1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/hydrogen-bce.h"
6
7 namespace v8 {
8 namespace internal {
9
10
11 // We try to "factor up" HBoundsCheck instructions towards the root of the
12 // dominator tree.
13 // For now we handle checks where the index is like "exp + int32value".
14 // If in the dominator tree we check "exp + v1" and later (dominated)
15 // "exp + v2", if v2 <= v1 we can safely remove the second check, and if
16 // v2 > v1 we can use v2 in the 1st check and again remove the second.
17 // To do so we keep a dictionary of all checks where the key if the pair
18 // "exp, length".
19 // The class BoundsCheckKey represents this key.
20 class BoundsCheckKey : public ZoneObject {
21 public:
IndexBase() const22 HValue* IndexBase() const { return index_base_; }
Length() const23 HValue* Length() const { return length_; }
24
Hash()25 uint32_t Hash() {
26 return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
27 }
28
Create(Zone * zone,HBoundsCheck * check,int32_t * offset)29 static BoundsCheckKey* Create(Zone* zone,
30 HBoundsCheck* check,
31 int32_t* offset) {
32 if (!check->index()->representation().IsSmiOrInteger32()) return NULL;
33
34 HValue* index_base = NULL;
35 HConstant* constant = NULL;
36 bool is_sub = false;
37
38 if (check->index()->IsAdd()) {
39 HAdd* index = HAdd::cast(check->index());
40 if (index->left()->IsConstant()) {
41 constant = HConstant::cast(index->left());
42 index_base = index->right();
43 } else if (index->right()->IsConstant()) {
44 constant = HConstant::cast(index->right());
45 index_base = index->left();
46 }
47 } else if (check->index()->IsSub()) {
48 HSub* index = HSub::cast(check->index());
49 is_sub = true;
50 if (index->right()->IsConstant()) {
51 constant = HConstant::cast(index->right());
52 index_base = index->left();
53 }
54 } else if (check->index()->IsConstant()) {
55 index_base = check->block()->graph()->GetConstant0();
56 constant = HConstant::cast(check->index());
57 }
58
59 if (constant != NULL && constant->HasInteger32Value()) {
60 *offset = is_sub ? - constant->Integer32Value()
61 : constant->Integer32Value();
62 } else {
63 *offset = 0;
64 index_base = check->index();
65 }
66
67 return new(zone) BoundsCheckKey(index_base, check->length());
68 }
69
70 private:
BoundsCheckKey(HValue * index_base,HValue * length)71 BoundsCheckKey(HValue* index_base, HValue* length)
72 : index_base_(index_base),
73 length_(length) { }
74
75 HValue* index_base_;
76 HValue* length_;
77
78 DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey);
79 };
80
81
82 // Data about each HBoundsCheck that can be eliminated or moved.
83 // It is the "value" in the dictionary indexed by "base-index, length"
84 // (the key is BoundsCheckKey).
85 // We scan the code with a dominator tree traversal.
86 // Traversing the dominator tree we keep a stack (implemented as a singly
87 // linked list) of "data" for each basic block that contains a relevant check
88 // with the same key (the dictionary holds the head of the list).
89 // We also keep all the "data" created for a given basic block in a list, and
90 // use it to "clean up" the dictionary when backtracking in the dominator tree
91 // traversal.
92 // Doing this each dictionary entry always directly points to the check that
93 // is dominating the code being examined now.
94 // We also track the current "offset" of the index expression and use it to
95 // decide if any check is already "covered" (so it can be removed) or not.
96 class BoundsCheckBbData: public ZoneObject {
97 public:
Key() const98 BoundsCheckKey* Key() const { return key_; }
LowerOffset() const99 int32_t LowerOffset() const { return lower_offset_; }
UpperOffset() const100 int32_t UpperOffset() const { return upper_offset_; }
BasicBlock() const101 HBasicBlock* BasicBlock() const { return basic_block_; }
LowerCheck() const102 HBoundsCheck* LowerCheck() const { return lower_check_; }
UpperCheck() const103 HBoundsCheck* UpperCheck() const { return upper_check_; }
NextInBasicBlock() const104 BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
FatherInDominatorTree() const105 BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
106
OffsetIsCovered(int32_t offset) const107 bool OffsetIsCovered(int32_t offset) const {
108 return offset >= LowerOffset() && offset <= UpperOffset();
109 }
110
HasSingleCheck()111 bool HasSingleCheck() { return lower_check_ == upper_check_; }
112
UpdateUpperOffsets(HBoundsCheck * check,int32_t offset)113 void UpdateUpperOffsets(HBoundsCheck* check, int32_t offset) {
114 BoundsCheckBbData* data = FatherInDominatorTree();
115 while (data != NULL && data->UpperCheck() == check) {
116 DCHECK(data->upper_offset_ < offset);
117 data->upper_offset_ = offset;
118 data = data->FatherInDominatorTree();
119 }
120 }
121
UpdateLowerOffsets(HBoundsCheck * check,int32_t offset)122 void UpdateLowerOffsets(HBoundsCheck* check, int32_t offset) {
123 BoundsCheckBbData* data = FatherInDominatorTree();
124 while (data != NULL && data->LowerCheck() == check) {
125 DCHECK(data->lower_offset_ > offset);
126 data->lower_offset_ = offset;
127 data = data->FatherInDominatorTree();
128 }
129 }
130
131 // The goal of this method is to modify either upper_offset_ or
132 // lower_offset_ so that also new_offset is covered (the covered
133 // range grows).
134 //
135 // The precondition is that new_check follows UpperCheck() and
136 // LowerCheck() in the same basic block, and that new_offset is not
137 // covered (otherwise we could simply remove new_check).
138 //
139 // If HasSingleCheck() is true then new_check is added as "second check"
140 // (either upper or lower; note that HasSingleCheck() becomes false).
141 // Otherwise one of the current checks is modified so that it also covers
142 // new_offset, and new_check is removed.
CoverCheck(HBoundsCheck * new_check,int32_t new_offset)143 void CoverCheck(HBoundsCheck* new_check,
144 int32_t new_offset) {
145 DCHECK(new_check->index()->representation().IsSmiOrInteger32());
146 bool keep_new_check = false;
147
148 if (new_offset > upper_offset_) {
149 upper_offset_ = new_offset;
150 if (HasSingleCheck()) {
151 keep_new_check = true;
152 upper_check_ = new_check;
153 } else {
154 TightenCheck(upper_check_, new_check, new_offset);
155 UpdateUpperOffsets(upper_check_, upper_offset_);
156 }
157 } else if (new_offset < lower_offset_) {
158 lower_offset_ = new_offset;
159 if (HasSingleCheck()) {
160 keep_new_check = true;
161 lower_check_ = new_check;
162 } else {
163 TightenCheck(lower_check_, new_check, new_offset);
164 UpdateLowerOffsets(lower_check_, lower_offset_);
165 }
166 } else {
167 // Should never have called CoverCheck() in this case.
168 UNREACHABLE();
169 }
170
171 if (!keep_new_check) {
172 if (FLAG_trace_bce) {
173 base::OS::Print("Eliminating check #%d after tightening\n",
174 new_check->id());
175 }
176 new_check->block()->graph()->isolate()->counters()->
177 bounds_checks_eliminated()->Increment();
178 new_check->DeleteAndReplaceWith(new_check->ActualValue());
179 } else {
180 HBoundsCheck* first_check = new_check == lower_check_ ? upper_check_
181 : lower_check_;
182 if (FLAG_trace_bce) {
183 base::OS::Print("Moving second check #%d after first check #%d\n",
184 new_check->id(), first_check->id());
185 }
186 // The length is guaranteed to be live at first_check.
187 DCHECK(new_check->length() == first_check->length());
188 HInstruction* old_position = new_check->next();
189 new_check->Unlink();
190 new_check->InsertAfter(first_check);
191 MoveIndexIfNecessary(new_check->index(), new_check, old_position);
192 }
193 }
194
BoundsCheckBbData(BoundsCheckKey * key,int32_t lower_offset,int32_t upper_offset,HBasicBlock * bb,HBoundsCheck * lower_check,HBoundsCheck * upper_check,BoundsCheckBbData * next_in_bb,BoundsCheckBbData * father_in_dt)195 BoundsCheckBbData(BoundsCheckKey* key,
196 int32_t lower_offset,
197 int32_t upper_offset,
198 HBasicBlock* bb,
199 HBoundsCheck* lower_check,
200 HBoundsCheck* upper_check,
201 BoundsCheckBbData* next_in_bb,
202 BoundsCheckBbData* father_in_dt)
203 : key_(key),
204 lower_offset_(lower_offset),
205 upper_offset_(upper_offset),
206 basic_block_(bb),
207 lower_check_(lower_check),
208 upper_check_(upper_check),
209 next_in_bb_(next_in_bb),
210 father_in_dt_(father_in_dt) { }
211
212 private:
213 BoundsCheckKey* key_;
214 int32_t lower_offset_;
215 int32_t upper_offset_;
216 HBasicBlock* basic_block_;
217 HBoundsCheck* lower_check_;
218 HBoundsCheck* upper_check_;
219 BoundsCheckBbData* next_in_bb_;
220 BoundsCheckBbData* father_in_dt_;
221
MoveIndexIfNecessary(HValue * index_raw,HBoundsCheck * insert_before,HInstruction * end_of_scan_range)222 void MoveIndexIfNecessary(HValue* index_raw,
223 HBoundsCheck* insert_before,
224 HInstruction* end_of_scan_range) {
225 // index_raw can be HAdd(index_base, offset), HSub(index_base, offset),
226 // HConstant(offset) or index_base directly.
227 // In the latter case, no need to move anything.
228 if (index_raw->IsAdd() || index_raw->IsSub()) {
229 HArithmeticBinaryOperation* index =
230 HArithmeticBinaryOperation::cast(index_raw);
231 HValue* left_input = index->left();
232 HValue* right_input = index->right();
233 bool must_move_index = false;
234 bool must_move_left_input = false;
235 bool must_move_right_input = false;
236 for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) {
237 if (cursor == left_input) must_move_left_input = true;
238 if (cursor == right_input) must_move_right_input = true;
239 if (cursor == index) must_move_index = true;
240 if (cursor->previous() == NULL) {
241 cursor = cursor->block()->dominator()->end();
242 } else {
243 cursor = cursor->previous();
244 }
245 }
246 if (must_move_index) {
247 index->Unlink();
248 index->InsertBefore(insert_before);
249 }
250 // The BCE algorithm only selects mergeable bounds checks that share
251 // the same "index_base", so we'll only ever have to move constants.
252 if (must_move_left_input) {
253 HConstant::cast(left_input)->Unlink();
254 HConstant::cast(left_input)->InsertBefore(index);
255 }
256 if (must_move_right_input) {
257 HConstant::cast(right_input)->Unlink();
258 HConstant::cast(right_input)->InsertBefore(index);
259 }
260 } else if (index_raw->IsConstant()) {
261 HConstant* index = HConstant::cast(index_raw);
262 bool must_move = false;
263 for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) {
264 if (cursor == index) must_move = true;
265 if (cursor->previous() == NULL) {
266 cursor = cursor->block()->dominator()->end();
267 } else {
268 cursor = cursor->previous();
269 }
270 }
271 if (must_move) {
272 index->Unlink();
273 index->InsertBefore(insert_before);
274 }
275 }
276 }
277
TightenCheck(HBoundsCheck * original_check,HBoundsCheck * tighter_check,int32_t new_offset)278 void TightenCheck(HBoundsCheck* original_check,
279 HBoundsCheck* tighter_check,
280 int32_t new_offset) {
281 DCHECK(original_check->length() == tighter_check->length());
282 MoveIndexIfNecessary(tighter_check->index(), original_check, tighter_check);
283 original_check->ReplaceAllUsesWith(original_check->index());
284 original_check->SetOperandAt(0, tighter_check->index());
285 if (FLAG_trace_bce) {
286 base::OS::Print("Tightened check #%d with offset %d from #%d\n",
287 original_check->id(), new_offset, tighter_check->id());
288 }
289 }
290
291 DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData);
292 };
293
294
BoundsCheckKeyMatch(void * key1,void * key2)295 static bool BoundsCheckKeyMatch(void* key1, void* key2) {
296 BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
297 BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
298 return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
299 }
300
301
BoundsCheckTable(Zone * zone)302 BoundsCheckTable::BoundsCheckTable(Zone* zone)
303 : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
304 ZoneAllocationPolicy(zone)) { }
305
306
LookupOrInsert(BoundsCheckKey * key,Zone * zone)307 BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key,
308 Zone* zone) {
309 return reinterpret_cast<BoundsCheckBbData**>(
310 &(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
311 }
312
313
Insert(BoundsCheckKey * key,BoundsCheckBbData * data,Zone * zone)314 void BoundsCheckTable::Insert(BoundsCheckKey* key,
315 BoundsCheckBbData* data,
316 Zone* zone) {
317 Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
318 }
319
320
Delete(BoundsCheckKey * key)321 void BoundsCheckTable::Delete(BoundsCheckKey* key) {
322 Remove(key, key->Hash());
323 }
324
325
326 class HBoundsCheckEliminationState {
327 public:
328 HBasicBlock* block_;
329 BoundsCheckBbData* bb_data_list_;
330 int index_;
331 };
332
333
334 // Eliminates checks in bb and recursively in the dominated blocks.
335 // Also replace the results of check instructions with the original value, if
336 // the result is used. This is safe now, since we don't do code motion after
337 // this point. It enables better register allocation since the value produced
338 // by check instructions is really a copy of the original value.
EliminateRedundantBoundsChecks(HBasicBlock * entry)339 void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks(
340 HBasicBlock* entry) {
341 // Allocate the stack.
342 HBoundsCheckEliminationState* stack =
343 zone()->NewArray<HBoundsCheckEliminationState>(graph()->blocks()->length());
344
345 // Explicitly push the entry block.
346 stack[0].block_ = entry;
347 stack[0].bb_data_list_ = PreProcessBlock(entry);
348 stack[0].index_ = 0;
349 int stack_depth = 1;
350
351 // Implement depth-first traversal with a stack.
352 while (stack_depth > 0) {
353 int current = stack_depth - 1;
354 HBoundsCheckEliminationState* state = &stack[current];
355 const ZoneList<HBasicBlock*>* children = state->block_->dominated_blocks();
356
357 if (state->index_ < children->length()) {
358 // Recursively visit children blocks.
359 HBasicBlock* child = children->at(state->index_++);
360 int next = stack_depth++;
361 stack[next].block_ = child;
362 stack[next].bb_data_list_ = PreProcessBlock(child);
363 stack[next].index_ = 0;
364 } else {
365 // Finished with all children; post process the block.
366 PostProcessBlock(state->block_, state->bb_data_list_);
367 stack_depth--;
368 }
369 }
370 }
371
372
PreProcessBlock(HBasicBlock * bb)373 BoundsCheckBbData* HBoundsCheckEliminationPhase::PreProcessBlock(
374 HBasicBlock* bb) {
375 BoundsCheckBbData* bb_data_list = NULL;
376
377 for (HInstructionIterator it(bb); !it.Done(); it.Advance()) {
378 HInstruction* i = it.Current();
379 if (!i->IsBoundsCheck()) continue;
380
381 HBoundsCheck* check = HBoundsCheck::cast(i);
382 int32_t offset;
383 BoundsCheckKey* key =
384 BoundsCheckKey::Create(zone(), check, &offset);
385 if (key == NULL) continue;
386 BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone());
387 BoundsCheckBbData* data = *data_p;
388 if (data == NULL) {
389 bb_data_list = new(zone()) BoundsCheckBbData(key,
390 offset,
391 offset,
392 bb,
393 check,
394 check,
395 bb_data_list,
396 NULL);
397 *data_p = bb_data_list;
398 if (FLAG_trace_bce) {
399 base::OS::Print("Fresh bounds check data for block #%d: [%d]\n",
400 bb->block_id(), offset);
401 }
402 } else if (data->OffsetIsCovered(offset)) {
403 bb->graph()->isolate()->counters()->
404 bounds_checks_eliminated()->Increment();
405 if (FLAG_trace_bce) {
406 base::OS::Print("Eliminating bounds check #%d, offset %d is covered\n",
407 check->id(), offset);
408 }
409 check->DeleteAndReplaceWith(check->ActualValue());
410 } else if (data->BasicBlock() == bb) {
411 // TODO(jkummerow): I think the following logic would be preferable:
412 // if (data->Basicblock() == bb ||
413 // graph()->use_optimistic_licm() ||
414 // bb->IsLoopSuccessorDominator()) {
415 // data->CoverCheck(check, offset)
416 // } else {
417 // /* add pristine BCBbData like in (data == NULL) case above */
418 // }
419 // Even better would be: distinguish between read-only dominator-imposed
420 // knowledge and modifiable upper/lower checks.
421 // What happens currently is that the first bounds check in a dominated
422 // block will stay around while any further checks are hoisted out,
423 // which doesn't make sense. Investigate/fix this in a future CL.
424 data->CoverCheck(check, offset);
425 } else if (graph()->use_optimistic_licm() ||
426 bb->IsLoopSuccessorDominator()) {
427 int32_t new_lower_offset = offset < data->LowerOffset()
428 ? offset
429 : data->LowerOffset();
430 int32_t new_upper_offset = offset > data->UpperOffset()
431 ? offset
432 : data->UpperOffset();
433 bb_data_list = new(zone()) BoundsCheckBbData(key,
434 new_lower_offset,
435 new_upper_offset,
436 bb,
437 data->LowerCheck(),
438 data->UpperCheck(),
439 bb_data_list,
440 data);
441 if (FLAG_trace_bce) {
442 base::OS::Print("Updated bounds check data for block #%d: [%d - %d]\n",
443 bb->block_id(), new_lower_offset, new_upper_offset);
444 }
445 table_.Insert(key, bb_data_list, zone());
446 }
447 }
448
449 return bb_data_list;
450 }
451
452
PostProcessBlock(HBasicBlock * block,BoundsCheckBbData * data)453 void HBoundsCheckEliminationPhase::PostProcessBlock(
454 HBasicBlock* block, BoundsCheckBbData* data) {
455 while (data != NULL) {
456 if (data->FatherInDominatorTree()) {
457 table_.Insert(data->Key(), data->FatherInDominatorTree(), zone());
458 } else {
459 table_.Delete(data->Key());
460 }
461 data = data->NextInBasicBlock();
462 }
463 }
464
465 } } // namespace v8::internal
466