1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements name lookup for C, C++, Objective-C, and
11 //  Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ExternalSemaSource.h"
29 #include "clang/Sema/Overload.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Sema.h"
33 #include "clang/Sema/SemaInternal.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "clang/Sema/TypoCorrection.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringMap.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <limits>
46 #include <list>
47 #include <map>
48 #include <set>
49 #include <utility>
50 #include <vector>
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56   class UnqualUsingEntry {
57     const DeclContext *Nominated;
58     const DeclContext *CommonAncestor;
59 
60   public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)61     UnqualUsingEntry(const DeclContext *Nominated,
62                      const DeclContext *CommonAncestor)
63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64     }
65 
getCommonAncestor() const66     const DeclContext *getCommonAncestor() const {
67       return CommonAncestor;
68     }
69 
getNominatedNamespace() const70     const DeclContext *getNominatedNamespace() const {
71       return Nominated;
72     }
73 
74     // Sort by the pointer value of the common ancestor.
75     struct Comparator {
operator ()__anon54059c910111::UnqualUsingEntry::Comparator76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77         return L.getCommonAncestor() < R.getCommonAncestor();
78       }
79 
operator ()__anon54059c910111::UnqualUsingEntry::Comparator80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81         return E.getCommonAncestor() < DC;
82       }
83 
operator ()__anon54059c910111::UnqualUsingEntry::Comparator84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85         return DC < E.getCommonAncestor();
86       }
87     };
88   };
89 
90   /// A collection of using directives, as used by C++ unqualified
91   /// lookup.
92   class UnqualUsingDirectiveSet {
93     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94 
95     ListTy list;
96     llvm::SmallPtrSet<DeclContext*, 8> visited;
97 
98   public:
UnqualUsingDirectiveSet()99     UnqualUsingDirectiveSet() {}
100 
visitScopeChain(Scope * S,Scope * InnermostFileScope)101     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102       // C++ [namespace.udir]p1:
103       //   During unqualified name lookup, the names appear as if they
104       //   were declared in the nearest enclosing namespace which contains
105       //   both the using-directive and the nominated namespace.
106       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
108 
109       for (; S; S = S->getParent()) {
110         // C++ [namespace.udir]p1:
111         //   A using-directive shall not appear in class scope, but may
112         //   appear in namespace scope or in block scope.
113         DeclContext *Ctx = S->getEntity();
114         if (Ctx && Ctx->isFileContext()) {
115           visit(Ctx, Ctx);
116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117           for (auto *I : S->using_directives())
118             visit(I, InnermostFileDC);
119         }
120       }
121     }
122 
123     // Visits a context and collect all of its using directives
124     // recursively.  Treats all using directives as if they were
125     // declared in the context.
126     //
127     // A given context is only every visited once, so it is important
128     // that contexts be visited from the inside out in order to get
129     // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)130     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131       if (!visited.insert(DC).second)
132         return;
133 
134       addUsingDirectives(DC, EffectiveDC);
135     }
136 
137     // Visits a using directive and collects all of its using
138     // directives recursively.  Treats all using directives as if they
139     // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)140     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141       DeclContext *NS = UD->getNominatedNamespace();
142       if (!visited.insert(NS).second)
143         return;
144 
145       addUsingDirective(UD, EffectiveDC);
146       addUsingDirectives(NS, EffectiveDC);
147     }
148 
149     // Adds all the using directives in a context (and those nominated
150     // by its using directives, transitively) as if they appeared in
151     // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)152     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153       SmallVector<DeclContext*,4> queue;
154       while (true) {
155         for (auto UD : DC->using_directives()) {
156           DeclContext *NS = UD->getNominatedNamespace();
157           if (visited.insert(NS).second) {
158             addUsingDirective(UD, EffectiveDC);
159             queue.push_back(NS);
160           }
161         }
162 
163         if (queue.empty())
164           return;
165 
166         DC = queue.pop_back_val();
167       }
168     }
169 
170     // Add a using directive as if it had been declared in the given
171     // context.  This helps implement C++ [namespace.udir]p3:
172     //   The using-directive is transitive: if a scope contains a
173     //   using-directive that nominates a second namespace that itself
174     //   contains using-directives, the effect is as if the
175     //   using-directives from the second namespace also appeared in
176     //   the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)177     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178       // Find the common ancestor between the effective context and
179       // the nominated namespace.
180       DeclContext *Common = UD->getNominatedNamespace();
181       while (!Common->Encloses(EffectiveDC))
182         Common = Common->getParent();
183       Common = Common->getPrimaryContext();
184 
185       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186     }
187 
done()188     void done() {
189       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
190     }
191 
192     typedef ListTy::const_iterator const_iterator;
193 
begin() const194     const_iterator begin() const { return list.begin(); }
end() const195     const_iterator end() const { return list.end(); }
196 
197     llvm::iterator_range<const_iterator>
getNamespacesFor(DeclContext * DC) const198     getNamespacesFor(DeclContext *DC) const {
199       return llvm::make_range(std::equal_range(begin(), end(),
200                                                DC->getPrimaryContext(),
201                                                UnqualUsingEntry::Comparator()));
202     }
203   };
204 }
205 
206 // Retrieve the set of identifier namespaces that correspond to a
207 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)208 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
209                                bool CPlusPlus,
210                                bool Redeclaration) {
211   unsigned IDNS = 0;
212   switch (NameKind) {
213   case Sema::LookupObjCImplicitSelfParam:
214   case Sema::LookupOrdinaryName:
215   case Sema::LookupRedeclarationWithLinkage:
216   case Sema::LookupLocalFriendName:
217     IDNS = Decl::IDNS_Ordinary;
218     if (CPlusPlus) {
219       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
220       if (Redeclaration)
221         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
222     }
223     if (Redeclaration)
224       IDNS |= Decl::IDNS_LocalExtern;
225     break;
226 
227   case Sema::LookupOperatorName:
228     // Operator lookup is its own crazy thing;  it is not the same
229     // as (e.g.) looking up an operator name for redeclaration.
230     assert(!Redeclaration && "cannot do redeclaration operator lookup");
231     IDNS = Decl::IDNS_NonMemberOperator;
232     break;
233 
234   case Sema::LookupTagName:
235     if (CPlusPlus) {
236       IDNS = Decl::IDNS_Type;
237 
238       // When looking for a redeclaration of a tag name, we add:
239       // 1) TagFriend to find undeclared friend decls
240       // 2) Namespace because they can't "overload" with tag decls.
241       // 3) Tag because it includes class templates, which can't
242       //    "overload" with tag decls.
243       if (Redeclaration)
244         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
245     } else {
246       IDNS = Decl::IDNS_Tag;
247     }
248     break;
249 
250   case Sema::LookupLabel:
251     IDNS = Decl::IDNS_Label;
252     break;
253 
254   case Sema::LookupMemberName:
255     IDNS = Decl::IDNS_Member;
256     if (CPlusPlus)
257       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258     break;
259 
260   case Sema::LookupNestedNameSpecifierName:
261     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262     break;
263 
264   case Sema::LookupNamespaceName:
265     IDNS = Decl::IDNS_Namespace;
266     break;
267 
268   case Sema::LookupUsingDeclName:
269     assert(Redeclaration && "should only be used for redecl lookup");
270     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
271            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
272            Decl::IDNS_LocalExtern;
273     break;
274 
275   case Sema::LookupObjCProtocolName:
276     IDNS = Decl::IDNS_ObjCProtocol;
277     break;
278 
279   case Sema::LookupAnyName:
280     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
281       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
282       | Decl::IDNS_Type;
283     break;
284   }
285   return IDNS;
286 }
287 
configure()288 void LookupResult::configure() {
289   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
290                  isForRedeclaration());
291 
292   // If we're looking for one of the allocation or deallocation
293   // operators, make sure that the implicitly-declared new and delete
294   // operators can be found.
295   switch (NameInfo.getName().getCXXOverloadedOperator()) {
296   case OO_New:
297   case OO_Delete:
298   case OO_Array_New:
299   case OO_Array_Delete:
300     getSema().DeclareGlobalNewDelete();
301     break;
302 
303   default:
304     break;
305   }
306 
307   // Compiler builtins are always visible, regardless of where they end
308   // up being declared.
309   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
310     if (unsigned BuiltinID = Id->getBuiltinID()) {
311       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
312         AllowHidden = true;
313     }
314   }
315 }
316 
sanity() const317 bool LookupResult::sanity() const {
318   // This function is never called by NDEBUG builds.
319   assert(ResultKind != NotFound || Decls.size() == 0);
320   assert(ResultKind != Found || Decls.size() == 1);
321   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
322          (Decls.size() == 1 &&
323           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
324   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
325   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
326          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
327                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
328   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
329                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
330                                  Ambiguity == AmbiguousBaseSubobjects)));
331   return true;
332 }
333 
334 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)335 void LookupResult::deletePaths(CXXBasePaths *Paths) {
336   delete Paths;
337 }
338 
339 /// Get a representative context for a declaration such that two declarations
340 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)341 static DeclContext *getContextForScopeMatching(Decl *D) {
342   // For function-local declarations, use that function as the context. This
343   // doesn't account for scopes within the function; the caller must deal with
344   // those.
345   DeclContext *DC = D->getLexicalDeclContext();
346   if (DC->isFunctionOrMethod())
347     return DC;
348 
349   // Otherwise, look at the semantic context of the declaration. The
350   // declaration must have been found there.
351   return D->getDeclContext()->getRedeclContext();
352 }
353 
354 /// Resolves the result kind of this lookup.
resolveKind()355 void LookupResult::resolveKind() {
356   unsigned N = Decls.size();
357 
358   // Fast case: no possible ambiguity.
359   if (N == 0) {
360     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
361     return;
362   }
363 
364   // If there's a single decl, we need to examine it to decide what
365   // kind of lookup this is.
366   if (N == 1) {
367     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
368     if (isa<FunctionTemplateDecl>(D))
369       ResultKind = FoundOverloaded;
370     else if (isa<UnresolvedUsingValueDecl>(D))
371       ResultKind = FoundUnresolvedValue;
372     return;
373   }
374 
375   // Don't do any extra resolution if we've already resolved as ambiguous.
376   if (ResultKind == Ambiguous) return;
377 
378   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
379   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
380 
381   bool Ambiguous = false;
382   bool HasTag = false, HasFunction = false, HasNonFunction = false;
383   bool HasFunctionTemplate = false, HasUnresolved = false;
384 
385   unsigned UniqueTagIndex = 0;
386 
387   unsigned I = 0;
388   while (I < N) {
389     NamedDecl *D = Decls[I]->getUnderlyingDecl();
390     D = cast<NamedDecl>(D->getCanonicalDecl());
391 
392     // Ignore an invalid declaration unless it's the only one left.
393     if (D->isInvalidDecl() && I < N-1) {
394       Decls[I] = Decls[--N];
395       continue;
396     }
397 
398     // Redeclarations of types via typedef can occur both within a scope
399     // and, through using declarations and directives, across scopes. There is
400     // no ambiguity if they all refer to the same type, so unique based on the
401     // canonical type.
402     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
403       if (!TD->getDeclContext()->isRecord()) {
404         QualType T = getSema().Context.getTypeDeclType(TD);
405         if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T)).second) {
406           // The type is not unique; pull something off the back and continue
407           // at this index.
408           Decls[I] = Decls[--N];
409           continue;
410         }
411       }
412     }
413 
414     if (!Unique.insert(D).second) {
415       // If it's not unique, pull something off the back (and
416       // continue at this index).
417       // FIXME: This is wrong. We need to take the more recent declaration in
418       // order to get the right type, default arguments, etc. We also need to
419       // prefer visible declarations to hidden ones (for redeclaration lookup
420       // in modules builds).
421       Decls[I] = Decls[--N];
422       continue;
423     }
424 
425     // Otherwise, do some decl type analysis and then continue.
426 
427     if (isa<UnresolvedUsingValueDecl>(D)) {
428       HasUnresolved = true;
429     } else if (isa<TagDecl>(D)) {
430       if (HasTag)
431         Ambiguous = true;
432       UniqueTagIndex = I;
433       HasTag = true;
434     } else if (isa<FunctionTemplateDecl>(D)) {
435       HasFunction = true;
436       HasFunctionTemplate = true;
437     } else if (isa<FunctionDecl>(D)) {
438       HasFunction = true;
439     } else {
440       if (HasNonFunction)
441         Ambiguous = true;
442       HasNonFunction = true;
443     }
444     I++;
445   }
446 
447   // C++ [basic.scope.hiding]p2:
448   //   A class name or enumeration name can be hidden by the name of
449   //   an object, function, or enumerator declared in the same
450   //   scope. If a class or enumeration name and an object, function,
451   //   or enumerator are declared in the same scope (in any order)
452   //   with the same name, the class or enumeration name is hidden
453   //   wherever the object, function, or enumerator name is visible.
454   // But it's still an error if there are distinct tag types found,
455   // even if they're not visible. (ref?)
456   if (HideTags && HasTag && !Ambiguous &&
457       (HasFunction || HasNonFunction || HasUnresolved)) {
458     if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
459             getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
460       Decls[UniqueTagIndex] = Decls[--N];
461     else
462       Ambiguous = true;
463   }
464 
465   Decls.set_size(N);
466 
467   if (HasNonFunction && (HasFunction || HasUnresolved))
468     Ambiguous = true;
469 
470   if (Ambiguous)
471     setAmbiguous(LookupResult::AmbiguousReference);
472   else if (HasUnresolved)
473     ResultKind = LookupResult::FoundUnresolvedValue;
474   else if (N > 1 || HasFunctionTemplate)
475     ResultKind = LookupResult::FoundOverloaded;
476   else
477     ResultKind = LookupResult::Found;
478 }
479 
addDeclsFromBasePaths(const CXXBasePaths & P)480 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
481   CXXBasePaths::const_paths_iterator I, E;
482   for (I = P.begin(), E = P.end(); I != E; ++I)
483     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
484          DE = I->Decls.end(); DI != DE; ++DI)
485       addDecl(*DI);
486 }
487 
setAmbiguousBaseSubobjects(CXXBasePaths & P)488 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
489   Paths = new CXXBasePaths;
490   Paths->swap(P);
491   addDeclsFromBasePaths(*Paths);
492   resolveKind();
493   setAmbiguous(AmbiguousBaseSubobjects);
494 }
495 
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)496 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
497   Paths = new CXXBasePaths;
498   Paths->swap(P);
499   addDeclsFromBasePaths(*Paths);
500   resolveKind();
501   setAmbiguous(AmbiguousBaseSubobjectTypes);
502 }
503 
print(raw_ostream & Out)504 void LookupResult::print(raw_ostream &Out) {
505   Out << Decls.size() << " result(s)";
506   if (isAmbiguous()) Out << ", ambiguous";
507   if (Paths) Out << ", base paths present";
508 
509   for (iterator I = begin(), E = end(); I != E; ++I) {
510     Out << "\n";
511     (*I)->print(Out, 2);
512   }
513 }
514 
515 /// \brief Lookup a builtin function, when name lookup would otherwise
516 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)517 static bool LookupBuiltin(Sema &S, LookupResult &R) {
518   Sema::LookupNameKind NameKind = R.getLookupKind();
519 
520   // If we didn't find a use of this identifier, and if the identifier
521   // corresponds to a compiler builtin, create the decl object for the builtin
522   // now, injecting it into translation unit scope, and return it.
523   if (NameKind == Sema::LookupOrdinaryName ||
524       NameKind == Sema::LookupRedeclarationWithLinkage) {
525     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
526     if (II) {
527       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
528           II == S.getFloat128Identifier()) {
529         // libstdc++4.7's type_traits expects type __float128 to exist, so
530         // insert a dummy type to make that header build in gnu++11 mode.
531         R.addDecl(S.getASTContext().getFloat128StubType());
532         return true;
533       }
534 
535       // If this is a builtin on this (or all) targets, create the decl.
536       if (unsigned BuiltinID = II->getBuiltinID()) {
537         // In C++, we don't have any predefined library functions like
538         // 'malloc'. Instead, we'll just error.
539         if (S.getLangOpts().CPlusPlus &&
540             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
541           return false;
542 
543         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
544                                                  BuiltinID, S.TUScope,
545                                                  R.isForRedeclaration(),
546                                                  R.getNameLoc())) {
547           R.addDecl(D);
548           return true;
549         }
550       }
551     }
552   }
553 
554   return false;
555 }
556 
557 /// \brief Determine whether we can declare a special member function within
558 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)559 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
560   // We need to have a definition for the class.
561   if (!Class->getDefinition() || Class->isDependentContext())
562     return false;
563 
564   // We can't be in the middle of defining the class.
565   return !Class->isBeingDefined();
566 }
567 
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)568 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
569   if (!CanDeclareSpecialMemberFunction(Class))
570     return;
571 
572   // If the default constructor has not yet been declared, do so now.
573   if (Class->needsImplicitDefaultConstructor())
574     DeclareImplicitDefaultConstructor(Class);
575 
576   // If the copy constructor has not yet been declared, do so now.
577   if (Class->needsImplicitCopyConstructor())
578     DeclareImplicitCopyConstructor(Class);
579 
580   // If the copy assignment operator has not yet been declared, do so now.
581   if (Class->needsImplicitCopyAssignment())
582     DeclareImplicitCopyAssignment(Class);
583 
584   if (getLangOpts().CPlusPlus11) {
585     // If the move constructor has not yet been declared, do so now.
586     if (Class->needsImplicitMoveConstructor())
587       DeclareImplicitMoveConstructor(Class); // might not actually do it
588 
589     // If the move assignment operator has not yet been declared, do so now.
590     if (Class->needsImplicitMoveAssignment())
591       DeclareImplicitMoveAssignment(Class); // might not actually do it
592   }
593 
594   // If the destructor has not yet been declared, do so now.
595   if (Class->needsImplicitDestructor())
596     DeclareImplicitDestructor(Class);
597 }
598 
599 /// \brief Determine whether this is the name of an implicitly-declared
600 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)601 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
602   switch (Name.getNameKind()) {
603   case DeclarationName::CXXConstructorName:
604   case DeclarationName::CXXDestructorName:
605     return true;
606 
607   case DeclarationName::CXXOperatorName:
608     return Name.getCXXOverloadedOperator() == OO_Equal;
609 
610   default:
611     break;
612   }
613 
614   return false;
615 }
616 
617 /// \brief If there are any implicit member functions with the given name
618 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)619 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
620                                                    DeclarationName Name,
621                                                    const DeclContext *DC) {
622   if (!DC)
623     return;
624 
625   switch (Name.getNameKind()) {
626   case DeclarationName::CXXConstructorName:
627     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
628       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
629         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
630         if (Record->needsImplicitDefaultConstructor())
631           S.DeclareImplicitDefaultConstructor(Class);
632         if (Record->needsImplicitCopyConstructor())
633           S.DeclareImplicitCopyConstructor(Class);
634         if (S.getLangOpts().CPlusPlus11 &&
635             Record->needsImplicitMoveConstructor())
636           S.DeclareImplicitMoveConstructor(Class);
637       }
638     break;
639 
640   case DeclarationName::CXXDestructorName:
641     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
642       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
643           CanDeclareSpecialMemberFunction(Record))
644         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
645     break;
646 
647   case DeclarationName::CXXOperatorName:
648     if (Name.getCXXOverloadedOperator() != OO_Equal)
649       break;
650 
651     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
652       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
653         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
654         if (Record->needsImplicitCopyAssignment())
655           S.DeclareImplicitCopyAssignment(Class);
656         if (S.getLangOpts().CPlusPlus11 &&
657             Record->needsImplicitMoveAssignment())
658           S.DeclareImplicitMoveAssignment(Class);
659       }
660     }
661     break;
662 
663   default:
664     break;
665   }
666 }
667 
668 // Adds all qualifying matches for a name within a decl context to the
669 // given lookup result.  Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)670 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
671   bool Found = false;
672 
673   // Lazily declare C++ special member functions.
674   if (S.getLangOpts().CPlusPlus)
675     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
676 
677   // Perform lookup into this declaration context.
678   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
679   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
680        ++I) {
681     NamedDecl *D = *I;
682     if ((D = R.getAcceptableDecl(D))) {
683       R.addDecl(D);
684       Found = true;
685     }
686   }
687 
688   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
689     return true;
690 
691   if (R.getLookupName().getNameKind()
692         != DeclarationName::CXXConversionFunctionName ||
693       R.getLookupName().getCXXNameType()->isDependentType() ||
694       !isa<CXXRecordDecl>(DC))
695     return Found;
696 
697   // C++ [temp.mem]p6:
698   //   A specialization of a conversion function template is not found by
699   //   name lookup. Instead, any conversion function templates visible in the
700   //   context of the use are considered. [...]
701   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
702   if (!Record->isCompleteDefinition())
703     return Found;
704 
705   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
706          UEnd = Record->conversion_end(); U != UEnd; ++U) {
707     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
708     if (!ConvTemplate)
709       continue;
710 
711     // When we're performing lookup for the purposes of redeclaration, just
712     // add the conversion function template. When we deduce template
713     // arguments for specializations, we'll end up unifying the return
714     // type of the new declaration with the type of the function template.
715     if (R.isForRedeclaration()) {
716       R.addDecl(ConvTemplate);
717       Found = true;
718       continue;
719     }
720 
721     // C++ [temp.mem]p6:
722     //   [...] For each such operator, if argument deduction succeeds
723     //   (14.9.2.3), the resulting specialization is used as if found by
724     //   name lookup.
725     //
726     // When referencing a conversion function for any purpose other than
727     // a redeclaration (such that we'll be building an expression with the
728     // result), perform template argument deduction and place the
729     // specialization into the result set. We do this to avoid forcing all
730     // callers to perform special deduction for conversion functions.
731     TemplateDeductionInfo Info(R.getNameLoc());
732     FunctionDecl *Specialization = nullptr;
733 
734     const FunctionProtoType *ConvProto
735       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
736     assert(ConvProto && "Nonsensical conversion function template type");
737 
738     // Compute the type of the function that we would expect the conversion
739     // function to have, if it were to match the name given.
740     // FIXME: Calling convention!
741     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
742     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
743     EPI.ExceptionSpec = EST_None;
744     QualType ExpectedType
745       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
746                                             None, EPI);
747 
748     // Perform template argument deduction against the type that we would
749     // expect the function to have.
750     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
751                                             Specialization, Info)
752           == Sema::TDK_Success) {
753       R.addDecl(Specialization);
754       Found = true;
755     }
756   }
757 
758   return Found;
759 }
760 
761 // Performs C++ unqualified lookup into the given file context.
762 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)763 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
764                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
765 
766   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
767 
768   // Perform direct name lookup into the LookupCtx.
769   bool Found = LookupDirect(S, R, NS);
770 
771   // Perform direct name lookup into the namespaces nominated by the
772   // using directives whose common ancestor is this namespace.
773   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
774     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
775       Found = true;
776 
777   R.resolveKind();
778 
779   return Found;
780 }
781 
isNamespaceOrTranslationUnitScope(Scope * S)782 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
783   if (DeclContext *Ctx = S->getEntity())
784     return Ctx->isFileContext();
785   return false;
786 }
787 
788 // Find the next outer declaration context from this scope. This
789 // routine actually returns the semantic outer context, which may
790 // differ from the lexical context (encoded directly in the Scope
791 // stack) when we are parsing a member of a class template. In this
792 // case, the second element of the pair will be true, to indicate that
793 // name lookup should continue searching in this semantic context when
794 // it leaves the current template parameter scope.
findOuterContext(Scope * S)795 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
796   DeclContext *DC = S->getEntity();
797   DeclContext *Lexical = nullptr;
798   for (Scope *OuterS = S->getParent(); OuterS;
799        OuterS = OuterS->getParent()) {
800     if (OuterS->getEntity()) {
801       Lexical = OuterS->getEntity();
802       break;
803     }
804   }
805 
806   // C++ [temp.local]p8:
807   //   In the definition of a member of a class template that appears
808   //   outside of the namespace containing the class template
809   //   definition, the name of a template-parameter hides the name of
810   //   a member of this namespace.
811   //
812   // Example:
813   //
814   //   namespace N {
815   //     class C { };
816   //
817   //     template<class T> class B {
818   //       void f(T);
819   //     };
820   //   }
821   //
822   //   template<class C> void N::B<C>::f(C) {
823   //     C b;  // C is the template parameter, not N::C
824   //   }
825   //
826   // In this example, the lexical context we return is the
827   // TranslationUnit, while the semantic context is the namespace N.
828   if (!Lexical || !DC || !S->getParent() ||
829       !S->getParent()->isTemplateParamScope())
830     return std::make_pair(Lexical, false);
831 
832   // Find the outermost template parameter scope.
833   // For the example, this is the scope for the template parameters of
834   // template<class C>.
835   Scope *OutermostTemplateScope = S->getParent();
836   while (OutermostTemplateScope->getParent() &&
837          OutermostTemplateScope->getParent()->isTemplateParamScope())
838     OutermostTemplateScope = OutermostTemplateScope->getParent();
839 
840   // Find the namespace context in which the original scope occurs. In
841   // the example, this is namespace N.
842   DeclContext *Semantic = DC;
843   while (!Semantic->isFileContext())
844     Semantic = Semantic->getParent();
845 
846   // Find the declaration context just outside of the template
847   // parameter scope. This is the context in which the template is
848   // being lexically declaration (a namespace context). In the
849   // example, this is the global scope.
850   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
851       Lexical->Encloses(Semantic))
852     return std::make_pair(Semantic, true);
853 
854   return std::make_pair(Lexical, false);
855 }
856 
857 namespace {
858 /// An RAII object to specify that we want to find block scope extern
859 /// declarations.
860 struct FindLocalExternScope {
FindLocalExternScope__anon54059c910211::FindLocalExternScope861   FindLocalExternScope(LookupResult &R)
862       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
863                                  Decl::IDNS_LocalExtern) {
864     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
865   }
restore__anon54059c910211::FindLocalExternScope866   void restore() {
867     R.setFindLocalExtern(OldFindLocalExtern);
868   }
~FindLocalExternScope__anon54059c910211::FindLocalExternScope869   ~FindLocalExternScope() {
870     restore();
871   }
872   LookupResult &R;
873   bool OldFindLocalExtern;
874 };
875 }
876 
CppLookupName(LookupResult & R,Scope * S)877 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
878   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
879 
880   DeclarationName Name = R.getLookupName();
881   Sema::LookupNameKind NameKind = R.getLookupKind();
882 
883   // If this is the name of an implicitly-declared special member function,
884   // go through the scope stack to implicitly declare
885   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
886     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
887       if (DeclContext *DC = PreS->getEntity())
888         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
889   }
890 
891   // Implicitly declare member functions with the name we're looking for, if in
892   // fact we are in a scope where it matters.
893 
894   Scope *Initial = S;
895   IdentifierResolver::iterator
896     I = IdResolver.begin(Name),
897     IEnd = IdResolver.end();
898 
899   // First we lookup local scope.
900   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
901   // ...During unqualified name lookup (3.4.1), the names appear as if
902   // they were declared in the nearest enclosing namespace which contains
903   // both the using-directive and the nominated namespace.
904   // [Note: in this context, "contains" means "contains directly or
905   // indirectly".
906   //
907   // For example:
908   // namespace A { int i; }
909   // void foo() {
910   //   int i;
911   //   {
912   //     using namespace A;
913   //     ++i; // finds local 'i', A::i appears at global scope
914   //   }
915   // }
916   //
917   UnqualUsingDirectiveSet UDirs;
918   bool VisitedUsingDirectives = false;
919   bool LeftStartingScope = false;
920   DeclContext *OutsideOfTemplateParamDC = nullptr;
921 
922   // When performing a scope lookup, we want to find local extern decls.
923   FindLocalExternScope FindLocals(R);
924 
925   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
926     DeclContext *Ctx = S->getEntity();
927 
928     // Check whether the IdResolver has anything in this scope.
929     bool Found = false;
930     for (; I != IEnd && S->isDeclScope(*I); ++I) {
931       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
932         if (NameKind == LookupRedeclarationWithLinkage) {
933           // Determine whether this (or a previous) declaration is
934           // out-of-scope.
935           if (!LeftStartingScope && !Initial->isDeclScope(*I))
936             LeftStartingScope = true;
937 
938           // If we found something outside of our starting scope that
939           // does not have linkage, skip it. If it's a template parameter,
940           // we still find it, so we can diagnose the invalid redeclaration.
941           if (LeftStartingScope && !((*I)->hasLinkage()) &&
942               !(*I)->isTemplateParameter()) {
943             R.setShadowed();
944             continue;
945           }
946         }
947 
948         Found = true;
949         R.addDecl(ND);
950       }
951     }
952     if (Found) {
953       R.resolveKind();
954       if (S->isClassScope())
955         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
956           R.setNamingClass(Record);
957       return true;
958     }
959 
960     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
961       // C++11 [class.friend]p11:
962       //   If a friend declaration appears in a local class and the name
963       //   specified is an unqualified name, a prior declaration is
964       //   looked up without considering scopes that are outside the
965       //   innermost enclosing non-class scope.
966       return false;
967     }
968 
969     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
970         S->getParent() && !S->getParent()->isTemplateParamScope()) {
971       // We've just searched the last template parameter scope and
972       // found nothing, so look into the contexts between the
973       // lexical and semantic declaration contexts returned by
974       // findOuterContext(). This implements the name lookup behavior
975       // of C++ [temp.local]p8.
976       Ctx = OutsideOfTemplateParamDC;
977       OutsideOfTemplateParamDC = nullptr;
978     }
979 
980     if (Ctx) {
981       DeclContext *OuterCtx;
982       bool SearchAfterTemplateScope;
983       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
984       if (SearchAfterTemplateScope)
985         OutsideOfTemplateParamDC = OuterCtx;
986 
987       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
988         // We do not directly look into transparent contexts, since
989         // those entities will be found in the nearest enclosing
990         // non-transparent context.
991         if (Ctx->isTransparentContext())
992           continue;
993 
994         // We do not look directly into function or method contexts,
995         // since all of the local variables and parameters of the
996         // function/method are present within the Scope.
997         if (Ctx->isFunctionOrMethod()) {
998           // If we have an Objective-C instance method, look for ivars
999           // in the corresponding interface.
1000           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1001             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1002               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1003                 ObjCInterfaceDecl *ClassDeclared;
1004                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1005                                                  Name.getAsIdentifierInfo(),
1006                                                              ClassDeclared)) {
1007                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1008                     R.addDecl(ND);
1009                     R.resolveKind();
1010                     return true;
1011                   }
1012                 }
1013               }
1014           }
1015 
1016           continue;
1017         }
1018 
1019         // If this is a file context, we need to perform unqualified name
1020         // lookup considering using directives.
1021         if (Ctx->isFileContext()) {
1022           // If we haven't handled using directives yet, do so now.
1023           if (!VisitedUsingDirectives) {
1024             // Add using directives from this context up to the top level.
1025             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1026               if (UCtx->isTransparentContext())
1027                 continue;
1028 
1029               UDirs.visit(UCtx, UCtx);
1030             }
1031 
1032             // Find the innermost file scope, so we can add using directives
1033             // from local scopes.
1034             Scope *InnermostFileScope = S;
1035             while (InnermostFileScope &&
1036                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1037               InnermostFileScope = InnermostFileScope->getParent();
1038             UDirs.visitScopeChain(Initial, InnermostFileScope);
1039 
1040             UDirs.done();
1041 
1042             VisitedUsingDirectives = true;
1043           }
1044 
1045           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1046             R.resolveKind();
1047             return true;
1048           }
1049 
1050           continue;
1051         }
1052 
1053         // Perform qualified name lookup into this context.
1054         // FIXME: In some cases, we know that every name that could be found by
1055         // this qualified name lookup will also be on the identifier chain. For
1056         // example, inside a class without any base classes, we never need to
1057         // perform qualified lookup because all of the members are on top of the
1058         // identifier chain.
1059         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1060           return true;
1061       }
1062     }
1063   }
1064 
1065   // Stop if we ran out of scopes.
1066   // FIXME:  This really, really shouldn't be happening.
1067   if (!S) return false;
1068 
1069   // If we are looking for members, no need to look into global/namespace scope.
1070   if (NameKind == LookupMemberName)
1071     return false;
1072 
1073   // Collect UsingDirectiveDecls in all scopes, and recursively all
1074   // nominated namespaces by those using-directives.
1075   //
1076   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1077   // don't build it for each lookup!
1078   if (!VisitedUsingDirectives) {
1079     UDirs.visitScopeChain(Initial, S);
1080     UDirs.done();
1081   }
1082 
1083   // If we're not performing redeclaration lookup, do not look for local
1084   // extern declarations outside of a function scope.
1085   if (!R.isForRedeclaration())
1086     FindLocals.restore();
1087 
1088   // Lookup namespace scope, and global scope.
1089   // Unqualified name lookup in C++ requires looking into scopes
1090   // that aren't strictly lexical, and therefore we walk through the
1091   // context as well as walking through the scopes.
1092   for (; S; S = S->getParent()) {
1093     // Check whether the IdResolver has anything in this scope.
1094     bool Found = false;
1095     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1096       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1097         // We found something.  Look for anything else in our scope
1098         // with this same name and in an acceptable identifier
1099         // namespace, so that we can construct an overload set if we
1100         // need to.
1101         Found = true;
1102         R.addDecl(ND);
1103       }
1104     }
1105 
1106     if (Found && S->isTemplateParamScope()) {
1107       R.resolveKind();
1108       return true;
1109     }
1110 
1111     DeclContext *Ctx = S->getEntity();
1112     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1113         S->getParent() && !S->getParent()->isTemplateParamScope()) {
1114       // We've just searched the last template parameter scope and
1115       // found nothing, so look into the contexts between the
1116       // lexical and semantic declaration contexts returned by
1117       // findOuterContext(). This implements the name lookup behavior
1118       // of C++ [temp.local]p8.
1119       Ctx = OutsideOfTemplateParamDC;
1120       OutsideOfTemplateParamDC = nullptr;
1121     }
1122 
1123     if (Ctx) {
1124       DeclContext *OuterCtx;
1125       bool SearchAfterTemplateScope;
1126       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1127       if (SearchAfterTemplateScope)
1128         OutsideOfTemplateParamDC = OuterCtx;
1129 
1130       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1131         // We do not directly look into transparent contexts, since
1132         // those entities will be found in the nearest enclosing
1133         // non-transparent context.
1134         if (Ctx->isTransparentContext())
1135           continue;
1136 
1137         // If we have a context, and it's not a context stashed in the
1138         // template parameter scope for an out-of-line definition, also
1139         // look into that context.
1140         if (!(Found && S && S->isTemplateParamScope())) {
1141           assert(Ctx->isFileContext() &&
1142               "We should have been looking only at file context here already.");
1143 
1144           // Look into context considering using-directives.
1145           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1146             Found = true;
1147         }
1148 
1149         if (Found) {
1150           R.resolveKind();
1151           return true;
1152         }
1153 
1154         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1155           return false;
1156       }
1157     }
1158 
1159     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1160       return false;
1161   }
1162 
1163   return !R.empty();
1164 }
1165 
1166 /// \brief Find the declaration that a class temploid member specialization was
1167 /// instantiated from, or the member itself if it is an explicit specialization.
getInstantiatedFrom(Decl * D,MemberSpecializationInfo * MSInfo)1168 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1169   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1170 }
1171 
1172 /// \brief Find the module in which the given declaration was defined.
getDefiningModule(Decl * Entity)1173 static Module *getDefiningModule(Decl *Entity) {
1174   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1175     // If this function was instantiated from a template, the defining module is
1176     // the module containing the pattern.
1177     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1178       Entity = Pattern;
1179   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1180     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1181       Entity = Pattern;
1182   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1183     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1184       Entity = getInstantiatedFrom(ED, MSInfo);
1185   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1186     // FIXME: Map from variable template specializations back to the template.
1187     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1188       Entity = getInstantiatedFrom(VD, MSInfo);
1189   }
1190 
1191   // Walk up to the containing context. That might also have been instantiated
1192   // from a template.
1193   DeclContext *Context = Entity->getDeclContext();
1194   if (Context->isFileContext())
1195     return Entity->getOwningModule();
1196   return getDefiningModule(cast<Decl>(Context));
1197 }
1198 
getLookupModules()1199 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1200   unsigned N = ActiveTemplateInstantiations.size();
1201   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1202        I != N; ++I) {
1203     Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1204     if (M && !LookupModulesCache.insert(M).second)
1205       M = nullptr;
1206     ActiveTemplateInstantiationLookupModules.push_back(M);
1207   }
1208   return LookupModulesCache;
1209 }
1210 
1211 /// \brief Determine whether a declaration is visible to name lookup.
1212 ///
1213 /// This routine determines whether the declaration D is visible in the current
1214 /// lookup context, taking into account the current template instantiation
1215 /// stack. During template instantiation, a declaration is visible if it is
1216 /// visible from a module containing any entity on the template instantiation
1217 /// path (by instantiating a template, you allow it to see the declarations that
1218 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1219 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1220   assert(D->isHidden() && "should not call this: not in slow case");
1221   Module *DeclModule = D->getOwningModule();
1222   assert(DeclModule && "hidden decl not from a module");
1223 
1224   // If this declaration is not at namespace scope nor module-private,
1225   // then it is visible if its lexical parent has a visible definition.
1226   DeclContext *DC = D->getLexicalDeclContext();
1227   if (!D->isModulePrivate() &&
1228       DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
1229     if (SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1230       if (SemaRef.ActiveTemplateInstantiations.empty()) {
1231         // Cache the fact that this declaration is implicitly visible because
1232         // its parent has a visible definition.
1233         D->setHidden(false);
1234       }
1235       return true;
1236     }
1237     return false;
1238   }
1239 
1240   // Find the extra places where we need to look.
1241   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1242   if (LookupModules.empty())
1243     return false;
1244 
1245   // If our lookup set contains the decl's module, it's visible.
1246   if (LookupModules.count(DeclModule))
1247     return true;
1248 
1249   // If the declaration isn't exported, it's not visible in any other module.
1250   if (D->isModulePrivate())
1251     return false;
1252 
1253   // Check whether DeclModule is transitively exported to an import of
1254   // the lookup set.
1255   for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1256                                           E = LookupModules.end();
1257        I != E; ++I)
1258     if ((*I)->isModuleVisible(DeclModule))
1259       return true;
1260   return false;
1261 }
1262 
1263 /// \brief Retrieve the visible declaration corresponding to D, if any.
1264 ///
1265 /// This routine determines whether the declaration D is visible in the current
1266 /// module, with the current imports. If not, it checks whether any
1267 /// redeclaration of D is visible, and if so, returns that declaration.
1268 ///
1269 /// \returns D, or a visible previous declaration of D, whichever is more recent
1270 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D)1271 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1272   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1273 
1274   for (auto RD : D->redecls()) {
1275     if (auto ND = dyn_cast<NamedDecl>(RD)) {
1276       // FIXME: This is wrong in the case where the previous declaration is not
1277       // visible in the same scope as D. This needs to be done much more
1278       // carefully.
1279       if (LookupResult::isVisible(SemaRef, ND))
1280         return ND;
1281     }
1282   }
1283 
1284   return nullptr;
1285 }
1286 
getAcceptableDeclSlow(NamedDecl * D) const1287 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1288   return findAcceptableDecl(getSema(), D);
1289 }
1290 
1291 /// @brief Perform unqualified name lookup starting from a given
1292 /// scope.
1293 ///
1294 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1295 /// used to find names within the current scope. For example, 'x' in
1296 /// @code
1297 /// int x;
1298 /// int f() {
1299 ///   return x; // unqualified name look finds 'x' in the global scope
1300 /// }
1301 /// @endcode
1302 ///
1303 /// Different lookup criteria can find different names. For example, a
1304 /// particular scope can have both a struct and a function of the same
1305 /// name, and each can be found by certain lookup criteria. For more
1306 /// information about lookup criteria, see the documentation for the
1307 /// class LookupCriteria.
1308 ///
1309 /// @param S        The scope from which unqualified name lookup will
1310 /// begin. If the lookup criteria permits, name lookup may also search
1311 /// in the parent scopes.
1312 ///
1313 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1314 /// look up and the lookup kind), and is updated with the results of lookup
1315 /// including zero or more declarations and possibly additional information
1316 /// used to diagnose ambiguities.
1317 ///
1318 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1319 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1320   DeclarationName Name = R.getLookupName();
1321   if (!Name) return false;
1322 
1323   LookupNameKind NameKind = R.getLookupKind();
1324 
1325   if (!getLangOpts().CPlusPlus) {
1326     // Unqualified name lookup in C/Objective-C is purely lexical, so
1327     // search in the declarations attached to the name.
1328     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1329       // Find the nearest non-transparent declaration scope.
1330       while (!(S->getFlags() & Scope::DeclScope) ||
1331              (S->getEntity() && S->getEntity()->isTransparentContext()))
1332         S = S->getParent();
1333     }
1334 
1335     // When performing a scope lookup, we want to find local extern decls.
1336     FindLocalExternScope FindLocals(R);
1337 
1338     // Scan up the scope chain looking for a decl that matches this
1339     // identifier that is in the appropriate namespace.  This search
1340     // should not take long, as shadowing of names is uncommon, and
1341     // deep shadowing is extremely uncommon.
1342     bool LeftStartingScope = false;
1343 
1344     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1345                                    IEnd = IdResolver.end();
1346          I != IEnd; ++I)
1347       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1348         if (NameKind == LookupRedeclarationWithLinkage) {
1349           // Determine whether this (or a previous) declaration is
1350           // out-of-scope.
1351           if (!LeftStartingScope && !S->isDeclScope(*I))
1352             LeftStartingScope = true;
1353 
1354           // If we found something outside of our starting scope that
1355           // does not have linkage, skip it.
1356           if (LeftStartingScope && !((*I)->hasLinkage())) {
1357             R.setShadowed();
1358             continue;
1359           }
1360         }
1361         else if (NameKind == LookupObjCImplicitSelfParam &&
1362                  !isa<ImplicitParamDecl>(*I))
1363           continue;
1364 
1365         R.addDecl(D);
1366 
1367         // Check whether there are any other declarations with the same name
1368         // and in the same scope.
1369         if (I != IEnd) {
1370           // Find the scope in which this declaration was declared (if it
1371           // actually exists in a Scope).
1372           while (S && !S->isDeclScope(D))
1373             S = S->getParent();
1374 
1375           // If the scope containing the declaration is the translation unit,
1376           // then we'll need to perform our checks based on the matching
1377           // DeclContexts rather than matching scopes.
1378           if (S && isNamespaceOrTranslationUnitScope(S))
1379             S = nullptr;
1380 
1381           // Compute the DeclContext, if we need it.
1382           DeclContext *DC = nullptr;
1383           if (!S)
1384             DC = (*I)->getDeclContext()->getRedeclContext();
1385 
1386           IdentifierResolver::iterator LastI = I;
1387           for (++LastI; LastI != IEnd; ++LastI) {
1388             if (S) {
1389               // Match based on scope.
1390               if (!S->isDeclScope(*LastI))
1391                 break;
1392             } else {
1393               // Match based on DeclContext.
1394               DeclContext *LastDC
1395                 = (*LastI)->getDeclContext()->getRedeclContext();
1396               if (!LastDC->Equals(DC))
1397                 break;
1398             }
1399 
1400             // If the declaration is in the right namespace and visible, add it.
1401             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1402               R.addDecl(LastD);
1403           }
1404 
1405           R.resolveKind();
1406         }
1407 
1408         return true;
1409       }
1410   } else {
1411     // Perform C++ unqualified name lookup.
1412     if (CppLookupName(R, S))
1413       return true;
1414   }
1415 
1416   // If we didn't find a use of this identifier, and if the identifier
1417   // corresponds to a compiler builtin, create the decl object for the builtin
1418   // now, injecting it into translation unit scope, and return it.
1419   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1420     return true;
1421 
1422   // If we didn't find a use of this identifier, the ExternalSource
1423   // may be able to handle the situation.
1424   // Note: some lookup failures are expected!
1425   // See e.g. R.isForRedeclaration().
1426   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1427 }
1428 
1429 /// @brief Perform qualified name lookup in the namespaces nominated by
1430 /// using directives by the given context.
1431 ///
1432 /// C++98 [namespace.qual]p2:
1433 ///   Given X::m (where X is a user-declared namespace), or given \::m
1434 ///   (where X is the global namespace), let S be the set of all
1435 ///   declarations of m in X and in the transitive closure of all
1436 ///   namespaces nominated by using-directives in X and its used
1437 ///   namespaces, except that using-directives are ignored in any
1438 ///   namespace, including X, directly containing one or more
1439 ///   declarations of m. No namespace is searched more than once in
1440 ///   the lookup of a name. If S is the empty set, the program is
1441 ///   ill-formed. Otherwise, if S has exactly one member, or if the
1442 ///   context of the reference is a using-declaration
1443 ///   (namespace.udecl), S is the required set of declarations of
1444 ///   m. Otherwise if the use of m is not one that allows a unique
1445 ///   declaration to be chosen from S, the program is ill-formed.
1446 ///
1447 /// C++98 [namespace.qual]p5:
1448 ///   During the lookup of a qualified namespace member name, if the
1449 ///   lookup finds more than one declaration of the member, and if one
1450 ///   declaration introduces a class name or enumeration name and the
1451 ///   other declarations either introduce the same object, the same
1452 ///   enumerator or a set of functions, the non-type name hides the
1453 ///   class or enumeration name if and only if the declarations are
1454 ///   from the same namespace; otherwise (the declarations are from
1455 ///   different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1456 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1457                                                  DeclContext *StartDC) {
1458   assert(StartDC->isFileContext() && "start context is not a file context");
1459 
1460   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1461   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1462 
1463   // We have at least added all these contexts to the queue.
1464   llvm::SmallPtrSet<DeclContext*, 8> Visited;
1465   Visited.insert(StartDC);
1466 
1467   // We have not yet looked into these namespaces, much less added
1468   // their "using-children" to the queue.
1469   SmallVector<NamespaceDecl*, 8> Queue;
1470 
1471   // We have already looked into the initial namespace; seed the queue
1472   // with its using-children.
1473   for (auto *I : UsingDirectives) {
1474     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1475     if (Visited.insert(ND).second)
1476       Queue.push_back(ND);
1477   }
1478 
1479   // The easiest way to implement the restriction in [namespace.qual]p5
1480   // is to check whether any of the individual results found a tag
1481   // and, if so, to declare an ambiguity if the final result is not
1482   // a tag.
1483   bool FoundTag = false;
1484   bool FoundNonTag = false;
1485 
1486   LookupResult LocalR(LookupResult::Temporary, R);
1487 
1488   bool Found = false;
1489   while (!Queue.empty()) {
1490     NamespaceDecl *ND = Queue.pop_back_val();
1491 
1492     // We go through some convolutions here to avoid copying results
1493     // between LookupResults.
1494     bool UseLocal = !R.empty();
1495     LookupResult &DirectR = UseLocal ? LocalR : R;
1496     bool FoundDirect = LookupDirect(S, DirectR, ND);
1497 
1498     if (FoundDirect) {
1499       // First do any local hiding.
1500       DirectR.resolveKind();
1501 
1502       // If the local result is a tag, remember that.
1503       if (DirectR.isSingleTagDecl())
1504         FoundTag = true;
1505       else
1506         FoundNonTag = true;
1507 
1508       // Append the local results to the total results if necessary.
1509       if (UseLocal) {
1510         R.addAllDecls(LocalR);
1511         LocalR.clear();
1512       }
1513     }
1514 
1515     // If we find names in this namespace, ignore its using directives.
1516     if (FoundDirect) {
1517       Found = true;
1518       continue;
1519     }
1520 
1521     for (auto I : ND->using_directives()) {
1522       NamespaceDecl *Nom = I->getNominatedNamespace();
1523       if (Visited.insert(Nom).second)
1524         Queue.push_back(Nom);
1525     }
1526   }
1527 
1528   if (Found) {
1529     if (FoundTag && FoundNonTag)
1530       R.setAmbiguousQualifiedTagHiding();
1531     else
1532       R.resolveKind();
1533   }
1534 
1535   return Found;
1536 }
1537 
1538 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1539 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1540                             CXXBasePath &Path,
1541                             void *Name) {
1542   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1543 
1544   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1545   Path.Decls = BaseRecord->lookup(N);
1546   return !Path.Decls.empty();
1547 }
1548 
1549 /// \brief Determine whether the given set of member declarations contains only
1550 /// static members, nested types, and enumerators.
1551 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1552 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1553   Decl *D = (*First)->getUnderlyingDecl();
1554   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1555     return true;
1556 
1557   if (isa<CXXMethodDecl>(D)) {
1558     // Determine whether all of the methods are static.
1559     bool AllMethodsAreStatic = true;
1560     for(; First != Last; ++First) {
1561       D = (*First)->getUnderlyingDecl();
1562 
1563       if (!isa<CXXMethodDecl>(D)) {
1564         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1565         break;
1566       }
1567 
1568       if (!cast<CXXMethodDecl>(D)->isStatic()) {
1569         AllMethodsAreStatic = false;
1570         break;
1571       }
1572     }
1573 
1574     if (AllMethodsAreStatic)
1575       return true;
1576   }
1577 
1578   return false;
1579 }
1580 
1581 /// \brief Perform qualified name lookup into a given context.
1582 ///
1583 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1584 /// names when the context of those names is explicit specified, e.g.,
1585 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1586 ///
1587 /// Different lookup criteria can find different names. For example, a
1588 /// particular scope can have both a struct and a function of the same
1589 /// name, and each can be found by certain lookup criteria. For more
1590 /// information about lookup criteria, see the documentation for the
1591 /// class LookupCriteria.
1592 ///
1593 /// \param R captures both the lookup criteria and any lookup results found.
1594 ///
1595 /// \param LookupCtx The context in which qualified name lookup will
1596 /// search. If the lookup criteria permits, name lookup may also search
1597 /// in the parent contexts or (for C++ classes) base classes.
1598 ///
1599 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1600 /// occurs as part of unqualified name lookup.
1601 ///
1602 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1603 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1604                                bool InUnqualifiedLookup) {
1605   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1606 
1607   if (!R.getLookupName())
1608     return false;
1609 
1610   // Make sure that the declaration context is complete.
1611   assert((!isa<TagDecl>(LookupCtx) ||
1612           LookupCtx->isDependentContext() ||
1613           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1614           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1615          "Declaration context must already be complete!");
1616 
1617   // Perform qualified name lookup into the LookupCtx.
1618   if (LookupDirect(*this, R, LookupCtx)) {
1619     R.resolveKind();
1620     if (isa<CXXRecordDecl>(LookupCtx))
1621       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1622     return true;
1623   }
1624 
1625   // Don't descend into implied contexts for redeclarations.
1626   // C++98 [namespace.qual]p6:
1627   //   In a declaration for a namespace member in which the
1628   //   declarator-id is a qualified-id, given that the qualified-id
1629   //   for the namespace member has the form
1630   //     nested-name-specifier unqualified-id
1631   //   the unqualified-id shall name a member of the namespace
1632   //   designated by the nested-name-specifier.
1633   // See also [class.mfct]p5 and [class.static.data]p2.
1634   if (R.isForRedeclaration())
1635     return false;
1636 
1637   // If this is a namespace, look it up in the implied namespaces.
1638   if (LookupCtx->isFileContext())
1639     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1640 
1641   // If this isn't a C++ class, we aren't allowed to look into base
1642   // classes, we're done.
1643   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1644   if (!LookupRec || !LookupRec->getDefinition())
1645     return false;
1646 
1647   // If we're performing qualified name lookup into a dependent class,
1648   // then we are actually looking into a current instantiation. If we have any
1649   // dependent base classes, then we either have to delay lookup until
1650   // template instantiation time (at which point all bases will be available)
1651   // or we have to fail.
1652   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1653       LookupRec->hasAnyDependentBases()) {
1654     R.setNotFoundInCurrentInstantiation();
1655     return false;
1656   }
1657 
1658   // Perform lookup into our base classes.
1659   CXXBasePaths Paths;
1660   Paths.setOrigin(LookupRec);
1661 
1662   // Look for this member in our base classes
1663   CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
1664   switch (R.getLookupKind()) {
1665     case LookupObjCImplicitSelfParam:
1666     case LookupOrdinaryName:
1667     case LookupMemberName:
1668     case LookupRedeclarationWithLinkage:
1669     case LookupLocalFriendName:
1670       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1671       break;
1672 
1673     case LookupTagName:
1674       BaseCallback = &CXXRecordDecl::FindTagMember;
1675       break;
1676 
1677     case LookupAnyName:
1678       BaseCallback = &LookupAnyMember;
1679       break;
1680 
1681     case LookupUsingDeclName:
1682       // This lookup is for redeclarations only.
1683 
1684     case LookupOperatorName:
1685     case LookupNamespaceName:
1686     case LookupObjCProtocolName:
1687     case LookupLabel:
1688       // These lookups will never find a member in a C++ class (or base class).
1689       return false;
1690 
1691     case LookupNestedNameSpecifierName:
1692       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1693       break;
1694   }
1695 
1696   if (!LookupRec->lookupInBases(BaseCallback,
1697                                 R.getLookupName().getAsOpaquePtr(), Paths))
1698     return false;
1699 
1700   R.setNamingClass(LookupRec);
1701 
1702   // C++ [class.member.lookup]p2:
1703   //   [...] If the resulting set of declarations are not all from
1704   //   sub-objects of the same type, or the set has a nonstatic member
1705   //   and includes members from distinct sub-objects, there is an
1706   //   ambiguity and the program is ill-formed. Otherwise that set is
1707   //   the result of the lookup.
1708   QualType SubobjectType;
1709   int SubobjectNumber = 0;
1710   AccessSpecifier SubobjectAccess = AS_none;
1711 
1712   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1713        Path != PathEnd; ++Path) {
1714     const CXXBasePathElement &PathElement = Path->back();
1715 
1716     // Pick the best (i.e. most permissive i.e. numerically lowest) access
1717     // across all paths.
1718     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1719 
1720     // Determine whether we're looking at a distinct sub-object or not.
1721     if (SubobjectType.isNull()) {
1722       // This is the first subobject we've looked at. Record its type.
1723       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1724       SubobjectNumber = PathElement.SubobjectNumber;
1725       continue;
1726     }
1727 
1728     if (SubobjectType
1729                  != Context.getCanonicalType(PathElement.Base->getType())) {
1730       // We found members of the given name in two subobjects of
1731       // different types. If the declaration sets aren't the same, this
1732       // lookup is ambiguous.
1733       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1734         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1735         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1736         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1737 
1738         while (FirstD != FirstPath->Decls.end() &&
1739                CurrentD != Path->Decls.end()) {
1740          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1741              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1742            break;
1743 
1744           ++FirstD;
1745           ++CurrentD;
1746         }
1747 
1748         if (FirstD == FirstPath->Decls.end() &&
1749             CurrentD == Path->Decls.end())
1750           continue;
1751       }
1752 
1753       R.setAmbiguousBaseSubobjectTypes(Paths);
1754       return true;
1755     }
1756 
1757     if (SubobjectNumber != PathElement.SubobjectNumber) {
1758       // We have a different subobject of the same type.
1759 
1760       // C++ [class.member.lookup]p5:
1761       //   A static member, a nested type or an enumerator defined in
1762       //   a base class T can unambiguously be found even if an object
1763       //   has more than one base class subobject of type T.
1764       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1765         continue;
1766 
1767       // We have found a nonstatic member name in multiple, distinct
1768       // subobjects. Name lookup is ambiguous.
1769       R.setAmbiguousBaseSubobjects(Paths);
1770       return true;
1771     }
1772   }
1773 
1774   // Lookup in a base class succeeded; return these results.
1775 
1776   for (auto *D : Paths.front().Decls) {
1777     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1778                                                     D->getAccess());
1779     R.addDecl(D, AS);
1780   }
1781   R.resolveKind();
1782   return true;
1783 }
1784 
1785 /// \brief Performs qualified name lookup or special type of lookup for
1786 /// "__super::" scope specifier.
1787 ///
1788 /// This routine is a convenience overload meant to be called from contexts
1789 /// that need to perform a qualified name lookup with an optional C++ scope
1790 /// specifier that might require special kind of lookup.
1791 ///
1792 /// \param R captures both the lookup criteria and any lookup results found.
1793 ///
1794 /// \param LookupCtx The context in which qualified name lookup will
1795 /// search.
1796 ///
1797 /// \param SS An optional C++ scope-specifier.
1798 ///
1799 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)1800 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1801                                CXXScopeSpec &SS) {
1802   auto *NNS = SS.getScopeRep();
1803   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
1804     return LookupInSuper(R, NNS->getAsRecordDecl());
1805   else
1806 
1807     return LookupQualifiedName(R, LookupCtx);
1808 }
1809 
1810 /// @brief Performs name lookup for a name that was parsed in the
1811 /// source code, and may contain a C++ scope specifier.
1812 ///
1813 /// This routine is a convenience routine meant to be called from
1814 /// contexts that receive a name and an optional C++ scope specifier
1815 /// (e.g., "N::M::x"). It will then perform either qualified or
1816 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1817 /// respectively) on the given name and return those results. It will
1818 /// perform a special type of lookup for "__super::" scope specifier.
1819 ///
1820 /// @param S        The scope from which unqualified name lookup will
1821 /// begin.
1822 ///
1823 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1824 ///
1825 /// @param EnteringContext Indicates whether we are going to enter the
1826 /// context of the scope-specifier SS (if present).
1827 ///
1828 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1829 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1830                             bool AllowBuiltinCreation, bool EnteringContext) {
1831   if (SS && SS->isInvalid()) {
1832     // When the scope specifier is invalid, don't even look for
1833     // anything.
1834     return false;
1835   }
1836 
1837   if (SS && SS->isSet()) {
1838     NestedNameSpecifier *NNS = SS->getScopeRep();
1839     if (NNS->getKind() == NestedNameSpecifier::Super)
1840       return LookupInSuper(R, NNS->getAsRecordDecl());
1841 
1842     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1843       // We have resolved the scope specifier to a particular declaration
1844       // contex, and will perform name lookup in that context.
1845       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1846         return false;
1847 
1848       R.setContextRange(SS->getRange());
1849       return LookupQualifiedName(R, DC);
1850     }
1851 
1852     // We could not resolve the scope specified to a specific declaration
1853     // context, which means that SS refers to an unknown specialization.
1854     // Name lookup can't find anything in this case.
1855     R.setNotFoundInCurrentInstantiation();
1856     R.setContextRange(SS->getRange());
1857     return false;
1858   }
1859 
1860   // Perform unqualified name lookup starting in the given scope.
1861   return LookupName(R, S, AllowBuiltinCreation);
1862 }
1863 
1864 /// \brief Perform qualified name lookup into all base classes of the given
1865 /// class.
1866 ///
1867 /// \param R captures both the lookup criteria and any lookup results found.
1868 ///
1869 /// \param Class The context in which qualified name lookup will
1870 /// search. Name lookup will search in all base classes merging the results.
1871 ///
1872 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)1873 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
1874   for (const auto &BaseSpec : Class->bases()) {
1875     CXXRecordDecl *RD = cast<CXXRecordDecl>(
1876         BaseSpec.getType()->castAs<RecordType>()->getDecl());
1877     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
1878 	Result.setBaseObjectType(Context.getRecordType(Class));
1879     LookupQualifiedName(Result, RD);
1880     for (auto *Decl : Result)
1881       R.addDecl(Decl);
1882   }
1883 
1884   R.resolveKind();
1885 
1886   return !R.empty();
1887 }
1888 
1889 /// \brief Produce a diagnostic describing the ambiguity that resulted
1890 /// from name lookup.
1891 ///
1892 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)1893 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1894   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1895 
1896   DeclarationName Name = Result.getLookupName();
1897   SourceLocation NameLoc = Result.getNameLoc();
1898   SourceRange LookupRange = Result.getContextRange();
1899 
1900   switch (Result.getAmbiguityKind()) {
1901   case LookupResult::AmbiguousBaseSubobjects: {
1902     CXXBasePaths *Paths = Result.getBasePaths();
1903     QualType SubobjectType = Paths->front().back().Base->getType();
1904     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1905       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1906       << LookupRange;
1907 
1908     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1909     while (isa<CXXMethodDecl>(*Found) &&
1910            cast<CXXMethodDecl>(*Found)->isStatic())
1911       ++Found;
1912 
1913     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1914     break;
1915   }
1916 
1917   case LookupResult::AmbiguousBaseSubobjectTypes: {
1918     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1919       << Name << LookupRange;
1920 
1921     CXXBasePaths *Paths = Result.getBasePaths();
1922     std::set<Decl *> DeclsPrinted;
1923     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1924                                       PathEnd = Paths->end();
1925          Path != PathEnd; ++Path) {
1926       Decl *D = Path->Decls.front();
1927       if (DeclsPrinted.insert(D).second)
1928         Diag(D->getLocation(), diag::note_ambiguous_member_found);
1929     }
1930     break;
1931   }
1932 
1933   case LookupResult::AmbiguousTagHiding: {
1934     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1935 
1936     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1937 
1938     for (auto *D : Result)
1939       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1940         TagDecls.insert(TD);
1941         Diag(TD->getLocation(), diag::note_hidden_tag);
1942       }
1943 
1944     for (auto *D : Result)
1945       if (!isa<TagDecl>(D))
1946         Diag(D->getLocation(), diag::note_hiding_object);
1947 
1948     // For recovery purposes, go ahead and implement the hiding.
1949     LookupResult::Filter F = Result.makeFilter();
1950     while (F.hasNext()) {
1951       if (TagDecls.count(F.next()))
1952         F.erase();
1953     }
1954     F.done();
1955     break;
1956   }
1957 
1958   case LookupResult::AmbiguousReference: {
1959     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1960 
1961     for (auto *D : Result)
1962       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
1963     break;
1964   }
1965   }
1966 }
1967 
1968 namespace {
1969   struct AssociatedLookup {
AssociatedLookup__anon54059c910311::AssociatedLookup1970     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1971                      Sema::AssociatedNamespaceSet &Namespaces,
1972                      Sema::AssociatedClassSet &Classes)
1973       : S(S), Namespaces(Namespaces), Classes(Classes),
1974         InstantiationLoc(InstantiationLoc) {
1975     }
1976 
1977     Sema &S;
1978     Sema::AssociatedNamespaceSet &Namespaces;
1979     Sema::AssociatedClassSet &Classes;
1980     SourceLocation InstantiationLoc;
1981   };
1982 }
1983 
1984 static void
1985 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1986 
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1987 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1988                                       DeclContext *Ctx) {
1989   // Add the associated namespace for this class.
1990 
1991   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1992   // be a locally scoped record.
1993 
1994   // We skip out of inline namespaces. The innermost non-inline namespace
1995   // contains all names of all its nested inline namespaces anyway, so we can
1996   // replace the entire inline namespace tree with its root.
1997   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1998          Ctx->isInlineNamespace())
1999     Ctx = Ctx->getParent();
2000 
2001   if (Ctx->isFileContext())
2002     Namespaces.insert(Ctx->getPrimaryContext());
2003 }
2004 
2005 // \brief Add the associated classes and namespaces for argument-dependent
2006 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2007 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)2008 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2009                                   const TemplateArgument &Arg) {
2010   // C++ [basic.lookup.koenig]p2, last bullet:
2011   //   -- [...] ;
2012   switch (Arg.getKind()) {
2013     case TemplateArgument::Null:
2014       break;
2015 
2016     case TemplateArgument::Type:
2017       // [...] the namespaces and classes associated with the types of the
2018       // template arguments provided for template type parameters (excluding
2019       // template template parameters)
2020       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2021       break;
2022 
2023     case TemplateArgument::Template:
2024     case TemplateArgument::TemplateExpansion: {
2025       // [...] the namespaces in which any template template arguments are
2026       // defined; and the classes in which any member templates used as
2027       // template template arguments are defined.
2028       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2029       if (ClassTemplateDecl *ClassTemplate
2030                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2031         DeclContext *Ctx = ClassTemplate->getDeclContext();
2032         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2033           Result.Classes.insert(EnclosingClass);
2034         // Add the associated namespace for this class.
2035         CollectEnclosingNamespace(Result.Namespaces, Ctx);
2036       }
2037       break;
2038     }
2039 
2040     case TemplateArgument::Declaration:
2041     case TemplateArgument::Integral:
2042     case TemplateArgument::Expression:
2043     case TemplateArgument::NullPtr:
2044       // [Note: non-type template arguments do not contribute to the set of
2045       //  associated namespaces. ]
2046       break;
2047 
2048     case TemplateArgument::Pack:
2049       for (const auto &P : Arg.pack_elements())
2050         addAssociatedClassesAndNamespaces(Result, P);
2051       break;
2052   }
2053 }
2054 
2055 // \brief Add the associated classes and namespaces for
2056 // argument-dependent lookup with an argument of class type
2057 // (C++ [basic.lookup.koenig]p2).
2058 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2059 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2060                                   CXXRecordDecl *Class) {
2061 
2062   // Just silently ignore anything whose name is __va_list_tag.
2063   if (Class->getDeclName() == Result.S.VAListTagName)
2064     return;
2065 
2066   // C++ [basic.lookup.koenig]p2:
2067   //   [...]
2068   //     -- If T is a class type (including unions), its associated
2069   //        classes are: the class itself; the class of which it is a
2070   //        member, if any; and its direct and indirect base
2071   //        classes. Its associated namespaces are the namespaces in
2072   //        which its associated classes are defined.
2073 
2074   // Add the class of which it is a member, if any.
2075   DeclContext *Ctx = Class->getDeclContext();
2076   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2077     Result.Classes.insert(EnclosingClass);
2078   // Add the associated namespace for this class.
2079   CollectEnclosingNamespace(Result.Namespaces, Ctx);
2080 
2081   // Add the class itself. If we've already seen this class, we don't
2082   // need to visit base classes.
2083   //
2084   // FIXME: That's not correct, we may have added this class only because it
2085   // was the enclosing class of another class, and in that case we won't have
2086   // added its base classes yet.
2087   if (!Result.Classes.insert(Class).second)
2088     return;
2089 
2090   // -- If T is a template-id, its associated namespaces and classes are
2091   //    the namespace in which the template is defined; for member
2092   //    templates, the member template's class; the namespaces and classes
2093   //    associated with the types of the template arguments provided for
2094   //    template type parameters (excluding template template parameters); the
2095   //    namespaces in which any template template arguments are defined; and
2096   //    the classes in which any member templates used as template template
2097   //    arguments are defined. [Note: non-type template arguments do not
2098   //    contribute to the set of associated namespaces. ]
2099   if (ClassTemplateSpecializationDecl *Spec
2100         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2101     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2102     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2103       Result.Classes.insert(EnclosingClass);
2104     // Add the associated namespace for this class.
2105     CollectEnclosingNamespace(Result.Namespaces, Ctx);
2106 
2107     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2108     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2109       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2110   }
2111 
2112   // Only recurse into base classes for complete types.
2113   if (!Class->hasDefinition())
2114     return;
2115 
2116   // Add direct and indirect base classes along with their associated
2117   // namespaces.
2118   SmallVector<CXXRecordDecl *, 32> Bases;
2119   Bases.push_back(Class);
2120   while (!Bases.empty()) {
2121     // Pop this class off the stack.
2122     Class = Bases.pop_back_val();
2123 
2124     // Visit the base classes.
2125     for (const auto &Base : Class->bases()) {
2126       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2127       // In dependent contexts, we do ADL twice, and the first time around,
2128       // the base type might be a dependent TemplateSpecializationType, or a
2129       // TemplateTypeParmType. If that happens, simply ignore it.
2130       // FIXME: If we want to support export, we probably need to add the
2131       // namespace of the template in a TemplateSpecializationType, or even
2132       // the classes and namespaces of known non-dependent arguments.
2133       if (!BaseType)
2134         continue;
2135       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2136       if (Result.Classes.insert(BaseDecl).second) {
2137         // Find the associated namespace for this base class.
2138         DeclContext *BaseCtx = BaseDecl->getDeclContext();
2139         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2140 
2141         // Make sure we visit the bases of this base class.
2142         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2143           Bases.push_back(BaseDecl);
2144       }
2145     }
2146   }
2147 }
2148 
2149 // \brief Add the associated classes and namespaces for
2150 // argument-dependent lookup with an argument of type T
2151 // (C++ [basic.lookup.koenig]p2).
2152 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2153 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2154   // C++ [basic.lookup.koenig]p2:
2155   //
2156   //   For each argument type T in the function call, there is a set
2157   //   of zero or more associated namespaces and a set of zero or more
2158   //   associated classes to be considered. The sets of namespaces and
2159   //   classes is determined entirely by the types of the function
2160   //   arguments (and the namespace of any template template
2161   //   argument). Typedef names and using-declarations used to specify
2162   //   the types do not contribute to this set. The sets of namespaces
2163   //   and classes are determined in the following way:
2164 
2165   SmallVector<const Type *, 16> Queue;
2166   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2167 
2168   while (true) {
2169     switch (T->getTypeClass()) {
2170 
2171 #define TYPE(Class, Base)
2172 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2173 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2174 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2175 #define ABSTRACT_TYPE(Class, Base)
2176 #include "clang/AST/TypeNodes.def"
2177       // T is canonical.  We can also ignore dependent types because
2178       // we don't need to do ADL at the definition point, but if we
2179       // wanted to implement template export (or if we find some other
2180       // use for associated classes and namespaces...) this would be
2181       // wrong.
2182       break;
2183 
2184     //    -- If T is a pointer to U or an array of U, its associated
2185     //       namespaces and classes are those associated with U.
2186     case Type::Pointer:
2187       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2188       continue;
2189     case Type::ConstantArray:
2190     case Type::IncompleteArray:
2191     case Type::VariableArray:
2192       T = cast<ArrayType>(T)->getElementType().getTypePtr();
2193       continue;
2194 
2195     //     -- If T is a fundamental type, its associated sets of
2196     //        namespaces and classes are both empty.
2197     case Type::Builtin:
2198       break;
2199 
2200     //     -- If T is a class type (including unions), its associated
2201     //        classes are: the class itself; the class of which it is a
2202     //        member, if any; and its direct and indirect base
2203     //        classes. Its associated namespaces are the namespaces in
2204     //        which its associated classes are defined.
2205     case Type::Record: {
2206       Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
2207                                    /*no diagnostic*/ 0);
2208       CXXRecordDecl *Class
2209         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2210       addAssociatedClassesAndNamespaces(Result, Class);
2211       break;
2212     }
2213 
2214     //     -- If T is an enumeration type, its associated namespace is
2215     //        the namespace in which it is defined. If it is class
2216     //        member, its associated class is the member's class; else
2217     //        it has no associated class.
2218     case Type::Enum: {
2219       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2220 
2221       DeclContext *Ctx = Enum->getDeclContext();
2222       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2223         Result.Classes.insert(EnclosingClass);
2224 
2225       // Add the associated namespace for this class.
2226       CollectEnclosingNamespace(Result.Namespaces, Ctx);
2227 
2228       break;
2229     }
2230 
2231     //     -- If T is a function type, its associated namespaces and
2232     //        classes are those associated with the function parameter
2233     //        types and those associated with the return type.
2234     case Type::FunctionProto: {
2235       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2236       for (const auto &Arg : Proto->param_types())
2237         Queue.push_back(Arg.getTypePtr());
2238       // fallthrough
2239     }
2240     case Type::FunctionNoProto: {
2241       const FunctionType *FnType = cast<FunctionType>(T);
2242       T = FnType->getReturnType().getTypePtr();
2243       continue;
2244     }
2245 
2246     //     -- If T is a pointer to a member function of a class X, its
2247     //        associated namespaces and classes are those associated
2248     //        with the function parameter types and return type,
2249     //        together with those associated with X.
2250     //
2251     //     -- If T is a pointer to a data member of class X, its
2252     //        associated namespaces and classes are those associated
2253     //        with the member type together with those associated with
2254     //        X.
2255     case Type::MemberPointer: {
2256       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2257 
2258       // Queue up the class type into which this points.
2259       Queue.push_back(MemberPtr->getClass());
2260 
2261       // And directly continue with the pointee type.
2262       T = MemberPtr->getPointeeType().getTypePtr();
2263       continue;
2264     }
2265 
2266     // As an extension, treat this like a normal pointer.
2267     case Type::BlockPointer:
2268       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2269       continue;
2270 
2271     // References aren't covered by the standard, but that's such an
2272     // obvious defect that we cover them anyway.
2273     case Type::LValueReference:
2274     case Type::RValueReference:
2275       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2276       continue;
2277 
2278     // These are fundamental types.
2279     case Type::Vector:
2280     case Type::ExtVector:
2281     case Type::Complex:
2282       break;
2283 
2284     // Non-deduced auto types only get here for error cases.
2285     case Type::Auto:
2286       break;
2287 
2288     // If T is an Objective-C object or interface type, or a pointer to an
2289     // object or interface type, the associated namespace is the global
2290     // namespace.
2291     case Type::ObjCObject:
2292     case Type::ObjCInterface:
2293     case Type::ObjCObjectPointer:
2294       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2295       break;
2296 
2297     // Atomic types are just wrappers; use the associations of the
2298     // contained type.
2299     case Type::Atomic:
2300       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2301       continue;
2302     }
2303 
2304     if (Queue.empty())
2305       break;
2306     T = Queue.pop_back_val();
2307   }
2308 }
2309 
2310 /// \brief Find the associated classes and namespaces for
2311 /// argument-dependent lookup for a call with the given set of
2312 /// arguments.
2313 ///
2314 /// This routine computes the sets of associated classes and associated
2315 /// namespaces searched by argument-dependent lookup
2316 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2317 void Sema::FindAssociatedClassesAndNamespaces(
2318     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2319     AssociatedNamespaceSet &AssociatedNamespaces,
2320     AssociatedClassSet &AssociatedClasses) {
2321   AssociatedNamespaces.clear();
2322   AssociatedClasses.clear();
2323 
2324   AssociatedLookup Result(*this, InstantiationLoc,
2325                           AssociatedNamespaces, AssociatedClasses);
2326 
2327   // C++ [basic.lookup.koenig]p2:
2328   //   For each argument type T in the function call, there is a set
2329   //   of zero or more associated namespaces and a set of zero or more
2330   //   associated classes to be considered. The sets of namespaces and
2331   //   classes is determined entirely by the types of the function
2332   //   arguments (and the namespace of any template template
2333   //   argument).
2334   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2335     Expr *Arg = Args[ArgIdx];
2336 
2337     if (Arg->getType() != Context.OverloadTy) {
2338       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2339       continue;
2340     }
2341 
2342     // [...] In addition, if the argument is the name or address of a
2343     // set of overloaded functions and/or function templates, its
2344     // associated classes and namespaces are the union of those
2345     // associated with each of the members of the set: the namespace
2346     // in which the function or function template is defined and the
2347     // classes and namespaces associated with its (non-dependent)
2348     // parameter types and return type.
2349     Arg = Arg->IgnoreParens();
2350     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2351       if (unaryOp->getOpcode() == UO_AddrOf)
2352         Arg = unaryOp->getSubExpr();
2353 
2354     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2355     if (!ULE) continue;
2356 
2357     for (const auto *D : ULE->decls()) {
2358       // Look through any using declarations to find the underlying function.
2359       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2360 
2361       // Add the classes and namespaces associated with the parameter
2362       // types and return type of this function.
2363       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2364     }
2365   }
2366 }
2367 
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2368 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2369                                   SourceLocation Loc,
2370                                   LookupNameKind NameKind,
2371                                   RedeclarationKind Redecl) {
2372   LookupResult R(*this, Name, Loc, NameKind, Redecl);
2373   LookupName(R, S);
2374   return R.getAsSingle<NamedDecl>();
2375 }
2376 
2377 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2378 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2379                                        SourceLocation IdLoc,
2380                                        RedeclarationKind Redecl) {
2381   Decl *D = LookupSingleName(TUScope, II, IdLoc,
2382                              LookupObjCProtocolName, Redecl);
2383   return cast_or_null<ObjCProtocolDecl>(D);
2384 }
2385 
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2386 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2387                                         QualType T1, QualType T2,
2388                                         UnresolvedSetImpl &Functions) {
2389   // C++ [over.match.oper]p3:
2390   //     -- The set of non-member candidates is the result of the
2391   //        unqualified lookup of operator@ in the context of the
2392   //        expression according to the usual rules for name lookup in
2393   //        unqualified function calls (3.4.2) except that all member
2394   //        functions are ignored.
2395   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2396   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2397   LookupName(Operators, S);
2398 
2399   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2400   Functions.append(Operators.begin(), Operators.end());
2401 }
2402 
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2403 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2404                                                             CXXSpecialMember SM,
2405                                                             bool ConstArg,
2406                                                             bool VolatileArg,
2407                                                             bool RValueThis,
2408                                                             bool ConstThis,
2409                                                             bool VolatileThis) {
2410   assert(CanDeclareSpecialMemberFunction(RD) &&
2411          "doing special member lookup into record that isn't fully complete");
2412   RD = RD->getDefinition();
2413   if (RValueThis || ConstThis || VolatileThis)
2414     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2415            "constructors and destructors always have unqualified lvalue this");
2416   if (ConstArg || VolatileArg)
2417     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2418            "parameter-less special members can't have qualified arguments");
2419 
2420   llvm::FoldingSetNodeID ID;
2421   ID.AddPointer(RD);
2422   ID.AddInteger(SM);
2423   ID.AddInteger(ConstArg);
2424   ID.AddInteger(VolatileArg);
2425   ID.AddInteger(RValueThis);
2426   ID.AddInteger(ConstThis);
2427   ID.AddInteger(VolatileThis);
2428 
2429   void *InsertPoint;
2430   SpecialMemberOverloadResult *Result =
2431     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2432 
2433   // This was already cached
2434   if (Result)
2435     return Result;
2436 
2437   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2438   Result = new (Result) SpecialMemberOverloadResult(ID);
2439   SpecialMemberCache.InsertNode(Result, InsertPoint);
2440 
2441   if (SM == CXXDestructor) {
2442     if (RD->needsImplicitDestructor())
2443       DeclareImplicitDestructor(RD);
2444     CXXDestructorDecl *DD = RD->getDestructor();
2445     assert(DD && "record without a destructor");
2446     Result->setMethod(DD);
2447     Result->setKind(DD->isDeleted() ?
2448                     SpecialMemberOverloadResult::NoMemberOrDeleted :
2449                     SpecialMemberOverloadResult::Success);
2450     return Result;
2451   }
2452 
2453   // Prepare for overload resolution. Here we construct a synthetic argument
2454   // if necessary and make sure that implicit functions are declared.
2455   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2456   DeclarationName Name;
2457   Expr *Arg = nullptr;
2458   unsigned NumArgs;
2459 
2460   QualType ArgType = CanTy;
2461   ExprValueKind VK = VK_LValue;
2462 
2463   if (SM == CXXDefaultConstructor) {
2464     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2465     NumArgs = 0;
2466     if (RD->needsImplicitDefaultConstructor())
2467       DeclareImplicitDefaultConstructor(RD);
2468   } else {
2469     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2470       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2471       if (RD->needsImplicitCopyConstructor())
2472         DeclareImplicitCopyConstructor(RD);
2473       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2474         DeclareImplicitMoveConstructor(RD);
2475     } else {
2476       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2477       if (RD->needsImplicitCopyAssignment())
2478         DeclareImplicitCopyAssignment(RD);
2479       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2480         DeclareImplicitMoveAssignment(RD);
2481     }
2482 
2483     if (ConstArg)
2484       ArgType.addConst();
2485     if (VolatileArg)
2486       ArgType.addVolatile();
2487 
2488     // This isn't /really/ specified by the standard, but it's implied
2489     // we should be working from an RValue in the case of move to ensure
2490     // that we prefer to bind to rvalue references, and an LValue in the
2491     // case of copy to ensure we don't bind to rvalue references.
2492     // Possibly an XValue is actually correct in the case of move, but
2493     // there is no semantic difference for class types in this restricted
2494     // case.
2495     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2496       VK = VK_LValue;
2497     else
2498       VK = VK_RValue;
2499   }
2500 
2501   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2502 
2503   if (SM != CXXDefaultConstructor) {
2504     NumArgs = 1;
2505     Arg = &FakeArg;
2506   }
2507 
2508   // Create the object argument
2509   QualType ThisTy = CanTy;
2510   if (ConstThis)
2511     ThisTy.addConst();
2512   if (VolatileThis)
2513     ThisTy.addVolatile();
2514   Expr::Classification Classification =
2515     OpaqueValueExpr(SourceLocation(), ThisTy,
2516                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2517 
2518   // Now we perform lookup on the name we computed earlier and do overload
2519   // resolution. Lookup is only performed directly into the class since there
2520   // will always be a (possibly implicit) declaration to shadow any others.
2521   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2522   DeclContext::lookup_result R = RD->lookup(Name);
2523 
2524   if (R.empty()) {
2525     // We might have no default constructor because we have a lambda's closure
2526     // type, rather than because there's some other declared constructor.
2527     // Every class has a copy/move constructor, copy/move assignment, and
2528     // destructor.
2529     assert(SM == CXXDefaultConstructor &&
2530            "lookup for a constructor or assignment operator was empty");
2531     Result->setMethod(nullptr);
2532     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2533     return Result;
2534   }
2535 
2536   // Copy the candidates as our processing of them may load new declarations
2537   // from an external source and invalidate lookup_result.
2538   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2539 
2540   for (auto *Cand : Candidates) {
2541     if (Cand->isInvalidDecl())
2542       continue;
2543 
2544     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2545       // FIXME: [namespace.udecl]p15 says that we should only consider a
2546       // using declaration here if it does not match a declaration in the
2547       // derived class. We do not implement this correctly in other cases
2548       // either.
2549       Cand = U->getTargetDecl();
2550 
2551       if (Cand->isInvalidDecl())
2552         continue;
2553     }
2554 
2555     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2556       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2557         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2558                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
2559                            OCS, true);
2560       else
2561         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2562                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2563     } else if (FunctionTemplateDecl *Tmpl =
2564                  dyn_cast<FunctionTemplateDecl>(Cand)) {
2565       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2566         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2567                                    RD, nullptr, ThisTy, Classification,
2568                                    llvm::makeArrayRef(&Arg, NumArgs),
2569                                    OCS, true);
2570       else
2571         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2572                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2573                                      OCS, true);
2574     } else {
2575       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2576     }
2577   }
2578 
2579   OverloadCandidateSet::iterator Best;
2580   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2581     case OR_Success:
2582       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2583       Result->setKind(SpecialMemberOverloadResult::Success);
2584       break;
2585 
2586     case OR_Deleted:
2587       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2588       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2589       break;
2590 
2591     case OR_Ambiguous:
2592       Result->setMethod(nullptr);
2593       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2594       break;
2595 
2596     case OR_No_Viable_Function:
2597       Result->setMethod(nullptr);
2598       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2599       break;
2600   }
2601 
2602   return Result;
2603 }
2604 
2605 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2606 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2607   SpecialMemberOverloadResult *Result =
2608     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2609                         false, false);
2610 
2611   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2612 }
2613 
2614 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2615 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2616                                                    unsigned Quals) {
2617   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2618          "non-const, non-volatile qualifiers for copy ctor arg");
2619   SpecialMemberOverloadResult *Result =
2620     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2621                         Quals & Qualifiers::Volatile, false, false, false);
2622 
2623   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2624 }
2625 
2626 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2627 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2628                                                   unsigned Quals) {
2629   SpecialMemberOverloadResult *Result =
2630     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2631                         Quals & Qualifiers::Volatile, false, false, false);
2632 
2633   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2634 }
2635 
2636 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2637 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2638   // If the implicit constructors have not yet been declared, do so now.
2639   if (CanDeclareSpecialMemberFunction(Class)) {
2640     if (Class->needsImplicitDefaultConstructor())
2641       DeclareImplicitDefaultConstructor(Class);
2642     if (Class->needsImplicitCopyConstructor())
2643       DeclareImplicitCopyConstructor(Class);
2644     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2645       DeclareImplicitMoveConstructor(Class);
2646   }
2647 
2648   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2649   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2650   return Class->lookup(Name);
2651 }
2652 
2653 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2654 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2655                                              unsigned Quals, bool RValueThis,
2656                                              unsigned ThisQuals) {
2657   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2658          "non-const, non-volatile qualifiers for copy assignment arg");
2659   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2660          "non-const, non-volatile qualifiers for copy assignment this");
2661   SpecialMemberOverloadResult *Result =
2662     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2663                         Quals & Qualifiers::Volatile, RValueThis,
2664                         ThisQuals & Qualifiers::Const,
2665                         ThisQuals & Qualifiers::Volatile);
2666 
2667   return Result->getMethod();
2668 }
2669 
2670 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2671 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2672                                             unsigned Quals,
2673                                             bool RValueThis,
2674                                             unsigned ThisQuals) {
2675   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2676          "non-const, non-volatile qualifiers for copy assignment this");
2677   SpecialMemberOverloadResult *Result =
2678     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2679                         Quals & Qualifiers::Volatile, RValueThis,
2680                         ThisQuals & Qualifiers::Const,
2681                         ThisQuals & Qualifiers::Volatile);
2682 
2683   return Result->getMethod();
2684 }
2685 
2686 /// \brief Look for the destructor of the given class.
2687 ///
2688 /// During semantic analysis, this routine should be used in lieu of
2689 /// CXXRecordDecl::getDestructor().
2690 ///
2691 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2692 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2693   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2694                                                      false, false, false,
2695                                                      false, false)->getMethod());
2696 }
2697 
2698 /// LookupLiteralOperator - Determine which literal operator should be used for
2699 /// a user-defined literal, per C++11 [lex.ext].
2700 ///
2701 /// Normal overload resolution is not used to select which literal operator to
2702 /// call for a user-defined literal. Look up the provided literal operator name,
2703 /// and filter the results to the appropriate set for the given argument types.
2704 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplate)2705 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2706                             ArrayRef<QualType> ArgTys,
2707                             bool AllowRaw, bool AllowTemplate,
2708                             bool AllowStringTemplate) {
2709   LookupName(R, S);
2710   assert(R.getResultKind() != LookupResult::Ambiguous &&
2711          "literal operator lookup can't be ambiguous");
2712 
2713   // Filter the lookup results appropriately.
2714   LookupResult::Filter F = R.makeFilter();
2715 
2716   bool FoundRaw = false;
2717   bool FoundTemplate = false;
2718   bool FoundStringTemplate = false;
2719   bool FoundExactMatch = false;
2720 
2721   while (F.hasNext()) {
2722     Decl *D = F.next();
2723     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2724       D = USD->getTargetDecl();
2725 
2726     // If the declaration we found is invalid, skip it.
2727     if (D->isInvalidDecl()) {
2728       F.erase();
2729       continue;
2730     }
2731 
2732     bool IsRaw = false;
2733     bool IsTemplate = false;
2734     bool IsStringTemplate = false;
2735     bool IsExactMatch = false;
2736 
2737     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2738       if (FD->getNumParams() == 1 &&
2739           FD->getParamDecl(0)->getType()->getAs<PointerType>())
2740         IsRaw = true;
2741       else if (FD->getNumParams() == ArgTys.size()) {
2742         IsExactMatch = true;
2743         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2744           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2745           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2746             IsExactMatch = false;
2747             break;
2748           }
2749         }
2750       }
2751     }
2752     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
2753       TemplateParameterList *Params = FD->getTemplateParameters();
2754       if (Params->size() == 1)
2755         IsTemplate = true;
2756       else
2757         IsStringTemplate = true;
2758     }
2759 
2760     if (IsExactMatch) {
2761       FoundExactMatch = true;
2762       AllowRaw = false;
2763       AllowTemplate = false;
2764       AllowStringTemplate = false;
2765       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
2766         // Go through again and remove the raw and template decls we've
2767         // already found.
2768         F.restart();
2769         FoundRaw = FoundTemplate = FoundStringTemplate = false;
2770       }
2771     } else if (AllowRaw && IsRaw) {
2772       FoundRaw = true;
2773     } else if (AllowTemplate && IsTemplate) {
2774       FoundTemplate = true;
2775     } else if (AllowStringTemplate && IsStringTemplate) {
2776       FoundStringTemplate = true;
2777     } else {
2778       F.erase();
2779     }
2780   }
2781 
2782   F.done();
2783 
2784   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2785   // parameter type, that is used in preference to a raw literal operator
2786   // or literal operator template.
2787   if (FoundExactMatch)
2788     return LOLR_Cooked;
2789 
2790   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2791   // operator template, but not both.
2792   if (FoundRaw && FoundTemplate) {
2793     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2794     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2795       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
2796     return LOLR_Error;
2797   }
2798 
2799   if (FoundRaw)
2800     return LOLR_Raw;
2801 
2802   if (FoundTemplate)
2803     return LOLR_Template;
2804 
2805   if (FoundStringTemplate)
2806     return LOLR_StringTemplate;
2807 
2808   // Didn't find anything we could use.
2809   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2810     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2811     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
2812     << (AllowTemplate || AllowStringTemplate);
2813   return LOLR_Error;
2814 }
2815 
insert(NamedDecl * New)2816 void ADLResult::insert(NamedDecl *New) {
2817   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2818 
2819   // If we haven't yet seen a decl for this key, or the last decl
2820   // was exactly this one, we're done.
2821   if (Old == nullptr || Old == New) {
2822     Old = New;
2823     return;
2824   }
2825 
2826   // Otherwise, decide which is a more recent redeclaration.
2827   FunctionDecl *OldFD = Old->getAsFunction();
2828   FunctionDecl *NewFD = New->getAsFunction();
2829 
2830   FunctionDecl *Cursor = NewFD;
2831   while (true) {
2832     Cursor = Cursor->getPreviousDecl();
2833 
2834     // If we got to the end without finding OldFD, OldFD is the newer
2835     // declaration;  leave things as they are.
2836     if (!Cursor) return;
2837 
2838     // If we do find OldFD, then NewFD is newer.
2839     if (Cursor == OldFD) break;
2840 
2841     // Otherwise, keep looking.
2842   }
2843 
2844   Old = New;
2845 }
2846 
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)2847 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
2848                                    ArrayRef<Expr *> Args, ADLResult &Result) {
2849   // Find all of the associated namespaces and classes based on the
2850   // arguments we have.
2851   AssociatedNamespaceSet AssociatedNamespaces;
2852   AssociatedClassSet AssociatedClasses;
2853   FindAssociatedClassesAndNamespaces(Loc, Args,
2854                                      AssociatedNamespaces,
2855                                      AssociatedClasses);
2856 
2857   // C++ [basic.lookup.argdep]p3:
2858   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2859   //   and let Y be the lookup set produced by argument dependent
2860   //   lookup (defined as follows). If X contains [...] then Y is
2861   //   empty. Otherwise Y is the set of declarations found in the
2862   //   namespaces associated with the argument types as described
2863   //   below. The set of declarations found by the lookup of the name
2864   //   is the union of X and Y.
2865   //
2866   // Here, we compute Y and add its members to the overloaded
2867   // candidate set.
2868   for (auto *NS : AssociatedNamespaces) {
2869     //   When considering an associated namespace, the lookup is the
2870     //   same as the lookup performed when the associated namespace is
2871     //   used as a qualifier (3.4.3.2) except that:
2872     //
2873     //     -- Any using-directives in the associated namespace are
2874     //        ignored.
2875     //
2876     //     -- Any namespace-scope friend functions declared in
2877     //        associated classes are visible within their respective
2878     //        namespaces even if they are not visible during an ordinary
2879     //        lookup (11.4).
2880     DeclContext::lookup_result R = NS->lookup(Name);
2881     for (auto *D : R) {
2882       // If the only declaration here is an ordinary friend, consider
2883       // it only if it was declared in an associated classes.
2884       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
2885         // If it's neither ordinarily visible nor a friend, we can't find it.
2886         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
2887           continue;
2888 
2889         bool DeclaredInAssociatedClass = false;
2890         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2891           DeclContext *LexDC = DI->getLexicalDeclContext();
2892           if (isa<CXXRecordDecl>(LexDC) &&
2893               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2894             DeclaredInAssociatedClass = true;
2895             break;
2896           }
2897         }
2898         if (!DeclaredInAssociatedClass)
2899           continue;
2900       }
2901 
2902       if (isa<UsingShadowDecl>(D))
2903         D = cast<UsingShadowDecl>(D)->getTargetDecl();
2904 
2905       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
2906         continue;
2907 
2908       Result.insert(D);
2909     }
2910   }
2911 }
2912 
2913 //----------------------------------------------------------------------------
2914 // Search for all visible declarations.
2915 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2916 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2917 
includeHiddenDecls() const2918 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
2919 
2920 namespace {
2921 
2922 class ShadowContextRAII;
2923 
2924 class VisibleDeclsRecord {
2925 public:
2926   /// \brief An entry in the shadow map, which is optimized to store a
2927   /// single declaration (the common case) but can also store a list
2928   /// of declarations.
2929   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2930 
2931 private:
2932   /// \brief A mapping from declaration names to the declarations that have
2933   /// this name within a particular scope.
2934   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2935 
2936   /// \brief A list of shadow maps, which is used to model name hiding.
2937   std::list<ShadowMap> ShadowMaps;
2938 
2939   /// \brief The declaration contexts we have already visited.
2940   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2941 
2942   friend class ShadowContextRAII;
2943 
2944 public:
2945   /// \brief Determine whether we have already visited this context
2946   /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2947   bool visitedContext(DeclContext *Ctx) {
2948     return !VisitedContexts.insert(Ctx).second;
2949   }
2950 
alreadyVisitedContext(DeclContext * Ctx)2951   bool alreadyVisitedContext(DeclContext *Ctx) {
2952     return VisitedContexts.count(Ctx);
2953   }
2954 
2955   /// \brief Determine whether the given declaration is hidden in the
2956   /// current scope.
2957   ///
2958   /// \returns the declaration that hides the given declaration, or
2959   /// NULL if no such declaration exists.
2960   NamedDecl *checkHidden(NamedDecl *ND);
2961 
2962   /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2963   void add(NamedDecl *ND) {
2964     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2965   }
2966 };
2967 
2968 /// \brief RAII object that records when we've entered a shadow context.
2969 class ShadowContextRAII {
2970   VisibleDeclsRecord &Visible;
2971 
2972   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2973 
2974 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2975   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2976     Visible.ShadowMaps.push_back(ShadowMap());
2977   }
2978 
~ShadowContextRAII()2979   ~ShadowContextRAII() {
2980     Visible.ShadowMaps.pop_back();
2981   }
2982 };
2983 
2984 } // end anonymous namespace
2985 
checkHidden(NamedDecl * ND)2986 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2987   // Look through using declarations.
2988   ND = ND->getUnderlyingDecl();
2989 
2990   unsigned IDNS = ND->getIdentifierNamespace();
2991   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2992   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2993        SM != SMEnd; ++SM) {
2994     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2995     if (Pos == SM->end())
2996       continue;
2997 
2998     for (auto *D : Pos->second) {
2999       // A tag declaration does not hide a non-tag declaration.
3000       if (D->hasTagIdentifierNamespace() &&
3001           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3002                    Decl::IDNS_ObjCProtocol)))
3003         continue;
3004 
3005       // Protocols are in distinct namespaces from everything else.
3006       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3007            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3008           D->getIdentifierNamespace() != IDNS)
3009         continue;
3010 
3011       // Functions and function templates in the same scope overload
3012       // rather than hide.  FIXME: Look for hiding based on function
3013       // signatures!
3014       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3015           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3016           SM == ShadowMaps.rbegin())
3017         continue;
3018 
3019       // We've found a declaration that hides this one.
3020       return D;
3021     }
3022   }
3023 
3024   return nullptr;
3025 }
3026 
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3027 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3028                                bool QualifiedNameLookup,
3029                                bool InBaseClass,
3030                                VisibleDeclConsumer &Consumer,
3031                                VisibleDeclsRecord &Visited) {
3032   if (!Ctx)
3033     return;
3034 
3035   // Make sure we don't visit the same context twice.
3036   if (Visited.visitedContext(Ctx->getPrimaryContext()))
3037     return;
3038 
3039   // Outside C++, lookup results for the TU live on identifiers.
3040   if (isa<TranslationUnitDecl>(Ctx) &&
3041       !Result.getSema().getLangOpts().CPlusPlus) {
3042     auto &S = Result.getSema();
3043     auto &Idents = S.Context.Idents;
3044 
3045     // Ensure all external identifiers are in the identifier table.
3046     if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3047       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3048       for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3049         Idents.get(Name);
3050     }
3051 
3052     // Walk all lookup results in the TU for each identifier.
3053     for (const auto &Ident : Idents) {
3054       for (auto I = S.IdResolver.begin(Ident.getValue()),
3055                 E = S.IdResolver.end();
3056            I != E; ++I) {
3057         if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3058           if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3059             Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3060             Visited.add(ND);
3061           }
3062         }
3063       }
3064     }
3065 
3066     return;
3067   }
3068 
3069   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3070     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3071 
3072   // Enumerate all of the results in this context.
3073   for (DeclContextLookupResult R : Ctx->lookups()) {
3074     for (auto *D : R) {
3075       if (auto *ND = Result.getAcceptableDecl(D)) {
3076         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3077         Visited.add(ND);
3078       }
3079     }
3080   }
3081 
3082   // Traverse using directives for qualified name lookup.
3083   if (QualifiedNameLookup) {
3084     ShadowContextRAII Shadow(Visited);
3085     for (auto I : Ctx->using_directives()) {
3086       LookupVisibleDecls(I->getNominatedNamespace(), Result,
3087                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
3088     }
3089   }
3090 
3091   // Traverse the contexts of inherited C++ classes.
3092   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3093     if (!Record->hasDefinition())
3094       return;
3095 
3096     for (const auto &B : Record->bases()) {
3097       QualType BaseType = B.getType();
3098 
3099       // Don't look into dependent bases, because name lookup can't look
3100       // there anyway.
3101       if (BaseType->isDependentType())
3102         continue;
3103 
3104       const RecordType *Record = BaseType->getAs<RecordType>();
3105       if (!Record)
3106         continue;
3107 
3108       // FIXME: It would be nice to be able to determine whether referencing
3109       // a particular member would be ambiguous. For example, given
3110       //
3111       //   struct A { int member; };
3112       //   struct B { int member; };
3113       //   struct C : A, B { };
3114       //
3115       //   void f(C *c) { c->### }
3116       //
3117       // accessing 'member' would result in an ambiguity. However, we
3118       // could be smart enough to qualify the member with the base
3119       // class, e.g.,
3120       //
3121       //   c->B::member
3122       //
3123       // or
3124       //
3125       //   c->A::member
3126 
3127       // Find results in this base class (and its bases).
3128       ShadowContextRAII Shadow(Visited);
3129       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3130                          true, Consumer, Visited);
3131     }
3132   }
3133 
3134   // Traverse the contexts of Objective-C classes.
3135   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3136     // Traverse categories.
3137     for (auto *Cat : IFace->visible_categories()) {
3138       ShadowContextRAII Shadow(Visited);
3139       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3140                          Consumer, Visited);
3141     }
3142 
3143     // Traverse protocols.
3144     for (auto *I : IFace->all_referenced_protocols()) {
3145       ShadowContextRAII Shadow(Visited);
3146       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3147                          Visited);
3148     }
3149 
3150     // Traverse the superclass.
3151     if (IFace->getSuperClass()) {
3152       ShadowContextRAII Shadow(Visited);
3153       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3154                          true, Consumer, Visited);
3155     }
3156 
3157     // If there is an implementation, traverse it. We do this to find
3158     // synthesized ivars.
3159     if (IFace->getImplementation()) {
3160       ShadowContextRAII Shadow(Visited);
3161       LookupVisibleDecls(IFace->getImplementation(), Result,
3162                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
3163     }
3164   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3165     for (auto *I : Protocol->protocols()) {
3166       ShadowContextRAII Shadow(Visited);
3167       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3168                          Visited);
3169     }
3170   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3171     for (auto *I : Category->protocols()) {
3172       ShadowContextRAII Shadow(Visited);
3173       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3174                          Visited);
3175     }
3176 
3177     // If there is an implementation, traverse it.
3178     if (Category->getImplementation()) {
3179       ShadowContextRAII Shadow(Visited);
3180       LookupVisibleDecls(Category->getImplementation(), Result,
3181                          QualifiedNameLookup, true, Consumer, Visited);
3182     }
3183   }
3184 }
3185 
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3186 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3187                                UnqualUsingDirectiveSet &UDirs,
3188                                VisibleDeclConsumer &Consumer,
3189                                VisibleDeclsRecord &Visited) {
3190   if (!S)
3191     return;
3192 
3193   if (!S->getEntity() ||
3194       (!S->getParent() &&
3195        !Visited.alreadyVisitedContext(S->getEntity())) ||
3196       (S->getEntity())->isFunctionOrMethod()) {
3197     FindLocalExternScope FindLocals(Result);
3198     // Walk through the declarations in this Scope.
3199     for (auto *D : S->decls()) {
3200       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3201         if ((ND = Result.getAcceptableDecl(ND))) {
3202           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3203           Visited.add(ND);
3204         }
3205     }
3206   }
3207 
3208   // FIXME: C++ [temp.local]p8
3209   DeclContext *Entity = nullptr;
3210   if (S->getEntity()) {
3211     // Look into this scope's declaration context, along with any of its
3212     // parent lookup contexts (e.g., enclosing classes), up to the point
3213     // where we hit the context stored in the next outer scope.
3214     Entity = S->getEntity();
3215     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3216 
3217     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3218          Ctx = Ctx->getLookupParent()) {
3219       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3220         if (Method->isInstanceMethod()) {
3221           // For instance methods, look for ivars in the method's interface.
3222           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3223                                   Result.getNameLoc(), Sema::LookupMemberName);
3224           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3225             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3226                                /*InBaseClass=*/false, Consumer, Visited);
3227           }
3228         }
3229 
3230         // We've already performed all of the name lookup that we need
3231         // to for Objective-C methods; the next context will be the
3232         // outer scope.
3233         break;
3234       }
3235 
3236       if (Ctx->isFunctionOrMethod())
3237         continue;
3238 
3239       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3240                          /*InBaseClass=*/false, Consumer, Visited);
3241     }
3242   } else if (!S->getParent()) {
3243     // Look into the translation unit scope. We walk through the translation
3244     // unit's declaration context, because the Scope itself won't have all of
3245     // the declarations if we loaded a precompiled header.
3246     // FIXME: We would like the translation unit's Scope object to point to the
3247     // translation unit, so we don't need this special "if" branch. However,
3248     // doing so would force the normal C++ name-lookup code to look into the
3249     // translation unit decl when the IdentifierInfo chains would suffice.
3250     // Once we fix that problem (which is part of a more general "don't look
3251     // in DeclContexts unless we have to" optimization), we can eliminate this.
3252     Entity = Result.getSema().Context.getTranslationUnitDecl();
3253     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3254                        /*InBaseClass=*/false, Consumer, Visited);
3255   }
3256 
3257   if (Entity) {
3258     // Lookup visible declarations in any namespaces found by using
3259     // directives.
3260     for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3261       LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3262                          Result, /*QualifiedNameLookup=*/false,
3263                          /*InBaseClass=*/false, Consumer, Visited);
3264   }
3265 
3266   // Lookup names in the parent scope.
3267   ShadowContextRAII Shadow(Visited);
3268   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3269 }
3270 
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3271 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3272                               VisibleDeclConsumer &Consumer,
3273                               bool IncludeGlobalScope) {
3274   // Determine the set of using directives available during
3275   // unqualified name lookup.
3276   Scope *Initial = S;
3277   UnqualUsingDirectiveSet UDirs;
3278   if (getLangOpts().CPlusPlus) {
3279     // Find the first namespace or translation-unit scope.
3280     while (S && !isNamespaceOrTranslationUnitScope(S))
3281       S = S->getParent();
3282 
3283     UDirs.visitScopeChain(Initial, S);
3284   }
3285   UDirs.done();
3286 
3287   // Look for visible declarations.
3288   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3289   Result.setAllowHidden(Consumer.includeHiddenDecls());
3290   VisibleDeclsRecord Visited;
3291   if (!IncludeGlobalScope)
3292     Visited.visitedContext(Context.getTranslationUnitDecl());
3293   ShadowContextRAII Shadow(Visited);
3294   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3295 }
3296 
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3297 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3298                               VisibleDeclConsumer &Consumer,
3299                               bool IncludeGlobalScope) {
3300   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3301   Result.setAllowHidden(Consumer.includeHiddenDecls());
3302   VisibleDeclsRecord Visited;
3303   if (!IncludeGlobalScope)
3304     Visited.visitedContext(Context.getTranslationUnitDecl());
3305   ShadowContextRAII Shadow(Visited);
3306   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3307                        /*InBaseClass=*/false, Consumer, Visited);
3308 }
3309 
3310 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3311 /// If GnuLabelLoc is a valid source location, then this is a definition
3312 /// of an __label__ label name, otherwise it is a normal label definition
3313 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3314 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3315                                      SourceLocation GnuLabelLoc) {
3316   // Do a lookup to see if we have a label with this name already.
3317   NamedDecl *Res = nullptr;
3318 
3319   if (GnuLabelLoc.isValid()) {
3320     // Local label definitions always shadow existing labels.
3321     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3322     Scope *S = CurScope;
3323     PushOnScopeChains(Res, S, true);
3324     return cast<LabelDecl>(Res);
3325   }
3326 
3327   // Not a GNU local label.
3328   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3329   // If we found a label, check to see if it is in the same context as us.
3330   // When in a Block, we don't want to reuse a label in an enclosing function.
3331   if (Res && Res->getDeclContext() != CurContext)
3332     Res = nullptr;
3333   if (!Res) {
3334     // If not forward referenced or defined already, create the backing decl.
3335     Res = LabelDecl::Create(Context, CurContext, Loc, II);
3336     Scope *S = CurScope->getFnParent();
3337     assert(S && "Not in a function?");
3338     PushOnScopeChains(Res, S, true);
3339   }
3340   return cast<LabelDecl>(Res);
3341 }
3342 
3343 //===----------------------------------------------------------------------===//
3344 // Typo correction
3345 //===----------------------------------------------------------------------===//
3346 
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3347 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3348                               TypoCorrection &Candidate) {
3349   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3350   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3351 }
3352 
3353 static void LookupPotentialTypoResult(Sema &SemaRef,
3354                                       LookupResult &Res,
3355                                       IdentifierInfo *Name,
3356                                       Scope *S, CXXScopeSpec *SS,
3357                                       DeclContext *MemberContext,
3358                                       bool EnteringContext,
3359                                       bool isObjCIvarLookup,
3360                                       bool FindHidden);
3361 
3362 /// \brief Check whether the declarations found for a typo correction are
3363 /// visible, and if none of them are, convert the correction to an 'import
3364 /// a module' correction.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)3365 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3366   if (TC.begin() == TC.end())
3367     return;
3368 
3369   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3370 
3371   for (/**/; DI != DE; ++DI)
3372     if (!LookupResult::isVisible(SemaRef, *DI))
3373       break;
3374   // Nothing to do if all decls are visible.
3375   if (DI == DE)
3376     return;
3377 
3378   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3379   bool AnyVisibleDecls = !NewDecls.empty();
3380 
3381   for (/**/; DI != DE; ++DI) {
3382     NamedDecl *VisibleDecl = *DI;
3383     if (!LookupResult::isVisible(SemaRef, *DI))
3384       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3385 
3386     if (VisibleDecl) {
3387       if (!AnyVisibleDecls) {
3388         // Found a visible decl, discard all hidden ones.
3389         AnyVisibleDecls = true;
3390         NewDecls.clear();
3391       }
3392       NewDecls.push_back(VisibleDecl);
3393     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3394       NewDecls.push_back(*DI);
3395   }
3396 
3397   if (NewDecls.empty())
3398     TC = TypoCorrection();
3399   else {
3400     TC.setCorrectionDecls(NewDecls);
3401     TC.setRequiresImport(!AnyVisibleDecls);
3402   }
3403 }
3404 
3405 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3406 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3407 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3408 static void getNestedNameSpecifierIdentifiers(
3409     NestedNameSpecifier *NNS,
3410     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3411   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3412     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3413   else
3414     Identifiers.clear();
3415 
3416   const IdentifierInfo *II = nullptr;
3417 
3418   switch (NNS->getKind()) {
3419   case NestedNameSpecifier::Identifier:
3420     II = NNS->getAsIdentifier();
3421     break;
3422 
3423   case NestedNameSpecifier::Namespace:
3424     if (NNS->getAsNamespace()->isAnonymousNamespace())
3425       return;
3426     II = NNS->getAsNamespace()->getIdentifier();
3427     break;
3428 
3429   case NestedNameSpecifier::NamespaceAlias:
3430     II = NNS->getAsNamespaceAlias()->getIdentifier();
3431     break;
3432 
3433   case NestedNameSpecifier::TypeSpecWithTemplate:
3434   case NestedNameSpecifier::TypeSpec:
3435     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3436     break;
3437 
3438   case NestedNameSpecifier::Global:
3439   case NestedNameSpecifier::Super:
3440     return;
3441   }
3442 
3443   if (II)
3444     Identifiers.push_back(II);
3445 }
3446 
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3447 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3448                                        DeclContext *Ctx, bool InBaseClass) {
3449   // Don't consider hidden names for typo correction.
3450   if (Hiding)
3451     return;
3452 
3453   // Only consider entities with identifiers for names, ignoring
3454   // special names (constructors, overloaded operators, selectors,
3455   // etc.).
3456   IdentifierInfo *Name = ND->getIdentifier();
3457   if (!Name)
3458     return;
3459 
3460   // Only consider visible declarations and declarations from modules with
3461   // names that exactly match.
3462   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3463       !findAcceptableDecl(SemaRef, ND))
3464     return;
3465 
3466   FoundName(Name->getName());
3467 }
3468 
FoundName(StringRef Name)3469 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3470   // Compute the edit distance between the typo and the name of this
3471   // entity, and add the identifier to the list of results.
3472   addName(Name, nullptr);
3473 }
3474 
addKeywordResult(StringRef Keyword)3475 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3476   // Compute the edit distance between the typo and this keyword,
3477   // and add the keyword to the list of results.
3478   addName(Keyword, nullptr, nullptr, true);
3479 }
3480 
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)3481 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3482                                      NestedNameSpecifier *NNS, bool isKeyword) {
3483   // Use a simple length-based heuristic to determine the minimum possible
3484   // edit distance. If the minimum isn't good enough, bail out early.
3485   StringRef TypoStr = Typo->getName();
3486   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3487   if (MinED && TypoStr.size() / MinED < 3)
3488     return;
3489 
3490   // Compute an upper bound on the allowable edit distance, so that the
3491   // edit-distance algorithm can short-circuit.
3492   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3493   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3494   if (ED >= UpperBound) return;
3495 
3496   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3497   if (isKeyword) TC.makeKeyword();
3498   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3499   addCorrection(TC);
3500 }
3501 
3502 static const unsigned MaxTypoDistanceResultSets = 5;
3503 
addCorrection(TypoCorrection Correction)3504 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3505   StringRef TypoStr = Typo->getName();
3506   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3507 
3508   // For very short typos, ignore potential corrections that have a different
3509   // base identifier from the typo or which have a normalized edit distance
3510   // longer than the typo itself.
3511   if (TypoStr.size() < 3 &&
3512       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3513     return;
3514 
3515   // If the correction is resolved but is not viable, ignore it.
3516   if (Correction.isResolved()) {
3517     checkCorrectionVisibility(SemaRef, Correction);
3518     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3519       return;
3520   }
3521 
3522   TypoResultList &CList =
3523       CorrectionResults[Correction.getEditDistance(false)][Name];
3524 
3525   if (!CList.empty() && !CList.back().isResolved())
3526     CList.pop_back();
3527   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3528     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3529     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3530          RI != RIEnd; ++RI) {
3531       // If the Correction refers to a decl already in the result list,
3532       // replace the existing result if the string representation of Correction
3533       // comes before the current result alphabetically, then stop as there is
3534       // nothing more to be done to add Correction to the candidate set.
3535       if (RI->getCorrectionDecl() == NewND) {
3536         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3537           *RI = Correction;
3538         return;
3539       }
3540     }
3541   }
3542   if (CList.empty() || Correction.isResolved())
3543     CList.push_back(Correction);
3544 
3545   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3546     CorrectionResults.erase(std::prev(CorrectionResults.end()));
3547 }
3548 
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)3549 void TypoCorrectionConsumer::addNamespaces(
3550     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3551   SearchNamespaces = true;
3552 
3553   for (auto KNPair : KnownNamespaces)
3554     Namespaces.addNameSpecifier(KNPair.first);
3555 
3556   bool SSIsTemplate = false;
3557   if (NestedNameSpecifier *NNS =
3558           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3559     if (const Type *T = NNS->getAsType())
3560       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3561   }
3562   for (const auto *TI : SemaRef.getASTContext().types()) {
3563     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3564       CD = CD->getCanonicalDecl();
3565       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3566           !CD->isUnion() && CD->getIdentifier() &&
3567           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3568           (CD->isBeingDefined() || CD->isCompleteDefinition()))
3569         Namespaces.addNameSpecifier(CD);
3570     }
3571   }
3572 }
3573 
getNextCorrection()3574 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3575   if (++CurrentTCIndex < ValidatedCorrections.size())
3576     return ValidatedCorrections[CurrentTCIndex];
3577 
3578   CurrentTCIndex = ValidatedCorrections.size();
3579   while (!CorrectionResults.empty()) {
3580     auto DI = CorrectionResults.begin();
3581     if (DI->second.empty()) {
3582       CorrectionResults.erase(DI);
3583       continue;
3584     }
3585 
3586     auto RI = DI->second.begin();
3587     if (RI->second.empty()) {
3588       DI->second.erase(RI);
3589       performQualifiedLookups();
3590       continue;
3591     }
3592 
3593     TypoCorrection TC = RI->second.pop_back_val();
3594     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3595       ValidatedCorrections.push_back(TC);
3596       return ValidatedCorrections[CurrentTCIndex];
3597     }
3598   }
3599   return ValidatedCorrections[0];  // The empty correction.
3600 }
3601 
resolveCorrection(TypoCorrection & Candidate)3602 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3603   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3604   DeclContext *TempMemberContext = MemberContext;
3605   CXXScopeSpec *TempSS = SS.get();
3606 retry_lookup:
3607   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3608                             EnteringContext,
3609                             CorrectionValidator->IsObjCIvarLookup,
3610                             Name == Typo && !Candidate.WillReplaceSpecifier());
3611   switch (Result.getResultKind()) {
3612   case LookupResult::NotFound:
3613   case LookupResult::NotFoundInCurrentInstantiation:
3614   case LookupResult::FoundUnresolvedValue:
3615     if (TempSS) {
3616       // Immediately retry the lookup without the given CXXScopeSpec
3617       TempSS = nullptr;
3618       Candidate.WillReplaceSpecifier(true);
3619       goto retry_lookup;
3620     }
3621     if (TempMemberContext) {
3622       if (SS && !TempSS)
3623         TempSS = SS.get();
3624       TempMemberContext = nullptr;
3625       goto retry_lookup;
3626     }
3627     if (SearchNamespaces)
3628       QualifiedResults.push_back(Candidate);
3629     break;
3630 
3631   case LookupResult::Ambiguous:
3632     // We don't deal with ambiguities.
3633     break;
3634 
3635   case LookupResult::Found:
3636   case LookupResult::FoundOverloaded:
3637     // Store all of the Decls for overloaded symbols
3638     for (auto *TRD : Result)
3639       Candidate.addCorrectionDecl(TRD);
3640     checkCorrectionVisibility(SemaRef, Candidate);
3641     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
3642       if (SearchNamespaces)
3643         QualifiedResults.push_back(Candidate);
3644       break;
3645     }
3646     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3647     return true;
3648   }
3649   return false;
3650 }
3651 
performQualifiedLookups()3652 void TypoCorrectionConsumer::performQualifiedLookups() {
3653   unsigned TypoLen = Typo->getName().size();
3654   for (auto QR : QualifiedResults) {
3655     for (auto NSI : Namespaces) {
3656       DeclContext *Ctx = NSI.DeclCtx;
3657       const Type *NSType = NSI.NameSpecifier->getAsType();
3658 
3659       // If the current NestedNameSpecifier refers to a class and the
3660       // current correction candidate is the name of that class, then skip
3661       // it as it is unlikely a qualified version of the class' constructor
3662       // is an appropriate correction.
3663       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
3664         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3665           continue;
3666       }
3667 
3668       TypoCorrection TC(QR);
3669       TC.ClearCorrectionDecls();
3670       TC.setCorrectionSpecifier(NSI.NameSpecifier);
3671       TC.setQualifierDistance(NSI.EditDistance);
3672       TC.setCallbackDistance(0); // Reset the callback distance
3673 
3674       // If the current correction candidate and namespace combination are
3675       // too far away from the original typo based on the normalized edit
3676       // distance, then skip performing a qualified name lookup.
3677       unsigned TmpED = TC.getEditDistance(true);
3678       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
3679           TypoLen / TmpED < 3)
3680         continue;
3681 
3682       Result.clear();
3683       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
3684       if (!SemaRef.LookupQualifiedName(Result, Ctx))
3685         continue;
3686 
3687       // Any corrections added below will be validated in subsequent
3688       // iterations of the main while() loop over the Consumer's contents.
3689       switch (Result.getResultKind()) {
3690       case LookupResult::Found:
3691       case LookupResult::FoundOverloaded: {
3692         if (SS && SS->isValid()) {
3693           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
3694           std::string OldQualified;
3695           llvm::raw_string_ostream OldOStream(OldQualified);
3696           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
3697           OldOStream << Typo->getName();
3698           // If correction candidate would be an identical written qualified
3699           // identifer, then the existing CXXScopeSpec probably included a
3700           // typedef that didn't get accounted for properly.
3701           if (OldOStream.str() == NewQualified)
3702             break;
3703         }
3704         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
3705              TRD != TRDEnd; ++TRD) {
3706           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
3707                                         NSType ? NSType->getAsCXXRecordDecl()
3708                                                : nullptr,
3709                                         TRD.getPair()) == Sema::AR_accessible)
3710             TC.addCorrectionDecl(*TRD);
3711         }
3712         if (TC.isResolved()) {
3713           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3714           addCorrection(TC);
3715         }
3716         break;
3717       }
3718       case LookupResult::NotFound:
3719       case LookupResult::NotFoundInCurrentInstantiation:
3720       case LookupResult::Ambiguous:
3721       case LookupResult::FoundUnresolvedValue:
3722         break;
3723       }
3724     }
3725   }
3726   QualifiedResults.clear();
3727 }
3728 
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3729 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
3730     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
3731     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
3732   if (NestedNameSpecifier *NNS =
3733           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
3734     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
3735     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3736 
3737     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
3738   }
3739   // Build the list of identifiers that would be used for an absolute
3740   // (from the global context) NestedNameSpecifier referring to the current
3741   // context.
3742   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3743                                          CEnd = CurContextChain.rend();
3744        C != CEnd; ++C) {
3745     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3746       CurContextIdentifiers.push_back(ND->getIdentifier());
3747   }
3748 
3749   // Add the global context as a NestedNameSpecifier
3750   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
3751                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
3752   DistanceMap[1].push_back(SI);
3753 }
3754 
buildContextChain(DeclContext * Start)3755 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
3756     DeclContext *Start) -> DeclContextList {
3757   assert(Start && "Building a context chain from a null context");
3758   DeclContextList Chain;
3759   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
3760        DC = DC->getLookupParent()) {
3761     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3762     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3763         !(ND && ND->isAnonymousNamespace()))
3764       Chain.push_back(DC->getPrimaryContext());
3765   }
3766   return Chain;
3767 }
3768 
3769 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)3770 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
3771     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
3772   unsigned NumSpecifiers = 0;
3773   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
3774                                       CEnd = DeclChain.rend();
3775        C != CEnd; ++C) {
3776     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
3777       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3778       ++NumSpecifiers;
3779     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
3780       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
3781                                         RD->getTypeForDecl());
3782       ++NumSpecifiers;
3783     }
3784   }
3785   return NumSpecifiers;
3786 }
3787 
addNameSpecifier(DeclContext * Ctx)3788 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
3789     DeclContext *Ctx) {
3790   NestedNameSpecifier *NNS = nullptr;
3791   unsigned NumSpecifiers = 0;
3792   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
3793   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3794 
3795   // Eliminate common elements from the two DeclContext chains.
3796   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3797                                       CEnd = CurContextChain.rend();
3798        C != CEnd && !NamespaceDeclChain.empty() &&
3799        NamespaceDeclChain.back() == *C; ++C) {
3800     NamespaceDeclChain.pop_back();
3801   }
3802 
3803   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3804   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3805 
3806   // Add an explicit leading '::' specifier if needed.
3807   if (NamespaceDeclChain.empty()) {
3808     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3809     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3810     NumSpecifiers =
3811         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3812   } else if (NamedDecl *ND =
3813                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3814     IdentifierInfo *Name = ND->getIdentifier();
3815     bool SameNameSpecifier = false;
3816     if (std::find(CurNameSpecifierIdentifiers.begin(),
3817                   CurNameSpecifierIdentifiers.end(),
3818                   Name) != CurNameSpecifierIdentifiers.end()) {
3819       std::string NewNameSpecifier;
3820       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
3821       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
3822       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3823       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3824       SpecifierOStream.flush();
3825       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
3826     }
3827     if (SameNameSpecifier ||
3828         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3829                   Name) != CurContextIdentifiers.end()) {
3830       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3831       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3832       NumSpecifiers =
3833           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3834     }
3835   }
3836 
3837   // If the built NestedNameSpecifier would be replacing an existing
3838   // NestedNameSpecifier, use the number of component identifiers that
3839   // would need to be changed as the edit distance instead of the number
3840   // of components in the built NestedNameSpecifier.
3841   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3842     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3843     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3844     NumSpecifiers = llvm::ComputeEditDistance(
3845         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
3846         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
3847   }
3848 
3849   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
3850   DistanceMap[NumSpecifiers].push_back(SI);
3851 }
3852 
3853 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)3854 static void LookupPotentialTypoResult(Sema &SemaRef,
3855                                       LookupResult &Res,
3856                                       IdentifierInfo *Name,
3857                                       Scope *S, CXXScopeSpec *SS,
3858                                       DeclContext *MemberContext,
3859                                       bool EnteringContext,
3860                                       bool isObjCIvarLookup,
3861                                       bool FindHidden) {
3862   Res.suppressDiagnostics();
3863   Res.clear();
3864   Res.setLookupName(Name);
3865   Res.setAllowHidden(FindHidden);
3866   if (MemberContext) {
3867     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3868       if (isObjCIvarLookup) {
3869         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3870           Res.addDecl(Ivar);
3871           Res.resolveKind();
3872           return;
3873         }
3874       }
3875 
3876       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3877         Res.addDecl(Prop);
3878         Res.resolveKind();
3879         return;
3880       }
3881     }
3882 
3883     SemaRef.LookupQualifiedName(Res, MemberContext);
3884     return;
3885   }
3886 
3887   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3888                            EnteringContext);
3889 
3890   // Fake ivar lookup; this should really be part of
3891   // LookupParsedName.
3892   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3893     if (Method->isInstanceMethod() && Method->getClassInterface() &&
3894         (Res.empty() ||
3895          (Res.isSingleResult() &&
3896           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3897        if (ObjCIvarDecl *IV
3898              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3899          Res.addDecl(IV);
3900          Res.resolveKind();
3901        }
3902      }
3903   }
3904 }
3905 
3906 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3907 static void AddKeywordsToConsumer(Sema &SemaRef,
3908                                   TypoCorrectionConsumer &Consumer,
3909                                   Scope *S, CorrectionCandidateCallback &CCC,
3910                                   bool AfterNestedNameSpecifier) {
3911   if (AfterNestedNameSpecifier) {
3912     // For 'X::', we know exactly which keywords can appear next.
3913     Consumer.addKeywordResult("template");
3914     if (CCC.WantExpressionKeywords)
3915       Consumer.addKeywordResult("operator");
3916     return;
3917   }
3918 
3919   if (CCC.WantObjCSuper)
3920     Consumer.addKeywordResult("super");
3921 
3922   if (CCC.WantTypeSpecifiers) {
3923     // Add type-specifier keywords to the set of results.
3924     static const char *const CTypeSpecs[] = {
3925       "char", "const", "double", "enum", "float", "int", "long", "short",
3926       "signed", "struct", "union", "unsigned", "void", "volatile",
3927       "_Complex", "_Imaginary",
3928       // storage-specifiers as well
3929       "extern", "inline", "static", "typedef"
3930     };
3931 
3932     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3933     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3934       Consumer.addKeywordResult(CTypeSpecs[I]);
3935 
3936     if (SemaRef.getLangOpts().C99)
3937       Consumer.addKeywordResult("restrict");
3938     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3939       Consumer.addKeywordResult("bool");
3940     else if (SemaRef.getLangOpts().C99)
3941       Consumer.addKeywordResult("_Bool");
3942 
3943     if (SemaRef.getLangOpts().CPlusPlus) {
3944       Consumer.addKeywordResult("class");
3945       Consumer.addKeywordResult("typename");
3946       Consumer.addKeywordResult("wchar_t");
3947 
3948       if (SemaRef.getLangOpts().CPlusPlus11) {
3949         Consumer.addKeywordResult("char16_t");
3950         Consumer.addKeywordResult("char32_t");
3951         Consumer.addKeywordResult("constexpr");
3952         Consumer.addKeywordResult("decltype");
3953         Consumer.addKeywordResult("thread_local");
3954       }
3955     }
3956 
3957     if (SemaRef.getLangOpts().GNUMode)
3958       Consumer.addKeywordResult("typeof");
3959   } else if (CCC.WantFunctionLikeCasts) {
3960     static const char *const CastableTypeSpecs[] = {
3961       "char", "double", "float", "int", "long", "short",
3962       "signed", "unsigned", "void"
3963     };
3964     for (auto *kw : CastableTypeSpecs)
3965       Consumer.addKeywordResult(kw);
3966   }
3967 
3968   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3969     Consumer.addKeywordResult("const_cast");
3970     Consumer.addKeywordResult("dynamic_cast");
3971     Consumer.addKeywordResult("reinterpret_cast");
3972     Consumer.addKeywordResult("static_cast");
3973   }
3974 
3975   if (CCC.WantExpressionKeywords) {
3976     Consumer.addKeywordResult("sizeof");
3977     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3978       Consumer.addKeywordResult("false");
3979       Consumer.addKeywordResult("true");
3980     }
3981 
3982     if (SemaRef.getLangOpts().CPlusPlus) {
3983       static const char *const CXXExprs[] = {
3984         "delete", "new", "operator", "throw", "typeid"
3985       };
3986       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
3987       for (unsigned I = 0; I != NumCXXExprs; ++I)
3988         Consumer.addKeywordResult(CXXExprs[I]);
3989 
3990       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3991           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3992         Consumer.addKeywordResult("this");
3993 
3994       if (SemaRef.getLangOpts().CPlusPlus11) {
3995         Consumer.addKeywordResult("alignof");
3996         Consumer.addKeywordResult("nullptr");
3997       }
3998     }
3999 
4000     if (SemaRef.getLangOpts().C11) {
4001       // FIXME: We should not suggest _Alignof if the alignof macro
4002       // is present.
4003       Consumer.addKeywordResult("_Alignof");
4004     }
4005   }
4006 
4007   if (CCC.WantRemainingKeywords) {
4008     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4009       // Statements.
4010       static const char *const CStmts[] = {
4011         "do", "else", "for", "goto", "if", "return", "switch", "while" };
4012       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4013       for (unsigned I = 0; I != NumCStmts; ++I)
4014         Consumer.addKeywordResult(CStmts[I]);
4015 
4016       if (SemaRef.getLangOpts().CPlusPlus) {
4017         Consumer.addKeywordResult("catch");
4018         Consumer.addKeywordResult("try");
4019       }
4020 
4021       if (S && S->getBreakParent())
4022         Consumer.addKeywordResult("break");
4023 
4024       if (S && S->getContinueParent())
4025         Consumer.addKeywordResult("continue");
4026 
4027       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4028         Consumer.addKeywordResult("case");
4029         Consumer.addKeywordResult("default");
4030       }
4031     } else {
4032       if (SemaRef.getLangOpts().CPlusPlus) {
4033         Consumer.addKeywordResult("namespace");
4034         Consumer.addKeywordResult("template");
4035       }
4036 
4037       if (S && S->isClassScope()) {
4038         Consumer.addKeywordResult("explicit");
4039         Consumer.addKeywordResult("friend");
4040         Consumer.addKeywordResult("mutable");
4041         Consumer.addKeywordResult("private");
4042         Consumer.addKeywordResult("protected");
4043         Consumer.addKeywordResult("public");
4044         Consumer.addKeywordResult("virtual");
4045       }
4046     }
4047 
4048     if (SemaRef.getLangOpts().CPlusPlus) {
4049       Consumer.addKeywordResult("using");
4050 
4051       if (SemaRef.getLangOpts().CPlusPlus11)
4052         Consumer.addKeywordResult("static_assert");
4053     }
4054   }
4055 }
4056 
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)4057 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4058     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4059     Scope *S, CXXScopeSpec *SS,
4060     std::unique_ptr<CorrectionCandidateCallback> CCC,
4061     DeclContext *MemberContext, bool EnteringContext,
4062     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4063 
4064   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4065       DisableTypoCorrection)
4066     return nullptr;
4067 
4068   // In Microsoft mode, don't perform typo correction in a template member
4069   // function dependent context because it interferes with the "lookup into
4070   // dependent bases of class templates" feature.
4071   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4072       isa<CXXMethodDecl>(CurContext))
4073     return nullptr;
4074 
4075   // We only attempt to correct typos for identifiers.
4076   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4077   if (!Typo)
4078     return nullptr;
4079 
4080   // If the scope specifier itself was invalid, don't try to correct
4081   // typos.
4082   if (SS && SS->isInvalid())
4083     return nullptr;
4084 
4085   // Never try to correct typos during template deduction or
4086   // instantiation.
4087   if (!ActiveTemplateInstantiations.empty())
4088     return nullptr;
4089 
4090   // Don't try to correct 'super'.
4091   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4092     return nullptr;
4093 
4094   // Abort if typo correction already failed for this specific typo.
4095   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4096   if (locs != TypoCorrectionFailures.end() &&
4097       locs->second.count(TypoName.getLoc()))
4098     return nullptr;
4099 
4100   // Don't try to correct the identifier "vector" when in AltiVec mode.
4101   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4102   // remove this workaround.
4103   if (getLangOpts().AltiVec && Typo->isStr("vector"))
4104     return nullptr;
4105 
4106   // Provide a stop gap for files that are just seriously broken.  Trying
4107   // to correct all typos can turn into a HUGE performance penalty, causing
4108   // some files to take minutes to get rejected by the parser.
4109   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4110   if (Limit && TyposCorrected >= Limit)
4111     return nullptr;
4112   ++TyposCorrected;
4113 
4114   // If we're handling a missing symbol error, using modules, and the
4115   // special search all modules option is used, look for a missing import.
4116   if (ErrorRecovery && getLangOpts().Modules &&
4117       getLangOpts().ModulesSearchAll) {
4118     // The following has the side effect of loading the missing module.
4119     getModuleLoader().lookupMissingImports(Typo->getName(),
4120                                            TypoName.getLocStart());
4121   }
4122 
4123   CorrectionCandidateCallback &CCCRef = *CCC;
4124   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4125       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4126       EnteringContext);
4127 
4128   // Perform name lookup to find visible, similarly-named entities.
4129   bool IsUnqualifiedLookup = false;
4130   DeclContext *QualifiedDC = MemberContext;
4131   if (MemberContext) {
4132     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4133 
4134     // Look in qualified interfaces.
4135     if (OPT) {
4136       for (auto *I : OPT->quals())
4137         LookupVisibleDecls(I, LookupKind, *Consumer);
4138     }
4139   } else if (SS && SS->isSet()) {
4140     QualifiedDC = computeDeclContext(*SS, EnteringContext);
4141     if (!QualifiedDC)
4142       return nullptr;
4143 
4144     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4145   } else {
4146     IsUnqualifiedLookup = true;
4147   }
4148 
4149   // Determine whether we are going to search in the various namespaces for
4150   // corrections.
4151   bool SearchNamespaces
4152     = getLangOpts().CPlusPlus &&
4153       (IsUnqualifiedLookup || (SS && SS->isSet()));
4154 
4155   if (IsUnqualifiedLookup || SearchNamespaces) {
4156     // For unqualified lookup, look through all of the names that we have
4157     // seen in this translation unit.
4158     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4159     for (const auto &I : Context.Idents)
4160       Consumer->FoundName(I.getKey());
4161 
4162     // Walk through identifiers in external identifier sources.
4163     // FIXME: Re-add the ability to skip very unlikely potential corrections.
4164     if (IdentifierInfoLookup *External
4165                             = Context.Idents.getExternalIdentifierLookup()) {
4166       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4167       do {
4168         StringRef Name = Iter->Next();
4169         if (Name.empty())
4170           break;
4171 
4172         Consumer->FoundName(Name);
4173       } while (true);
4174     }
4175   }
4176 
4177   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4178 
4179   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4180   // to search those namespaces.
4181   if (SearchNamespaces) {
4182     // Load any externally-known namespaces.
4183     if (ExternalSource && !LoadedExternalKnownNamespaces) {
4184       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4185       LoadedExternalKnownNamespaces = true;
4186       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4187       for (auto *N : ExternalKnownNamespaces)
4188         KnownNamespaces[N] = true;
4189     }
4190 
4191     Consumer->addNamespaces(KnownNamespaces);
4192   }
4193 
4194   return Consumer;
4195 }
4196 
4197 /// \brief Try to "correct" a typo in the source code by finding
4198 /// visible declarations whose names are similar to the name that was
4199 /// present in the source code.
4200 ///
4201 /// \param TypoName the \c DeclarationNameInfo structure that contains
4202 /// the name that was present in the source code along with its location.
4203 ///
4204 /// \param LookupKind the name-lookup criteria used to search for the name.
4205 ///
4206 /// \param S the scope in which name lookup occurs.
4207 ///
4208 /// \param SS the nested-name-specifier that precedes the name we're
4209 /// looking for, if present.
4210 ///
4211 /// \param CCC A CorrectionCandidateCallback object that provides further
4212 /// validation of typo correction candidates. It also provides flags for
4213 /// determining the set of keywords permitted.
4214 ///
4215 /// \param MemberContext if non-NULL, the context in which to look for
4216 /// a member access expression.
4217 ///
4218 /// \param EnteringContext whether we're entering the context described by
4219 /// the nested-name-specifier SS.
4220 ///
4221 /// \param OPT when non-NULL, the search for visible declarations will
4222 /// also walk the protocols in the qualified interfaces of \p OPT.
4223 ///
4224 /// \returns a \c TypoCorrection containing the corrected name if the typo
4225 /// along with information such as the \c NamedDecl where the corrected name
4226 /// was declared, and any additional \c NestedNameSpecifier needed to access
4227 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)4228 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4229                                  Sema::LookupNameKind LookupKind,
4230                                  Scope *S, CXXScopeSpec *SS,
4231                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
4232                                  CorrectTypoKind Mode,
4233                                  DeclContext *MemberContext,
4234                                  bool EnteringContext,
4235                                  const ObjCObjectPointerType *OPT,
4236                                  bool RecordFailure) {
4237   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4238 
4239   // Always let the ExternalSource have the first chance at correction, even
4240   // if we would otherwise have given up.
4241   if (ExternalSource) {
4242     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4243         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4244       return Correction;
4245   }
4246 
4247   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4248   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4249   // some instances of CTC_Unknown, while WantRemainingKeywords is true
4250   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4251   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4252 
4253   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4254   auto Consumer = makeTypoCorrectionConsumer(
4255       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4256       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4257 
4258   if (!Consumer)
4259     return TypoCorrection();
4260 
4261   // If we haven't found anything, we're done.
4262   if (Consumer->empty())
4263     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4264 
4265   // Make sure the best edit distance (prior to adding any namespace qualifiers)
4266   // is not more that about a third of the length of the typo's identifier.
4267   unsigned ED = Consumer->getBestEditDistance(true);
4268   unsigned TypoLen = Typo->getName().size();
4269   if (ED > 0 && TypoLen / ED < 3)
4270     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4271 
4272   TypoCorrection BestTC = Consumer->getNextCorrection();
4273   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4274   if (!BestTC)
4275     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4276 
4277   ED = BestTC.getEditDistance();
4278 
4279   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4280     // If this was an unqualified lookup and we believe the callback
4281     // object wouldn't have filtered out possible corrections, note
4282     // that no correction was found.
4283     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4284   }
4285 
4286   // If only a single name remains, return that result.
4287   if (!SecondBestTC ||
4288       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4289     const TypoCorrection &Result = BestTC;
4290 
4291     // Don't correct to a keyword that's the same as the typo; the keyword
4292     // wasn't actually in scope.
4293     if (ED == 0 && Result.isKeyword())
4294       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4295 
4296     TypoCorrection TC = Result;
4297     TC.setCorrectionRange(SS, TypoName);
4298     checkCorrectionVisibility(*this, TC);
4299     return TC;
4300   } else if (SecondBestTC && ObjCMessageReceiver) {
4301     // Prefer 'super' when we're completing in a message-receiver
4302     // context.
4303 
4304     if (BestTC.getCorrection().getAsString() != "super") {
4305       if (SecondBestTC.getCorrection().getAsString() == "super")
4306         BestTC = SecondBestTC;
4307       else if ((*Consumer)["super"].front().isKeyword())
4308         BestTC = (*Consumer)["super"].front();
4309     }
4310     // Don't correct to a keyword that's the same as the typo; the keyword
4311     // wasn't actually in scope.
4312     if (BestTC.getEditDistance() == 0 ||
4313         BestTC.getCorrection().getAsString() != "super")
4314       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4315 
4316     BestTC.setCorrectionRange(SS, TypoName);
4317     return BestTC;
4318   }
4319 
4320   // Record the failure's location if needed and return an empty correction. If
4321   // this was an unqualified lookup and we believe the callback object did not
4322   // filter out possible corrections, also cache the failure for the typo.
4323   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4324 }
4325 
4326 /// \brief Try to "correct" a typo in the source code by finding
4327 /// visible declarations whose names are similar to the name that was
4328 /// present in the source code.
4329 ///
4330 /// \param TypoName the \c DeclarationNameInfo structure that contains
4331 /// the name that was present in the source code along with its location.
4332 ///
4333 /// \param LookupKind the name-lookup criteria used to search for the name.
4334 ///
4335 /// \param S the scope in which name lookup occurs.
4336 ///
4337 /// \param SS the nested-name-specifier that precedes the name we're
4338 /// looking for, if present.
4339 ///
4340 /// \param CCC A CorrectionCandidateCallback object that provides further
4341 /// validation of typo correction candidates. It also provides flags for
4342 /// determining the set of keywords permitted.
4343 ///
4344 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4345 /// diagnostics when the actual typo correction is attempted.
4346 ///
4347 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4348 /// Expr from a typo correction candidate.
4349 ///
4350 /// \param MemberContext if non-NULL, the context in which to look for
4351 /// a member access expression.
4352 ///
4353 /// \param EnteringContext whether we're entering the context described by
4354 /// the nested-name-specifier SS.
4355 ///
4356 /// \param OPT when non-NULL, the search for visible declarations will
4357 /// also walk the protocols in the qualified interfaces of \p OPT.
4358 ///
4359 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4360 /// Expr representing the result of performing typo correction, or nullptr if
4361 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4362 /// be emitted and it is the responsibility of the caller to emit any that are
4363 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)4364 TypoExpr *Sema::CorrectTypoDelayed(
4365     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4366     Scope *S, CXXScopeSpec *SS,
4367     std::unique_ptr<CorrectionCandidateCallback> CCC,
4368     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4369     DeclContext *MemberContext, bool EnteringContext,
4370     const ObjCObjectPointerType *OPT) {
4371   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4372 
4373   TypoCorrection Empty;
4374   auto Consumer = makeTypoCorrectionConsumer(
4375       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4376       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4377 
4378   if (!Consumer || Consumer->empty())
4379     return nullptr;
4380 
4381   // Make sure the best edit distance (prior to adding any namespace qualifiers)
4382   // is not more that about a third of the length of the typo's identifier.
4383   unsigned ED = Consumer->getBestEditDistance(true);
4384   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4385   if (ED > 0 && Typo->getName().size() / ED < 3)
4386     return nullptr;
4387 
4388   ExprEvalContexts.back().NumTypos++;
4389   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4390 }
4391 
addCorrectionDecl(NamedDecl * CDecl)4392 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4393   if (!CDecl) return;
4394 
4395   if (isKeyword())
4396     CorrectionDecls.clear();
4397 
4398   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4399 
4400   if (!CorrectionName)
4401     CorrectionName = CDecl->getDeclName();
4402 }
4403 
getAsString(const LangOptions & LO) const4404 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4405   if (CorrectionNameSpec) {
4406     std::string tmpBuffer;
4407     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4408     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4409     PrefixOStream << CorrectionName;
4410     return PrefixOStream.str();
4411   }
4412 
4413   return CorrectionName.getAsString();
4414 }
4415 
ValidateCandidate(const TypoCorrection & candidate)4416 bool CorrectionCandidateCallback::ValidateCandidate(
4417     const TypoCorrection &candidate) {
4418   if (!candidate.isResolved())
4419     return true;
4420 
4421   if (candidate.isKeyword())
4422     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4423            WantRemainingKeywords || WantObjCSuper;
4424 
4425   bool HasNonType = false;
4426   bool HasStaticMethod = false;
4427   bool HasNonStaticMethod = false;
4428   for (Decl *D : candidate) {
4429     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4430       D = FTD->getTemplatedDecl();
4431     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4432       if (Method->isStatic())
4433         HasStaticMethod = true;
4434       else
4435         HasNonStaticMethod = true;
4436     }
4437     if (!isa<TypeDecl>(D))
4438       HasNonType = true;
4439   }
4440 
4441   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4442       !candidate.getCorrectionSpecifier())
4443     return false;
4444 
4445   return WantTypeSpecifiers || HasNonType;
4446 }
4447 
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)4448 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4449                                              bool HasExplicitTemplateArgs,
4450                                              MemberExpr *ME)
4451     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4452       CurContext(SemaRef.CurContext), MemberFn(ME) {
4453   WantTypeSpecifiers = false;
4454   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4455   WantRemainingKeywords = false;
4456 }
4457 
ValidateCandidate(const TypoCorrection & candidate)4458 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4459   if (!candidate.getCorrectionDecl())
4460     return candidate.isKeyword();
4461 
4462   for (auto *C : candidate) {
4463     FunctionDecl *FD = nullptr;
4464     NamedDecl *ND = C->getUnderlyingDecl();
4465     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4466       FD = FTD->getTemplatedDecl();
4467     if (!HasExplicitTemplateArgs && !FD) {
4468       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4469         // If the Decl is neither a function nor a template function,
4470         // determine if it is a pointer or reference to a function. If so,
4471         // check against the number of arguments expected for the pointee.
4472         QualType ValType = cast<ValueDecl>(ND)->getType();
4473         if (ValType->isAnyPointerType() || ValType->isReferenceType())
4474           ValType = ValType->getPointeeType();
4475         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4476           if (FPT->getNumParams() == NumArgs)
4477             return true;
4478       }
4479     }
4480 
4481     // Skip the current candidate if it is not a FunctionDecl or does not accept
4482     // the current number of arguments.
4483     if (!FD || !(FD->getNumParams() >= NumArgs &&
4484                  FD->getMinRequiredArguments() <= NumArgs))
4485       continue;
4486 
4487     // If the current candidate is a non-static C++ method, skip the candidate
4488     // unless the method being corrected--or the current DeclContext, if the
4489     // function being corrected is not a method--is a method in the same class
4490     // or a descendent class of the candidate's parent class.
4491     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4492       if (MemberFn || !MD->isStatic()) {
4493         CXXMethodDecl *CurMD =
4494             MemberFn
4495                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4496                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4497         CXXRecordDecl *CurRD =
4498             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4499         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4500         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4501           continue;
4502       }
4503     }
4504     return true;
4505   }
4506   return false;
4507 }
4508 
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)4509 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4510                         const PartialDiagnostic &TypoDiag,
4511                         bool ErrorRecovery) {
4512   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4513                ErrorRecovery);
4514 }
4515 
4516 /// Find which declaration we should import to provide the definition of
4517 /// the given declaration.
getDefinitionToImport(const NamedDecl * D)4518 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
4519   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4520     return VD->getDefinition();
4521   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4522     return FD->isDefined(FD) ? FD : nullptr;
4523   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
4524     return TD->getDefinition();
4525   if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4526     return ID->getDefinition();
4527   if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4528     return PD->getDefinition();
4529   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4530     return getDefinitionToImport(TD->getTemplatedDecl());
4531   return nullptr;
4532 }
4533 
4534 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
4535 /// itself to allow external validation of the result, etc.
4536 ///
4537 /// \param Correction The result of performing typo correction.
4538 /// \param TypoDiag The diagnostic to produce. This will have the corrected
4539 ///        string added to it (and usually also a fixit).
4540 /// \param PrevNote A note to use when indicating the location of the entity to
4541 ///        which we are correcting. Will have the correction string added to it.
4542 /// \param ErrorRecovery If \c true (the default), the caller is going to
4543 ///        recover from the typo as if the corrected string had been typed.
4544 ///        In this case, \c PDiag must be an error, and we will attach a fixit
4545 ///        to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)4546 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4547                         const PartialDiagnostic &TypoDiag,
4548                         const PartialDiagnostic &PrevNote,
4549                         bool ErrorRecovery) {
4550   std::string CorrectedStr = Correction.getAsString(getLangOpts());
4551   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4552   FixItHint FixTypo = FixItHint::CreateReplacement(
4553       Correction.getCorrectionRange(), CorrectedStr);
4554 
4555   // Maybe we're just missing a module import.
4556   if (Correction.requiresImport()) {
4557     NamedDecl *Decl = Correction.getCorrectionDecl();
4558     assert(Decl && "import required but no declaration to import");
4559 
4560     // Suggest importing a module providing the definition of this entity, if
4561     // possible.
4562     const NamedDecl *Def = getDefinitionToImport(Decl);
4563     if (!Def)
4564       Def = Decl;
4565     Module *Owner = Def->getOwningModule();
4566     assert(Owner && "definition of hidden declaration is not in a module");
4567 
4568     Diag(Correction.getCorrectionRange().getBegin(),
4569          diag::err_module_private_declaration)
4570       << Def << Owner->getFullModuleName();
4571     Diag(Def->getLocation(), diag::note_previous_declaration);
4572 
4573     // Recover by implicitly importing this module.
4574     if (ErrorRecovery)
4575       createImplicitModuleImportForErrorRecovery(
4576           Correction.getCorrectionRange().getBegin(), Owner);
4577     return;
4578   }
4579 
4580   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4581     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4582 
4583   NamedDecl *ChosenDecl =
4584       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4585   if (PrevNote.getDiagID() && ChosenDecl)
4586     Diag(ChosenDecl->getLocation(), PrevNote)
4587       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4588 }
4589 
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC)4590 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4591                                   TypoDiagnosticGenerator TDG,
4592                                   TypoRecoveryCallback TRC) {
4593   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
4594   auto TE = new (Context) TypoExpr(Context.DependentTy);
4595   auto &State = DelayedTypos[TE];
4596   State.Consumer = std::move(TCC);
4597   State.DiagHandler = std::move(TDG);
4598   State.RecoveryHandler = std::move(TRC);
4599   return TE;
4600 }
4601 
getTypoExprState(TypoExpr * TE) const4602 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
4603   auto Entry = DelayedTypos.find(TE);
4604   assert(Entry != DelayedTypos.end() &&
4605          "Failed to get the state for a TypoExpr!");
4606   return Entry->second;
4607 }
4608 
clearDelayedTypo(TypoExpr * TE)4609 void Sema::clearDelayedTypo(TypoExpr *TE) {
4610   DelayedTypos.erase(TE);
4611 }
4612