redeclarations.
1626 // C++98 [namespace.qual]p6:
1627 // In a declaration for a namespace member in which the
1628 // declarator-id is a qualified-id, given that the qualified-id
1629 // for the namespace member has the form
1630 // nested-name-specifier unqualified-id
1631 // the unqualified-id shall name a member of the namespace
1632 // designated by the nested-name-specifier.
1633 // See also [class.mfct]p5 and [class.static.data]p2.
1634 if (R.isForRedeclaration())
1635 return false;
1636
1637 // If this is a namespace, look it up in the implied namespaces.
1638 if (LookupCtx->isFileContext())
1639 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1640
1641 // If this isn't a C++ class, we aren't allowed to look into base
1642 // classes, we're done.
1643 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1644 if (!LookupRec || !LookupRec->getDefinition())
1645 return false;
1646
1647 // If we're performing qualified name lookup into a dependent class,
1648 // then we are actually looking into a current instantiation. If we have any
1649 // dependent base classes, then we either have to delay lookup until
1650 // template instantiation time (at which point all bases will be available)
1651 // or we have to fail.
1652 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1653 LookupRec->hasAnyDependentBases()) {
1654 R.setNotFoundInCurrentInstantiation();
1655 return false;
1656 }
1657
1658 // Perform lookup into our base classes.
1659 CXXBasePaths Paths;
1660 Paths.setOrigin(LookupRec);
1661
1662 // Look for this member in our base classes
1663 CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
1664 switch (R.getLookupKind()) {
1665 case LookupObjCImplicitSelfParam:
1666 case LookupOrdinaryName:
1667 case LookupMemberName:
1668 case LookupRedeclarationWithLinkage:
1669 case LookupLocalFriendName:
1670 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1671 break;
1672
1673 case LookupTagName:
1674 BaseCallback = &CXXRecordDecl::FindTagMember;
1675 break;
1676
1677 case LookupAnyName:
1678 BaseCallback = &LookupAnyMember;
1679 break;
1680
1681 case LookupUsingDeclName:
1682 // This lookup is for redeclarations only.
1683
1684 case LookupOperatorName:
1685 case LookupNamespaceName:
1686 case LookupObjCProtocolName:
1687 case LookupLabel:
1688 // These lookups will never find a member in a C++ class (or base class).
1689 return false;
1690
1691 case LookupNestedNameSpecifierName:
1692 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1693 break;
1694 }
1695
1696 if (!LookupRec->lookupInBases(BaseCallback,
1697 R.getLookupName().getAsOpaquePtr(), Paths))
1698 return false;
1699
1700 R.setNamingClass(LookupRec);
1701
1702 // C++ [class.member.lookup]p2:
1703 // [...] If the resulting set of declarations are not all from
1704 // sub-objects of the same type, or the set has a nonstatic member
1705 // and includes members from distinct sub-objects, there is an
1706 // ambiguity and the program is ill-formed. Otherwise that set is
1707 // the result of the lookup.
1708 QualType SubobjectType;
1709 int SubobjectNumber = 0;
1710 AccessSpecifier SubobjectAccess = AS_none;
1711
1712 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1713 Path != PathEnd; ++Path) {
1714 const CXXBasePathElement &PathElement = Path->back();
1715
1716 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1717 // across all paths.
1718 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1719
1720 // Determine whether we're looking at a distinct sub-object or not.
1721 if (SubobjectType.isNull()) {
1722 // This is the first subobject we've looked at. Record its type.
1723 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1724 SubobjectNumber = PathElement.SubobjectNumber;
1725 continue;
1726 }
1727
1728 if (SubobjectType
1729 != Context.getCanonicalType(PathElement.Base->getType())) {
1730 // We found members of the given name in two subobjects of
1731 // different types. If the declaration sets aren't the same, this
1732 // lookup is ambiguous.
1733 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1734 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1735 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1736 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1737
1738 while (FirstD != FirstPath->Decls.end() &&
1739 CurrentD != Path->Decls.end()) {
1740 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1741 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1742 break;
1743
1744 ++FirstD;
1745 ++CurrentD;
1746 }
1747
1748 if (FirstD == FirstPath->Decls.end() &&
1749 CurrentD == Path->Decls.end())
1750 continue;
1751 }
1752
1753 R.setAmbiguousBaseSubobjectTypes(Paths);
1754 return true;
1755 }
1756
1757 if (SubobjectNumber != PathElement.SubobjectNumber) {
1758 // We have a different subobject of the same type.
1759
1760 // C++ [class.member.lookup]p5:
1761 // A static member, a nested type or an enumerator defined in
1762 // a base class T can unambiguously be found even if an object
1763 // has more than one base class subobject of type T.
1764 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1765 continue;
1766
1767 // We have found a nonstatic member name in multiple, distinct
1768 // subobjects. Name lookup is ambiguous.
1769 R.setAmbiguousBaseSubobjects(Paths);
1770 return true;
1771 }
1772 }
1773
1774 // Lookup in a base class succeeded; return these results.
1775
1776 for (auto *D : Paths.front().Decls) {
1777 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1778 D->getAccess());
1779 R.addDecl(D, AS);
1780 }
1781 R.resolveKind();
1782 return true;
1783 }
1784
1785 /// \brief Performs qualified name lookup or special type of lookup for
1786 /// "__super::" scope specifier.
1787 ///
1788 /// This routine is a convenience overload meant to be called from contexts
1789 /// that need to perform a qualified name lookup with an optional C++ scope
1790 /// specifier that might require special kind of lookup.
1791 ///
1792 /// \param R captures both the lookup criteria and any lookup results found.
1793 ///
1794 /// \param LookupCtx The context in which qualified name lookup will
1795 /// search.
1796 ///
1797 /// \param SS An optional C++ scope-specifier.
1798 ///
1799 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)1800 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1801 CXXScopeSpec &SS) {
1802 auto *NNS = SS.getScopeRep();
1803 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
1804 return LookupInSuper(R, NNS->getAsRecordDecl());
1805 else
1806
1807 return LookupQualifiedName(R, LookupCtx);
1808 }
1809
1810 /// @brief Performs name lookup for a name that was parsed in the
1811 /// source code, and may contain a C++ scope specifier.
1812 ///
1813 /// This routine is a convenience routine meant to be called from
1814 /// contexts that receive a name and an optional C++ scope specifier
1815 /// (e.g., "N::M::x"). It will then perform either qualified or
1816 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1817 /// respectively) on the given name and return those results. It will
1818 /// perform a special type of lookup for "__super::" scope specifier.
1819 ///
1820 /// @param S The scope from which unqualified name lookup will
1821 /// begin.
1822 ///
1823 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1824 ///
1825 /// @param EnteringContext Indicates whether we are going to enter the
1826 /// context of the scope-specifier SS (if present).
1827 ///
1828 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1829 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1830 bool AllowBuiltinCreation, bool EnteringContext) {
1831 if (SS && SS->isInvalid()) {
1832 // When the scope specifier is invalid, don't even look for
1833 // anything.
1834 return false;
1835 }
1836
1837 if (SS && SS->isSet()) {
1838 NestedNameSpecifier *NNS = SS->getScopeRep();
1839 if (NNS->getKind() == NestedNameSpecifier::Super)
1840 return LookupInSuper(R, NNS->getAsRecordDecl());
1841
1842 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1843 // We have resolved the scope specifier to a particular declaration
1844 // contex, and will perform name lookup in that context.
1845 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1846 return false;
1847
1848 R.setContextRange(SS->getRange());
1849 return LookupQualifiedName(R, DC);
1850 }
1851
1852 // We could not resolve the scope specified to a specific declaration
1853 // context, which means that SS refers to an unknown specialization.
1854 // Name lookup can't find anything in this case.
1855 R.setNotFoundInCurrentInstantiation();
1856 R.setContextRange(SS->getRange());
1857 return false;
1858 }
1859
1860 // Perform unqualified name lookup starting in the given scope.
1861 return LookupName(R, S, AllowBuiltinCreation);
1862 }
1863
1864 /// \brief Perform qualified name lookup into all base classes of the given
1865 /// class.
1866 ///
1867 /// \param R captures both the lookup criteria and any lookup results found.
1868 ///
1869 /// \param Class The context in which qualified name lookup will
1870 /// search. Name lookup will search in all base classes merging the results.
1871 ///
1872 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)1873 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
1874 for (const auto &BaseSpec : Class->bases()) {
1875 CXXRecordDecl *RD = cast<CXXRecordDecl>(
1876 BaseSpec.getType()->castAs<RecordType>()->getDecl());
1877 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
1878 Result.setBaseObjectType(Context.getRecordType(Class));
1879 LookupQualifiedName(Result, RD);
1880 for (auto *Decl : Result)
1881 R.addDecl(Decl);
1882 }
1883
1884 R.resolveKind();
1885
1886 return !R.empty();
1887 }
1888
1889 /// \brief Produce a diagnostic describing the ambiguity that resulted
1890 /// from name lookup.
1891 ///
1892 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)1893 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1894 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1895
1896 DeclarationName Name = Result.getLookupName();
1897 SourceLocation NameLoc = Result.getNameLoc();
1898 SourceRange LookupRange = Result.getContextRange();
1899
1900 switch (Result.getAmbiguityKind()) {
1901 case LookupResult::AmbiguousBaseSubobjects: {
1902 CXXBasePaths *Paths = Result.getBasePaths();
1903 QualType SubobjectType = Paths->front().back().Base->getType();
1904 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1905 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1906 << LookupRange;
1907
1908 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1909 while (isa<CXXMethodDecl>(*Found) &&
1910 cast<CXXMethodDecl>(*Found)->isStatic())
1911 ++Found;
1912
1913 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1914 break;
1915 }
1916
1917 case LookupResult::AmbiguousBaseSubobjectTypes: {
1918 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1919 << Name << LookupRange;
1920
1921 CXXBasePaths *Paths = Result.getBasePaths();
1922 std::set<Decl *> DeclsPrinted;
1923 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1924 PathEnd = Paths->end();
1925 Path != PathEnd; ++Path) {
1926 Decl *D = Path->Decls.front();
1927 if (DeclsPrinted.insert(D).second)
1928 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1929 }
1930 break;
1931 }
1932
1933 case LookupResult::AmbiguousTagHiding: {
1934 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1935
1936 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1937
1938 for (auto *D : Result)
1939 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1940 TagDecls.insert(TD);
1941 Diag(TD->getLocation(), diag::note_hidden_tag);
1942 }
1943
1944 for (auto *D : Result)
1945 if (!isa<TagDecl>(D))
1946 Diag(D->getLocation(), diag::note_hiding_object);
1947
1948 // For recovery purposes, go ahead and implement the hiding.
1949 LookupResult::Filter F = Result.makeFilter();
1950 while (F.hasNext()) {
1951 if (TagDecls.count(F.next()))
1952 F.erase();
1953 }
1954 F.done();
1955 break;
1956 }
1957
1958 case LookupResult::AmbiguousReference: {
1959 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1960
1961 for (auto *D : Result)
1962 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
1963 break;
1964 }
1965 }
1966 }
1967
1968 namespace {
1969 struct AssociatedLookup {
AssociatedLookup__anon54059c910311::AssociatedLookup1970 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1971 Sema::AssociatedNamespaceSet &Namespaces,
1972 Sema::AssociatedClassSet &Classes)
1973 : S(S), Namespaces(Namespaces), Classes(Classes),
1974 InstantiationLoc(InstantiationLoc) {
1975 }
1976
1977 Sema &S;
1978 Sema::AssociatedNamespaceSet &Namespaces;
1979 Sema::AssociatedClassSet &Classes;
1980 SourceLocation InstantiationLoc;
1981 };
1982 }
1983
1984 static void
1985 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1986
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1987 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1988 DeclContext *Ctx) {
1989 // Add the associated namespace for this class.
1990
1991 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1992 // be a locally scoped record.
1993
1994 // We skip out of inline namespaces. The innermost non-inline namespace
1995 // contains all names of all its nested inline namespaces anyway, so we can
1996 // replace the entire inline namespace tree with its root.
1997 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1998 Ctx->isInlineNamespace())
1999 Ctx = Ctx->getParent();
2000
2001 if (Ctx->isFileContext())
2002 Namespaces.insert(Ctx->getPrimaryContext());
2003 }
2004
2005 // \brief Add the associated classes and namespaces for argument-dependent
2006 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2007 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)2008 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2009 const TemplateArgument &Arg) {
2010 // C++ [basic.lookup.koenig]p2, last bullet:
2011 // -- [...] ;
2012 switch (Arg.getKind()) {
2013 case TemplateArgument::Null:
2014 break;
2015
2016 case TemplateArgument::Type:
2017 // [...] the namespaces and classes associated with the types of the
2018 // template arguments provided for template type parameters (excluding
2019 // template template parameters)
2020 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2021 break;
2022
2023 case TemplateArgument::Template:
2024 case TemplateArgument::TemplateExpansion: {
2025 // [...] the namespaces in which any template template arguments are
2026 // defined; and the classes in which any member templates used as
2027 // template template arguments are defined.
2028 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2029 if (ClassTemplateDecl *ClassTemplate
2030 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2031 DeclContext *Ctx = ClassTemplate->getDeclContext();
2032 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2033 Result.Classes.insert(EnclosingClass);
2034 // Add the associated namespace for this class.
2035 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2036 }
2037 break;
2038 }
2039
2040 case TemplateArgument::Declaration:
2041 case TemplateArgument::Integral:
2042 case TemplateArgument::Expression:
2043 case TemplateArgument::NullPtr:
2044 // [Note: non-type template arguments do not contribute to the set of
2045 // associated namespaces. ]
2046 break;
2047
2048 case TemplateArgument::Pack:
2049 for (const auto &P : Arg.pack_elements())
2050 addAssociatedClassesAndNamespaces(Result, P);
2051 break;
2052 }
2053 }
2054
2055 // \brief Add the associated classes and namespaces for
2056 // argument-dependent lookup with an argument of class type
2057 // (C++ [basic.lookup.koenig]p2).
2058 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2059 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2060 CXXRecordDecl *Class) {
2061
2062 // Just silently ignore anything whose name is __va_list_tag.
2063 if (Class->getDeclName() == Result.S.VAListTagName)
2064 return;
2065
2066 // C++ [basic.lookup.koenig]p2:
2067 // [...]
2068 // -- If T is a class type (including unions), its associated
2069 // classes are: the class itself; the class of which it is a
2070 // member, if any; and its direct and indirect base
2071 // classes. Its associated namespaces are the namespaces in
2072 // which its associated classes are defined.
2073
2074 // Add the class of which it is a member, if any.
2075 DeclContext *Ctx = Class->getDeclContext();
2076 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2077 Result.Classes.insert(EnclosingClass);
2078 // Add the associated namespace for this class.
2079 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2080
2081 // Add the class itself. If we've already seen this class, we don't
2082 // need to visit base classes.
2083 //
2084 // FIXME: That's not correct, we may have added this class only because it
2085 // was the enclosing class of another class, and in that case we won't have
2086 // added its base classes yet.
2087 if (!Result.Classes.insert(Class).second)
2088 return;
2089
2090 // -- If T is a template-id, its associated namespaces and classes are
2091 // the namespace in which the template is defined; for member
2092 // templates, the member template's class; the namespaces and classes
2093 // associated with the types of the template arguments provided for
2094 // template type parameters (excluding template template parameters); the
2095 // namespaces in which any template template arguments are defined; and
2096 // the classes in which any member templates used as template template
2097 // arguments are defined. [Note: non-type template arguments do not
2098 // contribute to the set of associated namespaces. ]
2099 if (ClassTemplateSpecializationDecl *Spec
2100 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2101 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2102 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2103 Result.Classes.insert(EnclosingClass);
2104 // Add the associated namespace for this class.
2105 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2106
2107 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2108 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2109 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2110 }
2111
2112 // Only recurse into base classes for complete types.
2113 if (!Class->hasDefinition())
2114 return;
2115
2116 // Add direct and indirect base classes along with their associated
2117 // namespaces.
2118 SmallVector<CXXRecordDecl *, 32> Bases;
2119 Bases.push_back(Class);
2120 while (!Bases.empty()) {
2121 // Pop this class off the stack.
2122 Class = Bases.pop_back_val();
2123
2124 // Visit the base classes.
2125 for (const auto &Base : Class->bases()) {
2126 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2127 // In dependent contexts, we do ADL twice, and the first time around,
2128 // the base type might be a dependent TemplateSpecializationType, or a
2129 // TemplateTypeParmType. If that happens, simply ignore it.
2130 // FIXME: If we want to support export, we probably need to add the
2131 // namespace of the template in a TemplateSpecializationType, or even
2132 // the classes and namespaces of known non-dependent arguments.
2133 if (!BaseType)
2134 continue;
2135 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2136 if (Result.Classes.insert(BaseDecl).second) {
2137 // Find the associated namespace for this base class.
2138 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2139 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2140
2141 // Make sure we visit the bases of this base class.
2142 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2143 Bases.push_back(BaseDecl);
2144 }
2145 }
2146 }
2147 }
2148
2149 // \brief Add the associated classes and namespaces for
2150 // argument-dependent lookup with an argument of type T
2151 // (C++ [basic.lookup.koenig]p2).
2152 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2153 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2154 // C++ [basic.lookup.koenig]p2:
2155 //
2156 // For each argument type T in the function call, there is a set
2157 // of zero or more associated namespaces and a set of zero or more
2158 // associated classes to be considered. The sets of namespaces and
2159 // classes is determined entirely by the types of the function
2160 // arguments (and the namespace of any template template
2161 // argument). Typedef names and using-declarations used to specify
2162 // the types do not contribute to this set. The sets of namespaces
2163 // and classes are determined in the following way:
2164
2165 SmallVector<const Type *, 16> Queue;
2166 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2167
2168 while (true) {
2169 switch (T->getTypeClass()) {
2170
2171 #define TYPE(Class, Base)
2172 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2173 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2174 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2175 #define ABSTRACT_TYPE(Class, Base)
2176 #include "clang/AST/TypeNodes.def"
2177 // T is canonical. We can also ignore dependent types because
2178 // we don't need to do ADL at the definition point, but if we
2179 // wanted to implement template export (or if we find some other
2180 // use for associated classes and namespaces...) this would be
2181 // wrong.
2182 break;
2183
2184 // -- If T is a pointer to U or an array of U, its associated
2185 // namespaces and classes are those associated with U.
2186 case Type::Pointer:
2187 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2188 continue;
2189 case Type::ConstantArray:
2190 case Type::IncompleteArray:
2191 case Type::VariableArray:
2192 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2193 continue;
2194
2195 // -- If T is a fundamental type, its associated sets of
2196 // namespaces and classes are both empty.
2197 case Type::Builtin:
2198 break;
2199
2200 // -- If T is a class type (including unions), its associated
2201 // classes are: the class itself; the class of which it is a
2202 // member, if any; and its direct and indirect base
2203 // classes. Its associated namespaces are the namespaces in
2204 // which its associated classes are defined.
2205 case Type::Record: {
2206 Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
2207 /*no diagnostic*/ 0);
2208 CXXRecordDecl *Class
2209 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2210 addAssociatedClassesAndNamespaces(Result, Class);
2211 break;
2212 }
2213
2214 // -- If T is an enumeration type, its associated namespace is
2215 // the namespace in which it is defined. If it is class
2216 // member, its associated class is the member's class; else
2217 // it has no associated class.
2218 case Type::Enum: {
2219 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2220
2221 DeclContext *Ctx = Enum->getDeclContext();
2222 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2223 Result.Classes.insert(EnclosingClass);
2224
2225 // Add the associated namespace for this class.
2226 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2227
2228 break;
2229 }
2230
2231 // -- If T is a function type, its associated namespaces and
2232 // classes are those associated with the function parameter
2233 // types and those associated with the return type.
2234 case Type::FunctionProto: {
2235 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2236 for (const auto &Arg : Proto->param_types())
2237 Queue.push_back(Arg.getTypePtr());
2238 // fallthrough
2239 }
2240 case Type::FunctionNoProto: {
2241 const FunctionType *FnType = cast<FunctionType>(T);
2242 T = FnType->getReturnType().getTypePtr();
2243 continue;
2244 }
2245
2246 // -- If T is a pointer to a member function of a class X, its
2247 // associated namespaces and classes are those associated
2248 // with the function parameter types and return type,
2249 // together with those associated with X.
2250 //
2251 // -- If T is a pointer to a data member of class X, its
2252 // associated namespaces and classes are those associated
2253 // with the member type together with those associated with
2254 // X.
2255 case Type::MemberPointer: {
2256 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2257
2258 // Queue up the class type into which this points.
2259 Queue.push_back(MemberPtr->getClass());
2260
2261 // And directly continue with the pointee type.
2262 T = MemberPtr->getPointeeType().getTypePtr();
2263 continue;
2264 }
2265
2266 // As an extension, treat this like a normal pointer.
2267 case Type::BlockPointer:
2268 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2269 continue;
2270
2271 // References aren't covered by the standard, but that's such an
2272 // obvious defect that we cover them anyway.
2273 case Type::LValueReference:
2274 case Type::RValueReference:
2275 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2276 continue;
2277
2278 // These are fundamental types.
2279 case Type::Vector:
2280 case Type::ExtVector:
2281 case Type::Complex:
2282 break;
2283
2284 // Non-deduced auto types only get here for error cases.
2285 case Type::Auto:
2286 break;
2287
2288 // If T is an Objective-C object or interface type, or a pointer to an
2289 // object or interface type, the associated namespace is the global
2290 // namespace.
2291 case Type::ObjCObject:
2292 case Type::ObjCInterface:
2293 case Type::ObjCObjectPointer:
2294 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2295 break;
2296
2297 // Atomic types are just wrappers; use the associations of the
2298 // contained type.
2299 case Type::Atomic:
2300 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2301 continue;
2302 }
2303
2304 if (Queue.empty())
2305 break;
2306 T = Queue.pop_back_val();
2307 }
2308 }
2309
2310 /// \brief Find the associated classes and namespaces for
2311 /// argument-dependent lookup for a call with the given set of
2312 /// arguments.
2313 ///
2314 /// This routine computes the sets of associated classes and associated
2315 /// namespaces searched by argument-dependent lookup
2316 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2317 void Sema::FindAssociatedClassesAndNamespaces(
2318 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2319 AssociatedNamespaceSet &AssociatedNamespaces,
2320 AssociatedClassSet &AssociatedClasses) {
2321 AssociatedNamespaces.clear();
2322 AssociatedClasses.clear();
2323
2324 AssociatedLookup Result(*this, InstantiationLoc,
2325 AssociatedNamespaces, AssociatedClasses);
2326
2327 // C++ [basic.lookup.koenig]p2:
2328 // For each argument type T in the function call, there is a set
2329 // of zero or more associated namespaces and a set of zero or more
2330 // associated classes to be considered. The sets of namespaces and
2331 // classes is determined entirely by the types of the function
2332 // arguments (and the namespace of any template template
2333 // argument).
2334 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2335 Expr *Arg = Args[ArgIdx];
2336
2337 if (Arg->getType() != Context.OverloadTy) {
2338 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2339 continue;
2340 }
2341
2342 // [...] In addition, if the argument is the name or address of a
2343 // set of overloaded functions and/or function templates, its
2344 // associated classes and namespaces are the union of those
2345 // associated with each of the members of the set: the namespace
2346 // in which the function or function template is defined and the
2347 // classes and namespaces associated with its (non-dependent)
2348 // parameter types and return type.
2349 Arg = Arg->IgnoreParens();
2350 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2351 if (unaryOp->getOpcode() == UO_AddrOf)
2352 Arg = unaryOp->getSubExpr();
2353
2354 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2355 if (!ULE) continue;
2356
2357 for (const auto *D : ULE->decls()) {
2358 // Look through any using declarations to find the underlying function.
2359 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2360
2361 // Add the classes and namespaces associated with the parameter
2362 // types and return type of this function.
2363 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2364 }
2365 }
2366 }
2367
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2368 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2369 SourceLocation Loc,
2370 LookupNameKind NameKind,
2371 RedeclarationKind Redecl) {
2372 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2373 LookupName(R, S);
2374 return R.getAsSingle<NamedDecl>();
2375 }
2376
2377 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2378 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2379 SourceLocation IdLoc,
2380 RedeclarationKind Redecl) {
2381 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2382 LookupObjCProtocolName, Redecl);
2383 return cast_or_null<ObjCProtocolDecl>(D);
2384 }
2385
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2386 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2387 QualType T1, QualType T2,
2388 UnresolvedSetImpl &Functions) {
2389 // C++ [over.match.oper]p3:
2390 // -- The set of non-member candidates is the result of the
2391 // unqualified lookup of operator@ in the context of the
2392 // expression according to the usual rules for name lookup in
2393 // unqualified function calls (3.4.2) except that all member
2394 // functions are ignored.
2395 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2396 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2397 LookupName(Operators, S);
2398
2399 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2400 Functions.append(Operators.begin(), Operators.end());
2401 }
2402
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2403 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2404 CXXSpecialMember SM,
2405 bool ConstArg,
2406 bool VolatileArg,
2407 bool RValueThis,
2408 bool ConstThis,
2409 bool VolatileThis) {
2410 assert(CanDeclareSpecialMemberFunction(RD) &&
2411 "doing special member lookup into record that isn't fully complete");
2412 RD = RD->getDefinition();
2413 if (RValueThis || ConstThis || VolatileThis)
2414 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2415 "constructors and destructors always have unqualified lvalue this");
2416 if (ConstArg || VolatileArg)
2417 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2418 "parameter-less special members can't have qualified arguments");
2419
2420 llvm::FoldingSetNodeID ID;
2421 ID.AddPointer(RD);
2422 ID.AddInteger(SM);
2423 ID.AddInteger(ConstArg);
2424 ID.AddInteger(VolatileArg);
2425 ID.AddInteger(RValueThis);
2426 ID.AddInteger(ConstThis);
2427 ID.AddInteger(VolatileThis);
2428
2429 void *InsertPoint;
2430 SpecialMemberOverloadResult *Result =
2431 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2432
2433 // This was already cached
2434 if (Result)
2435 return Result;
2436
2437 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2438 Result = new (Result) SpecialMemberOverloadResult(ID);
2439 SpecialMemberCache.InsertNode(Result, InsertPoint);
2440
2441 if (SM == CXXDestructor) {
2442 if (RD->needsImplicitDestructor())
2443 DeclareImplicitDestructor(RD);
2444 CXXDestructorDecl *DD = RD->getDestructor();
2445 assert(DD && "record without a destructor");
2446 Result->setMethod(DD);
2447 Result->setKind(DD->isDeleted() ?
2448 SpecialMemberOverloadResult::NoMemberOrDeleted :
2449 SpecialMemberOverloadResult::Success);
2450 return Result;
2451 }
2452
2453 // Prepare for overload resolution. Here we construct a synthetic argument
2454 // if necessary and make sure that implicit functions are declared.
2455 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2456 DeclarationName Name;
2457 Expr *Arg = nullptr;
2458 unsigned NumArgs;
2459
2460 QualType ArgType = CanTy;
2461 ExprValueKind VK = VK_LValue;
2462
2463 if (SM == CXXDefaultConstructor) {
2464 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2465 NumArgs = 0;
2466 if (RD->needsImplicitDefaultConstructor())
2467 DeclareImplicitDefaultConstructor(RD);
2468 } else {
2469 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2470 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2471 if (RD->needsImplicitCopyConstructor())
2472 DeclareImplicitCopyConstructor(RD);
2473 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2474 DeclareImplicitMoveConstructor(RD);
2475 } else {
2476 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2477 if (RD->needsImplicitCopyAssignment())
2478 DeclareImplicitCopyAssignment(RD);
2479 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2480 DeclareImplicitMoveAssignment(RD);
2481 }
2482
2483 if (ConstArg)
2484 ArgType.addConst();
2485 if (VolatileArg)
2486 ArgType.addVolatile();
2487
2488 // This isn't /really/ specified by the standard, but it's implied
2489 // we should be working from an RValue in the case of move to ensure
2490 // that we prefer to bind to rvalue references, and an LValue in the
2491 // case of copy to ensure we don't bind to rvalue references.
2492 // Possibly an XValue is actually correct in the case of move, but
2493 // there is no semantic difference for class types in this restricted
2494 // case.
2495 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2496 VK = VK_LValue;
2497 else
2498 VK = VK_RValue;
2499 }
2500
2501 OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2502
2503 if (SM != CXXDefaultConstructor) {
2504 NumArgs = 1;
2505 Arg = &FakeArg;
2506 }
2507
2508 // Create the object argument
2509 QualType ThisTy = CanTy;
2510 if (ConstThis)
2511 ThisTy.addConst();
2512 if (VolatileThis)
2513 ThisTy.addVolatile();
2514 Expr::Classification Classification =
2515 OpaqueValueExpr(SourceLocation(), ThisTy,
2516 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2517
2518 // Now we perform lookup on the name we computed earlier and do overload
2519 // resolution. Lookup is only performed directly into the class since there
2520 // will always be a (possibly implicit) declaration to shadow any others.
2521 OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2522 DeclContext::lookup_result R = RD->lookup(Name);
2523
2524 if (R.empty()) {
2525 // We might have no default constructor because we have a lambda's closure
2526 // type, rather than because there's some other declared constructor.
2527 // Every class has a copy/move constructor, copy/move assignment, and
2528 // destructor.
2529 assert(SM == CXXDefaultConstructor &&
2530 "lookup for a constructor or assignment operator was empty");
2531 Result->setMethod(nullptr);
2532 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2533 return Result;
2534 }
2535
2536 // Copy the candidates as our processing of them may load new declarations
2537 // from an external source and invalidate lookup_result.
2538 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2539
2540 for (auto *Cand : Candidates) {
2541 if (Cand->isInvalidDecl())
2542 continue;
2543
2544 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2545 // FIXME: [namespace.udecl]p15 says that we should only consider a
2546 // using declaration here if it does not match a declaration in the
2547 // derived class. We do not implement this correctly in other cases
2548 // either.
2549 Cand = U->getTargetDecl();
2550
2551 if (Cand->isInvalidDecl())
2552 continue;
2553 }
2554
2555 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2556 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2557 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2558 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2559 OCS, true);
2560 else
2561 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2562 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2563 } else if (FunctionTemplateDecl *Tmpl =
2564 dyn_cast<FunctionTemplateDecl>(Cand)) {
2565 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2566 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2567 RD, nullptr, ThisTy, Classification,
2568 llvm::makeArrayRef(&Arg, NumArgs),
2569 OCS, true);
2570 else
2571 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2572 nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2573 OCS, true);
2574 } else {
2575 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2576 }
2577 }
2578
2579 OverloadCandidateSet::iterator Best;
2580 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2581 case OR_Success:
2582 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2583 Result->setKind(SpecialMemberOverloadResult::Success);
2584 break;
2585
2586 case OR_Deleted:
2587 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2588 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2589 break;
2590
2591 case OR_Ambiguous:
2592 Result->setMethod(nullptr);
2593 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2594 break;
2595
2596 case OR_No_Viable_Function:
2597 Result->setMethod(nullptr);
2598 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2599 break;
2600 }
2601
2602 return Result;
2603 }
2604
2605 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2606 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2607 SpecialMemberOverloadResult *Result =
2608 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2609 false, false);
2610
2611 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2612 }
2613
2614 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2615 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2616 unsigned Quals) {
2617 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2618 "non-const, non-volatile qualifiers for copy ctor arg");
2619 SpecialMemberOverloadResult *Result =
2620 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2621 Quals & Qualifiers::Volatile, false, false, false);
2622
2623 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2624 }
2625
2626 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2627 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2628 unsigned Quals) {
2629 SpecialMemberOverloadResult *Result =
2630 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2631 Quals & Qualifiers::Volatile, false, false, false);
2632
2633 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2634 }
2635
2636 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2637 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2638 // If the implicit constructors have not yet been declared, do so now.
2639 if (CanDeclareSpecialMemberFunction(Class)) {
2640 if (Class->needsImplicitDefaultConstructor())
2641 DeclareImplicitDefaultConstructor(Class);
2642 if (Class->needsImplicitCopyConstructor())
2643 DeclareImplicitCopyConstructor(Class);
2644 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2645 DeclareImplicitMoveConstructor(Class);
2646 }
2647
2648 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2649 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2650 return Class->lookup(Name);
2651 }
2652
2653 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2654 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2655 unsigned Quals, bool RValueThis,
2656 unsigned ThisQuals) {
2657 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2658 "non-const, non-volatile qualifiers for copy assignment arg");
2659 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2660 "non-const, non-volatile qualifiers for copy assignment this");
2661 SpecialMemberOverloadResult *Result =
2662 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2663 Quals & Qualifiers::Volatile, RValueThis,
2664 ThisQuals & Qualifiers::Const,
2665 ThisQuals & Qualifiers::Volatile);
2666
2667 return Result->getMethod();
2668 }
2669
2670 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2671 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2672 unsigned Quals,
2673 bool RValueThis,
2674 unsigned ThisQuals) {
2675 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2676 "non-const, non-volatile qualifiers for copy assignment this");
2677 SpecialMemberOverloadResult *Result =
2678 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2679 Quals & Qualifiers::Volatile, RValueThis,
2680 ThisQuals & Qualifiers::Const,
2681 ThisQuals & Qualifiers::Volatile);
2682
2683 return Result->getMethod();
2684 }
2685
2686 /// \brief Look for the destructor of the given class.
2687 ///
2688 /// During semantic analysis, this routine should be used in lieu of
2689 /// CXXRecordDecl::getDestructor().
2690 ///
2691 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2692 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2693 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2694 false, false, false,
2695 false, false)->getMethod());
2696 }
2697
2698 /// LookupLiteralOperator - Determine which literal operator should be used for
2699 /// a user-defined literal, per C++11 [lex.ext].
2700 ///
2701 /// Normal overload resolution is not used to select which literal operator to
2702 /// call for a user-defined literal. Look up the provided literal operator name,
2703 /// and filter the results to the appropriate set for the given argument types.
2704 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplate)2705 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2706 ArrayRef<QualType> ArgTys,
2707 bool AllowRaw, bool AllowTemplate,
2708 bool AllowStringTemplate) {
2709 LookupName(R, S);
2710 assert(R.getResultKind() != LookupResult::Ambiguous &&
2711 "literal operator lookup can't be ambiguous");
2712
2713 // Filter the lookup results appropriately.
2714 LookupResult::Filter F = R.makeFilter();
2715
2716 bool FoundRaw = false;
2717 bool FoundTemplate = false;
2718 bool FoundStringTemplate = false;
2719 bool FoundExactMatch = false;
2720
2721 while (F.hasNext()) {
2722 Decl *D = F.next();
2723 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2724 D = USD->getTargetDecl();
2725
2726 // If the declaration we found is invalid, skip it.
2727 if (D->isInvalidDecl()) {
2728 F.erase();
2729 continue;
2730 }
2731
2732 bool IsRaw = false;
2733 bool IsTemplate = false;
2734 bool IsStringTemplate = false;
2735 bool IsExactMatch = false;
2736
2737 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2738 if (FD->getNumParams() == 1 &&
2739 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2740 IsRaw = true;
2741 else if (FD->getNumParams() == ArgTys.size()) {
2742 IsExactMatch = true;
2743 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2744 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2745 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2746 IsExactMatch = false;
2747 break;
2748 }
2749 }
2750 }
2751 }
2752 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
2753 TemplateParameterList *Params = FD->getTemplateParameters();
2754 if (Params->size() == 1)
2755 IsTemplate = true;
2756 else
2757 IsStringTemplate = true;
2758 }
2759
2760 if (IsExactMatch) {
2761 FoundExactMatch = true;
2762 AllowRaw = false;
2763 AllowTemplate = false;
2764 AllowStringTemplate = false;
2765 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
2766 // Go through again and remove the raw and template decls we've
2767 // already found.
2768 F.restart();
2769 FoundRaw = FoundTemplate = FoundStringTemplate = false;
2770 }
2771 } else if (AllowRaw && IsRaw) {
2772 FoundRaw = true;
2773 } else if (AllowTemplate && IsTemplate) {
2774 FoundTemplate = true;
2775 } else if (AllowStringTemplate && IsStringTemplate) {
2776 FoundStringTemplate = true;
2777 } else {
2778 F.erase();
2779 }
2780 }
2781
2782 F.done();
2783
2784 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2785 // parameter type, that is used in preference to a raw literal operator
2786 // or literal operator template.
2787 if (FoundExactMatch)
2788 return LOLR_Cooked;
2789
2790 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2791 // operator template, but not both.
2792 if (FoundRaw && FoundTemplate) {
2793 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2794 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2795 NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
2796 return LOLR_Error;
2797 }
2798
2799 if (FoundRaw)
2800 return LOLR_Raw;
2801
2802 if (FoundTemplate)
2803 return LOLR_Template;
2804
2805 if (FoundStringTemplate)
2806 return LOLR_StringTemplate;
2807
2808 // Didn't find anything we could use.
2809 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2810 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2811 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
2812 << (AllowTemplate || AllowStringTemplate);
2813 return LOLR_Error;
2814 }
2815
insert(NamedDecl * New)2816 void ADLResult::insert(NamedDecl *New) {
2817 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2818
2819 // If we haven't yet seen a decl for this key, or the last decl
2820 // was exactly this one, we're done.
2821 if (Old == nullptr || Old == New) {
2822 Old = New;
2823 return;
2824 }
2825
2826 // Otherwise, decide which is a more recent redeclaration.
2827 FunctionDecl *OldFD = Old->getAsFunction();
2828 FunctionDecl *NewFD = New->getAsFunction();
2829
2830 FunctionDecl *Cursor = NewFD;
2831 while (true) {
2832 Cursor = Cursor->getPreviousDecl();
2833
2834 // If we got to the end without finding OldFD, OldFD is the newer
2835 // declaration; leave things as they are.
2836 if (!Cursor) return;
2837
2838 // If we do find OldFD, then NewFD is newer.
2839 if (Cursor == OldFD) break;
2840
2841 // Otherwise, keep looking.
2842 }
2843
2844 Old = New;
2845 }
2846
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)2847 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
2848 ArrayRef<Expr *> Args, ADLResult &Result) {
2849 // Find all of the associated namespaces and classes based on the
2850 // arguments we have.
2851 AssociatedNamespaceSet AssociatedNamespaces;
2852 AssociatedClassSet AssociatedClasses;
2853 FindAssociatedClassesAndNamespaces(Loc, Args,
2854 AssociatedNamespaces,
2855 AssociatedClasses);
2856
2857 // C++ [basic.lookup.argdep]p3:
2858 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2859 // and let Y be the lookup set produced by argument dependent
2860 // lookup (defined as follows). If X contains [...] then Y is
2861 // empty. Otherwise Y is the set of declarations found in the
2862 // namespaces associated with the argument types as described
2863 // below. The set of declarations found by the lookup of the name
2864 // is the union of X and Y.
2865 //
2866 // Here, we compute Y and add its members to the overloaded
2867 // candidate set.
2868 for (auto *NS : AssociatedNamespaces) {
2869 // When considering an associated namespace, the lookup is the
2870 // same as the lookup performed when the associated namespace is
2871 // used as a qualifier (3.4.3.2) except that:
2872 //
2873 // -- Any using-directives in the associated namespace are
2874 // ignored.
2875 //
2876 // -- Any namespace-scope friend functions declared in
2877 // associated classes are visible within their respective
2878 // namespaces even if they are not visible during an ordinary
2879 // lookup (11.4).
2880 DeclContext::lookup_result R = NS->lookup(Name);
2881 for (auto *D : R) {
2882 // If the only declaration here is an ordinary friend, consider
2883 // it only if it was declared in an associated classes.
2884 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
2885 // If it's neither ordinarily visible nor a friend, we can't find it.
2886 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
2887 continue;
2888
2889 bool DeclaredInAssociatedClass = false;
2890 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2891 DeclContext *LexDC = DI->getLexicalDeclContext();
2892 if (isa<CXXRecordDecl>(LexDC) &&
2893 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2894 DeclaredInAssociatedClass = true;
2895 break;
2896 }
2897 }
2898 if (!DeclaredInAssociatedClass)
2899 continue;
2900 }
2901
2902 if (isa<UsingShadowDecl>(D))
2903 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2904
2905 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
2906 continue;
2907
2908 Result.insert(D);
2909 }
2910 }
2911 }
2912
2913 //----------------------------------------------------------------------------
2914 // Search for all visible declarations.
2915 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2916 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2917
includeHiddenDecls() const2918 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
2919
2920 namespace {
2921
2922 class ShadowContextRAII;
2923
2924 class VisibleDeclsRecord {
2925 public:
2926 /// \brief An entry in the shadow map, which is optimized to store a
2927 /// single declaration (the common case) but can also store a list
2928 /// of declarations.
2929 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2930
2931 private:
2932 /// \brief A mapping from declaration names to the declarations that have
2933 /// this name within a particular scope.
2934 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2935
2936 /// \brief A list of shadow maps, which is used to model name hiding.
2937 std::list<ShadowMap> ShadowMaps;
2938
2939 /// \brief The declaration contexts we have already visited.
2940 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2941
2942 friend class ShadowContextRAII;
2943
2944 public:
2945 /// \brief Determine whether we have already visited this context
2946 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2947 bool visitedContext(DeclContext *Ctx) {
2948 return !VisitedContexts.insert(Ctx).second;
2949 }
2950
alreadyVisitedContext(DeclContext * Ctx)2951 bool alreadyVisitedContext(DeclContext *Ctx) {
2952 return VisitedContexts.count(Ctx);
2953 }
2954
2955 /// \brief Determine whether the given declaration is hidden in the
2956 /// current scope.
2957 ///
2958 /// \returns the declaration that hides the given declaration, or
2959 /// NULL if no such declaration exists.
2960 NamedDecl *checkHidden(NamedDecl *ND);
2961
2962 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2963 void add(NamedDecl *ND) {
2964 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2965 }
2966 };
2967
2968 /// \brief RAII object that records when we've entered a shadow context.
2969 class ShadowContextRAII {
2970 VisibleDeclsRecord &Visible;
2971
2972 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2973
2974 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2975 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2976 Visible.ShadowMaps.push_back(ShadowMap());
2977 }
2978
~ShadowContextRAII()2979 ~ShadowContextRAII() {
2980 Visible.ShadowMaps.pop_back();
2981 }
2982 };
2983
2984 } // end anonymous namespace
2985
checkHidden(NamedDecl * ND)2986 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2987 // Look through using declarations.
2988 ND = ND->getUnderlyingDecl();
2989
2990 unsigned IDNS = ND->getIdentifierNamespace();
2991 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2992 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2993 SM != SMEnd; ++SM) {
2994 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2995 if (Pos == SM->end())
2996 continue;
2997
2998 for (auto *D : Pos->second) {
2999 // A tag declaration does not hide a non-tag declaration.
3000 if (D->hasTagIdentifierNamespace() &&
3001 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3002 Decl::IDNS_ObjCProtocol)))
3003 continue;
3004
3005 // Protocols are in distinct namespaces from everything else.
3006 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3007 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3008 D->getIdentifierNamespace() != IDNS)
3009 continue;
3010
3011 // Functions and function templates in the same scope overload
3012 // rather than hide. FIXME: Look for hiding based on function
3013 // signatures!
3014 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3015 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3016 SM == ShadowMaps.rbegin())
3017 continue;
3018
3019 // We've found a declaration that hides this one.
3020 return D;
3021 }
3022 }
3023
3024 return nullptr;
3025 }
3026
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3027 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3028 bool QualifiedNameLookup,
3029 bool InBaseClass,
3030 VisibleDeclConsumer &Consumer,
3031 VisibleDeclsRecord &Visited) {
3032 if (!Ctx)
3033 return;
3034
3035 // Make sure we don't visit the same context twice.
3036 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3037 return;
3038
3039 // Outside C++, lookup results for the TU live on identifiers.
3040 if (isa<TranslationUnitDecl>(Ctx) &&
3041 !Result.getSema().getLangOpts().CPlusPlus) {
3042 auto &S = Result.getSema();
3043 auto &Idents = S.Context.Idents;
3044
3045 // Ensure all external identifiers are in the identifier table.
3046 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3047 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3048 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3049 Idents.get(Name);
3050 }
3051
3052 // Walk all lookup results in the TU for each identifier.
3053 for (const auto &Ident : Idents) {
3054 for (auto I = S.IdResolver.begin(Ident.getValue()),
3055 E = S.IdResolver.end();
3056 I != E; ++I) {
3057 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3058 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3059 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3060 Visited.add(ND);
3061 }
3062 }
3063 }
3064 }
3065
3066 return;
3067 }
3068
3069 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3070 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3071
3072 // Enumerate all of the results in this context.
3073 for (DeclContextLookupResult R : Ctx->lookups()) {
3074 for (auto *D : R) {
3075 if (auto *ND = Result.getAcceptableDecl(D)) {
3076 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3077 Visited.add(ND);
3078 }
3079 }
3080 }
3081
3082 // Traverse using directives for qualified name lookup.
3083 if (QualifiedNameLookup) {
3084 ShadowContextRAII Shadow(Visited);
3085 for (auto I : Ctx->using_directives()) {
3086 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3087 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3088 }
3089 }
3090
3091 // Traverse the contexts of inherited C++ classes.
3092 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3093 if (!Record->hasDefinition())
3094 return;
3095
3096 for (const auto &B : Record->bases()) {
3097 QualType BaseType = B.getType();
3098
3099 // Don't look into dependent bases, because name lookup can't look
3100 // there anyway.
3101 if (BaseType->isDependentType())
3102 continue;
3103
3104 const RecordType *Record = BaseType->getAs<RecordType>();
3105 if (!Record)
3106 continue;
3107
3108 // FIXME: It would be nice to be able to determine whether referencing
3109 // a particular member would be ambiguous. For example, given
3110 //
3111 // struct A { int member; };
3112 // struct B { int member; };
3113 // struct C : A, B { };
3114 //
3115 // void f(C *c) { c->### }
3116 //
3117 // accessing 'member' would result in an ambiguity. However, we
3118 // could be smart enough to qualify the member with the base
3119 // class, e.g.,
3120 //
3121 // c->B::member
3122 //
3123 // or
3124 //
3125 // c->A::member
3126
3127 // Find results in this base class (and its bases).
3128 ShadowContextRAII Shadow(Visited);
3129 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3130 true, Consumer, Visited);
3131 }
3132 }
3133
3134 // Traverse the contexts of Objective-C classes.
3135 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3136 // Traverse categories.
3137 for (auto *Cat : IFace->visible_categories()) {
3138 ShadowContextRAII Shadow(Visited);
3139 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3140 Consumer, Visited);
3141 }
3142
3143 // Traverse protocols.
3144 for (auto *I : IFace->all_referenced_protocols()) {
3145 ShadowContextRAII Shadow(Visited);
3146 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3147 Visited);
3148 }
3149
3150 // Traverse the superclass.
3151 if (IFace->getSuperClass()) {
3152 ShadowContextRAII Shadow(Visited);
3153 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3154 true, Consumer, Visited);
3155 }
3156
3157 // If there is an implementation, traverse it. We do this to find
3158 // synthesized ivars.
3159 if (IFace->getImplementation()) {
3160 ShadowContextRAII Shadow(Visited);
3161 LookupVisibleDecls(IFace->getImplementation(), Result,
3162 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3163 }
3164 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3165 for (auto *I : Protocol->protocols()) {
3166 ShadowContextRAII Shadow(Visited);
3167 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3168 Visited);
3169 }
3170 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3171 for (auto *I : Category->protocols()) {
3172 ShadowContextRAII Shadow(Visited);
3173 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3174 Visited);
3175 }
3176
3177 // If there is an implementation, traverse it.
3178 if (Category->getImplementation()) {
3179 ShadowContextRAII Shadow(Visited);
3180 LookupVisibleDecls(Category->getImplementation(), Result,
3181 QualifiedNameLookup, true, Consumer, Visited);
3182 }
3183 }
3184 }
3185
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3186 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3187 UnqualUsingDirectiveSet &UDirs,
3188 VisibleDeclConsumer &Consumer,
3189 VisibleDeclsRecord &Visited) {
3190 if (!S)
3191 return;
3192
3193 if (!S->getEntity() ||
3194 (!S->getParent() &&
3195 !Visited.alreadyVisitedContext(S->getEntity())) ||
3196 (S->getEntity())->isFunctionOrMethod()) {
3197 FindLocalExternScope FindLocals(Result);
3198 // Walk through the declarations in this Scope.
3199 for (auto *D : S->decls()) {
3200 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3201 if ((ND = Result.getAcceptableDecl(ND))) {
3202 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3203 Visited.add(ND);
3204 }
3205 }
3206 }
3207
3208 // FIXME: C++ [temp.local]p8
3209 DeclContext *Entity = nullptr;
3210 if (S->getEntity()) {
3211 // Look into this scope's declaration context, along with any of its
3212 // parent lookup contexts (e.g., enclosing classes), up to the point
3213 // where we hit the context stored in the next outer scope.
3214 Entity = S->getEntity();
3215 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3216
3217 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3218 Ctx = Ctx->getLookupParent()) {
3219 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3220 if (Method->isInstanceMethod()) {
3221 // For instance methods, look for ivars in the method's interface.
3222 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3223 Result.getNameLoc(), Sema::LookupMemberName);
3224 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3225 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3226 /*InBaseClass=*/false, Consumer, Visited);
3227 }
3228 }
3229
3230 // We've already performed all of the name lookup that we need
3231 // to for Objective-C methods; the next context will be the
3232 // outer scope.
3233 break;
3234 }
3235
3236 if (Ctx->isFunctionOrMethod())
3237 continue;
3238
3239 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3240 /*InBaseClass=*/false, Consumer, Visited);
3241 }
3242 } else if (!S->getParent()) {
3243 // Look into the translation unit scope. We walk through the translation
3244 // unit's declaration context, because the Scope itself won't have all of
3245 // the declarations if we loaded a precompiled header.
3246 // FIXME: We would like the translation unit's Scope object to point to the
3247 // translation unit, so we don't need this special "if" branch. However,
3248 // doing so would force the normal C++ name-lookup code to look into the
3249 // translation unit decl when the IdentifierInfo chains would suffice.
3250 // Once we fix that problem (which is part of a more general "don't look
3251 // in DeclContexts unless we have to" optimization), we can eliminate this.
3252 Entity = Result.getSema().Context.getTranslationUnitDecl();
3253 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3254 /*InBaseClass=*/false, Consumer, Visited);
3255 }
3256
3257 if (Entity) {
3258 // Lookup visible declarations in any namespaces found by using
3259 // directives.
3260 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3261 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3262 Result, /*QualifiedNameLookup=*/false,
3263 /*InBaseClass=*/false, Consumer, Visited);
3264 }
3265
3266 // Lookup names in the parent scope.
3267 ShadowContextRAII Shadow(Visited);
3268 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3269 }
3270
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3271 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3272 VisibleDeclConsumer &Consumer,
3273 bool IncludeGlobalScope) {
3274 // Determine the set of using directives available during
3275 // unqualified name lookup.
3276 Scope *Initial = S;
3277 UnqualUsingDirectiveSet UDirs;
3278 if (getLangOpts().CPlusPlus) {
3279 // Find the first namespace or translation-unit scope.
3280 while (S && !isNamespaceOrTranslationUnitScope(S))
3281 S = S->getParent();
3282
3283 UDirs.visitScopeChain(Initial, S);
3284 }
3285 UDirs.done();
3286
3287 // Look for visible declarations.
3288 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3289 Result.setAllowHidden(Consumer.includeHiddenDecls());
3290 VisibleDeclsRecord Visited;
3291 if (!IncludeGlobalScope)
3292 Visited.visitedContext(Context.getTranslationUnitDecl());
3293 ShadowContextRAII Shadow(Visited);
3294 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3295 }
3296
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3297 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3298 VisibleDeclConsumer &Consumer,
3299 bool IncludeGlobalScope) {
3300 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3301 Result.setAllowHidden(Consumer.includeHiddenDecls());
3302 VisibleDeclsRecord Visited;
3303 if (!IncludeGlobalScope)
3304 Visited.visitedContext(Context.getTranslationUnitDecl());
3305 ShadowContextRAII Shadow(Visited);
3306 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3307 /*InBaseClass=*/false, Consumer, Visited);
3308 }
3309
3310 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3311 /// If GnuLabelLoc is a valid source location, then this is a definition
3312 /// of an __label__ label name, otherwise it is a normal label definition
3313 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3314 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3315 SourceLocation GnuLabelLoc) {
3316 // Do a lookup to see if we have a label with this name already.
3317 NamedDecl *Res = nullptr;
3318
3319 if (GnuLabelLoc.isValid()) {
3320 // Local label definitions always shadow existing labels.
3321 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3322 Scope *S = CurScope;
3323 PushOnScopeChains(Res, S, true);
3324 return cast<LabelDecl>(Res);
3325 }
3326
3327 // Not a GNU local label.
3328 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3329 // If we found a label, check to see if it is in the same context as us.
3330 // When in a Block, we don't want to reuse a label in an enclosing function.
3331 if (Res && Res->getDeclContext() != CurContext)
3332 Res = nullptr;
3333 if (!Res) {
3334 // If not forward referenced or defined already, create the backing decl.
3335 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3336 Scope *S = CurScope->getFnParent();
3337 assert(S && "Not in a function?");
3338 PushOnScopeChains(Res, S, true);
3339 }
3340 return cast<LabelDecl>(Res);
3341 }
3342
3343 //===----------------------------------------------------------------------===//
3344 // Typo correction
3345 //===----------------------------------------------------------------------===//
3346
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3347 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3348 TypoCorrection &Candidate) {
3349 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3350 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3351 }
3352
3353 static void LookupPotentialTypoResult(Sema &SemaRef,
3354 LookupResult &Res,
3355 IdentifierInfo *Name,
3356 Scope *S, CXXScopeSpec *SS,
3357 DeclContext *MemberContext,
3358 bool EnteringContext,
3359 bool isObjCIvarLookup,
3360 bool FindHidden);
3361
3362 /// \brief Check whether the declarations found for a typo correction are
3363 /// visible, and if none of them are, convert the correction to an 'import
3364 /// a module' correction.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)3365 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3366 if (TC.begin() == TC.end())
3367 return;
3368
3369 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3370
3371 for (/**/; DI != DE; ++DI)
3372 if (!LookupResult::isVisible(SemaRef, *DI))
3373 break;
3374 // Nothing to do if all decls are visible.
3375 if (DI == DE)
3376 return;
3377
3378 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3379 bool AnyVisibleDecls = !NewDecls.empty();
3380
3381 for (/**/; DI != DE; ++DI) {
3382 NamedDecl *VisibleDecl = *DI;
3383 if (!LookupResult::isVisible(SemaRef, *DI))
3384 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3385
3386 if (VisibleDecl) {
3387 if (!AnyVisibleDecls) {
3388 // Found a visible decl, discard all hidden ones.
3389 AnyVisibleDecls = true;
3390 NewDecls.clear();
3391 }
3392 NewDecls.push_back(VisibleDecl);
3393 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3394 NewDecls.push_back(*DI);
3395 }
3396
3397 if (NewDecls.empty())
3398 TC = TypoCorrection();
3399 else {
3400 TC.setCorrectionDecls(NewDecls);
3401 TC.setRequiresImport(!AnyVisibleDecls);
3402 }
3403 }
3404
3405 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3406 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3407 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3408 static void getNestedNameSpecifierIdentifiers(
3409 NestedNameSpecifier *NNS,
3410 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3411 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3412 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3413 else
3414 Identifiers.clear();
3415
3416 const IdentifierInfo *II = nullptr;
3417
3418 switch (NNS->getKind()) {
3419 case NestedNameSpecifier::Identifier:
3420 II = NNS->getAsIdentifier();
3421 break;
3422
3423 case NestedNameSpecifier::Namespace:
3424 if (NNS->getAsNamespace()->isAnonymousNamespace())
3425 return;
3426 II = NNS->getAsNamespace()->getIdentifier();
3427 break;
3428
3429 case NestedNameSpecifier::NamespaceAlias:
3430 II = NNS->getAsNamespaceAlias()->getIdentifier();
3431 break;
3432
3433 case NestedNameSpecifier::TypeSpecWithTemplate:
3434 case NestedNameSpecifier::TypeSpec:
3435 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3436 break;
3437
3438 case NestedNameSpecifier::Global:
3439 case NestedNameSpecifier::Super:
3440 return;
3441 }
3442
3443 if (II)
3444 Identifiers.push_back(II);
3445 }
3446
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3447 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3448 DeclContext *Ctx, bool InBaseClass) {
3449 // Don't consider hidden names for typo correction.
3450 if (Hiding)
3451 return;
3452
3453 // Only consider entities with identifiers for names, ignoring
3454 // special names (constructors, overloaded operators, selectors,
3455 // etc.).
3456 IdentifierInfo *Name = ND->getIdentifier();
3457 if (!Name)
3458 return;
3459
3460 // Only consider visible declarations and declarations from modules with
3461 // names that exactly match.
3462 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3463 !findAcceptableDecl(SemaRef, ND))
3464 return;
3465
3466 FoundName(Name->getName());
3467 }
3468
FoundName(StringRef Name)3469 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3470 // Compute the edit distance between the typo and the name of this
3471 // entity, and add the identifier to the list of results.
3472 addName(Name, nullptr);
3473 }
3474
addKeywordResult(StringRef Keyword)3475 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3476 // Compute the edit distance between the typo and this keyword,
3477 // and add the keyword to the list of results.
3478 addName(Keyword, nullptr, nullptr, true);
3479 }
3480
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)3481 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3482 NestedNameSpecifier *NNS, bool isKeyword) {
3483 // Use a simple length-based heuristic to determine the minimum possible
3484 // edit distance. If the minimum isn't good enough, bail out early.
3485 StringRef TypoStr = Typo->getName();
3486 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3487 if (MinED && TypoStr.size() / MinED < 3)
3488 return;
3489
3490 // Compute an upper bound on the allowable edit distance, so that the
3491 // edit-distance algorithm can short-circuit.
3492 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3493 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3494 if (ED >= UpperBound) return;
3495
3496 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3497 if (isKeyword) TC.makeKeyword();
3498 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3499 addCorrection(TC);
3500 }
3501
3502 static const unsigned MaxTypoDistanceResultSets = 5;
3503
addCorrection(TypoCorrection Correction)3504 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3505 StringRef TypoStr = Typo->getName();
3506 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3507
3508 // For very short typos, ignore potential corrections that have a different
3509 // base identifier from the typo or which have a normalized edit distance
3510 // longer than the typo itself.
3511 if (TypoStr.size() < 3 &&
3512 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3513 return;
3514
3515 // If the correction is resolved but is not viable, ignore it.
3516 if (Correction.isResolved()) {
3517 checkCorrectionVisibility(SemaRef, Correction);
3518 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3519 return;
3520 }
3521
3522 TypoResultList &CList =
3523 CorrectionResults[Correction.getEditDistance(false)][Name];
3524
3525 if (!CList.empty() && !CList.back().isResolved())
3526 CList.pop_back();
3527 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3528 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3529 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3530 RI != RIEnd; ++RI) {
3531 // If the Correction refers to a decl already in the result list,
3532 // replace the existing result if the string representation of Correction
3533 // comes before the current result alphabetically, then stop as there is
3534 // nothing more to be done to add Correction to the candidate set.
3535 if (RI->getCorrectionDecl() == NewND) {
3536 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3537 *RI = Correction;
3538 return;
3539 }
3540 }
3541 }
3542 if (CList.empty() || Correction.isResolved())
3543 CList.push_back(Correction);
3544
3545 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3546 CorrectionResults.erase(std::prev(CorrectionResults.end()));
3547 }
3548
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)3549 void TypoCorrectionConsumer::addNamespaces(
3550 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3551 SearchNamespaces = true;
3552
3553 for (auto KNPair : KnownNamespaces)
3554 Namespaces.addNameSpecifier(KNPair.first);
3555
3556 bool SSIsTemplate = false;
3557 if (NestedNameSpecifier *NNS =
3558 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3559 if (const Type *T = NNS->getAsType())
3560 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3561 }
3562 for (const auto *TI : SemaRef.getASTContext().types()) {
3563 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3564 CD = CD->getCanonicalDecl();
3565 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3566 !CD->isUnion() && CD->getIdentifier() &&
3567 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3568 (CD->isBeingDefined() || CD->isCompleteDefinition()))
3569 Namespaces.addNameSpecifier(CD);
3570 }
3571 }
3572 }
3573
getNextCorrection()3574 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3575 if (++CurrentTCIndex < ValidatedCorrections.size())
3576 return ValidatedCorrections[CurrentTCIndex];
3577
3578 CurrentTCIndex = ValidatedCorrections.size();
3579 while (!CorrectionResults.empty()) {
3580 auto DI = CorrectionResults.begin();
3581 if (DI->second.empty()) {
3582 CorrectionResults.erase(DI);
3583 continue;
3584 }
3585
3586 auto RI = DI->second.begin();
3587 if (RI->second.empty()) {
3588 DI->second.erase(RI);
3589 performQualifiedLookups();
3590 continue;
3591 }
3592
3593 TypoCorrection TC = RI->second.pop_back_val();
3594 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3595 ValidatedCorrections.push_back(TC);
3596 return ValidatedCorrections[CurrentTCIndex];
3597 }
3598 }
3599 return ValidatedCorrections[0]; // The empty correction.
3600 }
3601
resolveCorrection(TypoCorrection & Candidate)3602 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3603 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3604 DeclContext *TempMemberContext = MemberContext;
3605 CXXScopeSpec *TempSS = SS.get();
3606 retry_lookup:
3607 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3608 EnteringContext,
3609 CorrectionValidator->IsObjCIvarLookup,
3610 Name == Typo && !Candidate.WillReplaceSpecifier());
3611 switch (Result.getResultKind()) {
3612 case LookupResult::NotFound:
3613 case LookupResult::NotFoundInCurrentInstantiation:
3614 case LookupResult::FoundUnresolvedValue:
3615 if (TempSS) {
3616 // Immediately retry the lookup without the given CXXScopeSpec
3617 TempSS = nullptr;
3618 Candidate.WillReplaceSpecifier(true);
3619 goto retry_lookup;
3620 }
3621 if (TempMemberContext) {
3622 if (SS && !TempSS)
3623 TempSS = SS.get();
3624 TempMemberContext = nullptr;
3625 goto retry_lookup;
3626 }
3627 if (SearchNamespaces)
3628 QualifiedResults.push_back(Candidate);
3629 break;
3630
3631 case LookupResult::Ambiguous:
3632 // We don't deal with ambiguities.
3633 break;
3634
3635 case LookupResult::Found:
3636 case LookupResult::FoundOverloaded:
3637 // Store all of the Decls for overloaded symbols
3638 for (auto *TRD : Result)
3639 Candidate.addCorrectionDecl(TRD);
3640 checkCorrectionVisibility(SemaRef, Candidate);
3641 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
3642 if (SearchNamespaces)
3643 QualifiedResults.push_back(Candidate);
3644 break;
3645 }
3646 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3647 return true;
3648 }
3649 return false;
3650 }
3651
performQualifiedLookups()3652 void TypoCorrectionConsumer::performQualifiedLookups() {
3653 unsigned TypoLen = Typo->getName().size();
3654 for (auto QR : QualifiedResults) {
3655 for (auto NSI : Namespaces) {
3656 DeclContext *Ctx = NSI.DeclCtx;
3657 const Type *NSType = NSI.NameSpecifier->getAsType();
3658
3659 // If the current NestedNameSpecifier refers to a class and the
3660 // current correction candidate is the name of that class, then skip
3661 // it as it is unlikely a qualified version of the class' constructor
3662 // is an appropriate correction.
3663 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
3664 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3665 continue;
3666 }
3667
3668 TypoCorrection TC(QR);
3669 TC.ClearCorrectionDecls();
3670 TC.setCorrectionSpecifier(NSI.NameSpecifier);
3671 TC.setQualifierDistance(NSI.EditDistance);
3672 TC.setCallbackDistance(0); // Reset the callback distance
3673
3674 // If the current correction candidate and namespace combination are
3675 // too far away from the original typo based on the normalized edit
3676 // distance, then skip performing a qualified name lookup.
3677 unsigned TmpED = TC.getEditDistance(true);
3678 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
3679 TypoLen / TmpED < 3)
3680 continue;
3681
3682 Result.clear();
3683 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
3684 if (!SemaRef.LookupQualifiedName(Result, Ctx))
3685 continue;
3686
3687 // Any corrections added below will be validated in subsequent
3688 // iterations of the main while() loop over the Consumer's contents.
3689 switch (Result.getResultKind()) {
3690 case LookupResult::Found:
3691 case LookupResult::FoundOverloaded: {
3692 if (SS && SS->isValid()) {
3693 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
3694 std::string OldQualified;
3695 llvm::raw_string_ostream OldOStream(OldQualified);
3696 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
3697 OldOStream << Typo->getName();
3698 // If correction candidate would be an identical written qualified
3699 // identifer, then the existing CXXScopeSpec probably included a
3700 // typedef that didn't get accounted for properly.
3701 if (OldOStream.str() == NewQualified)
3702 break;
3703 }
3704 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
3705 TRD != TRDEnd; ++TRD) {
3706 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
3707 NSType ? NSType->getAsCXXRecordDecl()
3708 : nullptr,
3709 TRD.getPair()) == Sema::AR_accessible)
3710 TC.addCorrectionDecl(*TRD);
3711 }
3712 if (TC.isResolved()) {
3713 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3714 addCorrection(TC);
3715 }
3716 break;
3717 }
3718 case LookupResult::NotFound:
3719 case LookupResult::NotFoundInCurrentInstantiation:
3720 case LookupResult::Ambiguous:
3721 case LookupResult::FoundUnresolvedValue:
3722 break;
3723 }
3724 }
3725 }
3726 QualifiedResults.clear();
3727 }
3728
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3729 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
3730 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
3731 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
3732 if (NestedNameSpecifier *NNS =
3733 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
3734 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
3735 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3736
3737 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
3738 }
3739 // Build the list of identifiers that would be used for an absolute
3740 // (from the global context) NestedNameSpecifier referring to the current
3741 // context.
3742 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3743 CEnd = CurContextChain.rend();
3744 C != CEnd; ++C) {
3745 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3746 CurContextIdentifiers.push_back(ND->getIdentifier());
3747 }
3748
3749 // Add the global context as a NestedNameSpecifier
3750 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
3751 NestedNameSpecifier::GlobalSpecifier(Context), 1};
3752 DistanceMap[1].push_back(SI);
3753 }
3754
buildContextChain(DeclContext * Start)3755 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
3756 DeclContext *Start) -> DeclContextList {
3757 assert(Start && "Building a context chain from a null context");
3758 DeclContextList Chain;
3759 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
3760 DC = DC->getLookupParent()) {
3761 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3762 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3763 !(ND && ND->isAnonymousNamespace()))
3764 Chain.push_back(DC->getPrimaryContext());
3765 }
3766 return Chain;
3767 }
3768
3769 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)3770 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
3771 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
3772 unsigned NumSpecifiers = 0;
3773 for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
3774 CEnd = DeclChain.rend();
3775 C != CEnd; ++C) {
3776 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
3777 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3778 ++NumSpecifiers;
3779 } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
3780 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
3781 RD->getTypeForDecl());
3782 ++NumSpecifiers;
3783 }
3784 }
3785 return NumSpecifiers;
3786 }
3787
addNameSpecifier(DeclContext * Ctx)3788 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
3789 DeclContext *Ctx) {
3790 NestedNameSpecifier *NNS = nullptr;
3791 unsigned NumSpecifiers = 0;
3792 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
3793 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3794
3795 // Eliminate common elements from the two DeclContext chains.
3796 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3797 CEnd = CurContextChain.rend();
3798 C != CEnd && !NamespaceDeclChain.empty() &&
3799 NamespaceDeclChain.back() == *C; ++C) {
3800 NamespaceDeclChain.pop_back();
3801 }
3802
3803 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3804 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3805
3806 // Add an explicit leading '::' specifier if needed.
3807 if (NamespaceDeclChain.empty()) {
3808 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3809 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3810 NumSpecifiers =
3811 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3812 } else if (NamedDecl *ND =
3813 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3814 IdentifierInfo *Name = ND->getIdentifier();
3815 bool SameNameSpecifier = false;
3816 if (std::find(CurNameSpecifierIdentifiers.begin(),
3817 CurNameSpecifierIdentifiers.end(),
3818 Name) != CurNameSpecifierIdentifiers.end()) {
3819 std::string NewNameSpecifier;
3820 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
3821 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
3822 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3823 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3824 SpecifierOStream.flush();
3825 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
3826 }
3827 if (SameNameSpecifier ||
3828 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3829 Name) != CurContextIdentifiers.end()) {
3830 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3831 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3832 NumSpecifiers =
3833 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3834 }
3835 }
3836
3837 // If the built NestedNameSpecifier would be replacing an existing
3838 // NestedNameSpecifier, use the number of component identifiers that
3839 // would need to be changed as the edit distance instead of the number
3840 // of components in the built NestedNameSpecifier.
3841 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3842 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3843 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3844 NumSpecifiers = llvm::ComputeEditDistance(
3845 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
3846 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
3847 }
3848
3849 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
3850 DistanceMap[NumSpecifiers].push_back(SI);
3851 }
3852
3853 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)3854 static void LookupPotentialTypoResult(Sema &SemaRef,
3855 LookupResult &Res,
3856 IdentifierInfo *Name,
3857 Scope *S, CXXScopeSpec *SS,
3858 DeclContext *MemberContext,
3859 bool EnteringContext,
3860 bool isObjCIvarLookup,
3861 bool FindHidden) {
3862 Res.suppressDiagnostics();
3863 Res.clear();
3864 Res.setLookupName(Name);
3865 Res.setAllowHidden(FindHidden);
3866 if (MemberContext) {
3867 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3868 if (isObjCIvarLookup) {
3869 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3870 Res.addDecl(Ivar);
3871 Res.resolveKind();
3872 return;
3873 }
3874 }
3875
3876 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3877 Res.addDecl(Prop);
3878 Res.resolveKind();
3879 return;
3880 }
3881 }
3882
3883 SemaRef.LookupQualifiedName(Res, MemberContext);
3884 return;
3885 }
3886
3887 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3888 EnteringContext);
3889
3890 // Fake ivar lookup; this should really be part of
3891 // LookupParsedName.
3892 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3893 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3894 (Res.empty() ||
3895 (Res.isSingleResult() &&
3896 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3897 if (ObjCIvarDecl *IV
3898 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3899 Res.addDecl(IV);
3900 Res.resolveKind();
3901 }
3902 }
3903 }
3904 }
3905
3906 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3907 static void AddKeywordsToConsumer(Sema &SemaRef,
3908 TypoCorrectionConsumer &Consumer,
3909 Scope *S, CorrectionCandidateCallback &CCC,
3910 bool AfterNestedNameSpecifier) {
3911 if (AfterNestedNameSpecifier) {
3912 // For 'X::', we know exactly which keywords can appear next.
3913 Consumer.addKeywordResult("template");
3914 if (CCC.WantExpressionKeywords)
3915 Consumer.addKeywordResult("operator");
3916 return;
3917 }
3918
3919 if (CCC.WantObjCSuper)
3920 Consumer.addKeywordResult("super");
3921
3922 if (CCC.WantTypeSpecifiers) {
3923 // Add type-specifier keywords to the set of results.
3924 static const char *const CTypeSpecs[] = {
3925 "char", "const", "double", "enum", "float", "int", "long", "short",
3926 "signed", "struct", "union", "unsigned", "void", "volatile",
3927 "_Complex", "_Imaginary",
3928 // storage-specifiers as well
3929 "extern", "inline", "static", "typedef"
3930 };
3931
3932 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3933 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3934 Consumer.addKeywordResult(CTypeSpecs[I]);
3935
3936 if (SemaRef.getLangOpts().C99)
3937 Consumer.addKeywordResult("restrict");
3938 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3939 Consumer.addKeywordResult("bool");
3940 else if (SemaRef.getLangOpts().C99)
3941 Consumer.addKeywordResult("_Bool");
3942
3943 if (SemaRef.getLangOpts().CPlusPlus) {
3944 Consumer.addKeywordResult("class");
3945 Consumer.addKeywordResult("typename");
3946 Consumer.addKeywordResult("wchar_t");
3947
3948 if (SemaRef.getLangOpts().CPlusPlus11) {
3949 Consumer.addKeywordResult("char16_t");
3950 Consumer.addKeywordResult("char32_t");
3951 Consumer.addKeywordResult("constexpr");
3952 Consumer.addKeywordResult("decltype");
3953 Consumer.addKeywordResult("thread_local");
3954 }
3955 }
3956
3957 if (SemaRef.getLangOpts().GNUMode)
3958 Consumer.addKeywordResult("typeof");
3959 } else if (CCC.WantFunctionLikeCasts) {
3960 static const char *const CastableTypeSpecs[] = {
3961 "char", "double", "float", "int", "long", "short",
3962 "signed", "unsigned", "void"
3963 };
3964 for (auto *kw : CastableTypeSpecs)
3965 Consumer.addKeywordResult(kw);
3966 }
3967
3968 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3969 Consumer.addKeywordResult("const_cast");
3970 Consumer.addKeywordResult("dynamic_cast");
3971 Consumer.addKeywordResult("reinterpret_cast");
3972 Consumer.addKeywordResult("static_cast");
3973 }
3974
3975 if (CCC.WantExpressionKeywords) {
3976 Consumer.addKeywordResult("sizeof");
3977 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3978 Consumer.addKeywordResult("false");
3979 Consumer.addKeywordResult("true");
3980 }
3981
3982 if (SemaRef.getLangOpts().CPlusPlus) {
3983 static const char *const CXXExprs[] = {
3984 "delete", "new", "operator", "throw", "typeid"
3985 };
3986 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
3987 for (unsigned I = 0; I != NumCXXExprs; ++I)
3988 Consumer.addKeywordResult(CXXExprs[I]);
3989
3990 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3991 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3992 Consumer.addKeywordResult("this");
3993
3994 if (SemaRef.getLangOpts().CPlusPlus11) {
3995 Consumer.addKeywordResult("alignof");
3996 Consumer.addKeywordResult("nullptr");
3997 }
3998 }
3999
4000 if (SemaRef.getLangOpts().C11) {
4001 // FIXME: We should not suggest _Alignof if the alignof macro
4002 // is present.
4003 Consumer.addKeywordResult("_Alignof");
4004 }
4005 }
4006
4007 if (CCC.WantRemainingKeywords) {
4008 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4009 // Statements.
4010 static const char *const CStmts[] = {
4011 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4012 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4013 for (unsigned I = 0; I != NumCStmts; ++I)
4014 Consumer.addKeywordResult(CStmts[I]);
4015
4016 if (SemaRef.getLangOpts().CPlusPlus) {
4017 Consumer.addKeywordResult("catch");
4018 Consumer.addKeywordResult("try");
4019 }
4020
4021 if (S && S->getBreakParent())
4022 Consumer.addKeywordResult("break");
4023
4024 if (S && S->getContinueParent())
4025 Consumer.addKeywordResult("continue");
4026
4027 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4028 Consumer.addKeywordResult("case");
4029 Consumer.addKeywordResult("default");
4030 }
4031 } else {
4032 if (SemaRef.getLangOpts().CPlusPlus) {
4033 Consumer.addKeywordResult("namespace");
4034 Consumer.addKeywordResult("template");
4035 }
4036
4037 if (S && S->isClassScope()) {
4038 Consumer.addKeywordResult("explicit");
4039 Consumer.addKeywordResult("friend");
4040 Consumer.addKeywordResult("mutable");
4041 Consumer.addKeywordResult("private");
4042 Consumer.addKeywordResult("protected");
4043 Consumer.addKeywordResult("public");
4044 Consumer.addKeywordResult("virtual");
4045 }
4046 }
4047
4048 if (SemaRef.getLangOpts().CPlusPlus) {
4049 Consumer.addKeywordResult("using");
4050
4051 if (SemaRef.getLangOpts().CPlusPlus11)
4052 Consumer.addKeywordResult("static_assert");
4053 }
4054 }
4055 }
4056
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)4057 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4058 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4059 Scope *S, CXXScopeSpec *SS,
4060 std::unique_ptr<CorrectionCandidateCallback> CCC,
4061 DeclContext *MemberContext, bool EnteringContext,
4062 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4063
4064 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4065 DisableTypoCorrection)
4066 return nullptr;
4067
4068 // In Microsoft mode, don't perform typo correction in a template member
4069 // function dependent context because it interferes with the "lookup into
4070 // dependent bases of class templates" feature.
4071 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4072 isa<CXXMethodDecl>(CurContext))
4073 return nullptr;
4074
4075 // We only attempt to correct typos for identifiers.
4076 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4077 if (!Typo)
4078 return nullptr;
4079
4080 // If the scope specifier itself was invalid, don't try to correct
4081 // typos.
4082 if (SS && SS->isInvalid())
4083 return nullptr;
4084
4085 // Never try to correct typos during template deduction or
4086 // instantiation.
4087 if (!ActiveTemplateInstantiations.empty())
4088 return nullptr;
4089
4090 // Don't try to correct 'super'.
4091 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4092 return nullptr;
4093
4094 // Abort if typo correction already failed for this specific typo.
4095 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4096 if (locs != TypoCorrectionFailures.end() &&
4097 locs->second.count(TypoName.getLoc()))
4098 return nullptr;
4099
4100 // Don't try to correct the identifier "vector" when in AltiVec mode.
4101 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4102 // remove this workaround.
4103 if (getLangOpts().AltiVec && Typo->isStr("vector"))
4104 return nullptr;
4105
4106 // Provide a stop gap for files that are just seriously broken. Trying
4107 // to correct all typos can turn into a HUGE performance penalty, causing
4108 // some files to take minutes to get rejected by the parser.
4109 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4110 if (Limit && TyposCorrected >= Limit)
4111 return nullptr;
4112 ++TyposCorrected;
4113
4114 // If we're handling a missing symbol error, using modules, and the
4115 // special search all modules option is used, look for a missing import.
4116 if (ErrorRecovery && getLangOpts().Modules &&
4117 getLangOpts().ModulesSearchAll) {
4118 // The following has the side effect of loading the missing module.
4119 getModuleLoader().lookupMissingImports(Typo->getName(),
4120 TypoName.getLocStart());
4121 }
4122
4123 CorrectionCandidateCallback &CCCRef = *CCC;
4124 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4125 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4126 EnteringContext);
4127
4128 // Perform name lookup to find visible, similarly-named entities.
4129 bool IsUnqualifiedLookup = false;
4130 DeclContext *QualifiedDC = MemberContext;
4131 if (MemberContext) {
4132 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4133
4134 // Look in qualified interfaces.
4135 if (OPT) {
4136 for (auto *I : OPT->quals())
4137 LookupVisibleDecls(I, LookupKind, *Consumer);
4138 }
4139 } else if (SS && SS->isSet()) {
4140 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4141 if (!QualifiedDC)
4142 return nullptr;
4143
4144 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4145 } else {
4146 IsUnqualifiedLookup = true;
4147 }
4148
4149 // Determine whether we are going to search in the various namespaces for
4150 // corrections.
4151 bool SearchNamespaces
4152 = getLangOpts().CPlusPlus &&
4153 (IsUnqualifiedLookup || (SS && SS->isSet()));
4154
4155 if (IsUnqualifiedLookup || SearchNamespaces) {
4156 // For unqualified lookup, look through all of the names that we have
4157 // seen in this translation unit.
4158 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4159 for (const auto &I : Context.Idents)
4160 Consumer->FoundName(I.getKey());
4161
4162 // Walk through identifiers in external identifier sources.
4163 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4164 if (IdentifierInfoLookup *External
4165 = Context.Idents.getExternalIdentifierLookup()) {
4166 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4167 do {
4168 StringRef Name = Iter->Next();
4169 if (Name.empty())
4170 break;
4171
4172 Consumer->FoundName(Name);
4173 } while (true);
4174 }
4175 }
4176
4177 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4178
4179 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4180 // to search those namespaces.
4181 if (SearchNamespaces) {
4182 // Load any externally-known namespaces.
4183 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4184 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4185 LoadedExternalKnownNamespaces = true;
4186 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4187 for (auto *N : ExternalKnownNamespaces)
4188 KnownNamespaces[N] = true;
4189 }
4190
4191 Consumer->addNamespaces(KnownNamespaces);
4192 }
4193
4194 return Consumer;
4195 }
4196
4197 /// \brief Try to "correct" a typo in the source code by finding
4198 /// visible declarations whose names are similar to the name that was
4199 /// present in the source code.
4200 ///
4201 /// \param TypoName the \c DeclarationNameInfo structure that contains
4202 /// the name that was present in the source code along with its location.
4203 ///
4204 /// \param LookupKind the name-lookup criteria used to search for the name.
4205 ///
4206 /// \param S the scope in which name lookup occurs.
4207 ///
4208 /// \param SS the nested-name-specifier that precedes the name we're
4209 /// looking for, if present.
4210 ///
4211 /// \param CCC A CorrectionCandidateCallback object that provides further
4212 /// validation of typo correction candidates. It also provides flags for
4213 /// determining the set of keywords permitted.
4214 ///
4215 /// \param MemberContext if non-NULL, the context in which to look for
4216 /// a member access expression.
4217 ///
4218 /// \param EnteringContext whether we're entering the context described by
4219 /// the nested-name-specifier SS.
4220 ///
4221 /// \param OPT when non-NULL, the search for visible declarations will
4222 /// also walk the protocols in the qualified interfaces of \p OPT.
4223 ///
4224 /// \returns a \c TypoCorrection containing the corrected name if the typo
4225 /// along with information such as the \c NamedDecl where the corrected name
4226 /// was declared, and any additional \c NestedNameSpecifier needed to access
4227 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)4228 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4229 Sema::LookupNameKind LookupKind,
4230 Scope *S, CXXScopeSpec *SS,
4231 std::unique_ptr<CorrectionCandidateCallback> CCC,
4232 CorrectTypoKind Mode,
4233 DeclContext *MemberContext,
4234 bool EnteringContext,
4235 const ObjCObjectPointerType *OPT,
4236 bool RecordFailure) {
4237 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4238
4239 // Always let the ExternalSource have the first chance at correction, even
4240 // if we would otherwise have given up.
4241 if (ExternalSource) {
4242 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4243 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4244 return Correction;
4245 }
4246
4247 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4248 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4249 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4250 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4251 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4252
4253 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4254 auto Consumer = makeTypoCorrectionConsumer(
4255 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4256 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4257
4258 if (!Consumer)
4259 return TypoCorrection();
4260
4261 // If we haven't found anything, we're done.
4262 if (Consumer->empty())
4263 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4264
4265 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4266 // is not more that about a third of the length of the typo's identifier.
4267 unsigned ED = Consumer->getBestEditDistance(true);
4268 unsigned TypoLen = Typo->getName().size();
4269 if (ED > 0 && TypoLen / ED < 3)
4270 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4271
4272 TypoCorrection BestTC = Consumer->getNextCorrection();
4273 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4274 if (!BestTC)
4275 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4276
4277 ED = BestTC.getEditDistance();
4278
4279 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4280 // If this was an unqualified lookup and we believe the callback
4281 // object wouldn't have filtered out possible corrections, note
4282 // that no correction was found.
4283 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4284 }
4285
4286 // If only a single name remains, return that result.
4287 if (!SecondBestTC ||
4288 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4289 const TypoCorrection &Result = BestTC;
4290
4291 // Don't correct to a keyword that's the same as the typo; the keyword
4292 // wasn't actually in scope.
4293 if (ED == 0 && Result.isKeyword())
4294 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4295
4296 TypoCorrection TC = Result;
4297 TC.setCorrectionRange(SS, TypoName);
4298 checkCorrectionVisibility(*this, TC);
4299 return TC;
4300 } else if (SecondBestTC && ObjCMessageReceiver) {
4301 // Prefer 'super' when we're completing in a message-receiver
4302 // context.
4303
4304 if (BestTC.getCorrection().getAsString() != "super") {
4305 if (SecondBestTC.getCorrection().getAsString() == "super")
4306 BestTC = SecondBestTC;
4307 else if ((*Consumer)["super"].front().isKeyword())
4308 BestTC = (*Consumer)["super"].front();
4309 }
4310 // Don't correct to a keyword that's the same as the typo; the keyword
4311 // wasn't actually in scope.
4312 if (BestTC.getEditDistance() == 0 ||
4313 BestTC.getCorrection().getAsString() != "super")
4314 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4315
4316 BestTC.setCorrectionRange(SS, TypoName);
4317 return BestTC;
4318 }
4319
4320 // Record the failure's location if needed and return an empty correction. If
4321 // this was an unqualified lookup and we believe the callback object did not
4322 // filter out possible corrections, also cache the failure for the typo.
4323 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4324 }
4325
4326 /// \brief Try to "correct" a typo in the source code by finding
4327 /// visible declarations whose names are similar to the name that was
4328 /// present in the source code.
4329 ///
4330 /// \param TypoName the \c DeclarationNameInfo structure that contains
4331 /// the name that was present in the source code along with its location.
4332 ///
4333 /// \param LookupKind the name-lookup criteria used to search for the name.
4334 ///
4335 /// \param S the scope in which name lookup occurs.
4336 ///
4337 /// \param SS the nested-name-specifier that precedes the name we're
4338 /// looking for, if present.
4339 ///
4340 /// \param CCC A CorrectionCandidateCallback object that provides further
4341 /// validation of typo correction candidates. It also provides flags for
4342 /// determining the set of keywords permitted.
4343 ///
4344 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4345 /// diagnostics when the actual typo correction is attempted.
4346 ///
4347 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4348 /// Expr from a typo correction candidate.
4349 ///
4350 /// \param MemberContext if non-NULL, the context in which to look for
4351 /// a member access expression.
4352 ///
4353 /// \param EnteringContext whether we're entering the context described by
4354 /// the nested-name-specifier SS.
4355 ///
4356 /// \param OPT when non-NULL, the search for visible declarations will
4357 /// also walk the protocols in the qualified interfaces of \p OPT.
4358 ///
4359 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4360 /// Expr representing the result of performing typo correction, or nullptr if
4361 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4362 /// be emitted and it is the responsibility of the caller to emit any that are
4363 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)4364 TypoExpr *Sema::CorrectTypoDelayed(
4365 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4366 Scope *S, CXXScopeSpec *SS,
4367 std::unique_ptr<CorrectionCandidateCallback> CCC,
4368 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4369 DeclContext *MemberContext, bool EnteringContext,
4370 const ObjCObjectPointerType *OPT) {
4371 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4372
4373 TypoCorrection Empty;
4374 auto Consumer = makeTypoCorrectionConsumer(
4375 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4376 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4377
4378 if (!Consumer || Consumer->empty())
4379 return nullptr;
4380
4381 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4382 // is not more that about a third of the length of the typo's identifier.
4383 unsigned ED = Consumer->getBestEditDistance(true);
4384 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4385 if (ED > 0 && Typo->getName().size() / ED < 3)
4386 return nullptr;
4387
4388 ExprEvalContexts.back().NumTypos++;
4389 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4390 }
4391
addCorrectionDecl(NamedDecl * CDecl)4392 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4393 if (!CDecl) return;
4394
4395 if (isKeyword())
4396 CorrectionDecls.clear();
4397
4398 CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4399
4400 if (!CorrectionName)
4401 CorrectionName = CDecl->getDeclName();
4402 }
4403
getAsString(const LangOptions & LO) const4404 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4405 if (CorrectionNameSpec) {
4406 std::string tmpBuffer;
4407 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4408 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4409 PrefixOStream << CorrectionName;
4410 return PrefixOStream.str();
4411 }
4412
4413 return CorrectionName.getAsString();
4414 }
4415
ValidateCandidate(const TypoCorrection & candidate)4416 bool CorrectionCandidateCallback::ValidateCandidate(
4417 const TypoCorrection &candidate) {
4418 if (!candidate.isResolved())
4419 return true;
4420
4421 if (candidate.isKeyword())
4422 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4423 WantRemainingKeywords || WantObjCSuper;
4424
4425 bool HasNonType = false;
4426 bool HasStaticMethod = false;
4427 bool HasNonStaticMethod = false;
4428 for (Decl *D : candidate) {
4429 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4430 D = FTD->getTemplatedDecl();
4431 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4432 if (Method->isStatic())
4433 HasStaticMethod = true;
4434 else
4435 HasNonStaticMethod = true;
4436 }
4437 if (!isa<TypeDecl>(D))
4438 HasNonType = true;
4439 }
4440
4441 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4442 !candidate.getCorrectionSpecifier())
4443 return false;
4444
4445 return WantTypeSpecifiers || HasNonType;
4446 }
4447
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)4448 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4449 bool HasExplicitTemplateArgs,
4450 MemberExpr *ME)
4451 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4452 CurContext(SemaRef.CurContext), MemberFn(ME) {
4453 WantTypeSpecifiers = false;
4454 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4455 WantRemainingKeywords = false;
4456 }
4457
ValidateCandidate(const TypoCorrection & candidate)4458 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4459 if (!candidate.getCorrectionDecl())
4460 return candidate.isKeyword();
4461
4462 for (auto *C : candidate) {
4463 FunctionDecl *FD = nullptr;
4464 NamedDecl *ND = C->getUnderlyingDecl();
4465 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4466 FD = FTD->getTemplatedDecl();
4467 if (!HasExplicitTemplateArgs && !FD) {
4468 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4469 // If the Decl is neither a function nor a template function,
4470 // determine if it is a pointer or reference to a function. If so,
4471 // check against the number of arguments expected for the pointee.
4472 QualType ValType = cast<ValueDecl>(ND)->getType();
4473 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4474 ValType = ValType->getPointeeType();
4475 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4476 if (FPT->getNumParams() == NumArgs)
4477 return true;
4478 }
4479 }
4480
4481 // Skip the current candidate if it is not a FunctionDecl or does not accept
4482 // the current number of arguments.
4483 if (!FD || !(FD->getNumParams() >= NumArgs &&
4484 FD->getMinRequiredArguments() <= NumArgs))
4485 continue;
4486
4487 // If the current candidate is a non-static C++ method, skip the candidate
4488 // unless the method being corrected--or the current DeclContext, if the
4489 // function being corrected is not a method--is a method in the same class
4490 // or a descendent class of the candidate's parent class.
4491 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4492 if (MemberFn || !MD->isStatic()) {
4493 CXXMethodDecl *CurMD =
4494 MemberFn
4495 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4496 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4497 CXXRecordDecl *CurRD =
4498 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4499 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4500 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4501 continue;
4502 }
4503 }
4504 return true;
4505 }
4506 return false;
4507 }
4508
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)4509 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4510 const PartialDiagnostic &TypoDiag,
4511 bool ErrorRecovery) {
4512 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4513 ErrorRecovery);
4514 }
4515
4516 /// Find which declaration we should import to provide the definition of
4517 /// the given declaration.
getDefinitionToImport(const NamedDecl * D)4518 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
4519 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4520 return VD->getDefinition();
4521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4522 return FD->isDefined(FD) ? FD : nullptr;
4523 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
4524 return TD->getDefinition();
4525 if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4526 return ID->getDefinition();
4527 if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4528 return PD->getDefinition();
4529 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4530 return getDefinitionToImport(TD->getTemplatedDecl());
4531 return nullptr;
4532 }
4533
4534 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
4535 /// itself to allow external validation of the result, etc.
4536 ///
4537 /// \param Correction The result of performing typo correction.
4538 /// \param TypoDiag The diagnostic to produce. This will have the corrected
4539 /// string added to it (and usually also a fixit).
4540 /// \param PrevNote A note to use when indicating the location of the entity to
4541 /// which we are correcting. Will have the correction string added to it.
4542 /// \param ErrorRecovery If \c true (the default), the caller is going to
4543 /// recover from the typo as if the corrected string had been typed.
4544 /// In this case, \c PDiag must be an error, and we will attach a fixit
4545 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)4546 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4547 const PartialDiagnostic &TypoDiag,
4548 const PartialDiagnostic &PrevNote,
4549 bool ErrorRecovery) {
4550 std::string CorrectedStr = Correction.getAsString(getLangOpts());
4551 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4552 FixItHint FixTypo = FixItHint::CreateReplacement(
4553 Correction.getCorrectionRange(), CorrectedStr);
4554
4555 // Maybe we're just missing a module import.
4556 if (Correction.requiresImport()) {
4557 NamedDecl *Decl = Correction.getCorrectionDecl();
4558 assert(Decl && "import required but no declaration to import");
4559
4560 // Suggest importing a module providing the definition of this entity, if
4561 // possible.
4562 const NamedDecl *Def = getDefinitionToImport(Decl);
4563 if (!Def)
4564 Def = Decl;
4565 Module *Owner = Def->getOwningModule();
4566 assert(Owner && "definition of hidden declaration is not in a module");
4567
4568 Diag(Correction.getCorrectionRange().getBegin(),
4569 diag::err_module_private_declaration)
4570 << Def << Owner->getFullModuleName();
4571 Diag(Def->getLocation(), diag::note_previous_declaration);
4572
4573 // Recover by implicitly importing this module.
4574 if (ErrorRecovery)
4575 createImplicitModuleImportForErrorRecovery(
4576 Correction.getCorrectionRange().getBegin(), Owner);
4577 return;
4578 }
4579
4580 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4581 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4582
4583 NamedDecl *ChosenDecl =
4584 Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4585 if (PrevNote.getDiagID() && ChosenDecl)
4586 Diag(ChosenDecl->getLocation(), PrevNote)
4587 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4588 }
4589
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC)4590 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4591 TypoDiagnosticGenerator TDG,
4592 TypoRecoveryCallback TRC) {
4593 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
4594 auto TE = new (Context) TypoExpr(Context.DependentTy);
4595 auto &State = DelayedTypos[TE];
4596 State.Consumer = std::move(TCC);
4597 State.DiagHandler = std::move(TDG);
4598 State.RecoveryHandler = std::move(TRC);
4599 return TE;
4600 }
4601
getTypoExprState(TypoExpr * TE) const4602 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
4603 auto Entry = DelayedTypos.find(TE);
4604 assert(Entry != DelayedTypos.end() &&
4605 "Failed to get the state for a TypoExpr!");
4606 return Entry->second;
4607 }
4608
clearDelayedTypo(TypoExpr * TE)4609 void Sema::clearDelayedTypo(TypoExpr *TE) {
4610 DelayedTypos.erase(TE);
4611 }
4612