1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32
33 using namespace llvm;
34
35 namespace {
36
37 /// Diagnostic information for unimplemented or unsupported feature reporting.
38 class DiagnosticInfoUnsupported : public DiagnosticInfo {
39 private:
40 const Twine &Description;
41 const Function &Fn;
42
43 static int KindID;
44
getKindID()45 static int getKindID() {
46 if (KindID == 0)
47 KindID = llvm::getNextAvailablePluginDiagnosticKind();
48 return KindID;
49 }
50
51 public:
DiagnosticInfoUnsupported(const Function & Fn,const Twine & Desc,DiagnosticSeverity Severity=DS_Error)52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
53 DiagnosticSeverity Severity = DS_Error)
54 : DiagnosticInfo(getKindID(), Severity),
55 Description(Desc),
56 Fn(Fn) { }
57
getFunction() const58 const Function &getFunction() const { return Fn; }
getDescription() const59 const Twine &getDescription() const { return Description; }
60
print(DiagnosticPrinter & DP) const61 void print(DiagnosticPrinter &DP) const override {
62 DP << "unsupported " << getDescription() << " in " << Fn.getName();
63 }
64
classof(const DiagnosticInfo * DI)65 static bool classof(const DiagnosticInfo *DI) {
66 return DI->getKind() == getKindID();
67 }
68 };
69
70 int DiagnosticInfoUnsupported::KindID = 0;
71 }
72
73
allocateStack(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
75 CCValAssign::LocInfo LocInfo,
76 ISD::ArgFlagsTy ArgFlags, CCState &State) {
77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
78 ArgFlags.getOrigAlign());
79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
80
81 return true;
82 }
83
84 #include "AMDGPUGenCallingConv.inc"
85
86 // Find a larger type to do a load / store of a vector with.
getEquivalentMemType(LLVMContext & Ctx,EVT VT)87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
88 unsigned StoreSize = VT.getStoreSizeInBits();
89 if (StoreSize <= 32)
90 return EVT::getIntegerVT(Ctx, StoreSize);
91
92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
94 }
95
96 // Type for a vector that will be loaded to.
getEquivalentLoadRegType(LLVMContext & Ctx,EVT VT)97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
98 unsigned StoreSize = VT.getStoreSizeInBits();
99 if (StoreSize <= 32)
100 return EVT::getIntegerVT(Ctx, 32);
101
102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
103 }
104
AMDGPUTargetLowering(TargetMachine & TM,const AMDGPUSubtarget & STI)105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
106 const AMDGPUSubtarget &STI)
107 : TargetLowering(TM), Subtarget(&STI) {
108 setOperationAction(ISD::Constant, MVT::i32, Legal);
109 setOperationAction(ISD::Constant, MVT::i64, Legal);
110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
112
113 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
114 setOperationAction(ISD::BRIND, MVT::Other, Expand);
115
116 // We need to custom lower some of the intrinsics
117 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
118
119 // Library functions. These default to Expand, but we have instructions
120 // for them.
121 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
122 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
123 setOperationAction(ISD::FPOW, MVT::f32, Legal);
124 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
125 setOperationAction(ISD::FABS, MVT::f32, Legal);
126 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
127 setOperationAction(ISD::FRINT, MVT::f32, Legal);
128 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
129 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
130 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
131
132 setOperationAction(ISD::FROUND, MVT::f32, Custom);
133 setOperationAction(ISD::FROUND, MVT::f64, Custom);
134
135 setOperationAction(ISD::FREM, MVT::f32, Custom);
136 setOperationAction(ISD::FREM, MVT::f64, Custom);
137
138 // v_mad_f32 does not support denormals according to some sources.
139 if (!Subtarget->hasFP32Denormals())
140 setOperationAction(ISD::FMAD, MVT::f32, Legal);
141
142 // Expand to fneg + fadd.
143 setOperationAction(ISD::FSUB, MVT::f64, Expand);
144
145 // Lower floating point store/load to integer store/load to reduce the number
146 // of patterns in tablegen.
147 setOperationAction(ISD::STORE, MVT::f32, Promote);
148 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
149
150 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
151 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
152
153 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
154 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
155
156 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
157 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
158
159 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
160 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
161
162 setOperationAction(ISD::STORE, MVT::f64, Promote);
163 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
164
165 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
166 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
167
168 // Custom lowering of vector stores is required for local address space
169 // stores.
170 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
171
172 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
175
176 // XXX: This can be change to Custom, once ExpandVectorStores can
177 // handle 64-bit stores.
178 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
179
180 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
181 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
182 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
183 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
184 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
185
186
187 setOperationAction(ISD::LOAD, MVT::f32, Promote);
188 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
189
190 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
191 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
192
193 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
194 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
195
196 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
197 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
198
199 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
200 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
201
202 setOperationAction(ISD::LOAD, MVT::f64, Promote);
203 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
204
205 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
206 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
207
208 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
209 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
210 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
212 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
213 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
214 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
218
219 // There are no 64-bit extloads. These should be done as a 32-bit extload and
220 // an extension to 64-bit.
221 for (MVT VT : MVT::integer_valuetypes()) {
222 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
223 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
224 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
225 }
226
227 for (MVT VT : MVT::integer_vector_valuetypes()) {
228 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
229 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
230 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
240 }
241
242 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
243
244 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
245 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
246 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
247 setOperationAction(ISD::FRINT, MVT::f64, Custom);
248 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
249 }
250
251 if (!Subtarget->hasBFI()) {
252 // fcopysign can be done in a single instruction with BFI.
253 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
254 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
255 }
256
257 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
258
259 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
260 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
261 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
262 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
263
264 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
265 for (MVT VT : ScalarIntVTs) {
266 setOperationAction(ISD::SREM, VT, Expand);
267 setOperationAction(ISD::SDIV, VT, Expand);
268
269 // GPU does not have divrem function for signed or unsigned.
270 setOperationAction(ISD::SDIVREM, VT, Custom);
271 setOperationAction(ISD::UDIVREM, VT, Custom);
272
273 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
274 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
275 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
276
277 setOperationAction(ISD::BSWAP, VT, Expand);
278 setOperationAction(ISD::CTTZ, VT, Expand);
279 setOperationAction(ISD::CTLZ, VT, Expand);
280 }
281
282 if (!Subtarget->hasBCNT(32))
283 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
284
285 if (!Subtarget->hasBCNT(64))
286 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
287
288 // The hardware supports 32-bit ROTR, but not ROTL.
289 setOperationAction(ISD::ROTL, MVT::i32, Expand);
290 setOperationAction(ISD::ROTL, MVT::i64, Expand);
291 setOperationAction(ISD::ROTR, MVT::i64, Expand);
292
293 setOperationAction(ISD::MUL, MVT::i64, Expand);
294 setOperationAction(ISD::MULHU, MVT::i64, Expand);
295 setOperationAction(ISD::MULHS, MVT::i64, Expand);
296 setOperationAction(ISD::UDIV, MVT::i32, Expand);
297 setOperationAction(ISD::UREM, MVT::i32, Expand);
298 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
299 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
300 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
301 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
302 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
303
304 if (!Subtarget->hasFFBH())
305 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
306
307 if (!Subtarget->hasFFBL())
308 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
309
310 static const MVT::SimpleValueType VectorIntTypes[] = {
311 MVT::v2i32, MVT::v4i32
312 };
313
314 for (MVT VT : VectorIntTypes) {
315 // Expand the following operations for the current type by default.
316 setOperationAction(ISD::ADD, VT, Expand);
317 setOperationAction(ISD::AND, VT, Expand);
318 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
319 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
320 setOperationAction(ISD::MUL, VT, Expand);
321 setOperationAction(ISD::OR, VT, Expand);
322 setOperationAction(ISD::SHL, VT, Expand);
323 setOperationAction(ISD::SRA, VT, Expand);
324 setOperationAction(ISD::SRL, VT, Expand);
325 setOperationAction(ISD::ROTL, VT, Expand);
326 setOperationAction(ISD::ROTR, VT, Expand);
327 setOperationAction(ISD::SUB, VT, Expand);
328 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
329 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
330 setOperationAction(ISD::SDIV, VT, Expand);
331 setOperationAction(ISD::UDIV, VT, Expand);
332 setOperationAction(ISD::SREM, VT, Expand);
333 setOperationAction(ISD::UREM, VT, Expand);
334 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
335 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
336 setOperationAction(ISD::SDIVREM, VT, Custom);
337 setOperationAction(ISD::UDIVREM, VT, Custom);
338 setOperationAction(ISD::ADDC, VT, Expand);
339 setOperationAction(ISD::SUBC, VT, Expand);
340 setOperationAction(ISD::ADDE, VT, Expand);
341 setOperationAction(ISD::SUBE, VT, Expand);
342 setOperationAction(ISD::SELECT, VT, Expand);
343 setOperationAction(ISD::VSELECT, VT, Expand);
344 setOperationAction(ISD::SELECT_CC, VT, Expand);
345 setOperationAction(ISD::XOR, VT, Expand);
346 setOperationAction(ISD::BSWAP, VT, Expand);
347 setOperationAction(ISD::CTPOP, VT, Expand);
348 setOperationAction(ISD::CTTZ, VT, Expand);
349 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
350 setOperationAction(ISD::CTLZ, VT, Expand);
351 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
352 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
353 }
354
355 static const MVT::SimpleValueType FloatVectorTypes[] = {
356 MVT::v2f32, MVT::v4f32
357 };
358
359 for (MVT VT : FloatVectorTypes) {
360 setOperationAction(ISD::FABS, VT, Expand);
361 setOperationAction(ISD::FMINNUM, VT, Expand);
362 setOperationAction(ISD::FMAXNUM, VT, Expand);
363 setOperationAction(ISD::FADD, VT, Expand);
364 setOperationAction(ISD::FCEIL, VT, Expand);
365 setOperationAction(ISD::FCOS, VT, Expand);
366 setOperationAction(ISD::FDIV, VT, Expand);
367 setOperationAction(ISD::FEXP2, VT, Expand);
368 setOperationAction(ISD::FLOG2, VT, Expand);
369 setOperationAction(ISD::FREM, VT, Expand);
370 setOperationAction(ISD::FPOW, VT, Expand);
371 setOperationAction(ISD::FFLOOR, VT, Expand);
372 setOperationAction(ISD::FTRUNC, VT, Expand);
373 setOperationAction(ISD::FMUL, VT, Expand);
374 setOperationAction(ISD::FMA, VT, Expand);
375 setOperationAction(ISD::FRINT, VT, Expand);
376 setOperationAction(ISD::FNEARBYINT, VT, Expand);
377 setOperationAction(ISD::FSQRT, VT, Expand);
378 setOperationAction(ISD::FSIN, VT, Expand);
379 setOperationAction(ISD::FSUB, VT, Expand);
380 setOperationAction(ISD::FNEG, VT, Expand);
381 setOperationAction(ISD::SELECT, VT, Expand);
382 setOperationAction(ISD::VSELECT, VT, Expand);
383 setOperationAction(ISD::SELECT_CC, VT, Expand);
384 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
385 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
386 }
387
388 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
389 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
390
391 setTargetDAGCombine(ISD::MUL);
392 setTargetDAGCombine(ISD::SELECT);
393 setTargetDAGCombine(ISD::SELECT_CC);
394 setTargetDAGCombine(ISD::STORE);
395
396 setTargetDAGCombine(ISD::FADD);
397 setTargetDAGCombine(ISD::FSUB);
398
399 setBooleanContents(ZeroOrNegativeOneBooleanContent);
400 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
401
402 setSchedulingPreference(Sched::RegPressure);
403 setJumpIsExpensive(true);
404
405 // SI at least has hardware support for floating point exceptions, but no way
406 // of using or handling them is implemented. They are also optional in OpenCL
407 // (Section 7.3)
408 setHasFloatingPointExceptions(false);
409
410 setSelectIsExpensive(false);
411 PredictableSelectIsExpensive = false;
412
413 // There are no integer divide instructions, and these expand to a pretty
414 // large sequence of instructions.
415 setIntDivIsCheap(false);
416 setPow2SDivIsCheap(false);
417 setFsqrtIsCheap(true);
418
419 // FIXME: Need to really handle these.
420 MaxStoresPerMemcpy = 4096;
421 MaxStoresPerMemmove = 4096;
422 MaxStoresPerMemset = 4096;
423 }
424
425 //===----------------------------------------------------------------------===//
426 // Target Information
427 //===----------------------------------------------------------------------===//
428
getVectorIdxTy() const429 MVT AMDGPUTargetLowering::getVectorIdxTy() const {
430 return MVT::i32;
431 }
432
isSelectSupported(SelectSupportKind SelType) const433 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
434 return true;
435 }
436
437 // The backend supports 32 and 64 bit floating point immediates.
438 // FIXME: Why are we reporting vectors of FP immediates as legal?
isFPImmLegal(const APFloat & Imm,EVT VT) const439 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
440 EVT ScalarVT = VT.getScalarType();
441 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
442 }
443
444 // We don't want to shrink f64 / f32 constants.
ShouldShrinkFPConstant(EVT VT) const445 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
446 EVT ScalarVT = VT.getScalarType();
447 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
448 }
449
shouldReduceLoadWidth(SDNode * N,ISD::LoadExtType,EVT NewVT) const450 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
451 ISD::LoadExtType,
452 EVT NewVT) const {
453
454 unsigned NewSize = NewVT.getStoreSizeInBits();
455
456 // If we are reducing to a 32-bit load, this is always better.
457 if (NewSize == 32)
458 return true;
459
460 EVT OldVT = N->getValueType(0);
461 unsigned OldSize = OldVT.getStoreSizeInBits();
462
463 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
464 // extloads, so doing one requires using a buffer_load. In cases where we
465 // still couldn't use a scalar load, using the wider load shouldn't really
466 // hurt anything.
467
468 // If the old size already had to be an extload, there's no harm in continuing
469 // to reduce the width.
470 return (OldSize < 32);
471 }
472
isLoadBitCastBeneficial(EVT LoadTy,EVT CastTy) const473 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
474 EVT CastTy) const {
475 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
476 return true;
477
478 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
479 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
480
481 return ((LScalarSize <= CastScalarSize) ||
482 (CastScalarSize >= 32) ||
483 (LScalarSize < 32));
484 }
485
486 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
487 // profitable with the expansion for 64-bit since it's generally good to
488 // speculate things.
489 // FIXME: These should really have the size as a parameter.
isCheapToSpeculateCttz() const490 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
491 return true;
492 }
493
isCheapToSpeculateCtlz() const494 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
495 return true;
496 }
497
498 //===---------------------------------------------------------------------===//
499 // Target Properties
500 //===---------------------------------------------------------------------===//
501
isFAbsFree(EVT VT) const502 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
503 assert(VT.isFloatingPoint());
504 return VT == MVT::f32 || VT == MVT::f64;
505 }
506
isFNegFree(EVT VT) const507 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
508 assert(VT.isFloatingPoint());
509 return VT == MVT::f32 || VT == MVT::f64;
510 }
511
isTruncateFree(EVT Source,EVT Dest) const512 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
513 // Truncate is just accessing a subregister.
514 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
515 }
516
isTruncateFree(Type * Source,Type * Dest) const517 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
518 // Truncate is just accessing a subregister.
519 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
520 (Dest->getPrimitiveSizeInBits() % 32 == 0);
521 }
522
isZExtFree(Type * Src,Type * Dest) const523 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
524 const DataLayout *DL = getDataLayout();
525 unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
526 unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
527
528 return SrcSize == 32 && DestSize == 64;
529 }
530
isZExtFree(EVT Src,EVT Dest) const531 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
532 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
533 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
534 // this will enable reducing 64-bit operations the 32-bit, which is always
535 // good.
536 return Src == MVT::i32 && Dest == MVT::i64;
537 }
538
isZExtFree(SDValue Val,EVT VT2) const539 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
540 return isZExtFree(Val.getValueType(), VT2);
541 }
542
isNarrowingProfitable(EVT SrcVT,EVT DestVT) const543 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
544 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
545 // limited number of native 64-bit operations. Shrinking an operation to fit
546 // in a single 32-bit register should always be helpful. As currently used,
547 // this is much less general than the name suggests, and is only used in
548 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
549 // not profitable, and may actually be harmful.
550 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
551 }
552
553 //===---------------------------------------------------------------------===//
554 // TargetLowering Callbacks
555 //===---------------------------------------------------------------------===//
556
AnalyzeFormalArguments(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins) const557 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
558 const SmallVectorImpl<ISD::InputArg> &Ins) const {
559
560 State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
561 }
562
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc DL,SelectionDAG & DAG) const563 SDValue AMDGPUTargetLowering::LowerReturn(
564 SDValue Chain,
565 CallingConv::ID CallConv,
566 bool isVarArg,
567 const SmallVectorImpl<ISD::OutputArg> &Outs,
568 const SmallVectorImpl<SDValue> &OutVals,
569 SDLoc DL, SelectionDAG &DAG) const {
570 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
571 }
572
573 //===---------------------------------------------------------------------===//
574 // Target specific lowering
575 //===---------------------------------------------------------------------===//
576
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const577 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
578 SmallVectorImpl<SDValue> &InVals) const {
579 SDValue Callee = CLI.Callee;
580 SelectionDAG &DAG = CLI.DAG;
581
582 const Function &Fn = *DAG.getMachineFunction().getFunction();
583
584 StringRef FuncName("<unknown>");
585
586 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
587 FuncName = G->getSymbol();
588 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
589 FuncName = G->getGlobal()->getName();
590
591 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
592 DAG.getContext()->diagnose(NoCalls);
593 return SDValue();
594 }
595
LowerOperation(SDValue Op,SelectionDAG & DAG) const596 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
597 SelectionDAG &DAG) const {
598 switch (Op.getOpcode()) {
599 default:
600 Op.getNode()->dump();
601 llvm_unreachable("Custom lowering code for this"
602 "instruction is not implemented yet!");
603 break;
604 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
605 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
606 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
607 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
608 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
609 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
610 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
611 case ISD::FREM: return LowerFREM(Op, DAG);
612 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
613 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
614 case ISD::FRINT: return LowerFRINT(Op, DAG);
615 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
616 case ISD::FROUND: return LowerFROUND(Op, DAG);
617 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
618 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
619 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
620 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
621 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
622 }
623 return Op;
624 }
625
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const626 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
627 SmallVectorImpl<SDValue> &Results,
628 SelectionDAG &DAG) const {
629 switch (N->getOpcode()) {
630 case ISD::SIGN_EXTEND_INREG:
631 // Different parts of legalization seem to interpret which type of
632 // sign_extend_inreg is the one to check for custom lowering. The extended
633 // from type is what really matters, but some places check for custom
634 // lowering of the result type. This results in trying to use
635 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
636 // nothing here and let the illegal result integer be handled normally.
637 return;
638 case ISD::LOAD: {
639 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
640 if (!Node)
641 return;
642
643 Results.push_back(SDValue(Node, 0));
644 Results.push_back(SDValue(Node, 1));
645 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
646 // function
647 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
648 return;
649 }
650 case ISD::STORE: {
651 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
652 if (Lowered.getNode())
653 Results.push_back(Lowered);
654 return;
655 }
656 default:
657 return;
658 }
659 }
660
661 // FIXME: This implements accesses to initialized globals in the constant
662 // address space by copying them to private and accessing that. It does not
663 // properly handle illegal types or vectors. The private vector loads are not
664 // scalarized, and the illegal scalars hit an assertion. This technique will not
665 // work well with large initializers, and this should eventually be
666 // removed. Initialized globals should be placed into a data section that the
667 // runtime will load into a buffer before the kernel is executed. Uses of the
668 // global need to be replaced with a pointer loaded from an implicit kernel
669 // argument into this buffer holding the copy of the data, which will remove the
670 // need for any of this.
LowerConstantInitializer(const Constant * Init,const GlobalValue * GV,const SDValue & InitPtr,SDValue Chain,SelectionDAG & DAG) const671 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
672 const GlobalValue *GV,
673 const SDValue &InitPtr,
674 SDValue Chain,
675 SelectionDAG &DAG) const {
676 const DataLayout *TD = getDataLayout();
677 SDLoc DL(InitPtr);
678 Type *InitTy = Init->getType();
679
680 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
681 EVT VT = EVT::getEVT(InitTy);
682 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
683 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
684 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
685 TD->getPrefTypeAlignment(InitTy));
686 }
687
688 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
689 EVT VT = EVT::getEVT(CFP->getType());
690 PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
691 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
692 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
693 TD->getPrefTypeAlignment(CFP->getType()));
694 }
695
696 if (StructType *ST = dyn_cast<StructType>(InitTy)) {
697 const StructLayout *SL = TD->getStructLayout(ST);
698
699 EVT PtrVT = InitPtr.getValueType();
700 SmallVector<SDValue, 8> Chains;
701
702 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
703 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
704 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
705
706 Constant *Elt = Init->getAggregateElement(I);
707 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
708 }
709
710 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
711 }
712
713 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
714 EVT PtrVT = InitPtr.getValueType();
715
716 unsigned NumElements;
717 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
718 NumElements = AT->getNumElements();
719 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
720 NumElements = VT->getNumElements();
721 else
722 llvm_unreachable("Unexpected type");
723
724 unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
725 SmallVector<SDValue, 8> Chains;
726 for (unsigned i = 0; i < NumElements; ++i) {
727 SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
728 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
729
730 Constant *Elt = Init->getAggregateElement(i);
731 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
732 }
733
734 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
735 }
736
737 if (isa<UndefValue>(Init)) {
738 EVT VT = EVT::getEVT(InitTy);
739 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
740 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
741 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
742 TD->getPrefTypeAlignment(InitTy));
743 }
744
745 Init->dump();
746 llvm_unreachable("Unhandled constant initializer");
747 }
748
hasDefinedInitializer(const GlobalValue * GV)749 static bool hasDefinedInitializer(const GlobalValue *GV) {
750 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
751 if (!GVar || !GVar->hasInitializer())
752 return false;
753
754 if (isa<UndefValue>(GVar->getInitializer()))
755 return false;
756
757 return true;
758 }
759
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const760 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
761 SDValue Op,
762 SelectionDAG &DAG) const {
763
764 const DataLayout *TD = getDataLayout();
765 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
766 const GlobalValue *GV = G->getGlobal();
767
768 switch (G->getAddressSpace()) {
769 case AMDGPUAS::LOCAL_ADDRESS: {
770 // XXX: What does the value of G->getOffset() mean?
771 assert(G->getOffset() == 0 &&
772 "Do not know what to do with an non-zero offset");
773
774 // TODO: We could emit code to handle the initialization somewhere.
775 if (hasDefinedInitializer(GV))
776 break;
777
778 unsigned Offset;
779 if (MFI->LocalMemoryObjects.count(GV) == 0) {
780 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
781 Offset = MFI->LDSSize;
782 MFI->LocalMemoryObjects[GV] = Offset;
783 // XXX: Account for alignment?
784 MFI->LDSSize += Size;
785 } else {
786 Offset = MFI->LocalMemoryObjects[GV];
787 }
788
789 return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
790 }
791 case AMDGPUAS::CONSTANT_ADDRESS: {
792 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
793 Type *EltType = GV->getType()->getElementType();
794 unsigned Size = TD->getTypeAllocSize(EltType);
795 unsigned Alignment = TD->getPrefTypeAlignment(EltType);
796
797 MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
798 MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
799
800 int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
801 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
802
803 const GlobalVariable *Var = cast<GlobalVariable>(GV);
804 if (!Var->hasInitializer()) {
805 // This has no use, but bugpoint will hit it.
806 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
807 }
808
809 const Constant *Init = Var->getInitializer();
810 SmallVector<SDNode*, 8> WorkList;
811
812 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
813 E = DAG.getEntryNode()->use_end(); I != E; ++I) {
814 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
815 continue;
816 WorkList.push_back(*I);
817 }
818 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
819 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
820 E = WorkList.end(); I != E; ++I) {
821 SmallVector<SDValue, 8> Ops;
822 Ops.push_back(Chain);
823 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
824 Ops.push_back((*I)->getOperand(i));
825 }
826 DAG.UpdateNodeOperands(*I, Ops);
827 }
828 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
829 }
830 }
831
832 const Function &Fn = *DAG.getMachineFunction().getFunction();
833 DiagnosticInfoUnsupported BadInit(Fn,
834 "initializer for address space");
835 DAG.getContext()->diagnose(BadInit);
836 return SDValue();
837 }
838
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const839 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
840 SelectionDAG &DAG) const {
841 SmallVector<SDValue, 8> Args;
842 SDValue A = Op.getOperand(0);
843 SDValue B = Op.getOperand(1);
844
845 DAG.ExtractVectorElements(A, Args);
846 DAG.ExtractVectorElements(B, Args);
847
848 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
849 }
850
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const851 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
852 SelectionDAG &DAG) const {
853
854 SmallVector<SDValue, 8> Args;
855 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
856 EVT VT = Op.getValueType();
857 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
858 VT.getVectorNumElements());
859
860 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
861 }
862
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const863 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
864 SelectionDAG &DAG) const {
865
866 MachineFunction &MF = DAG.getMachineFunction();
867 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
868
869 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
870
871 unsigned FrameIndex = FIN->getIndex();
872 unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
873 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
874 Op.getValueType());
875 }
876
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const877 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
878 SelectionDAG &DAG) const {
879 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
880 SDLoc DL(Op);
881 EVT VT = Op.getValueType();
882
883 switch (IntrinsicID) {
884 default: return Op;
885 case AMDGPUIntrinsic::AMDGPU_abs:
886 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
887 return LowerIntrinsicIABS(Op, DAG);
888 case AMDGPUIntrinsic::AMDGPU_lrp:
889 return LowerIntrinsicLRP(Op, DAG);
890
891 case AMDGPUIntrinsic::AMDGPU_clamp:
892 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
893 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
894 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
895
896 case Intrinsic::AMDGPU_div_scale: {
897 // 3rd parameter required to be a constant.
898 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
899 if (!Param)
900 return DAG.getUNDEF(VT);
901
902 // Translate to the operands expected by the machine instruction. The
903 // first parameter must be the same as the first instruction.
904 SDValue Numerator = Op.getOperand(1);
905 SDValue Denominator = Op.getOperand(2);
906
907 // Note this order is opposite of the machine instruction's operations,
908 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
909 // intrinsic has the numerator as the first operand to match a normal
910 // division operation.
911
912 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
913
914 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
915 Denominator, Numerator);
916 }
917
918 case Intrinsic::AMDGPU_div_fmas:
919 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
920 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
921 Op.getOperand(4));
922
923 case Intrinsic::AMDGPU_div_fixup:
924 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
925 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
926
927 case Intrinsic::AMDGPU_trig_preop:
928 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
929 Op.getOperand(1), Op.getOperand(2));
930
931 case Intrinsic::AMDGPU_rcp:
932 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
933
934 case Intrinsic::AMDGPU_rsq:
935 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
936
937 case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
938 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
939
940 case Intrinsic::AMDGPU_rsq_clamped:
941 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
942 Type *Type = VT.getTypeForEVT(*DAG.getContext());
943 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
944 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
945
946 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
947 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
948 DAG.getConstantFP(Max, VT));
949 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
950 DAG.getConstantFP(Min, VT));
951 } else {
952 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
953 }
954
955 case Intrinsic::AMDGPU_ldexp:
956 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
957 Op.getOperand(2));
958
959 case AMDGPUIntrinsic::AMDGPU_imax:
960 return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
961 Op.getOperand(2));
962 case AMDGPUIntrinsic::AMDGPU_umax:
963 return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
964 Op.getOperand(2));
965 case AMDGPUIntrinsic::AMDGPU_imin:
966 return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
967 Op.getOperand(2));
968 case AMDGPUIntrinsic::AMDGPU_umin:
969 return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
970 Op.getOperand(2));
971
972 case AMDGPUIntrinsic::AMDGPU_umul24:
973 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
974 Op.getOperand(1), Op.getOperand(2));
975
976 case AMDGPUIntrinsic::AMDGPU_imul24:
977 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
978 Op.getOperand(1), Op.getOperand(2));
979
980 case AMDGPUIntrinsic::AMDGPU_umad24:
981 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
982 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
983
984 case AMDGPUIntrinsic::AMDGPU_imad24:
985 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
986 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
987
988 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
989 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
990
991 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
992 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
993
994 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
995 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
996
997 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
998 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
999
1000 case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1001 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1002 Op.getOperand(1),
1003 Op.getOperand(2),
1004 Op.getOperand(3));
1005
1006 case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1007 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1008 Op.getOperand(1),
1009 Op.getOperand(2),
1010 Op.getOperand(3));
1011
1012 case AMDGPUIntrinsic::AMDGPU_bfi:
1013 return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1014 Op.getOperand(1),
1015 Op.getOperand(2),
1016 Op.getOperand(3));
1017
1018 case AMDGPUIntrinsic::AMDGPU_bfm:
1019 return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1020 Op.getOperand(1),
1021 Op.getOperand(2));
1022
1023 case AMDGPUIntrinsic::AMDGPU_brev:
1024 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
1025
1026 case Intrinsic::AMDGPU_class:
1027 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1028 Op.getOperand(1), Op.getOperand(2));
1029
1030 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1031 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1032
1033 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1034 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1035 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1036 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1037 }
1038 }
1039
1040 ///IABS(a) = SMAX(sub(0, a), a)
LowerIntrinsicIABS(SDValue Op,SelectionDAG & DAG) const1041 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1042 SelectionDAG &DAG) const {
1043 SDLoc DL(Op);
1044 EVT VT = Op.getValueType();
1045 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1046 Op.getOperand(1));
1047
1048 return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1049 }
1050
1051 /// Linear Interpolation
1052 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
LowerIntrinsicLRP(SDValue Op,SelectionDAG & DAG) const1053 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1054 SelectionDAG &DAG) const {
1055 SDLoc DL(Op);
1056 EVT VT = Op.getValueType();
1057 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1058 DAG.getConstantFP(1.0f, MVT::f32),
1059 Op.getOperand(1));
1060 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1061 Op.getOperand(3));
1062 return DAG.getNode(ISD::FADD, DL, VT,
1063 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1064 OneSubAC);
1065 }
1066
1067 /// \brief Generate Min/Max node
CombineFMinMaxLegacy(SDLoc DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,DAGCombinerInfo & DCI) const1068 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1069 EVT VT,
1070 SDValue LHS,
1071 SDValue RHS,
1072 SDValue True,
1073 SDValue False,
1074 SDValue CC,
1075 DAGCombinerInfo &DCI) const {
1076 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1077 return SDValue();
1078
1079 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1080 return SDValue();
1081
1082 SelectionDAG &DAG = DCI.DAG;
1083 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1084 switch (CCOpcode) {
1085 case ISD::SETOEQ:
1086 case ISD::SETONE:
1087 case ISD::SETUNE:
1088 case ISD::SETNE:
1089 case ISD::SETUEQ:
1090 case ISD::SETEQ:
1091 case ISD::SETFALSE:
1092 case ISD::SETFALSE2:
1093 case ISD::SETTRUE:
1094 case ISD::SETTRUE2:
1095 case ISD::SETUO:
1096 case ISD::SETO:
1097 break;
1098 case ISD::SETULE:
1099 case ISD::SETULT: {
1100 if (LHS == True)
1101 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1102 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1103 }
1104 case ISD::SETOLE:
1105 case ISD::SETOLT:
1106 case ISD::SETLE:
1107 case ISD::SETLT: {
1108 // Ordered. Assume ordered for undefined.
1109
1110 // Only do this after legalization to avoid interfering with other combines
1111 // which might occur.
1112 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1113 !DCI.isCalledByLegalizer())
1114 return SDValue();
1115
1116 // We need to permute the operands to get the correct NaN behavior. The
1117 // selected operand is the second one based on the failing compare with NaN,
1118 // so permute it based on the compare type the hardware uses.
1119 if (LHS == True)
1120 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1121 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1122 }
1123 case ISD::SETUGE:
1124 case ISD::SETUGT: {
1125 if (LHS == True)
1126 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1127 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1128 }
1129 case ISD::SETGT:
1130 case ISD::SETGE:
1131 case ISD::SETOGE:
1132 case ISD::SETOGT: {
1133 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1134 !DCI.isCalledByLegalizer())
1135 return SDValue();
1136
1137 if (LHS == True)
1138 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1139 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1140 }
1141 case ISD::SETCC_INVALID:
1142 llvm_unreachable("Invalid setcc condcode!");
1143 }
1144 return SDValue();
1145 }
1146
1147 /// \brief Generate Min/Max node
CombineIMinMax(SDLoc DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,SelectionDAG & DAG) const1148 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
1149 EVT VT,
1150 SDValue LHS,
1151 SDValue RHS,
1152 SDValue True,
1153 SDValue False,
1154 SDValue CC,
1155 SelectionDAG &DAG) const {
1156 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1157 return SDValue();
1158
1159 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1160 switch (CCOpcode) {
1161 case ISD::SETULE:
1162 case ISD::SETULT: {
1163 unsigned Opc = (LHS == True) ? AMDGPUISD::UMIN : AMDGPUISD::UMAX;
1164 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1165 }
1166 case ISD::SETLE:
1167 case ISD::SETLT: {
1168 unsigned Opc = (LHS == True) ? AMDGPUISD::SMIN : AMDGPUISD::SMAX;
1169 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1170 }
1171 case ISD::SETGT:
1172 case ISD::SETGE: {
1173 unsigned Opc = (LHS == True) ? AMDGPUISD::SMAX : AMDGPUISD::SMIN;
1174 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1175 }
1176 case ISD::SETUGE:
1177 case ISD::SETUGT: {
1178 unsigned Opc = (LHS == True) ? AMDGPUISD::UMAX : AMDGPUISD::UMIN;
1179 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1180 }
1181 default:
1182 return SDValue();
1183 }
1184 }
1185
ScalarizeVectorLoad(const SDValue Op,SelectionDAG & DAG) const1186 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1187 SelectionDAG &DAG) const {
1188 LoadSDNode *Load = cast<LoadSDNode>(Op);
1189 EVT MemVT = Load->getMemoryVT();
1190 EVT MemEltVT = MemVT.getVectorElementType();
1191
1192 EVT LoadVT = Op.getValueType();
1193 EVT EltVT = LoadVT.getVectorElementType();
1194 EVT PtrVT = Load->getBasePtr().getValueType();
1195
1196 unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1197 SmallVector<SDValue, 8> Loads;
1198 SmallVector<SDValue, 8> Chains;
1199
1200 SDLoc SL(Op);
1201 unsigned MemEltSize = MemEltVT.getStoreSize();
1202 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1203
1204 for (unsigned i = 0; i < NumElts; ++i) {
1205 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1206 DAG.getConstant(i * MemEltSize, PtrVT));
1207
1208 SDValue NewLoad
1209 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1210 Load->getChain(), Ptr,
1211 SrcValue.getWithOffset(i * MemEltSize),
1212 MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1213 Load->isInvariant(), Load->getAlignment());
1214 Loads.push_back(NewLoad.getValue(0));
1215 Chains.push_back(NewLoad.getValue(1));
1216 }
1217
1218 SDValue Ops[] = {
1219 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1220 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1221 };
1222
1223 return DAG.getMergeValues(Ops, SL);
1224 }
1225
SplitVectorLoad(const SDValue Op,SelectionDAG & DAG) const1226 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1227 SelectionDAG &DAG) const {
1228 EVT VT = Op.getValueType();
1229
1230 // If this is a 2 element vector, we really want to scalarize and not create
1231 // weird 1 element vectors.
1232 if (VT.getVectorNumElements() == 2)
1233 return ScalarizeVectorLoad(Op, DAG);
1234
1235 LoadSDNode *Load = cast<LoadSDNode>(Op);
1236 SDValue BasePtr = Load->getBasePtr();
1237 EVT PtrVT = BasePtr.getValueType();
1238 EVT MemVT = Load->getMemoryVT();
1239 SDLoc SL(Op);
1240 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1241
1242 EVT LoVT, HiVT;
1243 EVT LoMemVT, HiMemVT;
1244 SDValue Lo, Hi;
1245
1246 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1247 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1248 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1249 SDValue LoLoad
1250 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1251 Load->getChain(), BasePtr,
1252 SrcValue,
1253 LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1254 Load->isInvariant(), Load->getAlignment());
1255
1256 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1257 DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1258
1259 SDValue HiLoad
1260 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1261 Load->getChain(), HiPtr,
1262 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1263 HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1264 Load->isInvariant(), Load->getAlignment());
1265
1266 SDValue Ops[] = {
1267 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1268 DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1269 LoLoad.getValue(1), HiLoad.getValue(1))
1270 };
1271
1272 return DAG.getMergeValues(Ops, SL);
1273 }
1274
MergeVectorStore(const SDValue & Op,SelectionDAG & DAG) const1275 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1276 SelectionDAG &DAG) const {
1277 StoreSDNode *Store = cast<StoreSDNode>(Op);
1278 EVT MemVT = Store->getMemoryVT();
1279 unsigned MemBits = MemVT.getSizeInBits();
1280
1281 // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1282 // truncating store into an i32 store.
1283 // XXX: We could also handle optimize other vector bitwidths.
1284 if (!MemVT.isVector() || MemBits > 32) {
1285 return SDValue();
1286 }
1287
1288 SDLoc DL(Op);
1289 SDValue Value = Store->getValue();
1290 EVT VT = Value.getValueType();
1291 EVT ElemVT = VT.getVectorElementType();
1292 SDValue Ptr = Store->getBasePtr();
1293 EVT MemEltVT = MemVT.getVectorElementType();
1294 unsigned MemEltBits = MemEltVT.getSizeInBits();
1295 unsigned MemNumElements = MemVT.getVectorNumElements();
1296 unsigned PackedSize = MemVT.getStoreSizeInBits();
1297 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
1298
1299 assert(Value.getValueType().getScalarSizeInBits() >= 32);
1300
1301 SDValue PackedValue;
1302 for (unsigned i = 0; i < MemNumElements; ++i) {
1303 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1304 DAG.getConstant(i, MVT::i32));
1305 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1306 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1307
1308 SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
1309 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1310
1311 if (i == 0) {
1312 PackedValue = Elt;
1313 } else {
1314 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1315 }
1316 }
1317
1318 if (PackedSize < 32) {
1319 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1320 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1321 Store->getMemOperand()->getPointerInfo(),
1322 PackedVT,
1323 Store->isNonTemporal(), Store->isVolatile(),
1324 Store->getAlignment());
1325 }
1326
1327 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1328 Store->getMemOperand()->getPointerInfo(),
1329 Store->isVolatile(), Store->isNonTemporal(),
1330 Store->getAlignment());
1331 }
1332
ScalarizeVectorStore(SDValue Op,SelectionDAG & DAG) const1333 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1334 SelectionDAG &DAG) const {
1335 StoreSDNode *Store = cast<StoreSDNode>(Op);
1336 EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1337 EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1338 EVT PtrVT = Store->getBasePtr().getValueType();
1339 unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1340 SDLoc SL(Op);
1341
1342 SmallVector<SDValue, 8> Chains;
1343
1344 unsigned EltSize = MemEltVT.getStoreSize();
1345 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1346
1347 for (unsigned i = 0, e = NumElts; i != e; ++i) {
1348 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1349 Store->getValue(),
1350 DAG.getConstant(i, MVT::i32));
1351
1352 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
1353 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1354 SDValue NewStore =
1355 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1356 SrcValue.getWithOffset(i * EltSize),
1357 MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1358 Store->getAlignment());
1359 Chains.push_back(NewStore);
1360 }
1361
1362 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1363 }
1364
SplitVectorStore(SDValue Op,SelectionDAG & DAG) const1365 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1366 SelectionDAG &DAG) const {
1367 StoreSDNode *Store = cast<StoreSDNode>(Op);
1368 SDValue Val = Store->getValue();
1369 EVT VT = Val.getValueType();
1370
1371 // If this is a 2 element vector, we really want to scalarize and not create
1372 // weird 1 element vectors.
1373 if (VT.getVectorNumElements() == 2)
1374 return ScalarizeVectorStore(Op, DAG);
1375
1376 EVT MemVT = Store->getMemoryVT();
1377 SDValue Chain = Store->getChain();
1378 SDValue BasePtr = Store->getBasePtr();
1379 SDLoc SL(Op);
1380
1381 EVT LoVT, HiVT;
1382 EVT LoMemVT, HiMemVT;
1383 SDValue Lo, Hi;
1384
1385 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1386 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1387 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1388
1389 EVT PtrVT = BasePtr.getValueType();
1390 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1391 DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1392
1393 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1394 SDValue LoStore
1395 = DAG.getTruncStore(Chain, SL, Lo,
1396 BasePtr,
1397 SrcValue,
1398 LoMemVT,
1399 Store->isNonTemporal(),
1400 Store->isVolatile(),
1401 Store->getAlignment());
1402 SDValue HiStore
1403 = DAG.getTruncStore(Chain, SL, Hi,
1404 HiPtr,
1405 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1406 HiMemVT,
1407 Store->isNonTemporal(),
1408 Store->isVolatile(),
1409 Store->getAlignment());
1410
1411 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1412 }
1413
1414
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1415 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1416 SDLoc DL(Op);
1417 LoadSDNode *Load = cast<LoadSDNode>(Op);
1418 ISD::LoadExtType ExtType = Load->getExtensionType();
1419 EVT VT = Op.getValueType();
1420 EVT MemVT = Load->getMemoryVT();
1421
1422 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1423 assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1424 // FIXME: Copied from PPC
1425 // First, load into 32 bits, then truncate to 1 bit.
1426
1427 SDValue Chain = Load->getChain();
1428 SDValue BasePtr = Load->getBasePtr();
1429 MachineMemOperand *MMO = Load->getMemOperand();
1430
1431 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1432 BasePtr, MVT::i8, MMO);
1433
1434 SDValue Ops[] = {
1435 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1436 NewLD.getValue(1)
1437 };
1438
1439 return DAG.getMergeValues(Ops, DL);
1440 }
1441
1442 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1443 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1444 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1445 return SDValue();
1446
1447
1448 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1449 DAG.getConstant(2, MVT::i32));
1450 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1451 Load->getChain(), Ptr,
1452 DAG.getTargetConstant(0, MVT::i32),
1453 Op.getOperand(2));
1454 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1455 Load->getBasePtr(),
1456 DAG.getConstant(0x3, MVT::i32));
1457 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1458 DAG.getConstant(3, MVT::i32));
1459
1460 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1461
1462 EVT MemEltVT = MemVT.getScalarType();
1463 if (ExtType == ISD::SEXTLOAD) {
1464 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1465
1466 SDValue Ops[] = {
1467 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1468 Load->getChain()
1469 };
1470
1471 return DAG.getMergeValues(Ops, DL);
1472 }
1473
1474 SDValue Ops[] = {
1475 DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1476 Load->getChain()
1477 };
1478
1479 return DAG.getMergeValues(Ops, DL);
1480 }
1481
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1482 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1483 SDLoc DL(Op);
1484 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1485 if (Result.getNode()) {
1486 return Result;
1487 }
1488
1489 StoreSDNode *Store = cast<StoreSDNode>(Op);
1490 SDValue Chain = Store->getChain();
1491 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1492 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1493 Store->getValue().getValueType().isVector()) {
1494 return ScalarizeVectorStore(Op, DAG);
1495 }
1496
1497 EVT MemVT = Store->getMemoryVT();
1498 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1499 MemVT.bitsLT(MVT::i32)) {
1500 unsigned Mask = 0;
1501 if (Store->getMemoryVT() == MVT::i8) {
1502 Mask = 0xff;
1503 } else if (Store->getMemoryVT() == MVT::i16) {
1504 Mask = 0xffff;
1505 }
1506 SDValue BasePtr = Store->getBasePtr();
1507 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1508 DAG.getConstant(2, MVT::i32));
1509 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1510 Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1511
1512 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1513 DAG.getConstant(0x3, MVT::i32));
1514
1515 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1516 DAG.getConstant(3, MVT::i32));
1517
1518 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1519 Store->getValue());
1520
1521 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1522
1523 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1524 MaskedValue, ShiftAmt);
1525
1526 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1527 ShiftAmt);
1528 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1529 DAG.getConstant(0xffffffff, MVT::i32));
1530 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1531
1532 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1533 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1534 Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1535 }
1536 return SDValue();
1537 }
1538
1539 // This is a shortcut for integer division because we have fast i32<->f32
1540 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1541 // float is enough to accurately represent up to a 24-bit integer.
LowerDIVREM24(SDValue Op,SelectionDAG & DAG,bool sign) const1542 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1543 SDLoc DL(Op);
1544 EVT VT = Op.getValueType();
1545 SDValue LHS = Op.getOperand(0);
1546 SDValue RHS = Op.getOperand(1);
1547 MVT IntVT = MVT::i32;
1548 MVT FltVT = MVT::f32;
1549
1550 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1551 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1552
1553 if (VT.isVector()) {
1554 unsigned NElts = VT.getVectorNumElements();
1555 IntVT = MVT::getVectorVT(MVT::i32, NElts);
1556 FltVT = MVT::getVectorVT(MVT::f32, NElts);
1557 }
1558
1559 unsigned BitSize = VT.getScalarType().getSizeInBits();
1560
1561 SDValue jq = DAG.getConstant(1, IntVT);
1562
1563 if (sign) {
1564 // char|short jq = ia ^ ib;
1565 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1566
1567 // jq = jq >> (bitsize - 2)
1568 jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
1569
1570 // jq = jq | 0x1
1571 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
1572
1573 // jq = (int)jq
1574 jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1575 }
1576
1577 // int ia = (int)LHS;
1578 SDValue ia = sign ?
1579 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1580
1581 // int ib, (int)RHS;
1582 SDValue ib = sign ?
1583 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1584
1585 // float fa = (float)ia;
1586 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1587
1588 // float fb = (float)ib;
1589 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1590
1591 // float fq = native_divide(fa, fb);
1592 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1593 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1594
1595 // fq = trunc(fq);
1596 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1597
1598 // float fqneg = -fq;
1599 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1600
1601 // float fr = mad(fqneg, fb, fa);
1602 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1603 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1604
1605 // int iq = (int)fq;
1606 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1607
1608 // fr = fabs(fr);
1609 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1610
1611 // fb = fabs(fb);
1612 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1613
1614 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
1615
1616 // int cv = fr >= fb;
1617 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1618
1619 // jq = (cv ? jq : 0);
1620 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
1621
1622 // dst = trunc/extend to legal type
1623 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1624
1625 // dst = iq + jq;
1626 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1627
1628 // Rem needs compensation, it's easier to recompute it
1629 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1630 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1631
1632 SDValue Res[2] = {
1633 Div,
1634 Rem
1635 };
1636 return DAG.getMergeValues(Res, DL);
1637 }
1638
LowerUDIVREM64(SDValue Op,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results) const1639 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1640 SelectionDAG &DAG,
1641 SmallVectorImpl<SDValue> &Results) const {
1642 assert(Op.getValueType() == MVT::i64);
1643
1644 SDLoc DL(Op);
1645 EVT VT = Op.getValueType();
1646 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1647
1648 SDValue one = DAG.getConstant(1, HalfVT);
1649 SDValue zero = DAG.getConstant(0, HalfVT);
1650
1651 //HiLo split
1652 SDValue LHS = Op.getOperand(0);
1653 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1654 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1655
1656 SDValue RHS = Op.getOperand(1);
1657 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1658 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1659
1660 if (VT == MVT::i64 &&
1661 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1662 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1663
1664 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1665 LHS_Lo, RHS_Lo);
1666
1667 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
1668 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
1669 Results.push_back(DIV);
1670 Results.push_back(REM);
1671 return;
1672 }
1673
1674 // Get Speculative values
1675 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1676 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1677
1678 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1679 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
1680
1681 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1682 SDValue DIV_Lo = zero;
1683
1684 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1685
1686 for (unsigned i = 0; i < halfBitWidth; ++i) {
1687 const unsigned bitPos = halfBitWidth - i - 1;
1688 SDValue POS = DAG.getConstant(bitPos, HalfVT);
1689 // Get value of high bit
1690 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1691 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1692 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1693
1694 // Shift
1695 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, VT));
1696 // Add LHS high bit
1697 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1698
1699 SDValue BIT = DAG.getConstant(1 << bitPos, HalfVT);
1700 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1701
1702 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1703
1704 // Update REM
1705 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1706 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1707 }
1708
1709 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1710 Results.push_back(DIV);
1711 Results.push_back(REM);
1712 }
1713
LowerUDIVREM(SDValue Op,SelectionDAG & DAG) const1714 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1715 SelectionDAG &DAG) const {
1716 SDLoc DL(Op);
1717 EVT VT = Op.getValueType();
1718
1719 if (VT == MVT::i64) {
1720 SmallVector<SDValue, 2> Results;
1721 LowerUDIVREM64(Op, DAG, Results);
1722 return DAG.getMergeValues(Results, DL);
1723 }
1724
1725 SDValue Num = Op.getOperand(0);
1726 SDValue Den = Op.getOperand(1);
1727
1728 if (VT == MVT::i32) {
1729 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
1730 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
1731 // TODO: We technically could do this for i64, but shouldn't that just be
1732 // handled by something generally reducing 64-bit division on 32-bit
1733 // values to 32-bit?
1734 return LowerDIVREM24(Op, DAG, false);
1735 }
1736 }
1737
1738 // RCP = URECIP(Den) = 2^32 / Den + e
1739 // e is rounding error.
1740 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1741
1742 // RCP_LO = mul(RCP, Den) */
1743 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1744
1745 // RCP_HI = mulhu (RCP, Den) */
1746 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1747
1748 // NEG_RCP_LO = -RCP_LO
1749 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1750 RCP_LO);
1751
1752 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1753 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1754 NEG_RCP_LO, RCP_LO,
1755 ISD::SETEQ);
1756 // Calculate the rounding error from the URECIP instruction
1757 // E = mulhu(ABS_RCP_LO, RCP)
1758 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1759
1760 // RCP_A_E = RCP + E
1761 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1762
1763 // RCP_S_E = RCP - E
1764 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1765
1766 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1767 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1768 RCP_A_E, RCP_S_E,
1769 ISD::SETEQ);
1770 // Quotient = mulhu(Tmp0, Num)
1771 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1772
1773 // Num_S_Remainder = Quotient * Den
1774 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1775
1776 // Remainder = Num - Num_S_Remainder
1777 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1778
1779 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1780 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1781 DAG.getConstant(-1, VT),
1782 DAG.getConstant(0, VT),
1783 ISD::SETUGE);
1784 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1785 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1786 Num_S_Remainder,
1787 DAG.getConstant(-1, VT),
1788 DAG.getConstant(0, VT),
1789 ISD::SETUGE);
1790 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1791 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1792 Remainder_GE_Zero);
1793
1794 // Calculate Division result:
1795
1796 // Quotient_A_One = Quotient + 1
1797 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1798 DAG.getConstant(1, VT));
1799
1800 // Quotient_S_One = Quotient - 1
1801 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1802 DAG.getConstant(1, VT));
1803
1804 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1805 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1806 Quotient, Quotient_A_One, ISD::SETEQ);
1807
1808 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1809 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1810 Quotient_S_One, Div, ISD::SETEQ);
1811
1812 // Calculate Rem result:
1813
1814 // Remainder_S_Den = Remainder - Den
1815 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1816
1817 // Remainder_A_Den = Remainder + Den
1818 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1819
1820 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1821 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1822 Remainder, Remainder_S_Den, ISD::SETEQ);
1823
1824 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1825 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1826 Remainder_A_Den, Rem, ISD::SETEQ);
1827 SDValue Ops[2] = {
1828 Div,
1829 Rem
1830 };
1831 return DAG.getMergeValues(Ops, DL);
1832 }
1833
LowerSDIVREM(SDValue Op,SelectionDAG & DAG) const1834 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1835 SelectionDAG &DAG) const {
1836 SDLoc DL(Op);
1837 EVT VT = Op.getValueType();
1838
1839 SDValue LHS = Op.getOperand(0);
1840 SDValue RHS = Op.getOperand(1);
1841
1842 SDValue Zero = DAG.getConstant(0, VT);
1843 SDValue NegOne = DAG.getConstant(-1, VT);
1844
1845 if (VT == MVT::i32 &&
1846 DAG.ComputeNumSignBits(LHS) > 8 &&
1847 DAG.ComputeNumSignBits(RHS) > 8) {
1848 return LowerDIVREM24(Op, DAG, true);
1849 }
1850 if (VT == MVT::i64 &&
1851 DAG.ComputeNumSignBits(LHS) > 32 &&
1852 DAG.ComputeNumSignBits(RHS) > 32) {
1853 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1854
1855 //HiLo split
1856 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1857 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1858 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1859 LHS_Lo, RHS_Lo);
1860 SDValue Res[2] = {
1861 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1862 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1863 };
1864 return DAG.getMergeValues(Res, DL);
1865 }
1866
1867 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1868 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1869 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1870 SDValue RSign = LHSign; // Remainder sign is the same as LHS
1871
1872 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1873 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1874
1875 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1876 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1877
1878 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1879 SDValue Rem = Div.getValue(1);
1880
1881 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1882 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1883
1884 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1885 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1886
1887 SDValue Res[2] = {
1888 Div,
1889 Rem
1890 };
1891 return DAG.getMergeValues(Res, DL);
1892 }
1893
1894 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
LowerFREM(SDValue Op,SelectionDAG & DAG) const1895 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1896 SDLoc SL(Op);
1897 EVT VT = Op.getValueType();
1898 SDValue X = Op.getOperand(0);
1899 SDValue Y = Op.getOperand(1);
1900
1901 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1902 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1903 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1904
1905 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1906 }
1907
LowerFCEIL(SDValue Op,SelectionDAG & DAG) const1908 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1909 SDLoc SL(Op);
1910 SDValue Src = Op.getOperand(0);
1911
1912 // result = trunc(src)
1913 // if (src > 0.0 && src != result)
1914 // result += 1.0
1915
1916 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1917
1918 const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1919 const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1920
1921 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1922
1923 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1924 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1925 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1926
1927 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1928 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1929 }
1930
extractF64Exponent(SDValue Hi,SDLoc SL,SelectionDAG & DAG)1931 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
1932 const unsigned FractBits = 52;
1933 const unsigned ExpBits = 11;
1934
1935 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1936 Hi,
1937 DAG.getConstant(FractBits - 32, MVT::i32),
1938 DAG.getConstant(ExpBits, MVT::i32));
1939 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1940 DAG.getConstant(1023, MVT::i32));
1941
1942 return Exp;
1943 }
1944
LowerFTRUNC(SDValue Op,SelectionDAG & DAG) const1945 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1946 SDLoc SL(Op);
1947 SDValue Src = Op.getOperand(0);
1948
1949 assert(Op.getValueType() == MVT::f64);
1950
1951 const SDValue Zero = DAG.getConstant(0, MVT::i32);
1952 const SDValue One = DAG.getConstant(1, MVT::i32);
1953
1954 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1955
1956 // Extract the upper half, since this is where we will find the sign and
1957 // exponent.
1958 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1959
1960 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1961
1962 const unsigned FractBits = 52;
1963
1964 // Extract the sign bit.
1965 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
1966 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1967
1968 // Extend back to to 64-bits.
1969 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1970 Zero, SignBit);
1971 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1972
1973 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1974 const SDValue FractMask
1975 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
1976
1977 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1978 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1979 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1980
1981 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
1982
1983 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
1984
1985 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1986 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1987
1988 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1989 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1990
1991 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1992 }
1993
LowerFRINT(SDValue Op,SelectionDAG & DAG) const1994 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1995 SDLoc SL(Op);
1996 SDValue Src = Op.getOperand(0);
1997
1998 assert(Op.getValueType() == MVT::f64);
1999
2000 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
2001 SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
2002 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2003
2004 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2005 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2006
2007 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2008
2009 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
2010 SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
2011
2012 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2013 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2014
2015 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2016 }
2017
LowerFNEARBYINT(SDValue Op,SelectionDAG & DAG) const2018 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2019 // FNEARBYINT and FRINT are the same, except in their handling of FP
2020 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2021 // rint, so just treat them as equivalent.
2022 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2023 }
2024
2025 // XXX - May require not supporting f32 denormals?
LowerFROUND32(SDValue Op,SelectionDAG & DAG) const2026 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
2027 SDLoc SL(Op);
2028 SDValue X = Op.getOperand(0);
2029
2030 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
2031
2032 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
2033
2034 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
2035
2036 const SDValue Zero = DAG.getConstantFP(0.0, MVT::f32);
2037 const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
2038 const SDValue Half = DAG.getConstantFP(0.5, MVT::f32);
2039
2040 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
2041
2042 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
2043
2044 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2045
2046 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
2047
2048 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
2049 }
2050
LowerFROUND64(SDValue Op,SelectionDAG & DAG) const2051 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2052 SDLoc SL(Op);
2053 SDValue X = Op.getOperand(0);
2054
2055 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2056
2057 const SDValue Zero = DAG.getConstant(0, MVT::i32);
2058 const SDValue One = DAG.getConstant(1, MVT::i32);
2059 const SDValue NegOne = DAG.getConstant(-1, MVT::i32);
2060 const SDValue FiftyOne = DAG.getConstant(51, MVT::i32);
2061 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
2062
2063
2064 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2065
2066 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2067
2068 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2069
2070 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), MVT::i64);
2071
2072 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2073 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2074 DAG.getConstant(INT64_C(0x0008000000000000), MVT::i64),
2075 Exp);
2076
2077 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2078 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2079 DAG.getConstant(0, MVT::i64), Tmp0,
2080 ISD::SETNE);
2081
2082 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2083 D, DAG.getConstant(0, MVT::i64));
2084 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2085
2086 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2087 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2088
2089 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2090 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2091 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2092
2093 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2094 ExpEqNegOne,
2095 DAG.getConstantFP(1.0, MVT::f64),
2096 DAG.getConstantFP(0.0, MVT::f64));
2097
2098 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2099
2100 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2101 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2102
2103 return K;
2104 }
2105
LowerFROUND(SDValue Op,SelectionDAG & DAG) const2106 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2107 EVT VT = Op.getValueType();
2108
2109 if (VT == MVT::f32)
2110 return LowerFROUND32(Op, DAG);
2111
2112 if (VT == MVT::f64)
2113 return LowerFROUND64(Op, DAG);
2114
2115 llvm_unreachable("unhandled type");
2116 }
2117
LowerFFLOOR(SDValue Op,SelectionDAG & DAG) const2118 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2119 SDLoc SL(Op);
2120 SDValue Src = Op.getOperand(0);
2121
2122 // result = trunc(src);
2123 // if (src < 0.0 && src != result)
2124 // result += -1.0.
2125
2126 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2127
2128 const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
2129 const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
2130
2131 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2132
2133 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2134 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2135 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2136
2137 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2138 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2139 }
2140
LowerINT_TO_FP64(SDValue Op,SelectionDAG & DAG,bool Signed) const2141 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2142 bool Signed) const {
2143 SDLoc SL(Op);
2144 SDValue Src = Op.getOperand(0);
2145
2146 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2147
2148 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2149 DAG.getConstant(0, MVT::i32));
2150 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2151 DAG.getConstant(1, MVT::i32));
2152
2153 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2154 SL, MVT::f64, Hi);
2155
2156 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2157
2158 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2159 DAG.getConstant(32, MVT::i32));
2160
2161 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2162 }
2163
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2164 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2165 SelectionDAG &DAG) const {
2166 SDValue S0 = Op.getOperand(0);
2167 if (S0.getValueType() != MVT::i64)
2168 return SDValue();
2169
2170 EVT DestVT = Op.getValueType();
2171 if (DestVT == MVT::f64)
2172 return LowerINT_TO_FP64(Op, DAG, false);
2173
2174 assert(DestVT == MVT::f32);
2175
2176 SDLoc DL(Op);
2177
2178 // f32 uint_to_fp i64
2179 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2180 DAG.getConstant(0, MVT::i32));
2181 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
2182 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2183 DAG.getConstant(1, MVT::i32));
2184 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
2185 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
2186 DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
2187 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
2188 }
2189
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2190 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2191 SelectionDAG &DAG) const {
2192 SDValue Src = Op.getOperand(0);
2193 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
2194 return LowerINT_TO_FP64(Op, DAG, true);
2195
2196 return SDValue();
2197 }
2198
LowerFP64_TO_INT(SDValue Op,SelectionDAG & DAG,bool Signed) const2199 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2200 bool Signed) const {
2201 SDLoc SL(Op);
2202
2203 SDValue Src = Op.getOperand(0);
2204
2205 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2206
2207 SDValue K0
2208 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), MVT::f64);
2209 SDValue K1
2210 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), MVT::f64);
2211
2212 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2213
2214 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2215
2216
2217 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2218
2219 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2220 MVT::i32, FloorMul);
2221 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2222
2223 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2224
2225 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2226 }
2227
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const2228 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2229 SelectionDAG &DAG) const {
2230 SDValue Src = Op.getOperand(0);
2231
2232 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2233 return LowerFP64_TO_INT(Op, DAG, true);
2234
2235 return SDValue();
2236 }
2237
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const2238 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2239 SelectionDAG &DAG) const {
2240 SDValue Src = Op.getOperand(0);
2241
2242 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2243 return LowerFP64_TO_INT(Op, DAG, false);
2244
2245 return SDValue();
2246 }
2247
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const2248 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2249 SelectionDAG &DAG) const {
2250 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2251 MVT VT = Op.getSimpleValueType();
2252 MVT ScalarVT = VT.getScalarType();
2253
2254 if (!VT.isVector())
2255 return SDValue();
2256
2257 SDValue Src = Op.getOperand(0);
2258 SDLoc DL(Op);
2259
2260 // TODO: Don't scalarize on Evergreen?
2261 unsigned NElts = VT.getVectorNumElements();
2262 SmallVector<SDValue, 8> Args;
2263 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2264
2265 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2266 for (unsigned I = 0; I < NElts; ++I)
2267 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2268
2269 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2270 }
2271
2272 //===----------------------------------------------------------------------===//
2273 // Custom DAG optimizations
2274 //===----------------------------------------------------------------------===//
2275
isU24(SDValue Op,SelectionDAG & DAG)2276 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2277 APInt KnownZero, KnownOne;
2278 EVT VT = Op.getValueType();
2279 DAG.computeKnownBits(Op, KnownZero, KnownOne);
2280
2281 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2282 }
2283
isI24(SDValue Op,SelectionDAG & DAG)2284 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2285 EVT VT = Op.getValueType();
2286
2287 // In order for this to be a signed 24-bit value, bit 23, must
2288 // be a sign bit.
2289 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2290 // as unsigned 24-bit values.
2291 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2292 }
2293
simplifyI24(SDValue Op,TargetLowering::DAGCombinerInfo & DCI)2294 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2295
2296 SelectionDAG &DAG = DCI.DAG;
2297 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2298 EVT VT = Op.getValueType();
2299
2300 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2301 APInt KnownZero, KnownOne;
2302 TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2303 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2304 DCI.CommitTargetLoweringOpt(TLO);
2305 }
2306
2307 template <typename IntTy>
constantFoldBFE(SelectionDAG & DAG,IntTy Src0,uint32_t Offset,uint32_t Width)2308 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2309 uint32_t Offset, uint32_t Width) {
2310 if (Width + Offset < 32) {
2311 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2312 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2313 return DAG.getConstant(Result, MVT::i32);
2314 }
2315
2316 return DAG.getConstant(Src0 >> Offset, MVT::i32);
2317 }
2318
usesAllNormalStores(SDNode * LoadVal)2319 static bool usesAllNormalStores(SDNode *LoadVal) {
2320 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2321 if (!ISD::isNormalStore(*I))
2322 return false;
2323 }
2324
2325 return true;
2326 }
2327
2328 // If we have a copy of an illegal type, replace it with a load / store of an
2329 // equivalently sized legal type. This avoids intermediate bit pack / unpack
2330 // instructions emitted when handling extloads and truncstores. Ideally we could
2331 // recognize the pack / unpack pattern to eliminate it.
performStoreCombine(SDNode * N,DAGCombinerInfo & DCI) const2332 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2333 DAGCombinerInfo &DCI) const {
2334 if (!DCI.isBeforeLegalize())
2335 return SDValue();
2336
2337 StoreSDNode *SN = cast<StoreSDNode>(N);
2338 SDValue Value = SN->getValue();
2339 EVT VT = Value.getValueType();
2340
2341 if (isTypeLegal(VT) || SN->isVolatile() ||
2342 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2343 return SDValue();
2344
2345 LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2346 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2347 return SDValue();
2348
2349 EVT MemVT = LoadVal->getMemoryVT();
2350
2351 SDLoc SL(N);
2352 SelectionDAG &DAG = DCI.DAG;
2353 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2354
2355 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2356 LoadVT, SL,
2357 LoadVal->getChain(),
2358 LoadVal->getBasePtr(),
2359 LoadVal->getOffset(),
2360 LoadVT,
2361 LoadVal->getMemOperand());
2362
2363 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2364 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2365
2366 return DAG.getStore(SN->getChain(), SL, NewLoad,
2367 SN->getBasePtr(), SN->getMemOperand());
2368 }
2369
performMulCombine(SDNode * N,DAGCombinerInfo & DCI) const2370 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2371 DAGCombinerInfo &DCI) const {
2372 EVT VT = N->getValueType(0);
2373
2374 if (VT.isVector() || VT.getSizeInBits() > 32)
2375 return SDValue();
2376
2377 SelectionDAG &DAG = DCI.DAG;
2378 SDLoc DL(N);
2379
2380 SDValue N0 = N->getOperand(0);
2381 SDValue N1 = N->getOperand(1);
2382 SDValue Mul;
2383
2384 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2385 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2386 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2387 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2388 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2389 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2390 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2391 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2392 } else {
2393 return SDValue();
2394 }
2395
2396 // We need to use sext even for MUL_U24, because MUL_U24 is used
2397 // for signed multiply of 8 and 16-bit types.
2398 return DAG.getSExtOrTrunc(Mul, DL, VT);
2399 }
2400
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2401 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2402 DAGCombinerInfo &DCI) const {
2403 SelectionDAG &DAG = DCI.DAG;
2404 SDLoc DL(N);
2405
2406 switch(N->getOpcode()) {
2407 default: break;
2408 case ISD::MUL:
2409 return performMulCombine(N, DCI);
2410 case AMDGPUISD::MUL_I24:
2411 case AMDGPUISD::MUL_U24: {
2412 SDValue N0 = N->getOperand(0);
2413 SDValue N1 = N->getOperand(1);
2414 simplifyI24(N0, DCI);
2415 simplifyI24(N1, DCI);
2416 return SDValue();
2417 }
2418 case ISD::SELECT: {
2419 SDValue Cond = N->getOperand(0);
2420 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
2421 SDLoc DL(N);
2422 EVT VT = N->getValueType(0);
2423 SDValue LHS = Cond.getOperand(0);
2424 SDValue RHS = Cond.getOperand(1);
2425 SDValue CC = Cond.getOperand(2);
2426
2427 SDValue True = N->getOperand(1);
2428 SDValue False = N->getOperand(2);
2429
2430 if (VT == MVT::f32)
2431 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
2432
2433 // TODO: Implement min / max Evergreen instructions.
2434 if (VT == MVT::i32 &&
2435 Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2436 return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
2437 }
2438 }
2439
2440 break;
2441 }
2442 case AMDGPUISD::BFE_I32:
2443 case AMDGPUISD::BFE_U32: {
2444 assert(!N->getValueType(0).isVector() &&
2445 "Vector handling of BFE not implemented");
2446 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2447 if (!Width)
2448 break;
2449
2450 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2451 if (WidthVal == 0)
2452 return DAG.getConstant(0, MVT::i32);
2453
2454 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2455 if (!Offset)
2456 break;
2457
2458 SDValue BitsFrom = N->getOperand(0);
2459 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2460
2461 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2462
2463 if (OffsetVal == 0) {
2464 // This is already sign / zero extended, so try to fold away extra BFEs.
2465 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2466
2467 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2468 if (OpSignBits >= SignBits)
2469 return BitsFrom;
2470
2471 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2472 if (Signed) {
2473 // This is a sign_extend_inreg. Replace it to take advantage of existing
2474 // DAG Combines. If not eliminated, we will match back to BFE during
2475 // selection.
2476
2477 // TODO: The sext_inreg of extended types ends, although we can could
2478 // handle them in a single BFE.
2479 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2480 DAG.getValueType(SmallVT));
2481 }
2482
2483 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2484 }
2485
2486 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2487 if (Signed) {
2488 return constantFoldBFE<int32_t>(DAG,
2489 CVal->getSExtValue(),
2490 OffsetVal,
2491 WidthVal);
2492 }
2493
2494 return constantFoldBFE<uint32_t>(DAG,
2495 CVal->getZExtValue(),
2496 OffsetVal,
2497 WidthVal);
2498 }
2499
2500 if ((OffsetVal + WidthVal) >= 32) {
2501 SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
2502 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2503 BitsFrom, ShiftVal);
2504 }
2505
2506 if (BitsFrom.hasOneUse()) {
2507 APInt Demanded = APInt::getBitsSet(32,
2508 OffsetVal,
2509 OffsetVal + WidthVal);
2510
2511 APInt KnownZero, KnownOne;
2512 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2513 !DCI.isBeforeLegalizeOps());
2514 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2515 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2516 TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2517 KnownZero, KnownOne, TLO)) {
2518 DCI.CommitTargetLoweringOpt(TLO);
2519 }
2520 }
2521
2522 break;
2523 }
2524
2525 case ISD::STORE:
2526 return performStoreCombine(N, DCI);
2527 }
2528 return SDValue();
2529 }
2530
2531 //===----------------------------------------------------------------------===//
2532 // Helper functions
2533 //===----------------------------------------------------------------------===//
2534
getOriginalFunctionArgs(SelectionDAG & DAG,const Function * F,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<ISD::InputArg> & OrigIns) const2535 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2536 SelectionDAG &DAG,
2537 const Function *F,
2538 const SmallVectorImpl<ISD::InputArg> &Ins,
2539 SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2540
2541 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2542 if (Ins[i].ArgVT == Ins[i].VT) {
2543 OrigIns.push_back(Ins[i]);
2544 continue;
2545 }
2546
2547 EVT VT;
2548 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2549 // Vector has been split into scalars.
2550 VT = Ins[i].ArgVT.getVectorElementType();
2551 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2552 Ins[i].ArgVT.getVectorElementType() !=
2553 Ins[i].VT.getVectorElementType()) {
2554 // Vector elements have been promoted
2555 VT = Ins[i].ArgVT;
2556 } else {
2557 // Vector has been spilt into smaller vectors.
2558 VT = Ins[i].VT;
2559 }
2560
2561 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2562 Ins[i].OrigArgIndex, Ins[i].PartOffset);
2563 OrigIns.push_back(Arg);
2564 }
2565 }
2566
isHWTrueValue(SDValue Op) const2567 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2568 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2569 return CFP->isExactlyValue(1.0);
2570 }
2571 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2572 return C->isAllOnesValue();
2573 }
2574 return false;
2575 }
2576
isHWFalseValue(SDValue Op) const2577 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2578 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2579 return CFP->getValueAPF().isZero();
2580 }
2581 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2582 return C->isNullValue();
2583 }
2584 return false;
2585 }
2586
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const2587 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2588 const TargetRegisterClass *RC,
2589 unsigned Reg, EVT VT) const {
2590 MachineFunction &MF = DAG.getMachineFunction();
2591 MachineRegisterInfo &MRI = MF.getRegInfo();
2592 unsigned VirtualRegister;
2593 if (!MRI.isLiveIn(Reg)) {
2594 VirtualRegister = MRI.createVirtualRegister(RC);
2595 MRI.addLiveIn(Reg, VirtualRegister);
2596 } else {
2597 VirtualRegister = MRI.getLiveInVirtReg(Reg);
2598 }
2599 return DAG.getRegister(VirtualRegister, VT);
2600 }
2601
2602 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2603
getTargetNodeName(unsigned Opcode) const2604 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2605 switch (Opcode) {
2606 default: return nullptr;
2607 // AMDIL DAG nodes
2608 NODE_NAME_CASE(CALL);
2609 NODE_NAME_CASE(UMUL);
2610 NODE_NAME_CASE(RET_FLAG);
2611 NODE_NAME_CASE(BRANCH_COND);
2612
2613 // AMDGPU DAG nodes
2614 NODE_NAME_CASE(DWORDADDR)
2615 NODE_NAME_CASE(FRACT)
2616 NODE_NAME_CASE(CLAMP)
2617 NODE_NAME_CASE(FMAX_LEGACY)
2618 NODE_NAME_CASE(SMAX)
2619 NODE_NAME_CASE(UMAX)
2620 NODE_NAME_CASE(FMIN_LEGACY)
2621 NODE_NAME_CASE(SMIN)
2622 NODE_NAME_CASE(UMIN)
2623 NODE_NAME_CASE(FMAX3)
2624 NODE_NAME_CASE(SMAX3)
2625 NODE_NAME_CASE(UMAX3)
2626 NODE_NAME_CASE(FMIN3)
2627 NODE_NAME_CASE(SMIN3)
2628 NODE_NAME_CASE(UMIN3)
2629 NODE_NAME_CASE(URECIP)
2630 NODE_NAME_CASE(DIV_SCALE)
2631 NODE_NAME_CASE(DIV_FMAS)
2632 NODE_NAME_CASE(DIV_FIXUP)
2633 NODE_NAME_CASE(TRIG_PREOP)
2634 NODE_NAME_CASE(RCP)
2635 NODE_NAME_CASE(RSQ)
2636 NODE_NAME_CASE(RSQ_LEGACY)
2637 NODE_NAME_CASE(RSQ_CLAMPED)
2638 NODE_NAME_CASE(LDEXP)
2639 NODE_NAME_CASE(FP_CLASS)
2640 NODE_NAME_CASE(DOT4)
2641 NODE_NAME_CASE(BFE_U32)
2642 NODE_NAME_CASE(BFE_I32)
2643 NODE_NAME_CASE(BFI)
2644 NODE_NAME_CASE(BFM)
2645 NODE_NAME_CASE(BREV)
2646 NODE_NAME_CASE(MUL_U24)
2647 NODE_NAME_CASE(MUL_I24)
2648 NODE_NAME_CASE(MAD_U24)
2649 NODE_NAME_CASE(MAD_I24)
2650 NODE_NAME_CASE(EXPORT)
2651 NODE_NAME_CASE(CONST_ADDRESS)
2652 NODE_NAME_CASE(REGISTER_LOAD)
2653 NODE_NAME_CASE(REGISTER_STORE)
2654 NODE_NAME_CASE(LOAD_CONSTANT)
2655 NODE_NAME_CASE(LOAD_INPUT)
2656 NODE_NAME_CASE(SAMPLE)
2657 NODE_NAME_CASE(SAMPLEB)
2658 NODE_NAME_CASE(SAMPLED)
2659 NODE_NAME_CASE(SAMPLEL)
2660 NODE_NAME_CASE(CVT_F32_UBYTE0)
2661 NODE_NAME_CASE(CVT_F32_UBYTE1)
2662 NODE_NAME_CASE(CVT_F32_UBYTE2)
2663 NODE_NAME_CASE(CVT_F32_UBYTE3)
2664 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2665 NODE_NAME_CASE(CONST_DATA_PTR)
2666 NODE_NAME_CASE(STORE_MSKOR)
2667 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2668 }
2669 }
2670
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR) const2671 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2672 DAGCombinerInfo &DCI,
2673 unsigned &RefinementSteps,
2674 bool &UseOneConstNR) const {
2675 SelectionDAG &DAG = DCI.DAG;
2676 EVT VT = Operand.getValueType();
2677
2678 if (VT == MVT::f32) {
2679 RefinementSteps = 0;
2680 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2681 }
2682
2683 // TODO: There is also f64 rsq instruction, but the documentation is less
2684 // clear on its precision.
2685
2686 return SDValue();
2687 }
2688
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps) const2689 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2690 DAGCombinerInfo &DCI,
2691 unsigned &RefinementSteps) const {
2692 SelectionDAG &DAG = DCI.DAG;
2693 EVT VT = Operand.getValueType();
2694
2695 if (VT == MVT::f32) {
2696 // Reciprocal, < 1 ulp error.
2697 //
2698 // This reciprocal approximation converges to < 0.5 ulp error with one
2699 // newton rhapson performed with two fused multiple adds (FMAs).
2700
2701 RefinementSteps = 0;
2702 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2703 }
2704
2705 // TODO: There is also f64 rcp instruction, but the documentation is less
2706 // clear on its precision.
2707
2708 return SDValue();
2709 }
2710
computeKnownBitsForMinMax(const SDValue Op0,const SDValue Op1,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth)2711 static void computeKnownBitsForMinMax(const SDValue Op0,
2712 const SDValue Op1,
2713 APInt &KnownZero,
2714 APInt &KnownOne,
2715 const SelectionDAG &DAG,
2716 unsigned Depth) {
2717 APInt Op0Zero, Op0One;
2718 APInt Op1Zero, Op1One;
2719 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2720 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2721
2722 KnownZero = Op0Zero & Op1Zero;
2723 KnownOne = Op0One & Op1One;
2724 }
2725
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const2726 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2727 const SDValue Op,
2728 APInt &KnownZero,
2729 APInt &KnownOne,
2730 const SelectionDAG &DAG,
2731 unsigned Depth) const {
2732
2733 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2734
2735 APInt KnownZero2;
2736 APInt KnownOne2;
2737 unsigned Opc = Op.getOpcode();
2738
2739 switch (Opc) {
2740 default:
2741 break;
2742 case ISD::INTRINSIC_WO_CHAIN: {
2743 // FIXME: The intrinsic should just use the node.
2744 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2745 case AMDGPUIntrinsic::AMDGPU_imax:
2746 case AMDGPUIntrinsic::AMDGPU_umax:
2747 case AMDGPUIntrinsic::AMDGPU_imin:
2748 case AMDGPUIntrinsic::AMDGPU_umin:
2749 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2750 KnownZero, KnownOne, DAG, Depth);
2751 break;
2752 default:
2753 break;
2754 }
2755
2756 break;
2757 }
2758 case AMDGPUISD::SMAX:
2759 case AMDGPUISD::UMAX:
2760 case AMDGPUISD::SMIN:
2761 case AMDGPUISD::UMIN:
2762 computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
2763 KnownZero, KnownOne, DAG, Depth);
2764 break;
2765
2766 case AMDGPUISD::BFE_I32:
2767 case AMDGPUISD::BFE_U32: {
2768 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2769 if (!CWidth)
2770 return;
2771
2772 unsigned BitWidth = 32;
2773 uint32_t Width = CWidth->getZExtValue() & 0x1f;
2774
2775 if (Opc == AMDGPUISD::BFE_U32)
2776 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2777
2778 break;
2779 }
2780 }
2781 }
2782
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG & DAG,unsigned Depth) const2783 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2784 SDValue Op,
2785 const SelectionDAG &DAG,
2786 unsigned Depth) const {
2787 switch (Op.getOpcode()) {
2788 case AMDGPUISD::BFE_I32: {
2789 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2790 if (!Width)
2791 return 1;
2792
2793 unsigned SignBits = 32 - Width->getZExtValue() + 1;
2794 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2795 if (!Offset || !Offset->isNullValue())
2796 return SignBits;
2797
2798 // TODO: Could probably figure something out with non-0 offsets.
2799 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2800 return std::max(SignBits, Op0SignBits);
2801 }
2802
2803 case AMDGPUISD::BFE_U32: {
2804 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2805 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2806 }
2807
2808 default:
2809 return 1;
2810 }
2811 }
2812