1==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6   :local:
7   :depth: 4
8
9Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55    %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76   prefix. For example, ``%foo``, ``@DivisionByZero``,
77   ``%a.really.long.identifier``. The actual regular expression used is
78   '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
79   characters in their names can be surrounded with quotes. Special
80   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81   code for the character in hexadecimal. In this way, any character can
82   be used in a name value, even quotes themselves. The ``"\01"`` prefix
83   can be used on global variables to suppress mangling.
84#. Unnamed values are represented as an unsigned numeric value with
85   their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section  Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109    %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
115    %result = shl i32 %X, 3
116
117And the hard way:
118
119.. code-block:: llvm
120
121    %0 = add i32 %X, %X           ; yields i32:%0
122    %1 = add i32 %0, %0           ; yields i32:%1
123    %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130   not assigned to a named value.
131#. Unnamed temporaries are numbered sequentially (using a per-function
132   incrementing counter, starting with 0). Note that basic blocks and unnamed
133   function parameters are included in this numbering. For example, if the
134   entry basic block is not given a label name and all function parameters are
135   named, then it will get number 0.
136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
156    ; Declare the string constant as a global constant.
157    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
158
159    ; External declaration of the puts function
160    declare i32 @puts(i8* nocapture) nounwind
161
162    ; Definition of main function
163    define i32 @main() {   ; i32()*
164      ; Convert [13 x i8]* to i8  *...
165      %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
166
167      ; Call puts function to write out the string to stdout.
168      call i32 @puts(i8* %cast210)
169      ret i32 0
170    }
171
172    ; Named metadata
173    !0 = !{i32 42, null, !"string"}
174    !foo = !{!0}
175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196    Global values with "``private``" linkage are only directly
197    accessible by objects in the current module. In particular, linking
198    code into a module with an private global value may cause the
199    private to be renamed as necessary to avoid collisions. Because the
200    symbol is private to the module, all references can be updated. This
201    doesn't show up in any symbol table in the object file.
202``internal``
203    Similar to private, but the value shows as a local symbol
204    (``STB_LOCAL`` in the case of ELF) in the object file. This
205    corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207    Globals with "``available_externally``" linkage are never emitted
208    into the object file corresponding to the LLVM module. They exist to
209    allow inlining and other optimizations to take place given knowledge
210    of the definition of the global, which is known to be somewhere
211    outside the module. Globals with ``available_externally`` linkage
212    are allowed to be discarded at will, and are otherwise the same as
213    ``linkonce_odr``. This linkage type is only allowed on definitions,
214    not declarations.
215``linkonce``
216    Globals with "``linkonce``" linkage are merged with other globals of
217    the same name when linkage occurs. This can be used to implement
218    some forms of inline functions, templates, or other code which must
219    be generated in each translation unit that uses it, but where the
220    body may be overridden with a more definitive definition later.
221    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222    that ``linkonce`` linkage does not actually allow the optimizer to
223    inline the body of this function into callers because it doesn't
224    know if this definition of the function is the definitive definition
225    within the program or whether it will be overridden by a stronger
226    definition. To enable inlining and other optimizations, use
227    "``linkonce_odr``" linkage.
228``weak``
229    "``weak``" linkage has the same merging semantics as ``linkonce``
230    linkage, except that unreferenced globals with ``weak`` linkage may
231    not be discarded. This is used for globals that are declared "weak"
232    in C source code.
233``common``
234    "``common``" linkage is most similar to "``weak``" linkage, but they
235    are used for tentative definitions in C, such as "``int X;``" at
236    global scope. Symbols with "``common``" linkage are merged in the
237    same way as ``weak symbols``, and they may not be deleted if
238    unreferenced. ``common`` symbols may not have an explicit section,
239    must have a zero initializer, and may not be marked
240    ':ref:`constant <globalvars>`'. Functions and aliases may not have
241    common linkage.
242
243.. _linkage_appending:
244
245``appending``
246    "``appending``" linkage may only be applied to global variables of
247    pointer to array type. When two global variables with appending
248    linkage are linked together, the two global arrays are appended
249    together. This is the LLVM, typesafe, equivalent of having the
250    system linker append together "sections" with identical names when
251    .o files are linked.
252``extern_weak``
253    The semantics of this linkage follow the ELF object file model: the
254    symbol is weak until linked, if not linked, the symbol becomes null
255    instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257    Some languages allow differing globals to be merged, such as two
258    functions with different semantics. Other languages, such as
259    ``C++``, ensure that only equivalent globals are ever merged (the
260    "one definition rule" --- "ODR").  Such languages can use the
261    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262    global will only be merged with equivalent globals. These linkage
263    types are otherwise the same as their non-``odr`` versions.
264``external``
265    If none of the above identifiers are used, the global is externally
266    visible, meaning that it participates in linkage and can be used to
267    resolve external symbol references.
268
269It is illegal for a function *declaration* to have any linkage type
270other than ``external`` or ``extern_weak``.
271
272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285    This calling convention (the default if no other calling convention
286    is specified) matches the target C calling conventions. This calling
287    convention supports varargs function calls and tolerates some
288    mismatch in the declared prototype and implemented declaration of
289    the function (as does normal C).
290"``fastcc``" - The fast calling convention
291    This calling convention attempts to make calls as fast as possible
292    (e.g. by passing things in registers). This calling convention
293    allows the target to use whatever tricks it wants to produce fast
294    code for the target, without having to conform to an externally
295    specified ABI (Application Binary Interface). `Tail calls can only
296    be optimized when this, the GHC or the HiPE convention is
297    used. <CodeGenerator.html#id80>`_ This calling convention does not
298    support varargs and requires the prototype of all callees to exactly
299    match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301    This calling convention attempts to make code in the caller as
302    efficient as possible under the assumption that the call is not
303    commonly executed. As such, these calls often preserve all registers
304    so that the call does not break any live ranges in the caller side.
305    This calling convention does not support varargs and requires the
306    prototype of all callees to exactly match the prototype of the
307    function definition. Furthermore the inliner doesn't consider such function
308    calls for inlining.
309"``cc 10``" - GHC convention
310    This calling convention has been implemented specifically for use by
311    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312    It passes everything in registers, going to extremes to achieve this
313    by disabling callee save registers. This calling convention should
314    not be used lightly but only for specific situations such as an
315    alternative to the *register pinning* performance technique often
316    used when implementing functional programming languages. At the
317    moment only X86 supports this convention and it has the following
318    limitations:
319
320    -  On *X86-32* only supports up to 4 bit type parameters. No
321       floating point types are supported.
322    -  On *X86-64* only supports up to 10 bit type parameters and 6
323       floating point parameters.
324
325    This calling convention supports `tail call
326    optimization <CodeGenerator.html#id80>`_ but requires both the
327    caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329    This calling convention has been implemented specifically for use by
330    the `High-Performance Erlang
331    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332    native code compiler of the `Ericsson's Open Source Erlang/OTP
333    system <http://www.erlang.org/download.shtml>`_. It uses more
334    registers for argument passing than the ordinary C calling
335    convention and defines no callee-saved registers. The calling
336    convention properly supports `tail call
337    optimization <CodeGenerator.html#id80>`_ but requires that both the
338    caller and the callee use it. It uses a *register pinning*
339    mechanism, similar to GHC's convention, for keeping frequently
340    accessed runtime components pinned to specific hardware registers.
341    At the moment only X86 supports this convention (both 32 and 64
342    bit).
343"``webkit_jscc``" - WebKit's JavaScript calling convention
344    This calling convention has been implemented for `WebKit FTL JIT
345    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346    stack right to left (as cdecl does), and returns a value in the
347    platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349    This is a special convention that supports patching an arbitrary code
350    sequence in place of a call site. This convention forces the call
351    arguments into registers but allows them to be dynamically
352    allocated. This can currently only be used with calls to
353    llvm.experimental.patchpoint because only this intrinsic records
354    the location of its arguments in a side table. See :doc:`StackMaps`.
355"``preserve_mostcc``" - The `PreserveMost` calling convention
356    This calling convention attempts to make the code in the caller as
357    unintrusive as possible. This convention behaves identically to the `C`
358    calling convention on how arguments and return values are passed, but it
359    uses a different set of caller/callee-saved registers. This alleviates the
360    burden of saving and recovering a large register set before and after the
361    call in the caller. If the arguments are passed in callee-saved registers,
362    then they will be preserved by the callee across the call. This doesn't
363    apply for values returned in callee-saved registers.
364
365    - On X86-64 the callee preserves all general purpose registers, except for
366      R11. R11 can be used as a scratch register. Floating-point registers
367      (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369    The idea behind this convention is to support calls to runtime functions
370    that have a hot path and a cold path. The hot path is usually a small piece
371    of code that doesn't use many registers. The cold path might need to call out to
372    another function and therefore only needs to preserve the caller-saved
373    registers, which haven't already been saved by the caller. The
374    `PreserveMost` calling convention is very similar to the `cold` calling
375    convention in terms of caller/callee-saved registers, but they are used for
376    different types of function calls. `coldcc` is for function calls that are
377    rarely executed, whereas `preserve_mostcc` function calls are intended to be
378    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379    doesn't prevent the inliner from inlining the function call.
380
381    This calling convention will be used by a future version of the ObjectiveC
382    runtime and should therefore still be considered experimental at this time.
383    Although this convention was created to optimize certain runtime calls to
384    the ObjectiveC runtime, it is not limited to this runtime and might be used
385    by other runtimes in the future too. The current implementation only
386    supports X86-64, but the intention is to support more architectures in the
387    future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389    This calling convention attempts to make the code in the caller even less
390    intrusive than the `PreserveMost` calling convention. This calling
391    convention also behaves identical to the `C` calling convention on how
392    arguments and return values are passed, but it uses a different set of
393    caller/callee-saved registers. This removes the burden of saving and
394    recovering a large register set before and after the call in the caller. If
395    the arguments are passed in callee-saved registers, then they will be
396    preserved by the callee across the call. This doesn't apply for values
397    returned in callee-saved registers.
398
399    - On X86-64 the callee preserves all general purpose registers, except for
400      R11. R11 can be used as a scratch register. Furthermore it also preserves
401      all floating-point registers (XMMs/YMMs).
402
403    The idea behind this convention is to support calls to runtime functions
404    that don't need to call out to any other functions.
405
406    This calling convention, like the `PreserveMost` calling convention, will be
407    used by a future version of the ObjectiveC runtime and should be considered
408    experimental at this time.
409"``cc <n>``" - Numbered convention
410    Any calling convention may be specified by number, allowing
411    target-specific calling conventions to be used. Target specific
412    calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
418.. _visibilitystyles:
419
420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427    On targets that use the ELF object file format, default visibility
428    means that the declaration is visible to other modules and, in
429    shared libraries, means that the declared entity may be overridden.
430    On Darwin, default visibility means that the declaration is visible
431    to other modules. Default visibility corresponds to "external
432    linkage" in the language.
433"``hidden``" - Hidden style
434    Two declarations of an object with hidden visibility refer to the
435    same object if they are in the same shared object. Usually, hidden
436    visibility indicates that the symbol will not be placed into the
437    dynamic symbol table, so no other module (executable or shared
438    library) can reference it directly.
439"``protected``" - Protected style
440    On ELF, protected visibility indicates that the symbol will be
441    placed in the dynamic symbol table, but that references within the
442    defining module will bind to the local symbol. That is, the symbol
443    cannot be overridden by another module.
444
445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
448.. _dllstorageclass:
449
450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457    "``dllimport``" causes the compiler to reference a function or variable via
458    a global pointer to a pointer that is set up by the DLL exporting the
459    symbol. On Microsoft Windows targets, the pointer name is formed by
460    combining ``__imp_`` and the function or variable name.
461``dllexport``
462    "``dllexport``" causes the compiler to provide a global pointer to a pointer
463    in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464    Microsoft Windows targets, the pointer name is formed by combining
465    ``__imp_`` and the function or variable name. Since this storage class
466    exists for defining a dll interface, the compiler, assembler and linker know
467    it is externally referenced and must refrain from deleting the symbol.
468
469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480    For variables that are only used within the current shared library.
481``initialexec``
482    For variables in modules that will not be loaded dynamically.
483``localexec``
484    For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
497.. _namedtypes:
498
499Structure Types
500---------------
501
502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`.  Literal types are uniqued structurally, but identified types
504are never uniqued.  An :ref:`opaque structural type <t_opaque>` can also be used
505to forward declare a type that is not yet available.
506
507An example of a identified structure specification is:
508
509.. code-block:: llvm
510
511    %mytype = type { %mytype*, i32 }
512
513Prior to the LLVM 3.0 release, identified types were structurally uniqued.  Only
514literal types are uniqued in recent versions of LLVM.
515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
522instead of run-time.
523
524Global variable definitions must be initialized.
525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
528
529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
532A variable may be defined as a global ``constant``, which indicates that
533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
536initialization cannot be marked ``constant`` as there is a store to the
537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
567Additionally, the global can placed in a comdat if the target has the necessary
568support.
569
570By default, global initializers are optimized by assuming that global
571variables defined within the module are not modified from their
572initial values before the start of the global initializer.  This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
577
578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
587iteration. The maximum alignment is ``1 << 29``.
588
589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
591Variables and aliases can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
594Syntax::
595
596    [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
597                         [unnamed_addr] [AddrSpace] [ExternallyInitialized]
598                         <global | constant> <Type> [<InitializerConstant>]
599                         [, section "name"] [, comdat [($name)]]
600                         [, align <Alignment>]
601
602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607    @G = addrspace(5) constant float 1.0, section "foo", align 4
608
609The following example just declares a global variable
610
611.. code-block:: llvm
612
613   @G = external global i32
614
615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620    @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
639curly brace, a list of basic blocks, and a closing curly brace.
640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
647name, a possibly empty list of arguments, an optional alignment, an optional
648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
650
651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
669Additionally, the function can be placed in a COMDAT.
670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is known to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
682    define [linkage] [visibility] [DLLStorageClass]
683           [cconv] [ret attrs]
684           <ResultType> @<FunctionName> ([argument list])
685           [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
686           [align N] [gc] [prefix Constant] [prologue Constant] { ... }
687
688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693   <type> [parameter Attrs] [name]
694
695
696.. _langref_aliases:
697
698Aliases
699-------
700
701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
710
711Syntax::
712
713    @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
714
715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
717might not correctly handle dropping a weak symbol that is aliased.
718
719Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
722
723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
725
726* The expression defining the aliasee must be computable at assembly
727  time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730  intermediate alias being overridden cannot be represented in an
731  object file.
732
733* No global value in the expression can be a declaration, since that
734  would require a relocation, which is not possible.
735
736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
743Comdats have a name which represents the COMDAT key.  All global objects that
744specify this key will only end up in the final object file if the linker chooses
745that key over some other key.  Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753    $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758    The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760    The linker may choose any COMDAT key but the sections must contain the
761    same data.
762``largest``
763    The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765    The linker requires that only section with this COMDAT key exist.
766``samesize``
767    The linker may choose any COMDAT key but the sections must contain the
768    same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778   $foo = comdat largest
779   @foo = global i32 2, comdat($foo)
780
781   define void @bar() comdat($foo) {
782     ret void
783   }
784
785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790  $foo = comdat any
791  @foo = global i32 2, comdat
792
793
794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
798section and contains the contents of the ``@bar`` symbol.
799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814   $foo = comdat any
815   $bar = comdat any
816   @g1 = global i32 42, section "sec", comdat($foo)
817   @g2 = global i32 42, section "sec", comdat($bar)
818
819From the object file perspective, this requires the creation of two sections
820with the same name.  This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR.  This arises, for example, when a global variable has linkonce_odr linkage.
827
828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839    ; Some unnamed metadata nodes, which are referenced by the named metadata.
840    !0 = !{!"zero"}
841    !1 = !{!"one"}
842    !2 = !{!"two"}
843    ; A named metadata.
844    !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864    declare i32 @printf(i8* noalias nocapture, ...)
865    declare i32 @atoi(i8 zeroext)
866    declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874    This indicates to the code generator that the parameter or return
875    value should be zero-extended to the extent required by the target's
876    ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877    the caller (for a parameter) or the callee (for a return value).
878``signext``
879    This indicates to the code generator that the parameter or return
880    value should be sign-extended to the extent required by the target's
881    ABI (which is usually 32-bits) by the caller (for a parameter) or
882    the callee (for a return value).
883``inreg``
884    This indicates that this parameter or return value should be treated
885    in a special target-dependent fashion during while emitting code for
886    a function call or return (usually, by putting it in a register as
887    opposed to memory, though some targets use it to distinguish between
888    two different kinds of registers). Use of this attribute is
889    target-specific.
890``byval``
891    This indicates that the pointer parameter should really be passed by
892    value to the function. The attribute implies that a hidden copy of
893    the pointee is made between the caller and the callee, so the callee
894    is unable to modify the value in the caller. This attribute is only
895    valid on LLVM pointer arguments. It is generally used to pass
896    structs and arrays by value, but is also valid on pointers to
897    scalars. The copy is considered to belong to the caller not the
898    callee (for example, ``readonly`` functions should not write to
899    ``byval`` parameters). This is not a valid attribute for return
900    values.
901
902    The byval attribute also supports specifying an alignment with the
903    align attribute. It indicates the alignment of the stack slot to
904    form and the known alignment of the pointer specified to the call
905    site. If the alignment is not specified, then the code generator
906    makes a target-specific assumption.
907
908.. _attr_inalloca:
909
910``inalloca``
911
912    The ``inalloca`` argument attribute allows the caller to take the
913    address of outgoing stack arguments.  An ``inalloca`` argument must
914    be a pointer to stack memory produced by an ``alloca`` instruction.
915    The alloca, or argument allocation, must also be tagged with the
916    inalloca keyword.  Only the last argument may have the ``inalloca``
917    attribute, and that argument is guaranteed to be passed in memory.
918
919    An argument allocation may be used by a call at most once because
920    the call may deallocate it.  The ``inalloca`` attribute cannot be
921    used in conjunction with other attributes that affect argument
922    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.  The
923    ``inalloca`` attribute also disables LLVM's implicit lowering of
924    large aggregate return values, which means that frontend authors
925    must lower them with ``sret`` pointers.
926
927    When the call site is reached, the argument allocation must have
928    been the most recent stack allocation that is still live, or the
929    results are undefined.  It is possible to allocate additional stack
930    space after an argument allocation and before its call site, but it
931    must be cleared off with :ref:`llvm.stackrestore
932    <int_stackrestore>`.
933
934    See :doc:`InAlloca` for more information on how to use this
935    attribute.
936
937``sret``
938    This indicates that the pointer parameter specifies the address of a
939    structure that is the return value of the function in the source
940    program. This pointer must be guaranteed by the caller to be valid:
941    loads and stores to the structure may be assumed by the callee
942    not to trap and to be properly aligned. This may only be applied to
943    the first parameter. This is not a valid attribute for return
944    values.
945
946``align <n>``
947    This indicates that the pointer value may be assumed by the optimizer to
948    have the specified alignment.
949
950    Note that this attribute has additional semantics when combined with the
951    ``byval`` attribute.
952
953.. _noalias:
954
955``noalias``
956    This indicates that objects accessed via pointer values
957    :ref:`based <pointeraliasing>` on the argument or return value are not also
958    accessed, during the execution of the function, via pointer values not
959    *based* on the argument or return value. The attribute on a return value
960    also has additional semantics described below. The caller shares the
961    responsibility with the callee for ensuring that these requirements are met.
962    For further details, please see the discussion of the NoAlias response in
963    :ref:`alias analysis <Must, May, or No>`.
964
965    Note that this definition of ``noalias`` is intentionally similar
966    to the definition of ``restrict`` in C99 for function arguments.
967
968    For function return values, C99's ``restrict`` is not meaningful,
969    while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970    attribute on return values are stronger than the semantics of the attribute
971    when used on function arguments. On function return values, the ``noalias``
972    attribute indicates that the function acts like a system memory allocation
973    function, returning a pointer to allocated storage disjoint from the
974    storage for any other object accessible to the caller.
975
976``nocapture``
977    This indicates that the callee does not make any copies of the
978    pointer that outlive the callee itself. This is not a valid
979    attribute for return values.
980
981.. _nest:
982
983``nest``
984    This indicates that the pointer parameter can be excised using the
985    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
986    attribute for return values and can only be applied to one parameter.
987
988``returned``
989    This indicates that the function always returns the argument as its return
990    value. This is an optimization hint to the code generator when generating
991    the caller, allowing tail call optimization and omission of register saves
992    and restores in some cases; it is not checked or enforced when generating
993    the callee. The parameter and the function return type must be valid
994    operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995    valid attribute for return values and can only be applied to one parameter.
996
997``nonnull``
998    This indicates that the parameter or return pointer is not null. This
999    attribute may only be applied to pointer typed parameters. This is not
1000    checked or enforced by LLVM, the caller must ensure that the pointer
1001    passed in is non-null, or the callee must ensure that the returned pointer
1002    is non-null.
1003
1004``dereferenceable(<n>)``
1005    This indicates that the parameter or return pointer is dereferenceable. This
1006    attribute may only be applied to pointer typed parameters. A pointer that
1007    is dereferenceable can be loaded from speculatively without a risk of
1008    trapping. The number of bytes known to be dereferenceable must be provided
1009    in parentheses. It is legal for the number of bytes to be less than the
1010    size of the pointee type. The ``nonnull`` attribute does not imply
1011    dereferenceability (consider a pointer to one element past the end of an
1012    array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013    ``addrspace(0)`` (which is the default address space).
1014
1015``dereferenceable_or_null(<n>)``
1016    This indicates that the parameter or return value isn't both
1017    non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1018    time.  All non-null pointers tagged with
1019    ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1020    For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1021    a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1022    and in other address spaces ``dereferenceable_or_null(<n>)``
1023    implies that a pointer is at least one of ``dereferenceable(<n>)``
1024    or ``null`` (i.e. it may be both ``null`` and
1025    ``dereferenceable(<n>)``).  This attribute may only be applied to
1026    pointer typed parameters.
1027
1028.. _gc:
1029
1030Garbage Collector Strategy Names
1031--------------------------------
1032
1033Each function may specify a garbage collector strategy name, which is simply a
1034string:
1035
1036.. code-block:: llvm
1037
1038    define void @f() gc "name" { ... }
1039
1040The supported values of *name* includes those :ref:`built in to LLVM
1041<builtin-gc-strategies>` and any provided by loaded plugins.  Specifying a GC
1042strategy will cause the compiler to alter its output in order to support the
1043named garbage collection algorithm.  Note that LLVM itself does not contain a
1044garbage collector, this functionality is restricted to generating machine code
1045which can interoperate with a collector provided externally.
1046
1047.. _prefixdata:
1048
1049Prefix Data
1050-----------
1051
1052Prefix data is data associated with a function which the code
1053generator will emit immediately before the function's entrypoint.
1054The purpose of this feature is to allow frontends to associate
1055language-specific runtime metadata with specific functions and make it
1056available through the function pointer while still allowing the
1057function pointer to be called.
1058
1059To access the data for a given function, a program may bitcast the
1060function pointer to a pointer to the constant's type and dereference
1061index -1.  This implies that the IR symbol points just past the end of
1062the prefix data. For instance, take the example of a function annotated
1063with a single ``i32``,
1064
1065.. code-block:: llvm
1066
1067    define void @f() prefix i32 123 { ... }
1068
1069The prefix data can be referenced as,
1070
1071.. code-block:: llvm
1072
1073    %0 = bitcast void* () @f to i32*
1074    %a = getelementptr inbounds i32, i32* %0, i32 -1
1075    %b = load i32, i32* %a
1076
1077Prefix data is laid out as if it were an initializer for a global variable
1078of the prefix data's type.  The function will be placed such that the
1079beginning of the prefix data is aligned. This means that if the size
1080of the prefix data is not a multiple of the alignment size, the
1081function's entrypoint will not be aligned. If alignment of the
1082function's entrypoint is desired, padding must be added to the prefix
1083data.
1084
1085A function may have prefix data but no body.  This has similar semantics
1086to the ``available_externally`` linkage in that the data may be used by the
1087optimizers but will not be emitted in the object file.
1088
1089.. _prologuedata:
1090
1091Prologue Data
1092-------------
1093
1094The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1095be inserted prior to the function body. This can be used for enabling
1096function hot-patching and instrumentation.
1097
1098To maintain the semantics of ordinary function calls, the prologue data must
1099have a particular format.  Specifically, it must begin with a sequence of
1100bytes which decode to a sequence of machine instructions, valid for the
1101module's target, which transfer control to the point immediately succeeding
1102the prologue data, without performing any other visible action.  This allows
1103the inliner and other passes to reason about the semantics of the function
1104definition without needing to reason about the prologue data.  Obviously this
1105makes the format of the prologue data highly target dependent.
1106
1107A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
1108which encodes the ``nop`` instruction:
1109
1110.. code-block:: llvm
1111
1112    define void @f() prologue i8 144 { ... }
1113
1114Generally prologue data can be formed by encoding a relative branch instruction
1115which skips the metadata, as in this example of valid prologue data for the
1116x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1117
1118.. code-block:: llvm
1119
1120    %0 = type <{ i8, i8, i8* }>
1121
1122    define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
1123
1124A function may have prologue data but no body.  This has similar semantics
1125to the ``available_externally`` linkage in that the data may be used by the
1126optimizers but will not be emitted in the object file.
1127
1128.. _attrgrp:
1129
1130Attribute Groups
1131----------------
1132
1133Attribute groups are groups of attributes that are referenced by objects within
1134the IR. They are important for keeping ``.ll`` files readable, because a lot of
1135functions will use the same set of attributes. In the degenerative case of a
1136``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1137group will capture the important command line flags used to build that file.
1138
1139An attribute group is a module-level object. To use an attribute group, an
1140object references the attribute group's ID (e.g. ``#37``). An object may refer
1141to more than one attribute group. In that situation, the attributes from the
1142different groups are merged.
1143
1144Here is an example of attribute groups for a function that should always be
1145inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1146
1147.. code-block:: llvm
1148
1149   ; Target-independent attributes:
1150   attributes #0 = { alwaysinline alignstack=4 }
1151
1152   ; Target-dependent attributes:
1153   attributes #1 = { "no-sse" }
1154
1155   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1156   define void @f() #0 #1 { ... }
1157
1158.. _fnattrs:
1159
1160Function Attributes
1161-------------------
1162
1163Function attributes are set to communicate additional information about
1164a function. Function attributes are considered to be part of the
1165function, not of the function type, so functions with different function
1166attributes can have the same function type.
1167
1168Function attributes are simple keywords that follow the type specified.
1169If multiple attributes are needed, they are space separated. For
1170example:
1171
1172.. code-block:: llvm
1173
1174    define void @f() noinline { ... }
1175    define void @f() alwaysinline { ... }
1176    define void @f() alwaysinline optsize { ... }
1177    define void @f() optsize { ... }
1178
1179``alignstack(<n>)``
1180    This attribute indicates that, when emitting the prologue and
1181    epilogue, the backend should forcibly align the stack pointer.
1182    Specify the desired alignment, which must be a power of two, in
1183    parentheses.
1184``alwaysinline``
1185    This attribute indicates that the inliner should attempt to inline
1186    this function into callers whenever possible, ignoring any active
1187    inlining size threshold for this caller.
1188``builtin``
1189    This indicates that the callee function at a call site should be
1190    recognized as a built-in function, even though the function's declaration
1191    uses the ``nobuiltin`` attribute. This is only valid at call sites for
1192    direct calls to functions that are declared with the ``nobuiltin``
1193    attribute.
1194``cold``
1195    This attribute indicates that this function is rarely called. When
1196    computing edge weights, basic blocks post-dominated by a cold
1197    function call are also considered to be cold; and, thus, given low
1198    weight.
1199``inlinehint``
1200    This attribute indicates that the source code contained a hint that
1201    inlining this function is desirable (such as the "inline" keyword in
1202    C/C++). It is just a hint; it imposes no requirements on the
1203    inliner.
1204``jumptable``
1205    This attribute indicates that the function should be added to a
1206    jump-instruction table at code-generation time, and that all address-taken
1207    references to this function should be replaced with a reference to the
1208    appropriate jump-instruction-table function pointer. Note that this creates
1209    a new pointer for the original function, which means that code that depends
1210    on function-pointer identity can break. So, any function annotated with
1211    ``jumptable`` must also be ``unnamed_addr``.
1212``minsize``
1213    This attribute suggests that optimization passes and code generator
1214    passes make choices that keep the code size of this function as small
1215    as possible and perform optimizations that may sacrifice runtime
1216    performance in order to minimize the size of the generated code.
1217``naked``
1218    This attribute disables prologue / epilogue emission for the
1219    function. This can have very system-specific consequences.
1220``nobuiltin``
1221    This indicates that the callee function at a call site is not recognized as
1222    a built-in function. LLVM will retain the original call and not replace it
1223    with equivalent code based on the semantics of the built-in function, unless
1224    the call site uses the ``builtin`` attribute. This is valid at call sites
1225    and on function declarations and definitions.
1226``noduplicate``
1227    This attribute indicates that calls to the function cannot be
1228    duplicated. A call to a ``noduplicate`` function may be moved
1229    within its parent function, but may not be duplicated within
1230    its parent function.
1231
1232    A function containing a ``noduplicate`` call may still
1233    be an inlining candidate, provided that the call is not
1234    duplicated by inlining. That implies that the function has
1235    internal linkage and only has one call site, so the original
1236    call is dead after inlining.
1237``noimplicitfloat``
1238    This attributes disables implicit floating point instructions.
1239``noinline``
1240    This attribute indicates that the inliner should never inline this
1241    function in any situation. This attribute may not be used together
1242    with the ``alwaysinline`` attribute.
1243``nonlazybind``
1244    This attribute suppresses lazy symbol binding for the function. This
1245    may make calls to the function faster, at the cost of extra program
1246    startup time if the function is not called during program startup.
1247``noredzone``
1248    This attribute indicates that the code generator should not use a
1249    red zone, even if the target-specific ABI normally permits it.
1250``noreturn``
1251    This function attribute indicates that the function never returns
1252    normally. This produces undefined behavior at runtime if the
1253    function ever does dynamically return.
1254``nounwind``
1255    This function attribute indicates that the function never raises an
1256    exception. If the function does raise an exception, its runtime
1257    behavior is undefined. However, functions marked nounwind may still
1258    trap or generate asynchronous exceptions. Exception handling schemes
1259    that are recognized by LLVM to handle asynchronous exceptions, such
1260    as SEH, will still provide their implementation defined semantics.
1261``optnone``
1262    This function attribute indicates that the function is not optimized
1263    by any optimization or code generator passes with the
1264    exception of interprocedural optimization passes.
1265    This attribute cannot be used together with the ``alwaysinline``
1266    attribute; this attribute is also incompatible
1267    with the ``minsize`` attribute and the ``optsize`` attribute.
1268
1269    This attribute requires the ``noinline`` attribute to be specified on
1270    the function as well, so the function is never inlined into any caller.
1271    Only functions with the ``alwaysinline`` attribute are valid
1272    candidates for inlining into the body of this function.
1273``optsize``
1274    This attribute suggests that optimization passes and code generator
1275    passes make choices that keep the code size of this function low,
1276    and otherwise do optimizations specifically to reduce code size as
1277    long as they do not significantly impact runtime performance.
1278``readnone``
1279    On a function, this attribute indicates that the function computes its
1280    result (or decides to unwind an exception) based strictly on its arguments,
1281    without dereferencing any pointer arguments or otherwise accessing
1282    any mutable state (e.g. memory, control registers, etc) visible to
1283    caller functions. It does not write through any pointer arguments
1284    (including ``byval`` arguments) and never changes any state visible
1285    to callers. This means that it cannot unwind exceptions by calling
1286    the ``C++`` exception throwing methods.
1287
1288    On an argument, this attribute indicates that the function does not
1289    dereference that pointer argument, even though it may read or write the
1290    memory that the pointer points to if accessed through other pointers.
1291``readonly``
1292    On a function, this attribute indicates that the function does not write
1293    through any pointer arguments (including ``byval`` arguments) or otherwise
1294    modify any state (e.g. memory, control registers, etc) visible to
1295    caller functions. It may dereference pointer arguments and read
1296    state that may be set in the caller. A readonly function always
1297    returns the same value (or unwinds an exception identically) when
1298    called with the same set of arguments and global state. It cannot
1299    unwind an exception by calling the ``C++`` exception throwing
1300    methods.
1301
1302    On an argument, this attribute indicates that the function does not write
1303    through this pointer argument, even though it may write to the memory that
1304    the pointer points to.
1305``returns_twice``
1306    This attribute indicates that this function can return twice. The C
1307    ``setjmp`` is an example of such a function. The compiler disables
1308    some optimizations (like tail calls) in the caller of these
1309    functions.
1310``sanitize_address``
1311    This attribute indicates that AddressSanitizer checks
1312    (dynamic address safety analysis) are enabled for this function.
1313``sanitize_memory``
1314    This attribute indicates that MemorySanitizer checks (dynamic detection
1315    of accesses to uninitialized memory) are enabled for this function.
1316``sanitize_thread``
1317    This attribute indicates that ThreadSanitizer checks
1318    (dynamic thread safety analysis) are enabled for this function.
1319``ssp``
1320    This attribute indicates that the function should emit a stack
1321    smashing protector. It is in the form of a "canary" --- a random value
1322    placed on the stack before the local variables that's checked upon
1323    return from the function to see if it has been overwritten. A
1324    heuristic is used to determine if a function needs stack protectors
1325    or not. The heuristic used will enable protectors for functions with:
1326
1327    - Character arrays larger than ``ssp-buffer-size`` (default 8).
1328    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1329    - Calls to alloca() with variable sizes or constant sizes greater than
1330      ``ssp-buffer-size``.
1331
1332    Variables that are identified as requiring a protector will be arranged
1333    on the stack such that they are adjacent to the stack protector guard.
1334
1335    If a function that has an ``ssp`` attribute is inlined into a
1336    function that doesn't have an ``ssp`` attribute, then the resulting
1337    function will have an ``ssp`` attribute.
1338``sspreq``
1339    This attribute indicates that the function should *always* emit a
1340    stack smashing protector. This overrides the ``ssp`` function
1341    attribute.
1342
1343    Variables that are identified as requiring a protector will be arranged
1344    on the stack such that they are adjacent to the stack protector guard.
1345    The specific layout rules are:
1346
1347    #. Large arrays and structures containing large arrays
1348       (``>= ssp-buffer-size``) are closest to the stack protector.
1349    #. Small arrays and structures containing small arrays
1350       (``< ssp-buffer-size``) are 2nd closest to the protector.
1351    #. Variables that have had their address taken are 3rd closest to the
1352       protector.
1353
1354    If a function that has an ``sspreq`` attribute is inlined into a
1355    function that doesn't have an ``sspreq`` attribute or which has an
1356    ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1357    an ``sspreq`` attribute.
1358``sspstrong``
1359    This attribute indicates that the function should emit a stack smashing
1360    protector. This attribute causes a strong heuristic to be used when
1361    determining if a function needs stack protectors.  The strong heuristic
1362    will enable protectors for functions with:
1363
1364    - Arrays of any size and type
1365    - Aggregates containing an array of any size and type.
1366    - Calls to alloca().
1367    - Local variables that have had their address taken.
1368
1369    Variables that are identified as requiring a protector will be arranged
1370    on the stack such that they are adjacent to the stack protector guard.
1371    The specific layout rules are:
1372
1373    #. Large arrays and structures containing large arrays
1374       (``>= ssp-buffer-size``) are closest to the stack protector.
1375    #. Small arrays and structures containing small arrays
1376       (``< ssp-buffer-size``) are 2nd closest to the protector.
1377    #. Variables that have had their address taken are 3rd closest to the
1378       protector.
1379
1380    This overrides the ``ssp`` function attribute.
1381
1382    If a function that has an ``sspstrong`` attribute is inlined into a
1383    function that doesn't have an ``sspstrong`` attribute, then the
1384    resulting function will have an ``sspstrong`` attribute.
1385``"thunk"``
1386    This attribute indicates that the function will delegate to some other
1387    function with a tail call. The prototype of a thunk should not be used for
1388    optimization purposes. The caller is expected to cast the thunk prototype to
1389    match the thunk target prototype.
1390``uwtable``
1391    This attribute indicates that the ABI being targeted requires that
1392    an unwind table entry be produce for this function even if we can
1393    show that no exceptions passes by it. This is normally the case for
1394    the ELF x86-64 abi, but it can be disabled for some compilation
1395    units.
1396
1397.. _moduleasm:
1398
1399Module-Level Inline Assembly
1400----------------------------
1401
1402Modules may contain "module-level inline asm" blocks, which corresponds
1403to the GCC "file scope inline asm" blocks. These blocks are internally
1404concatenated by LLVM and treated as a single unit, but may be separated
1405in the ``.ll`` file if desired. The syntax is very simple:
1406
1407.. code-block:: llvm
1408
1409    module asm "inline asm code goes here"
1410    module asm "more can go here"
1411
1412The strings can contain any character by escaping non-printable
1413characters. The escape sequence used is simply "\\xx" where "xx" is the
1414two digit hex code for the number.
1415
1416The inline asm code is simply printed to the machine code .s file when
1417assembly code is generated.
1418
1419.. _langref_datalayout:
1420
1421Data Layout
1422-----------
1423
1424A module may specify a target specific data layout string that specifies
1425how data is to be laid out in memory. The syntax for the data layout is
1426simply:
1427
1428.. code-block:: llvm
1429
1430    target datalayout = "layout specification"
1431
1432The *layout specification* consists of a list of specifications
1433separated by the minus sign character ('-'). Each specification starts
1434with a letter and may include other information after the letter to
1435define some aspect of the data layout. The specifications accepted are
1436as follows:
1437
1438``E``
1439    Specifies that the target lays out data in big-endian form. That is,
1440    the bits with the most significance have the lowest address
1441    location.
1442``e``
1443    Specifies that the target lays out data in little-endian form. That
1444    is, the bits with the least significance have the lowest address
1445    location.
1446``S<size>``
1447    Specifies the natural alignment of the stack in bits. Alignment
1448    promotion of stack variables is limited to the natural stack
1449    alignment to avoid dynamic stack realignment. The stack alignment
1450    must be a multiple of 8-bits. If omitted, the natural stack
1451    alignment defaults to "unspecified", which does not prevent any
1452    alignment promotions.
1453``p[n]:<size>:<abi>:<pref>``
1454    This specifies the *size* of a pointer and its ``<abi>`` and
1455    ``<pref>``\erred alignments for address space ``n``. All sizes are in
1456    bits. The address space, ``n`` is optional, and if not specified,
1457    denotes the default address space 0.  The value of ``n`` must be
1458    in the range [1,2^23).
1459``i<size>:<abi>:<pref>``
1460    This specifies the alignment for an integer type of a given bit
1461    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1462``v<size>:<abi>:<pref>``
1463    This specifies the alignment for a vector type of a given bit
1464    ``<size>``.
1465``f<size>:<abi>:<pref>``
1466    This specifies the alignment for a floating point type of a given bit
1467    ``<size>``. Only values of ``<size>`` that are supported by the target
1468    will work. 32 (float) and 64 (double) are supported on all targets; 80
1469    or 128 (different flavors of long double) are also supported on some
1470    targets.
1471``a:<abi>:<pref>``
1472    This specifies the alignment for an object of aggregate type.
1473``m:<mangling>``
1474    If present, specifies that llvm names are mangled in the output. The
1475    options are
1476
1477    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1478    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1479    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1480      symbols get a ``_`` prefix.
1481    * ``w``: Windows COFF prefix:  Similar to Mach-O, but stdcall and fastcall
1482      functions also get a suffix based on the frame size.
1483``n<size1>:<size2>:<size3>...``
1484    This specifies a set of native integer widths for the target CPU in
1485    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1486    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1487    this set are considered to support most general arithmetic operations
1488    efficiently.
1489
1490On every specification that takes a ``<abi>:<pref>``, specifying the
1491``<pref>`` alignment is optional. If omitted, the preceding ``:``
1492should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1493
1494When constructing the data layout for a given target, LLVM starts with a
1495default set of specifications which are then (possibly) overridden by
1496the specifications in the ``datalayout`` keyword. The default
1497specifications are given in this list:
1498
1499-  ``E`` - big endian
1500-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1501-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1502   same as the default address space.
1503-  ``S0`` - natural stack alignment is unspecified
1504-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
1505-  ``i8:8:8`` - i8 is 8-bit (byte) aligned
1506-  ``i16:16:16`` - i16 is 16-bit aligned
1507-  ``i32:32:32`` - i32 is 32-bit aligned
1508-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1509   alignment of 64-bits
1510-  ``f16:16:16`` - half is 16-bit aligned
1511-  ``f32:32:32`` - float is 32-bit aligned
1512-  ``f64:64:64`` - double is 64-bit aligned
1513-  ``f128:128:128`` - quad is 128-bit aligned
1514-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
1515-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
1516-  ``a:0:64`` - aggregates are 64-bit aligned
1517
1518When LLVM is determining the alignment for a given type, it uses the
1519following rules:
1520
1521#. If the type sought is an exact match for one of the specifications,
1522   that specification is used.
1523#. If no match is found, and the type sought is an integer type, then
1524   the smallest integer type that is larger than the bitwidth of the
1525   sought type is used. If none of the specifications are larger than
1526   the bitwidth then the largest integer type is used. For example,
1527   given the default specifications above, the i7 type will use the
1528   alignment of i8 (next largest) while both i65 and i256 will use the
1529   alignment of i64 (largest specified).
1530#. If no match is found, and the type sought is a vector type, then the
1531   largest vector type that is smaller than the sought vector type will
1532   be used as a fall back. This happens because <128 x double> can be
1533   implemented in terms of 64 <2 x double>, for example.
1534
1535The function of the data layout string may not be what you expect.
1536Notably, this is not a specification from the frontend of what alignment
1537the code generator should use.
1538
1539Instead, if specified, the target data layout is required to match what
1540the ultimate *code generator* expects. This string is used by the
1541mid-level optimizers to improve code, and this only works if it matches
1542what the ultimate code generator uses. There is no way to generate IR
1543that does not embed this target-specific detail into the IR. If you
1544don't specify the string, the default specifications will be used to
1545generate a Data Layout and the optimization phases will operate
1546accordingly and introduce target specificity into the IR with respect to
1547these default specifications.
1548
1549.. _langref_triple:
1550
1551Target Triple
1552-------------
1553
1554A module may specify a target triple string that describes the target
1555host. The syntax for the target triple is simply:
1556
1557.. code-block:: llvm
1558
1559    target triple = "x86_64-apple-macosx10.7.0"
1560
1561The *target triple* string consists of a series of identifiers delimited
1562by the minus sign character ('-'). The canonical forms are:
1563
1564::
1565
1566    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1567    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1568
1569This information is passed along to the backend so that it generates
1570code for the proper architecture. It's possible to override this on the
1571command line with the ``-mtriple`` command line option.
1572
1573.. _pointeraliasing:
1574
1575Pointer Aliasing Rules
1576----------------------
1577
1578Any memory access must be done through a pointer value associated with
1579an address range of the memory access, otherwise the behavior is
1580undefined. Pointer values are associated with address ranges according
1581to the following rules:
1582
1583-  A pointer value is associated with the addresses associated with any
1584   value it is *based* on.
1585-  An address of a global variable is associated with the address range
1586   of the variable's storage.
1587-  The result value of an allocation instruction is associated with the
1588   address range of the allocated storage.
1589-  A null pointer in the default address-space is associated with no
1590   address.
1591-  An integer constant other than zero or a pointer value returned from
1592   a function not defined within LLVM may be associated with address
1593   ranges allocated through mechanisms other than those provided by
1594   LLVM. Such ranges shall not overlap with any ranges of addresses
1595   allocated by mechanisms provided by LLVM.
1596
1597A pointer value is *based* on another pointer value according to the
1598following rules:
1599
1600-  A pointer value formed from a ``getelementptr`` operation is *based*
1601   on the first value operand of the ``getelementptr``.
1602-  The result value of a ``bitcast`` is *based* on the operand of the
1603   ``bitcast``.
1604-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
1605   values that contribute (directly or indirectly) to the computation of
1606   the pointer's value.
1607-  The "*based* on" relationship is transitive.
1608
1609Note that this definition of *"based"* is intentionally similar to the
1610definition of *"based"* in C99, though it is slightly weaker.
1611
1612LLVM IR does not associate types with memory. The result type of a
1613``load`` merely indicates the size and alignment of the memory from
1614which to load, as well as the interpretation of the value. The first
1615operand type of a ``store`` similarly only indicates the size and
1616alignment of the store.
1617
1618Consequently, type-based alias analysis, aka TBAA, aka
1619``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1620:ref:`Metadata <metadata>` may be used to encode additional information
1621which specialized optimization passes may use to implement type-based
1622alias analysis.
1623
1624.. _volatile:
1625
1626Volatile Memory Accesses
1627------------------------
1628
1629Certain memory accesses, such as :ref:`load <i_load>`'s,
1630:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1631marked ``volatile``. The optimizers must not change the number of
1632volatile operations or change their order of execution relative to other
1633volatile operations. The optimizers *may* change the order of volatile
1634operations relative to non-volatile operations. This is not Java's
1635"volatile" and has no cross-thread synchronization behavior.
1636
1637IR-level volatile loads and stores cannot safely be optimized into
1638llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1639flagged volatile. Likewise, the backend should never split or merge
1640target-legal volatile load/store instructions.
1641
1642.. admonition:: Rationale
1643
1644 Platforms may rely on volatile loads and stores of natively supported
1645 data width to be executed as single instruction. For example, in C
1646 this holds for an l-value of volatile primitive type with native
1647 hardware support, but not necessarily for aggregate types. The
1648 frontend upholds these expectations, which are intentionally
1649 unspecified in the IR. The rules above ensure that IR transformation
1650 do not violate the frontend's contract with the language.
1651
1652.. _memmodel:
1653
1654Memory Model for Concurrent Operations
1655--------------------------------------
1656
1657The LLVM IR does not define any way to start parallel threads of
1658execution or to register signal handlers. Nonetheless, there are
1659platform-specific ways to create them, and we define LLVM IR's behavior
1660in their presence. This model is inspired by the C++0x memory model.
1661
1662For a more informal introduction to this model, see the :doc:`Atomics`.
1663
1664We define a *happens-before* partial order as the least partial order
1665that
1666
1667-  Is a superset of single-thread program order, and
1668-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1669   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1670   techniques, like pthread locks, thread creation, thread joining,
1671   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1672   Constraints <ordering>`).
1673
1674Note that program order does not introduce *happens-before* edges
1675between a thread and signals executing inside that thread.
1676
1677Every (defined) read operation (load instructions, memcpy, atomic
1678loads/read-modify-writes, etc.) R reads a series of bytes written by
1679(defined) write operations (store instructions, atomic
1680stores/read-modify-writes, memcpy, etc.). For the purposes of this
1681section, initialized globals are considered to have a write of the
1682initializer which is atomic and happens before any other read or write
1683of the memory in question. For each byte of a read R, R\ :sub:`byte`
1684may see any write to the same byte, except:
1685
1686-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
1687   write\ :sub:`2` happens before R\ :sub:`byte`, then
1688   R\ :sub:`byte` does not see write\ :sub:`1`.
1689-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
1690   R\ :sub:`byte` does not see write\ :sub:`3`.
1691
1692Given that definition, R\ :sub:`byte` is defined as follows:
1693
1694-  If R is volatile, the result is target-dependent. (Volatile is
1695   supposed to give guarantees which can support ``sig_atomic_t`` in
1696   C/C++, and may be used for accesses to addresses that do not behave
1697   like normal memory. It does not generally provide cross-thread
1698   synchronization.)
1699-  Otherwise, if there is no write to the same byte that happens before
1700   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1701-  Otherwise, if R\ :sub:`byte` may see exactly one write,
1702   R\ :sub:`byte` returns the value written by that write.
1703-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1704   see are atomic, it chooses one of the values written. See the :ref:`Atomic
1705   Memory Ordering Constraints <ordering>` section for additional
1706   constraints on how the choice is made.
1707-  Otherwise R\ :sub:`byte` returns ``undef``.
1708
1709R returns the value composed of the series of bytes it read. This
1710implies that some bytes within the value may be ``undef`` **without**
1711the entire value being ``undef``. Note that this only defines the
1712semantics of the operation; it doesn't mean that targets will emit more
1713than one instruction to read the series of bytes.
1714
1715Note that in cases where none of the atomic intrinsics are used, this
1716model places only one restriction on IR transformations on top of what
1717is required for single-threaded execution: introducing a store to a byte
1718which might not otherwise be stored is not allowed in general.
1719(Specifically, in the case where another thread might write to and read
1720from an address, introducing a store can change a load that may see
1721exactly one write into a load that may see multiple writes.)
1722
1723.. _ordering:
1724
1725Atomic Memory Ordering Constraints
1726----------------------------------
1727
1728Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1729:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1730:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1731ordering parameters that determine which other atomic instructions on
1732the same address they *synchronize with*. These semantics are borrowed
1733from Java and C++0x, but are somewhat more colloquial. If these
1734descriptions aren't precise enough, check those specs (see spec
1735references in the :doc:`atomics guide <Atomics>`).
1736:ref:`fence <i_fence>` instructions treat these orderings somewhat
1737differently since they don't take an address. See that instruction's
1738documentation for details.
1739
1740For a simpler introduction to the ordering constraints, see the
1741:doc:`Atomics`.
1742
1743``unordered``
1744    The set of values that can be read is governed by the happens-before
1745    partial order. A value cannot be read unless some operation wrote
1746    it. This is intended to provide a guarantee strong enough to model
1747    Java's non-volatile shared variables. This ordering cannot be
1748    specified for read-modify-write operations; it is not strong enough
1749    to make them atomic in any interesting way.
1750``monotonic``
1751    In addition to the guarantees of ``unordered``, there is a single
1752    total order for modifications by ``monotonic`` operations on each
1753    address. All modification orders must be compatible with the
1754    happens-before order. There is no guarantee that the modification
1755    orders can be combined to a global total order for the whole program
1756    (and this often will not be possible). The read in an atomic
1757    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1758    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1759    order immediately before the value it writes. If one atomic read
1760    happens before another atomic read of the same address, the later
1761    read must see the same value or a later value in the address's
1762    modification order. This disallows reordering of ``monotonic`` (or
1763    stronger) operations on the same address. If an address is written
1764    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1765    read that address repeatedly, the other threads must eventually see
1766    the write. This corresponds to the C++0x/C1x
1767    ``memory_order_relaxed``.
1768``acquire``
1769    In addition to the guarantees of ``monotonic``, a
1770    *synchronizes-with* edge may be formed with a ``release`` operation.
1771    This is intended to model C++'s ``memory_order_acquire``.
1772``release``
1773    In addition to the guarantees of ``monotonic``, if this operation
1774    writes a value which is subsequently read by an ``acquire``
1775    operation, it *synchronizes-with* that operation. (This isn't a
1776    complete description; see the C++0x definition of a release
1777    sequence.) This corresponds to the C++0x/C1x
1778    ``memory_order_release``.
1779``acq_rel`` (acquire+release)
1780    Acts as both an ``acquire`` and ``release`` operation on its
1781    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1782``seq_cst`` (sequentially consistent)
1783    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1784    operation that only reads, ``release`` for an operation that only
1785    writes), there is a global total order on all
1786    sequentially-consistent operations on all addresses, which is
1787    consistent with the *happens-before* partial order and with the
1788    modification orders of all the affected addresses. Each
1789    sequentially-consistent read sees the last preceding write to the
1790    same address in this global order. This corresponds to the C++0x/C1x
1791    ``memory_order_seq_cst`` and Java volatile.
1792
1793.. _singlethread:
1794
1795If an atomic operation is marked ``singlethread``, it only *synchronizes
1796with* or participates in modification and seq\_cst total orderings with
1797other operations running in the same thread (for example, in signal
1798handlers).
1799
1800.. _fastmath:
1801
1802Fast-Math Flags
1803---------------
1804
1805LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1806:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1807:ref:`frem <i_frem>`) have the following flags that can be set to enable
1808otherwise unsafe floating point operations
1809
1810``nnan``
1811   No NaNs - Allow optimizations to assume the arguments and result are not
1812   NaN. Such optimizations are required to retain defined behavior over
1813   NaNs, but the value of the result is undefined.
1814
1815``ninf``
1816   No Infs - Allow optimizations to assume the arguments and result are not
1817   +/-Inf. Such optimizations are required to retain defined behavior over
1818   +/-Inf, but the value of the result is undefined.
1819
1820``nsz``
1821   No Signed Zeros - Allow optimizations to treat the sign of a zero
1822   argument or result as insignificant.
1823
1824``arcp``
1825   Allow Reciprocal - Allow optimizations to use the reciprocal of an
1826   argument rather than perform division.
1827
1828``fast``
1829   Fast - Allow algebraically equivalent transformations that may
1830   dramatically change results in floating point (e.g. reassociate). This
1831   flag implies all the others.
1832
1833.. _uselistorder:
1834
1835Use-list Order Directives
1836-------------------------
1837
1838Use-list directives encode the in-memory order of each use-list, allowing the
1839order to be recreated.  ``<order-indexes>`` is a comma-separated list of
1840indexes that are assigned to the referenced value's uses.  The referenced
1841value's use-list is immediately sorted by these indexes.
1842
1843Use-list directives may appear at function scope or global scope.  They are not
1844instructions, and have no effect on the semantics of the IR.  When they're at
1845function scope, they must appear after the terminator of the final basic block.
1846
1847If basic blocks have their address taken via ``blockaddress()`` expressions,
1848``uselistorder_bb`` can be used to reorder their use-lists from outside their
1849function's scope.
1850
1851:Syntax:
1852
1853::
1854
1855    uselistorder <ty> <value>, { <order-indexes> }
1856    uselistorder_bb @function, %block { <order-indexes> }
1857
1858:Examples:
1859
1860::
1861
1862    define void @foo(i32 %arg1, i32 %arg2) {
1863    entry:
1864      ; ... instructions ...
1865    bb:
1866      ; ... instructions ...
1867
1868      ; At function scope.
1869      uselistorder i32 %arg1, { 1, 0, 2 }
1870      uselistorder label %bb, { 1, 0 }
1871    }
1872
1873    ; At global scope.
1874    uselistorder i32* @global, { 1, 2, 0 }
1875    uselistorder i32 7, { 1, 0 }
1876    uselistorder i32 (i32) @bar, { 1, 0 }
1877    uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1878
1879.. _typesystem:
1880
1881Type System
1882===========
1883
1884The LLVM type system is one of the most important features of the
1885intermediate representation. Being typed enables a number of
1886optimizations to be performed on the intermediate representation
1887directly, without having to do extra analyses on the side before the
1888transformation. A strong type system makes it easier to read the
1889generated code and enables novel analyses and transformations that are
1890not feasible to perform on normal three address code representations.
1891
1892.. _t_void:
1893
1894Void Type
1895---------
1896
1897:Overview:
1898
1899
1900The void type does not represent any value and has no size.
1901
1902:Syntax:
1903
1904
1905::
1906
1907      void
1908
1909
1910.. _t_function:
1911
1912Function Type
1913-------------
1914
1915:Overview:
1916
1917
1918The function type can be thought of as a function signature. It consists of a
1919return type and a list of formal parameter types. The return type of a function
1920type is a void type or first class type --- except for :ref:`label <t_label>`
1921and :ref:`metadata <t_metadata>` types.
1922
1923:Syntax:
1924
1925::
1926
1927      <returntype> (<parameter list>)
1928
1929...where '``<parameter list>``' is a comma-separated list of type
1930specifiers. Optionally, the parameter list may include a type ``...``, which
1931indicates that the function takes a variable number of arguments.  Variable
1932argument functions can access their arguments with the :ref:`variable argument
1933handling intrinsic <int_varargs>` functions.  '``<returntype>``' is any type
1934except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
1935
1936:Examples:
1937
1938+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1939| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
1940+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1941| ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
1942+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1943| ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1944+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1945| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
1946+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1947
1948.. _t_firstclass:
1949
1950First Class Types
1951-----------------
1952
1953The :ref:`first class <t_firstclass>` types are perhaps the most important.
1954Values of these types are the only ones which can be produced by
1955instructions.
1956
1957.. _t_single_value:
1958
1959Single Value Types
1960^^^^^^^^^^^^^^^^^^
1961
1962These are the types that are valid in registers from CodeGen's perspective.
1963
1964.. _t_integer:
1965
1966Integer Type
1967""""""""""""
1968
1969:Overview:
1970
1971The integer type is a very simple type that simply specifies an
1972arbitrary bit width for the integer type desired. Any bit width from 1
1973bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1974
1975:Syntax:
1976
1977::
1978
1979      iN
1980
1981The number of bits the integer will occupy is specified by the ``N``
1982value.
1983
1984Examples:
1985*********
1986
1987+----------------+------------------------------------------------+
1988| ``i1``         | a single-bit integer.                          |
1989+----------------+------------------------------------------------+
1990| ``i32``        | a 32-bit integer.                              |
1991+----------------+------------------------------------------------+
1992| ``i1942652``   | a really big integer of over 1 million bits.   |
1993+----------------+------------------------------------------------+
1994
1995.. _t_floating:
1996
1997Floating Point Types
1998""""""""""""""""""""
1999
2000.. list-table::
2001   :header-rows: 1
2002
2003   * - Type
2004     - Description
2005
2006   * - ``half``
2007     - 16-bit floating point value
2008
2009   * - ``float``
2010     - 32-bit floating point value
2011
2012   * - ``double``
2013     - 64-bit floating point value
2014
2015   * - ``fp128``
2016     - 128-bit floating point value (112-bit mantissa)
2017
2018   * - ``x86_fp80``
2019     -  80-bit floating point value (X87)
2020
2021   * - ``ppc_fp128``
2022     - 128-bit floating point value (two 64-bits)
2023
2024X86_mmx Type
2025""""""""""""
2026
2027:Overview:
2028
2029The x86_mmx type represents a value held in an MMX register on an x86
2030machine. The operations allowed on it are quite limited: parameters and
2031return values, load and store, and bitcast. User-specified MMX
2032instructions are represented as intrinsic or asm calls with arguments
2033and/or results of this type. There are no arrays, vectors or constants
2034of this type.
2035
2036:Syntax:
2037
2038::
2039
2040      x86_mmx
2041
2042
2043.. _t_pointer:
2044
2045Pointer Type
2046""""""""""""
2047
2048:Overview:
2049
2050The pointer type is used to specify memory locations. Pointers are
2051commonly used to reference objects in memory.
2052
2053Pointer types may have an optional address space attribute defining the
2054numbered address space where the pointed-to object resides. The default
2055address space is number zero. The semantics of non-zero address spaces
2056are target-specific.
2057
2058Note that LLVM does not permit pointers to void (``void*``) nor does it
2059permit pointers to labels (``label*``). Use ``i8*`` instead.
2060
2061:Syntax:
2062
2063::
2064
2065      <type> *
2066
2067:Examples:
2068
2069+-------------------------+--------------------------------------------------------------------------------------------------------------+
2070| ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
2071+-------------------------+--------------------------------------------------------------------------------------------------------------+
2072| ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2073+-------------------------+--------------------------------------------------------------------------------------------------------------+
2074| ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
2075+-------------------------+--------------------------------------------------------------------------------------------------------------+
2076
2077.. _t_vector:
2078
2079Vector Type
2080"""""""""""
2081
2082:Overview:
2083
2084A vector type is a simple derived type that represents a vector of
2085elements. Vector types are used when multiple primitive data are
2086operated in parallel using a single instruction (SIMD). A vector type
2087requires a size (number of elements) and an underlying primitive data
2088type. Vector types are considered :ref:`first class <t_firstclass>`.
2089
2090:Syntax:
2091
2092::
2093
2094      < <# elements> x <elementtype> >
2095
2096The number of elements is a constant integer value larger than 0;
2097elementtype may be any integer, floating point or pointer type. Vectors
2098of size zero are not allowed.
2099
2100:Examples:
2101
2102+-------------------+--------------------------------------------------+
2103| ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
2104+-------------------+--------------------------------------------------+
2105| ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
2106+-------------------+--------------------------------------------------+
2107| ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
2108+-------------------+--------------------------------------------------+
2109| ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
2110+-------------------+--------------------------------------------------+
2111
2112.. _t_label:
2113
2114Label Type
2115^^^^^^^^^^
2116
2117:Overview:
2118
2119The label type represents code labels.
2120
2121:Syntax:
2122
2123::
2124
2125      label
2126
2127.. _t_metadata:
2128
2129Metadata Type
2130^^^^^^^^^^^^^
2131
2132:Overview:
2133
2134The metadata type represents embedded metadata. No derived types may be
2135created from metadata except for :ref:`function <t_function>` arguments.
2136
2137:Syntax:
2138
2139::
2140
2141      metadata
2142
2143.. _t_aggregate:
2144
2145Aggregate Types
2146^^^^^^^^^^^^^^^
2147
2148Aggregate Types are a subset of derived types that can contain multiple
2149member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2150aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2151aggregate types.
2152
2153.. _t_array:
2154
2155Array Type
2156""""""""""
2157
2158:Overview:
2159
2160The array type is a very simple derived type that arranges elements
2161sequentially in memory. The array type requires a size (number of
2162elements) and an underlying data type.
2163
2164:Syntax:
2165
2166::
2167
2168      [<# elements> x <elementtype>]
2169
2170The number of elements is a constant integer value; ``elementtype`` may
2171be any type with a size.
2172
2173:Examples:
2174
2175+------------------+--------------------------------------+
2176| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
2177+------------------+--------------------------------------+
2178| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
2179+------------------+--------------------------------------+
2180| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
2181+------------------+--------------------------------------+
2182
2183Here are some examples of multidimensional arrays:
2184
2185+-----------------------------+----------------------------------------------------------+
2186| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
2187+-----------------------------+----------------------------------------------------------+
2188| ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
2189+-----------------------------+----------------------------------------------------------+
2190| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
2191+-----------------------------+----------------------------------------------------------+
2192
2193There is no restriction on indexing beyond the end of the array implied
2194by a static type (though there are restrictions on indexing beyond the
2195bounds of an allocated object in some cases). This means that
2196single-dimension 'variable sized array' addressing can be implemented in
2197LLVM with a zero length array type. An implementation of 'pascal style
2198arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2199example.
2200
2201.. _t_struct:
2202
2203Structure Type
2204""""""""""""""
2205
2206:Overview:
2207
2208The structure type is used to represent a collection of data members
2209together in memory. The elements of a structure may be any type that has
2210a size.
2211
2212Structures in memory are accessed using '``load``' and '``store``' by
2213getting a pointer to a field with the '``getelementptr``' instruction.
2214Structures in registers are accessed using the '``extractvalue``' and
2215'``insertvalue``' instructions.
2216
2217Structures may optionally be "packed" structures, which indicate that
2218the alignment of the struct is one byte, and that there is no padding
2219between the elements. In non-packed structs, padding between field types
2220is inserted as defined by the DataLayout string in the module, which is
2221required to match what the underlying code generator expects.
2222
2223Structures can either be "literal" or "identified". A literal structure
2224is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2225identified types are always defined at the top level with a name.
2226Literal types are uniqued by their contents and can never be recursive
2227or opaque since there is no way to write one. Identified types can be
2228recursive, can be opaqued, and are never uniqued.
2229
2230:Syntax:
2231
2232::
2233
2234      %T1 = type { <type list> }     ; Identified normal struct type
2235      %T2 = type <{ <type list> }>   ; Identified packed struct type
2236
2237:Examples:
2238
2239+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2240| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
2241+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2242| ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
2243+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2244| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
2245+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2246
2247.. _t_opaque:
2248
2249Opaque Structure Types
2250""""""""""""""""""""""
2251
2252:Overview:
2253
2254Opaque structure types are used to represent named structure types that
2255do not have a body specified. This corresponds (for example) to the C
2256notion of a forward declared structure.
2257
2258:Syntax:
2259
2260::
2261
2262      %X = type opaque
2263      %52 = type opaque
2264
2265:Examples:
2266
2267+--------------+-------------------+
2268| ``opaque``   | An opaque type.   |
2269+--------------+-------------------+
2270
2271.. _constants:
2272
2273Constants
2274=========
2275
2276LLVM has several different basic types of constants. This section
2277describes them all and their syntax.
2278
2279Simple Constants
2280----------------
2281
2282**Boolean constants**
2283    The two strings '``true``' and '``false``' are both valid constants
2284    of the ``i1`` type.
2285**Integer constants**
2286    Standard integers (such as '4') are constants of the
2287    :ref:`integer <t_integer>` type. Negative numbers may be used with
2288    integer types.
2289**Floating point constants**
2290    Floating point constants use standard decimal notation (e.g.
2291    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2292    hexadecimal notation (see below). The assembler requires the exact
2293    decimal value of a floating-point constant. For example, the
2294    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2295    decimal in binary. Floating point constants must have a :ref:`floating
2296    point <t_floating>` type.
2297**Null pointer constants**
2298    The identifier '``null``' is recognized as a null pointer constant
2299    and must be of :ref:`pointer type <t_pointer>`.
2300
2301The one non-intuitive notation for constants is the hexadecimal form of
2302floating point constants. For example, the form
2303'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
2304than) '``double 4.5e+15``'. The only time hexadecimal floating point
2305constants are required (and the only time that they are generated by the
2306disassembler) is when a floating point constant must be emitted but it
2307cannot be represented as a decimal floating point number in a reasonable
2308number of digits. For example, NaN's, infinities, and other special
2309values are represented in their IEEE hexadecimal format so that assembly
2310and disassembly do not cause any bits to change in the constants.
2311
2312When using the hexadecimal form, constants of types half, float, and
2313double are represented using the 16-digit form shown above (which
2314matches the IEEE754 representation for double); half and float values
2315must, however, be exactly representable as IEEE 754 half and single
2316precision, respectively. Hexadecimal format is always used for long
2317double, and there are three forms of long double. The 80-bit format used
2318by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2319128-bit format used by PowerPC (two adjacent doubles) is represented by
2320``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
2321represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2322will only work if they match the long double format on your target.
2323The IEEE 16-bit format (half precision) is represented by ``0xH``
2324followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2325(sign bit at the left).
2326
2327There are no constants of type x86_mmx.
2328
2329.. _complexconstants:
2330
2331Complex Constants
2332-----------------
2333
2334Complex constants are a (potentially recursive) combination of simple
2335constants and smaller complex constants.
2336
2337**Structure constants**
2338    Structure constants are represented with notation similar to
2339    structure type definitions (a comma separated list of elements,
2340    surrounded by braces (``{}``)). For example:
2341    "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2342    "``@G = external global i32``". Structure constants must have
2343    :ref:`structure type <t_struct>`, and the number and types of elements
2344    must match those specified by the type.
2345**Array constants**
2346    Array constants are represented with notation similar to array type
2347    definitions (a comma separated list of elements, surrounded by
2348    square brackets (``[]``)). For example:
2349    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2350    :ref:`array type <t_array>`, and the number and types of elements must
2351    match those specified by the type. As a special case, character array
2352    constants may also be represented as a double-quoted string using the ``c``
2353    prefix. For example: "``c"Hello World\0A\00"``".
2354**Vector constants**
2355    Vector constants are represented with notation similar to vector
2356    type definitions (a comma separated list of elements, surrounded by
2357    less-than/greater-than's (``<>``)). For example:
2358    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2359    must have :ref:`vector type <t_vector>`, and the number and types of
2360    elements must match those specified by the type.
2361**Zero initialization**
2362    The string '``zeroinitializer``' can be used to zero initialize a
2363    value to zero of *any* type, including scalar and
2364    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2365    having to print large zero initializers (e.g. for large arrays) and
2366    is always exactly equivalent to using explicit zero initializers.
2367**Metadata node**
2368    A metadata node is a constant tuple without types.  For example:
2369    "``!{!0, !{!2, !0}, !"test"}``".  Metadata can reference constant values,
2370    for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2371    Unlike other typed constants that are meant to be interpreted as part of
2372    the instruction stream, metadata is a place to attach additional
2373    information such as debug info.
2374
2375Global Variable and Function Addresses
2376--------------------------------------
2377
2378The addresses of :ref:`global variables <globalvars>` and
2379:ref:`functions <functionstructure>` are always implicitly valid
2380(link-time) constants. These constants are explicitly referenced when
2381the :ref:`identifier for the global <identifiers>` is used and always have
2382:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2383file:
2384
2385.. code-block:: llvm
2386
2387    @X = global i32 17
2388    @Y = global i32 42
2389    @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2390
2391.. _undefvalues:
2392
2393Undefined Values
2394----------------
2395
2396The string '``undef``' can be used anywhere a constant is expected, and
2397indicates that the user of the value may receive an unspecified
2398bit-pattern. Undefined values may be of any type (other than '``label``'
2399or '``void``') and be used anywhere a constant is permitted.
2400
2401Undefined values are useful because they indicate to the compiler that
2402the program is well defined no matter what value is used. This gives the
2403compiler more freedom to optimize. Here are some examples of
2404(potentially surprising) transformations that are valid (in pseudo IR):
2405
2406.. code-block:: llvm
2407
2408      %A = add %X, undef
2409      %B = sub %X, undef
2410      %C = xor %X, undef
2411    Safe:
2412      %A = undef
2413      %B = undef
2414      %C = undef
2415
2416This is safe because all of the output bits are affected by the undef
2417bits. Any output bit can have a zero or one depending on the input bits.
2418
2419.. code-block:: llvm
2420
2421      %A = or %X, undef
2422      %B = and %X, undef
2423    Safe:
2424      %A = -1
2425      %B = 0
2426    Unsafe:
2427      %A = undef
2428      %B = undef
2429
2430These logical operations have bits that are not always affected by the
2431input. For example, if ``%X`` has a zero bit, then the output of the
2432'``and``' operation will always be a zero for that bit, no matter what
2433the corresponding bit from the '``undef``' is. As such, it is unsafe to
2434optimize or assume that the result of the '``and``' is '``undef``'.
2435However, it is safe to assume that all bits of the '``undef``' could be
24360, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2437all the bits of the '``undef``' operand to the '``or``' could be set,
2438allowing the '``or``' to be folded to -1.
2439
2440.. code-block:: llvm
2441
2442      %A = select undef, %X, %Y
2443      %B = select undef, 42, %Y
2444      %C = select %X, %Y, undef
2445    Safe:
2446      %A = %X     (or %Y)
2447      %B = 42     (or %Y)
2448      %C = %Y
2449    Unsafe:
2450      %A = undef
2451      %B = undef
2452      %C = undef
2453
2454This set of examples shows that undefined '``select``' (and conditional
2455branch) conditions can go *either way*, but they have to come from one
2456of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2457both known to have a clear low bit, then ``%A`` would have to have a
2458cleared low bit. However, in the ``%C`` example, the optimizer is
2459allowed to assume that the '``undef``' operand could be the same as
2460``%Y``, allowing the whole '``select``' to be eliminated.
2461
2462.. code-block:: llvm
2463
2464      %A = xor undef, undef
2465
2466      %B = undef
2467      %C = xor %B, %B
2468
2469      %D = undef
2470      %E = icmp slt %D, 4
2471      %F = icmp gte %D, 4
2472
2473    Safe:
2474      %A = undef
2475      %B = undef
2476      %C = undef
2477      %D = undef
2478      %E = undef
2479      %F = undef
2480
2481This example points out that two '``undef``' operands are not
2482necessarily the same. This can be surprising to people (and also matches
2483C semantics) where they assume that "``X^X``" is always zero, even if
2484``X`` is undefined. This isn't true for a number of reasons, but the
2485short answer is that an '``undef``' "variable" can arbitrarily change
2486its value over its "live range". This is true because the variable
2487doesn't actually *have a live range*. Instead, the value is logically
2488read from arbitrary registers that happen to be around when needed, so
2489the value is not necessarily consistent over time. In fact, ``%A`` and
2490``%C`` need to have the same semantics or the core LLVM "replace all
2491uses with" concept would not hold.
2492
2493.. code-block:: llvm
2494
2495      %A = fdiv undef, %X
2496      %B = fdiv %X, undef
2497    Safe:
2498      %A = undef
2499    b: unreachable
2500
2501These examples show the crucial difference between an *undefined value*
2502and *undefined behavior*. An undefined value (like '``undef``') is
2503allowed to have an arbitrary bit-pattern. This means that the ``%A``
2504operation can be constant folded to '``undef``', because the '``undef``'
2505could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2506However, in the second example, we can make a more aggressive
2507assumption: because the ``undef`` is allowed to be an arbitrary value,
2508we are allowed to assume that it could be zero. Since a divide by zero
2509has *undefined behavior*, we are allowed to assume that the operation
2510does not execute at all. This allows us to delete the divide and all
2511code after it. Because the undefined operation "can't happen", the
2512optimizer can assume that it occurs in dead code.
2513
2514.. code-block:: llvm
2515
2516    a:  store undef -> %X
2517    b:  store %X -> undef
2518    Safe:
2519    a: <deleted>
2520    b: unreachable
2521
2522These examples reiterate the ``fdiv`` example: a store *of* an undefined
2523value can be assumed to not have any effect; we can assume that the
2524value is overwritten with bits that happen to match what was already
2525there. However, a store *to* an undefined location could clobber
2526arbitrary memory, therefore, it has undefined behavior.
2527
2528.. _poisonvalues:
2529
2530Poison Values
2531-------------
2532
2533Poison values are similar to :ref:`undef values <undefvalues>`, however
2534they also represent the fact that an instruction or constant expression
2535that cannot evoke side effects has nevertheless detected a condition
2536that results in undefined behavior.
2537
2538There is currently no way of representing a poison value in the IR; they
2539only exist when produced by operations such as :ref:`add <i_add>` with
2540the ``nsw`` flag.
2541
2542Poison value behavior is defined in terms of value *dependence*:
2543
2544-  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2545-  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2546   their dynamic predecessor basic block.
2547-  Function arguments depend on the corresponding actual argument values
2548   in the dynamic callers of their functions.
2549-  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2550   instructions that dynamically transfer control back to them.
2551-  :ref:`Invoke <i_invoke>` instructions depend on the
2552   :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2553   call instructions that dynamically transfer control back to them.
2554-  Non-volatile loads and stores depend on the most recent stores to all
2555   of the referenced memory addresses, following the order in the IR
2556   (including loads and stores implied by intrinsics such as
2557   :ref:`@llvm.memcpy <int_memcpy>`.)
2558-  An instruction with externally visible side effects depends on the
2559   most recent preceding instruction with externally visible side
2560   effects, following the order in the IR. (This includes :ref:`volatile
2561   operations <volatile>`.)
2562-  An instruction *control-depends* on a :ref:`terminator
2563   instruction <terminators>` if the terminator instruction has
2564   multiple successors and the instruction is always executed when
2565   control transfers to one of the successors, and may not be executed
2566   when control is transferred to another.
2567-  Additionally, an instruction also *control-depends* on a terminator
2568   instruction if the set of instructions it otherwise depends on would
2569   be different if the terminator had transferred control to a different
2570   successor.
2571-  Dependence is transitive.
2572
2573Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2574with the additional effect that any instruction that has a *dependence*
2575on a poison value has undefined behavior.
2576
2577Here are some examples:
2578
2579.. code-block:: llvm
2580
2581    entry:
2582      %poison = sub nuw i32 0, 1           ; Results in a poison value.
2583      %still_poison = and i32 %poison, 0   ; 0, but also poison.
2584      %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
2585      store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2586
2587      store i32 %poison, i32* @g           ; Poison value stored to memory.
2588      %poison2 = load i32, i32* @g         ; Poison value loaded back from memory.
2589
2590      store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2591
2592      %narrowaddr = bitcast i32* @g to i16*
2593      %wideaddr = bitcast i32* @g to i64*
2594      %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2595      %poison4 = load i64, i64* %wideaddr  ; Returns a poison value.
2596
2597      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2598      br i1 %cmp, label %true, label %end  ; Branch to either destination.
2599
2600    true:
2601      store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2602                                           ; it has undefined behavior.
2603      br label %end
2604
2605    end:
2606      %p = phi i32 [ 0, %entry ], [ 1, %true ]
2607                                           ; Both edges into this PHI are
2608                                           ; control-dependent on %cmp, so this
2609                                           ; always results in a poison value.
2610
2611      store volatile i32 0, i32* @g        ; This would depend on the store in %true
2612                                           ; if %cmp is true, or the store in %entry
2613                                           ; otherwise, so this is undefined behavior.
2614
2615      br i1 %cmp, label %second_true, label %second_end
2616                                           ; The same branch again, but this time the
2617                                           ; true block doesn't have side effects.
2618
2619    second_true:
2620      ; No side effects!
2621      ret void
2622
2623    second_end:
2624      store volatile i32 0, i32* @g        ; This time, the instruction always depends
2625                                           ; on the store in %end. Also, it is
2626                                           ; control-equivalent to %end, so this is
2627                                           ; well-defined (ignoring earlier undefined
2628                                           ; behavior in this example).
2629
2630.. _blockaddress:
2631
2632Addresses of Basic Blocks
2633-------------------------
2634
2635``blockaddress(@function, %block)``
2636
2637The '``blockaddress``' constant computes the address of the specified
2638basic block in the specified function, and always has an ``i8*`` type.
2639Taking the address of the entry block is illegal.
2640
2641This value only has defined behavior when used as an operand to the
2642':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2643against null. Pointer equality tests between labels addresses results in
2644undefined behavior --- though, again, comparison against null is ok, and
2645no label is equal to the null pointer. This may be passed around as an
2646opaque pointer sized value as long as the bits are not inspected. This
2647allows ``ptrtoint`` and arithmetic to be performed on these values so
2648long as the original value is reconstituted before the ``indirectbr``
2649instruction.
2650
2651Finally, some targets may provide defined semantics when using the value
2652as the operand to an inline assembly, but that is target specific.
2653
2654.. _constantexprs:
2655
2656Constant Expressions
2657--------------------
2658
2659Constant expressions are used to allow expressions involving other
2660constants to be used as constants. Constant expressions may be of any
2661:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2662that does not have side effects (e.g. load and call are not supported).
2663The following is the syntax for constant expressions:
2664
2665``trunc (CST to TYPE)``
2666    Truncate a constant to another type. The bit size of CST must be
2667    larger than the bit size of TYPE. Both types must be integers.
2668``zext (CST to TYPE)``
2669    Zero extend a constant to another type. The bit size of CST must be
2670    smaller than the bit size of TYPE. Both types must be integers.
2671``sext (CST to TYPE)``
2672    Sign extend a constant to another type. The bit size of CST must be
2673    smaller than the bit size of TYPE. Both types must be integers.
2674``fptrunc (CST to TYPE)``
2675    Truncate a floating point constant to another floating point type.
2676    The size of CST must be larger than the size of TYPE. Both types
2677    must be floating point.
2678``fpext (CST to TYPE)``
2679    Floating point extend a constant to another type. The size of CST
2680    must be smaller or equal to the size of TYPE. Both types must be
2681    floating point.
2682``fptoui (CST to TYPE)``
2683    Convert a floating point constant to the corresponding unsigned
2684    integer constant. TYPE must be a scalar or vector integer type. CST
2685    must be of scalar or vector floating point type. Both CST and TYPE
2686    must be scalars, or vectors of the same number of elements. If the
2687    value won't fit in the integer type, the results are undefined.
2688``fptosi (CST to TYPE)``
2689    Convert a floating point constant to the corresponding signed
2690    integer constant. TYPE must be a scalar or vector integer type. CST
2691    must be of scalar or vector floating point type. Both CST and TYPE
2692    must be scalars, or vectors of the same number of elements. If the
2693    value won't fit in the integer type, the results are undefined.
2694``uitofp (CST to TYPE)``
2695    Convert an unsigned integer constant to the corresponding floating
2696    point constant. TYPE must be a scalar or vector floating point type.
2697    CST must be of scalar or vector integer type. Both CST and TYPE must
2698    be scalars, or vectors of the same number of elements. If the value
2699    won't fit in the floating point type, the results are undefined.
2700``sitofp (CST to TYPE)``
2701    Convert a signed integer constant to the corresponding floating
2702    point constant. TYPE must be a scalar or vector floating point type.
2703    CST must be of scalar or vector integer type. Both CST and TYPE must
2704    be scalars, or vectors of the same number of elements. If the value
2705    won't fit in the floating point type, the results are undefined.
2706``ptrtoint (CST to TYPE)``
2707    Convert a pointer typed constant to the corresponding integer
2708    constant. ``TYPE`` must be an integer type. ``CST`` must be of
2709    pointer type. The ``CST`` value is zero extended, truncated, or
2710    unchanged to make it fit in ``TYPE``.
2711``inttoptr (CST to TYPE)``
2712    Convert an integer constant to a pointer constant. TYPE must be a
2713    pointer type. CST must be of integer type. The CST value is zero
2714    extended, truncated, or unchanged to make it fit in a pointer size.
2715    This one is *really* dangerous!
2716``bitcast (CST to TYPE)``
2717    Convert a constant, CST, to another TYPE. The constraints of the
2718    operands are the same as those for the :ref:`bitcast
2719    instruction <i_bitcast>`.
2720``addrspacecast (CST to TYPE)``
2721    Convert a constant pointer or constant vector of pointer, CST, to another
2722    TYPE in a different address space. The constraints of the operands are the
2723    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
2724``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
2725    Perform the :ref:`getelementptr operation <i_getelementptr>` on
2726    constants. As with the :ref:`getelementptr <i_getelementptr>`
2727    instruction, the index list may have zero or more indexes, which are
2728    required to make sense for the type of "pointer to TY".
2729``select (COND, VAL1, VAL2)``
2730    Perform the :ref:`select operation <i_select>` on constants.
2731``icmp COND (VAL1, VAL2)``
2732    Performs the :ref:`icmp operation <i_icmp>` on constants.
2733``fcmp COND (VAL1, VAL2)``
2734    Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2735``extractelement (VAL, IDX)``
2736    Perform the :ref:`extractelement operation <i_extractelement>` on
2737    constants.
2738``insertelement (VAL, ELT, IDX)``
2739    Perform the :ref:`insertelement operation <i_insertelement>` on
2740    constants.
2741``shufflevector (VEC1, VEC2, IDXMASK)``
2742    Perform the :ref:`shufflevector operation <i_shufflevector>` on
2743    constants.
2744``extractvalue (VAL, IDX0, IDX1, ...)``
2745    Perform the :ref:`extractvalue operation <i_extractvalue>` on
2746    constants. The index list is interpreted in a similar manner as
2747    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2748    least one index value must be specified.
2749``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2750    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2751    The index list is interpreted in a similar manner as indices in a
2752    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2753    value must be specified.
2754``OPCODE (LHS, RHS)``
2755    Perform the specified operation of the LHS and RHS constants. OPCODE
2756    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2757    binary <bitwiseops>` operations. The constraints on operands are
2758    the same as those for the corresponding instruction (e.g. no bitwise
2759    operations on floating point values are allowed).
2760
2761Other Values
2762============
2763
2764.. _inlineasmexprs:
2765
2766Inline Assembler Expressions
2767----------------------------
2768
2769LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2770Inline Assembly <moduleasm>`) through the use of a special value. This
2771value represents the inline assembler as a string (containing the
2772instructions to emit), a list of operand constraints (stored as a
2773string), a flag that indicates whether or not the inline asm expression
2774has side effects, and a flag indicating whether the function containing
2775the asm needs to align its stack conservatively. An example inline
2776assembler expression is:
2777
2778.. code-block:: llvm
2779
2780    i32 (i32) asm "bswap $0", "=r,r"
2781
2782Inline assembler expressions may **only** be used as the callee operand
2783of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2784Thus, typically we have:
2785
2786.. code-block:: llvm
2787
2788    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2789
2790Inline asms with side effects not visible in the constraint list must be
2791marked as having side effects. This is done through the use of the
2792'``sideeffect``' keyword, like so:
2793
2794.. code-block:: llvm
2795
2796    call void asm sideeffect "eieio", ""()
2797
2798In some cases inline asms will contain code that will not work unless
2799the stack is aligned in some way, such as calls or SSE instructions on
2800x86, yet will not contain code that does that alignment within the asm.
2801The compiler should make conservative assumptions about what the asm
2802might contain and should generate its usual stack alignment code in the
2803prologue if the '``alignstack``' keyword is present:
2804
2805.. code-block:: llvm
2806
2807    call void asm alignstack "eieio", ""()
2808
2809Inline asms also support using non-standard assembly dialects. The
2810assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2811the inline asm is using the Intel dialect. Currently, ATT and Intel are
2812the only supported dialects. An example is:
2813
2814.. code-block:: llvm
2815
2816    call void asm inteldialect "eieio", ""()
2817
2818If multiple keywords appear the '``sideeffect``' keyword must come
2819first, the '``alignstack``' keyword second and the '``inteldialect``'
2820keyword last.
2821
2822Inline Asm Metadata
2823^^^^^^^^^^^^^^^^^^^
2824
2825The call instructions that wrap inline asm nodes may have a
2826"``!srcloc``" MDNode attached to it that contains a list of constant
2827integers. If present, the code generator will use the integer as the
2828location cookie value when report errors through the ``LLVMContext``
2829error reporting mechanisms. This allows a front-end to correlate backend
2830errors that occur with inline asm back to the source code that produced
2831it. For example:
2832
2833.. code-block:: llvm
2834
2835    call void asm sideeffect "something bad", ""(), !srcloc !42
2836    ...
2837    !42 = !{ i32 1234567 }
2838
2839It is up to the front-end to make sense of the magic numbers it places
2840in the IR. If the MDNode contains multiple constants, the code generator
2841will use the one that corresponds to the line of the asm that the error
2842occurs on.
2843
2844.. _metadata:
2845
2846Metadata
2847========
2848
2849LLVM IR allows metadata to be attached to instructions in the program
2850that can convey extra information about the code to the optimizers and
2851code generator. One example application of metadata is source-level
2852debug information. There are two metadata primitives: strings and nodes.
2853
2854Metadata does not have a type, and is not a value.  If referenced from a
2855``call`` instruction, it uses the ``metadata`` type.
2856
2857All metadata are identified in syntax by a exclamation point ('``!``').
2858
2859.. _metadata-string:
2860
2861Metadata Nodes and Metadata Strings
2862-----------------------------------
2863
2864A metadata string is a string surrounded by double quotes. It can
2865contain any character by escaping non-printable characters with
2866"``\xx``" where "``xx``" is the two digit hex code. For example:
2867"``!"test\00"``".
2868
2869Metadata nodes are represented with notation similar to structure
2870constants (a comma separated list of elements, surrounded by braces and
2871preceded by an exclamation point). Metadata nodes can have any values as
2872their operand. For example:
2873
2874.. code-block:: llvm
2875
2876    !{ !"test\00", i32 10}
2877
2878Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2879
2880.. code-block:: llvm
2881
2882    !0 = distinct !{!"test\00", i32 10}
2883
2884``distinct`` nodes are useful when nodes shouldn't be merged based on their
2885content.  They can also occur when transformations cause uniquing collisions
2886when metadata operands change.
2887
2888A :ref:`named metadata <namedmetadatastructure>` is a collection of
2889metadata nodes, which can be looked up in the module symbol table. For
2890example:
2891
2892.. code-block:: llvm
2893
2894    !foo = !{!4, !3}
2895
2896Metadata can be used as function arguments. Here ``llvm.dbg.value``
2897function is using two metadata arguments:
2898
2899.. code-block:: llvm
2900
2901    call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2902
2903Metadata can be attached with an instruction. Here metadata ``!21`` is
2904attached to the ``add`` instruction using the ``!dbg`` identifier:
2905
2906.. code-block:: llvm
2907
2908    %indvar.next = add i64 %indvar, 1, !dbg !21
2909
2910More information about specific metadata nodes recognized by the
2911optimizers and code generator is found below.
2912
2913.. _specialized-metadata:
2914
2915Specialized Metadata Nodes
2916^^^^^^^^^^^^^^^^^^^^^^^^^^
2917
2918Specialized metadata nodes are custom data structures in metadata (as opposed
2919to generic tuples).  Their fields are labelled, and can be specified in any
2920order.
2921
2922These aren't inherently debug info centric, but currently all the specialized
2923metadata nodes are related to debug info.
2924
2925.. _MDCompileUnit:
2926
2927MDCompileUnit
2928"""""""""""""
2929
2930``MDCompileUnit`` nodes represent a compile unit.  The ``enums:``,
2931``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2932tuples containing the debug info to be emitted along with the compile unit,
2933regardless of code optimizations (some nodes are only emitted if there are
2934references to them from instructions).
2935
2936.. code-block:: llvm
2937
2938    !0 = !MDCompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
2939                        isOptimized: true, flags: "-O2", runtimeVersion: 2,
2940                        splitDebugFilename: "abc.debug", emissionKind: 1,
2941                        enums: !2, retainedTypes: !3, subprograms: !4,
2942                        globals: !5, imports: !6)
2943
2944Compile unit descriptors provide the root scope for objects declared in a
2945specific compilation unit.  File descriptors are defined using this scope.
2946These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
2947keep track of subprograms, global variables, type information, and imported
2948entities (declarations and namespaces).
2949
2950.. _MDFile:
2951
2952MDFile
2953""""""
2954
2955``MDFile`` nodes represent files.  The ``filename:`` can include slashes.
2956
2957.. code-block:: llvm
2958
2959    !0 = !MDFile(filename: "path/to/file", directory: "/path/to/dir")
2960
2961Files are sometimes used in ``scope:`` fields, and are the only valid target
2962for ``file:`` fields.
2963
2964.. _MDLocation:
2965
2966MDBasicType
2967"""""""""""
2968
2969``MDBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
2970``float``.  ``tag:`` defaults to ``DW_TAG_base_type``.
2971
2972.. code-block:: llvm
2973
2974    !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2975                      encoding: DW_ATE_unsigned_char)
2976    !1 = !MDBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
2977
2978The ``encoding:`` describes the details of the type.  Usually it's one of the
2979following:
2980
2981.. code-block:: llvm
2982
2983  DW_ATE_address       = 1
2984  DW_ATE_boolean       = 2
2985  DW_ATE_float         = 4
2986  DW_ATE_signed        = 5
2987  DW_ATE_signed_char   = 6
2988  DW_ATE_unsigned      = 7
2989  DW_ATE_unsigned_char = 8
2990
2991.. _MDSubroutineType:
2992
2993MDSubroutineType
2994""""""""""""""""
2995
2996``MDSubroutineType`` nodes represent subroutine types.  Their ``types:`` field
2997refers to a tuple; the first operand is the return type, while the rest are the
2998types of the formal arguments in order.  If the first operand is ``null``, that
2999represents a function with no return value (such as ``void foo() {}`` in C++).
3000
3001.. code-block:: llvm
3002
3003    !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3004    !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
3005    !2 = !MDSubroutineType(types: !{null, !0, !1}) ; void (int, char)
3006
3007.. _MDDerivedType:
3008
3009MDDerivedType
3010"""""""""""""
3011
3012``MDDerivedType`` nodes represent types derived from other types, such as
3013qualified types.
3014
3015.. code-block:: llvm
3016
3017    !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
3018                      encoding: DW_ATE_unsigned_char)
3019    !1 = !MDDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
3020                        align: 32)
3021
3022The following ``tag:`` values are valid:
3023
3024.. code-block:: llvm
3025
3026  DW_TAG_formal_parameter   = 5
3027  DW_TAG_member             = 13
3028  DW_TAG_pointer_type       = 15
3029  DW_TAG_reference_type     = 16
3030  DW_TAG_typedef            = 22
3031  DW_TAG_ptr_to_member_type = 31
3032  DW_TAG_const_type         = 38
3033  DW_TAG_volatile_type      = 53
3034  DW_TAG_restrict_type      = 55
3035
3036``DW_TAG_member`` is used to define a member of a :ref:`composite type
3037<MDCompositeType>` or :ref:`subprogram <MDSubprogram>`.  The type of the member
3038is the ``baseType:``.  The ``offset:`` is the member's bit offset.
3039``DW_TAG_formal_parameter`` is used to define a member which is a formal
3040argument of a subprogram.
3041
3042``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3043
3044``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3045``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3046``baseType:``.
3047
3048Note that the ``void *`` type is expressed as a type derived from NULL.
3049
3050.. _MDCompositeType:
3051
3052MDCompositeType
3053"""""""""""""""
3054
3055``MDCompositeType`` nodes represent types composed of other types, like
3056structures and unions.  ``elements:`` points to a tuple of the composed types.
3057
3058If the source language supports ODR, the ``identifier:`` field gives the unique
3059identifier used for type merging between modules.  When specified, other types
3060can refer to composite types indirectly via a :ref:`metadata string
3061<metadata-string>` that matches their identifier.
3062
3063.. code-block:: llvm
3064
3065    !0 = !MDEnumerator(name: "SixKind", value: 7)
3066    !1 = !MDEnumerator(name: "SevenKind", value: 7)
3067    !2 = !MDEnumerator(name: "NegEightKind", value: -8)
3068    !3 = !MDCompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
3069                          line: 2, size: 32, align: 32, identifier: "_M4Enum",
3070                          elements: !{!0, !1, !2})
3071
3072The following ``tag:`` values are valid:
3073
3074.. code-block:: llvm
3075
3076  DW_TAG_array_type       = 1
3077  DW_TAG_class_type       = 2
3078  DW_TAG_enumeration_type = 4
3079  DW_TAG_structure_type   = 19
3080  DW_TAG_union_type       = 23
3081  DW_TAG_subroutine_type  = 21
3082  DW_TAG_inheritance      = 28
3083
3084
3085For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
3086descriptors <MDSubrange>`, each representing the range of subscripts at that
3087level of indexing.  The ``DIFlagVector`` flag to ``flags:`` indicates that an
3088array type is a native packed vector.
3089
3090For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
3091descriptors <MDEnumerator>`, each representing the definition of an enumeration
3092value for the set.  All enumeration type descriptors are collected in the
3093``enums:`` field of the :ref:`compile unit <MDCompileUnit>`.
3094
3095For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3096``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
3097<MDDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
3098
3099.. _MDSubrange:
3100
3101MDSubrange
3102""""""""""
3103
3104``MDSubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3105:ref:`MDCompositeType`.  ``count: -1`` indicates an empty array.
3106
3107.. code-block:: llvm
3108
3109    !0 = !MDSubrange(count: 5, lowerBound: 0) ; array counting from 0
3110    !1 = !MDSubrange(count: 5, lowerBound: 1) ; array counting from 1
3111    !2 = !MDSubrange(count: -1) ; empty array.
3112
3113.. _MDEnumerator:
3114
3115MDEnumerator
3116""""""""""""
3117
3118``MDEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3119variants of :ref:`MDCompositeType`.
3120
3121.. code-block:: llvm
3122
3123    !0 = !MDEnumerator(name: "SixKind", value: 7)
3124    !1 = !MDEnumerator(name: "SevenKind", value: 7)
3125    !2 = !MDEnumerator(name: "NegEightKind", value: -8)
3126
3127MDTemplateTypeParameter
3128"""""""""""""""""""""""
3129
3130``MDTemplateTypeParameter`` nodes represent type parameters to generic source
3131language constructs.  They are used (optionally) in :ref:`MDCompositeType` and
3132:ref:`MDSubprogram` ``templateParams:`` fields.
3133
3134.. code-block:: llvm
3135
3136    !0 = !MDTemplateTypeParameter(name: "Ty", type: !1)
3137
3138MDTemplateValueParameter
3139""""""""""""""""""""""""
3140
3141``MDTemplateValueParameter`` nodes represent value parameters to generic source
3142language constructs.  ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3143but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3144``DW_TAG_GNU_template_param_pack``.  They are used (optionally) in
3145:ref:`MDCompositeType` and :ref:`MDSubprogram` ``templateParams:`` fields.
3146
3147.. code-block:: llvm
3148
3149    !0 = !MDTemplateValueParameter(name: "Ty", type: !1, value: i32 7)
3150
3151MDNamespace
3152"""""""""""
3153
3154``MDNamespace`` nodes represent namespaces in the source language.
3155
3156.. code-block:: llvm
3157
3158    !0 = !MDNamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
3159
3160MDGlobalVariable
3161""""""""""""""""
3162
3163``MDGlobalVariable`` nodes represent global variables in the source language.
3164
3165.. code-block:: llvm
3166
3167    !0 = !MDGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
3168                           file: !2, line: 7, type: !3, isLocal: true,
3169                           isDefinition: false, variable: i32* @foo,
3170                           declaration: !4)
3171
3172All global variables should be referenced by the `globals:` field of a
3173:ref:`compile unit <MDCompileUnit>`.
3174
3175.. _MDSubprogram:
3176
3177MDSubprogram
3178""""""""""""
3179
3180``MDSubprogram`` nodes represent functions from the source language.  The
3181``variables:`` field points at :ref:`variables <MDLocalVariable>` that must be
3182retained, even if their IR counterparts are optimized out of the IR.  The
3183``type:`` field must point at an :ref:`MDSubroutineType`.
3184
3185.. code-block:: llvm
3186
3187    !0 = !MDSubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3188                       file: !2, line: 7, type: !3, isLocal: true,
3189                       isDefinition: false, scopeLine: 8, containingType: !4,
3190                       virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3191                       flags: DIFlagPrototyped, isOptimized: true,
3192                       function: void ()* @_Z3foov,
3193                       templateParams: !5, declaration: !6, variables: !7)
3194
3195.. _MDLexicalBlock:
3196
3197MDLexicalBlock
3198""""""""""""""
3199
3200``MDLexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3201<MDSubprogram>`.  The line number and column numbers are used to dinstinguish
3202two lexical blocks at same depth.  They are valid targets for ``scope:``
3203fields.
3204
3205.. code-block:: llvm
3206
3207    !0 = distinct !MDLexicalBlock(scope: !1, file: !2, line: 7, column: 35)
3208
3209Usually lexical blocks are ``distinct`` to prevent node merging based on
3210operands.
3211
3212.. _MDLexicalBlockFile:
3213
3214MDLexicalBlockFile
3215""""""""""""""""""
3216
3217``MDLexicalBlockFile`` nodes are used to discriminate between sections of a
3218:ref:`lexical block <MDLexicalBlock>`.  The ``file:`` field can be changed to
3219indicate textual inclusion, or the ``discriminator:`` field can be used to
3220discriminate between control flow within a single block in the source language.
3221
3222.. code-block:: llvm
3223
3224    !0 = !MDLexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3225    !1 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3226    !2 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 1)
3227
3228MDLocation
3229""""""""""
3230
3231``MDLocation`` nodes represent source debug locations.  The ``scope:`` field is
3232mandatory, and points at an :ref:`MDLexicalBlockFile`, an
3233:ref:`MDLexicalBlock`, or an :ref:`MDSubprogram`.
3234
3235.. code-block:: llvm
3236
3237    !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
3238
3239.. _MDLocalVariable:
3240
3241MDLocalVariable
3242"""""""""""""""
3243
3244``MDLocalVariable`` nodes represent local variables in the source language.
3245Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3246discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3247arguments (``DW_TAG_arg_variable``).  In the latter case, the ``arg:`` field
3248specifies the argument position, and this variable will be included in the
3249``variables:`` field of its :ref:`MDSubprogram`.
3250
3251.. code-block:: llvm
3252
3253    !0 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
3254                          scope: !3, file: !2, line: 7, type: !3,
3255                          flags: DIFlagArtificial)
3256    !1 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
3257                          scope: !4, file: !2, line: 7, type: !3)
3258    !1 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
3259                          scope: !5, file: !2, line: 7, type: !3)
3260
3261MDExpression
3262""""""""""""
3263
3264``MDExpression`` nodes represent DWARF expression sequences.  They are used in
3265:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3266describe how the referenced LLVM variable relates to the source language
3267variable.
3268
3269The current supported vocabulary is limited:
3270
3271- ``DW_OP_deref`` dereferences the working expression.
3272- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3273- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3274  here, respectively) of the variable piece from the working expression.
3275
3276.. code-block:: llvm
3277
3278    !0 = !MDExpression(DW_OP_deref)
3279    !1 = !MDExpression(DW_OP_plus, 3)
3280    !2 = !MDExpression(DW_OP_bit_piece, 3, 7)
3281    !3 = !MDExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
3282
3283MDObjCProperty
3284""""""""""""""
3285
3286``MDObjCProperty`` nodes represent Objective-C property nodes.
3287
3288.. code-block:: llvm
3289
3290    !3 = !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3291                         getter: "getFoo", attributes: 7, type: !2)
3292
3293MDImportedEntity
3294""""""""""""""""
3295
3296``MDImportedEntity`` nodes represent entities (such as modules) imported into a
3297compile unit.
3298
3299.. code-block:: llvm
3300
3301   !2 = !MDImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
3302                          entity: !1, line: 7)
3303
3304'``tbaa``' Metadata
3305^^^^^^^^^^^^^^^^^^^
3306
3307In LLVM IR, memory does not have types, so LLVM's own type system is not
3308suitable for doing TBAA. Instead, metadata is added to the IR to
3309describe a type system of a higher level language. This can be used to
3310implement typical C/C++ TBAA, but it can also be used to implement
3311custom alias analysis behavior for other languages.
3312
3313The current metadata format is very simple. TBAA metadata nodes have up
3314to three fields, e.g.:
3315
3316.. code-block:: llvm
3317
3318    !0 = !{ !"an example type tree" }
3319    !1 = !{ !"int", !0 }
3320    !2 = !{ !"float", !0 }
3321    !3 = !{ !"const float", !2, i64 1 }
3322
3323The first field is an identity field. It can be any value, usually a
3324metadata string, which uniquely identifies the type. The most important
3325name in the tree is the name of the root node. Two trees with different
3326root node names are entirely disjoint, even if they have leaves with
3327common names.
3328
3329The second field identifies the type's parent node in the tree, or is
3330null or omitted for a root node. A type is considered to alias all of
3331its descendants and all of its ancestors in the tree. Also, a type is
3332considered to alias all types in other trees, so that bitcode produced
3333from multiple front-ends is handled conservatively.
3334
3335If the third field is present, it's an integer which if equal to 1
3336indicates that the type is "constant" (meaning
3337``pointsToConstantMemory`` should return true; see `other useful
3338AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3339
3340'``tbaa.struct``' Metadata
3341^^^^^^^^^^^^^^^^^^^^^^^^^^
3342
3343The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3344aggregate assignment operations in C and similar languages, however it
3345is defined to copy a contiguous region of memory, which is more than
3346strictly necessary for aggregate types which contain holes due to
3347padding. Also, it doesn't contain any TBAA information about the fields
3348of the aggregate.
3349
3350``!tbaa.struct`` metadata can describe which memory subregions in a
3351memcpy are padding and what the TBAA tags of the struct are.
3352
3353The current metadata format is very simple. ``!tbaa.struct`` metadata
3354nodes are a list of operands which are in conceptual groups of three.
3355For each group of three, the first operand gives the byte offset of a
3356field in bytes, the second gives its size in bytes, and the third gives
3357its tbaa tag. e.g.:
3358
3359.. code-block:: llvm
3360
3361    !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
3362
3363This describes a struct with two fields. The first is at offset 0 bytes
3364with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3365and has size 4 bytes and has tbaa tag !2.
3366
3367Note that the fields need not be contiguous. In this example, there is a
33684 byte gap between the two fields. This gap represents padding which
3369does not carry useful data and need not be preserved.
3370
3371'``noalias``' and '``alias.scope``' Metadata
3372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3373
3374``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3375noalias memory-access sets. This means that some collection of memory access
3376instructions (loads, stores, memory-accessing calls, etc.) that carry
3377``noalias`` metadata can specifically be specified not to alias with some other
3378collection of memory access instructions that carry ``alias.scope`` metadata.
3379Each type of metadata specifies a list of scopes where each scope has an id and
3380a domain. When evaluating an aliasing query, if for some domain, the set
3381of scopes with that domain in one instruction's ``alias.scope`` list is a
3382subset of (or equal to) the set of scopes for that domain in another
3383instruction's ``noalias`` list, then the two memory accesses are assumed not to
3384alias.
3385
3386The metadata identifying each domain is itself a list containing one or two
3387entries. The first entry is the name of the domain. Note that if the name is a
3388string then it can be combined accross functions and translation units. A
3389self-reference can be used to create globally unique domain names. A
3390descriptive string may optionally be provided as a second list entry.
3391
3392The metadata identifying each scope is also itself a list containing two or
3393three entries. The first entry is the name of the scope. Note that if the name
3394is a string then it can be combined accross functions and translation units. A
3395self-reference can be used to create globally unique scope names. A metadata
3396reference to the scope's domain is the second entry. A descriptive string may
3397optionally be provided as a third list entry.
3398
3399For example,
3400
3401.. code-block:: llvm
3402
3403    ; Two scope domains:
3404    !0 = !{!0}
3405    !1 = !{!1}
3406
3407    ; Some scopes in these domains:
3408    !2 = !{!2, !0}
3409    !3 = !{!3, !0}
3410    !4 = !{!4, !1}
3411
3412    ; Some scope lists:
3413    !5 = !{!4} ; A list containing only scope !4
3414    !6 = !{!4, !3, !2}
3415    !7 = !{!3}
3416
3417    ; These two instructions don't alias:
3418    %0 = load float, float* %c, align 4, !alias.scope !5
3419    store float %0, float* %arrayidx.i, align 4, !noalias !5
3420
3421    ; These two instructions also don't alias (for domain !1, the set of scopes
3422    ; in the !alias.scope equals that in the !noalias list):
3423    %2 = load float, float* %c, align 4, !alias.scope !5
3424    store float %2, float* %arrayidx.i2, align 4, !noalias !6
3425
3426    ; These two instructions don't alias (for domain !0, the set of scopes in
3427    ; the !noalias list is not a superset of, or equal to, the scopes in the
3428    ; !alias.scope list):
3429    %2 = load float, float* %c, align 4, !alias.scope !6
3430    store float %0, float* %arrayidx.i, align 4, !noalias !7
3431
3432'``fpmath``' Metadata
3433^^^^^^^^^^^^^^^^^^^^^
3434
3435``fpmath`` metadata may be attached to any instruction of floating point
3436type. It can be used to express the maximum acceptable error in the
3437result of that instruction, in ULPs, thus potentially allowing the
3438compiler to use a more efficient but less accurate method of computing
3439it. ULP is defined as follows:
3440
3441    If ``x`` is a real number that lies between two finite consecutive
3442    floating-point numbers ``a`` and ``b``, without being equal to one
3443    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3444    distance between the two non-equal finite floating-point numbers
3445    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3446
3447The metadata node shall consist of a single positive floating point
3448number representing the maximum relative error, for example:
3449
3450.. code-block:: llvm
3451
3452    !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3453
3454.. _range-metadata:
3455
3456'``range``' Metadata
3457^^^^^^^^^^^^^^^^^^^^
3458
3459``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3460integer types. It expresses the possible ranges the loaded value or the value
3461returned by the called function at this call site is in. The ranges are
3462represented with a flattened list of integers. The loaded value or the value
3463returned is known to be in the union of the ranges defined by each consecutive
3464pair. Each pair has the following properties:
3465
3466-  The type must match the type loaded by the instruction.
3467-  The pair ``a,b`` represents the range ``[a,b)``.
3468-  Both ``a`` and ``b`` are constants.
3469-  The range is allowed to wrap.
3470-  The range should not represent the full or empty set. That is,
3471   ``a!=b``.
3472
3473In addition, the pairs must be in signed order of the lower bound and
3474they must be non-contiguous.
3475
3476Examples:
3477
3478.. code-block:: llvm
3479
3480      %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3481      %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3482      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
3483      %d = invoke i8 @bar() to label %cont
3484             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
3485    ...
3486    !0 = !{ i8 0, i8 2 }
3487    !1 = !{ i8 255, i8 2 }
3488    !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3489    !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
3490
3491'``llvm.loop``'
3492^^^^^^^^^^^^^^^
3493
3494It is sometimes useful to attach information to loop constructs. Currently,
3495loop metadata is implemented as metadata attached to the branch instruction
3496in the loop latch block. This type of metadata refer to a metadata node that is
3497guaranteed to be separate for each loop. The loop identifier metadata is
3498specified with the name ``llvm.loop``.
3499
3500The loop identifier metadata is implemented using a metadata that refers to
3501itself to avoid merging it with any other identifier metadata, e.g.,
3502during module linkage or function inlining. That is, each loop should refer
3503to their own identification metadata even if they reside in separate functions.
3504The following example contains loop identifier metadata for two separate loop
3505constructs:
3506
3507.. code-block:: llvm
3508
3509    !0 = !{!0}
3510    !1 = !{!1}
3511
3512The loop identifier metadata can be used to specify additional
3513per-loop metadata. Any operands after the first operand can be treated
3514as user-defined metadata. For example the ``llvm.loop.unroll.count``
3515suggests an unroll factor to the loop unroller:
3516
3517.. code-block:: llvm
3518
3519      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3520    ...
3521    !0 = !{!0, !1}
3522    !1 = !{!"llvm.loop.unroll.count", i32 4}
3523
3524'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3526
3527Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3528used to control per-loop vectorization and interleaving parameters such as
3529vectorization width and interleave count.  These metadata should be used in
3530conjunction with ``llvm.loop`` loop identification metadata.  The
3531``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3532optimization hints and the optimizer will only interleave and vectorize loops if
3533it believes it is safe to do so.  The ``llvm.mem.parallel_loop_access`` metadata
3534which contains information about loop-carried memory dependencies can be helpful
3535in determining the safety of these transformations.
3536
3537'``llvm.loop.interleave.count``' Metadata
3538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3539
3540This metadata suggests an interleave count to the loop interleaver.
3541The first operand is the string ``llvm.loop.interleave.count`` and the
3542second operand is an integer specifying the interleave count. For
3543example:
3544
3545.. code-block:: llvm
3546
3547   !0 = !{!"llvm.loop.interleave.count", i32 4}
3548
3549Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3550multiple iterations of the loop.  If ``llvm.loop.interleave.count`` is set to 0
3551then the interleave count will be determined automatically.
3552
3553'``llvm.loop.vectorize.enable``' Metadata
3554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3555
3556This metadata selectively enables or disables vectorization for the loop. The
3557first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3558is a bit.  If the bit operand value is 1 vectorization is enabled. A value of
35590 disables vectorization:
3560
3561.. code-block:: llvm
3562
3563   !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3564   !1 = !{!"llvm.loop.vectorize.enable", i1 1}
3565
3566'``llvm.loop.vectorize.width``' Metadata
3567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3568
3569This metadata sets the target width of the vectorizer. The first
3570operand is the string ``llvm.loop.vectorize.width`` and the second
3571operand is an integer specifying the width. For example:
3572
3573.. code-block:: llvm
3574
3575   !0 = !{!"llvm.loop.vectorize.width", i32 4}
3576
3577Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3578vectorization of the loop.  If ``llvm.loop.vectorize.width`` is set to
35790 or if the loop does not have this metadata the width will be
3580determined automatically.
3581
3582'``llvm.loop.unroll``'
3583^^^^^^^^^^^^^^^^^^^^^^
3584
3585Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3586optimization hints such as the unroll factor. ``llvm.loop.unroll``
3587metadata should be used in conjunction with ``llvm.loop`` loop
3588identification metadata. The ``llvm.loop.unroll`` metadata are only
3589optimization hints and the unrolling will only be performed if the
3590optimizer believes it is safe to do so.
3591
3592'``llvm.loop.unroll.count``' Metadata
3593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595This metadata suggests an unroll factor to the loop unroller. The
3596first operand is the string ``llvm.loop.unroll.count`` and the second
3597operand is a positive integer specifying the unroll factor. For
3598example:
3599
3600.. code-block:: llvm
3601
3602   !0 = !{!"llvm.loop.unroll.count", i32 4}
3603
3604If the trip count of the loop is less than the unroll count the loop
3605will be partially unrolled.
3606
3607'``llvm.loop.unroll.disable``' Metadata
3608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3609
3610This metadata either disables loop unrolling. The metadata has a single operand
3611which is the string ``llvm.loop.unroll.disable``.  For example:
3612
3613.. code-block:: llvm
3614
3615   !0 = !{!"llvm.loop.unroll.disable"}
3616
3617'``llvm.loop.unroll.runtime.disable``' Metadata
3618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3619
3620This metadata either disables runtime loop unrolling. The metadata has a single
3621operand which is the string ``llvm.loop.unroll.runtime.disable``.  For example:
3622
3623.. code-block:: llvm
3624
3625   !0 = !{!"llvm.loop.unroll.runtime.disable"}
3626
3627'``llvm.loop.unroll.full``' Metadata
3628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3629
3630This metadata either suggests that the loop should be unrolled fully. The
3631metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3632For example:
3633
3634.. code-block:: llvm
3635
3636   !0 = !{!"llvm.loop.unroll.full"}
3637
3638'``llvm.mem``'
3639^^^^^^^^^^^^^^^
3640
3641Metadata types used to annotate memory accesses with information helpful
3642for optimizations are prefixed with ``llvm.mem``.
3643
3644'``llvm.mem.parallel_loop_access``' Metadata
3645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3646
3647The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3648or metadata containing a list of loop identifiers for nested loops.
3649The metadata is attached to memory accessing instructions and denotes that
3650no loop carried memory dependence exist between it and other instructions denoted
3651with the same loop identifier.
3652
3653Precisely, given two instructions ``m1`` and ``m2`` that both have the
3654``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3655set of loops associated with that metadata, respectively, then there is no loop
3656carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
3657``L2``.
3658
3659As a special case, if all memory accessing instructions in a loop have
3660``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3661loop has no loop carried memory dependences and is considered to be a parallel
3662loop.
3663
3664Note that if not all memory access instructions have such metadata referring to
3665the loop, then the loop is considered not being trivially parallel. Additional
3666memory dependence analysis is required to make that determination.  As a fail
3667safe mechanism, this causes loops that were originally parallel to be considered
3668sequential (if optimization passes that are unaware of the parallel semantics
3669insert new memory instructions into the loop body).
3670
3671Example of a loop that is considered parallel due to its correct use of
3672both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
3673metadata types that refer to the same loop identifier metadata.
3674
3675.. code-block:: llvm
3676
3677   for.body:
3678     ...
3679     %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
3680     ...
3681     store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3682     ...
3683     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
3684
3685   for.end:
3686   ...
3687   !0 = !{!0}
3688
3689It is also possible to have nested parallel loops. In that case the
3690memory accesses refer to a list of loop identifier metadata nodes instead of
3691the loop identifier metadata node directly:
3692
3693.. code-block:: llvm
3694
3695   outer.for.body:
3696     ...
3697     %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3698     ...
3699     br label %inner.for.body
3700
3701   inner.for.body:
3702     ...
3703     %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3704     ...
3705     store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
3706     ...
3707     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
3708
3709   inner.for.end:
3710     ...
3711     store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
3712     ...
3713     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
3714
3715   outer.for.end:                                          ; preds = %for.body
3716   ...
3717   !0 = !{!1, !2} ; a list of loop identifiers
3718   !1 = !{!1} ; an identifier for the inner loop
3719   !2 = !{!2} ; an identifier for the outer loop
3720
3721'``llvm.bitsets``'
3722^^^^^^^^^^^^^^^^^^
3723
3724The ``llvm.bitsets`` global metadata is used to implement
3725:doc:`bitsets <BitSets>`.
3726
3727Module Flags Metadata
3728=====================
3729
3730Information about the module as a whole is difficult to convey to LLVM's
3731subsystems. The LLVM IR isn't sufficient to transmit this information.
3732The ``llvm.module.flags`` named metadata exists in order to facilitate
3733this. These flags are in the form of key / value pairs --- much like a
3734dictionary --- making it easy for any subsystem who cares about a flag to
3735look it up.
3736
3737The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3738Each triplet has the following form:
3739
3740-  The first element is a *behavior* flag, which specifies the behavior
3741   when two (or more) modules are merged together, and it encounters two
3742   (or more) metadata with the same ID. The supported behaviors are
3743   described below.
3744-  The second element is a metadata string that is a unique ID for the
3745   metadata. Each module may only have one flag entry for each unique ID (not
3746   including entries with the **Require** behavior).
3747-  The third element is the value of the flag.
3748
3749When two (or more) modules are merged together, the resulting
3750``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3751each unique metadata ID string, there will be exactly one entry in the merged
3752modules ``llvm.module.flags`` metadata table, and the value for that entry will
3753be determined by the merge behavior flag, as described below. The only exception
3754is that entries with the *Require* behavior are always preserved.
3755
3756The following behaviors are supported:
3757
3758.. list-table::
3759   :header-rows: 1
3760   :widths: 10 90
3761
3762   * - Value
3763     - Behavior
3764
3765   * - 1
3766     - **Error**
3767           Emits an error if two values disagree, otherwise the resulting value
3768           is that of the operands.
3769
3770   * - 2
3771     - **Warning**
3772           Emits a warning if two values disagree. The result value will be the
3773           operand for the flag from the first module being linked.
3774
3775   * - 3
3776     - **Require**
3777           Adds a requirement that another module flag be present and have a
3778           specified value after linking is performed. The value must be a
3779           metadata pair, where the first element of the pair is the ID of the
3780           module flag to be restricted, and the second element of the pair is
3781           the value the module flag should be restricted to. This behavior can
3782           be used to restrict the allowable results (via triggering of an
3783           error) of linking IDs with the **Override** behavior.
3784
3785   * - 4
3786     - **Override**
3787           Uses the specified value, regardless of the behavior or value of the
3788           other module. If both modules specify **Override**, but the values
3789           differ, an error will be emitted.
3790
3791   * - 5
3792     - **Append**
3793           Appends the two values, which are required to be metadata nodes.
3794
3795   * - 6
3796     - **AppendUnique**
3797           Appends the two values, which are required to be metadata
3798           nodes. However, duplicate entries in the second list are dropped
3799           during the append operation.
3800
3801It is an error for a particular unique flag ID to have multiple behaviors,
3802except in the case of **Require** (which adds restrictions on another metadata
3803value) or **Override**.
3804
3805An example of module flags:
3806
3807.. code-block:: llvm
3808
3809    !0 = !{ i32 1, !"foo", i32 1 }
3810    !1 = !{ i32 4, !"bar", i32 37 }
3811    !2 = !{ i32 2, !"qux", i32 42 }
3812    !3 = !{ i32 3, !"qux",
3813      !{
3814        !"foo", i32 1
3815      }
3816    }
3817    !llvm.module.flags = !{ !0, !1, !2, !3 }
3818
3819-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3820   if two or more ``!"foo"`` flags are seen is to emit an error if their
3821   values are not equal.
3822
3823-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3824   behavior if two or more ``!"bar"`` flags are seen is to use the value
3825   '37'.
3826
3827-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3828   behavior if two or more ``!"qux"`` flags are seen is to emit a
3829   warning if their values are not equal.
3830
3831-  Metadata ``!3`` has the ID ``!"qux"`` and the value:
3832
3833   ::
3834
3835       !{ !"foo", i32 1 }
3836
3837   The behavior is to emit an error if the ``llvm.module.flags`` does not
3838   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3839   performed.
3840
3841Objective-C Garbage Collection Module Flags Metadata
3842----------------------------------------------------
3843
3844On the Mach-O platform, Objective-C stores metadata about garbage
3845collection in a special section called "image info". The metadata
3846consists of a version number and a bitmask specifying what types of
3847garbage collection are supported (if any) by the file. If two or more
3848modules are linked together their garbage collection metadata needs to
3849be merged rather than appended together.
3850
3851The Objective-C garbage collection module flags metadata consists of the
3852following key-value pairs:
3853
3854.. list-table::
3855   :header-rows: 1
3856   :widths: 30 70
3857
3858   * - Key
3859     - Value
3860
3861   * - ``Objective-C Version``
3862     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
3863
3864   * - ``Objective-C Image Info Version``
3865     - **[Required]** --- The version of the image info section. Currently
3866       always 0.
3867
3868   * - ``Objective-C Image Info Section``
3869     - **[Required]** --- The section to place the metadata. Valid values are
3870       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3871       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3872       Objective-C ABI version 2.
3873
3874   * - ``Objective-C Garbage Collection``
3875     - **[Required]** --- Specifies whether garbage collection is supported or
3876       not. Valid values are 0, for no garbage collection, and 2, for garbage
3877       collection supported.
3878
3879   * - ``Objective-C GC Only``
3880     - **[Optional]** --- Specifies that only garbage collection is supported.
3881       If present, its value must be 6. This flag requires that the
3882       ``Objective-C Garbage Collection`` flag have the value 2.
3883
3884Some important flag interactions:
3885
3886-  If a module with ``Objective-C Garbage Collection`` set to 0 is
3887   merged with a module with ``Objective-C Garbage Collection`` set to
3888   2, then the resulting module has the
3889   ``Objective-C Garbage Collection`` flag set to 0.
3890-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3891   merged with a module with ``Objective-C GC Only`` set to 6.
3892
3893Automatic Linker Flags Module Flags Metadata
3894--------------------------------------------
3895
3896Some targets support embedding flags to the linker inside individual object
3897files. Typically this is used in conjunction with language extensions which
3898allow source files to explicitly declare the libraries they depend on, and have
3899these automatically be transmitted to the linker via object files.
3900
3901These flags are encoded in the IR using metadata in the module flags section,
3902using the ``Linker Options`` key. The merge behavior for this flag is required
3903to be ``AppendUnique``, and the value for the key is expected to be a metadata
3904node which should be a list of other metadata nodes, each of which should be a
3905list of metadata strings defining linker options.
3906
3907For example, the following metadata section specifies two separate sets of
3908linker options, presumably to link against ``libz`` and the ``Cocoa``
3909framework::
3910
3911    !0 = !{ i32 6, !"Linker Options",
3912       !{
3913          !{ !"-lz" },
3914          !{ !"-framework", !"Cocoa" } } }
3915    !llvm.module.flags = !{ !0 }
3916
3917The metadata encoding as lists of lists of options, as opposed to a collapsed
3918list of options, is chosen so that the IR encoding can use multiple option
3919strings to specify e.g., a single library, while still having that specifier be
3920preserved as an atomic element that can be recognized by a target specific
3921assembly writer or object file emitter.
3922
3923Each individual option is required to be either a valid option for the target's
3924linker, or an option that is reserved by the target specific assembly writer or
3925object file emitter. No other aspect of these options is defined by the IR.
3926
3927C type width Module Flags Metadata
3928----------------------------------
3929
3930The ARM backend emits a section into each generated object file describing the
3931options that it was compiled with (in a compiler-independent way) to prevent
3932linking incompatible objects, and to allow automatic library selection. Some
3933of these options are not visible at the IR level, namely wchar_t width and enum
3934width.
3935
3936To pass this information to the backend, these options are encoded in module
3937flags metadata, using the following key-value pairs:
3938
3939.. list-table::
3940   :header-rows: 1
3941   :widths: 30 70
3942
3943   * - Key
3944     - Value
3945
3946   * - short_wchar
3947     - * 0 --- sizeof(wchar_t) == 4
3948       * 1 --- sizeof(wchar_t) == 2
3949
3950   * - short_enum
3951     - * 0 --- Enums are at least as large as an ``int``.
3952       * 1 --- Enums are stored in the smallest integer type which can
3953         represent all of its values.
3954
3955For example, the following metadata section specifies that the module was
3956compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3957enum is the smallest type which can represent all of its values::
3958
3959    !llvm.module.flags = !{!0, !1}
3960    !0 = !{i32 1, !"short_wchar", i32 1}
3961    !1 = !{i32 1, !"short_enum", i32 0}
3962
3963.. _intrinsicglobalvariables:
3964
3965Intrinsic Global Variables
3966==========================
3967
3968LLVM has a number of "magic" global variables that contain data that
3969affect code generation or other IR semantics. These are documented here.
3970All globals of this sort should have a section specified as
3971"``llvm.metadata``". This section and all globals that start with
3972"``llvm.``" are reserved for use by LLVM.
3973
3974.. _gv_llvmused:
3975
3976The '``llvm.used``' Global Variable
3977-----------------------------------
3978
3979The ``@llvm.used`` global is an array which has
3980:ref:`appending linkage <linkage_appending>`. This array contains a list of
3981pointers to named global variables, functions and aliases which may optionally
3982have a pointer cast formed of bitcast or getelementptr. For example, a legal
3983use of it is:
3984
3985.. code-block:: llvm
3986
3987    @X = global i8 4
3988    @Y = global i32 123
3989
3990    @llvm.used = appending global [2 x i8*] [
3991       i8* @X,
3992       i8* bitcast (i32* @Y to i8*)
3993    ], section "llvm.metadata"
3994
3995If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3996and linker are required to treat the symbol as if there is a reference to the
3997symbol that it cannot see (which is why they have to be named). For example, if
3998a variable has internal linkage and no references other than that from the
3999``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4000references from inline asms and other things the compiler cannot "see", and
4001corresponds to "``attribute((used))``" in GNU C.
4002
4003On some targets, the code generator must emit a directive to the
4004assembler or object file to prevent the assembler and linker from
4005molesting the symbol.
4006
4007.. _gv_llvmcompilerused:
4008
4009The '``llvm.compiler.used``' Global Variable
4010--------------------------------------------
4011
4012The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4013directive, except that it only prevents the compiler from touching the
4014symbol. On targets that support it, this allows an intelligent linker to
4015optimize references to the symbol without being impeded as it would be
4016by ``@llvm.used``.
4017
4018This is a rare construct that should only be used in rare circumstances,
4019and should not be exposed to source languages.
4020
4021.. _gv_llvmglobalctors:
4022
4023The '``llvm.global_ctors``' Global Variable
4024-------------------------------------------
4025
4026.. code-block:: llvm
4027
4028    %0 = type { i32, void ()*, i8* }
4029    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
4030
4031The ``@llvm.global_ctors`` array contains a list of constructor
4032functions, priorities, and an optional associated global or function.
4033The functions referenced by this array will be called in ascending order
4034of priority (i.e. lowest first) when the module is loaded. The order of
4035functions with the same priority is not defined.
4036
4037If the third field is present, non-null, and points to a global variable
4038or function, the initializer function will only run if the associated
4039data from the current module is not discarded.
4040
4041.. _llvmglobaldtors:
4042
4043The '``llvm.global_dtors``' Global Variable
4044-------------------------------------------
4045
4046.. code-block:: llvm
4047
4048    %0 = type { i32, void ()*, i8* }
4049    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
4050
4051The ``@llvm.global_dtors`` array contains a list of destructor
4052functions, priorities, and an optional associated global or function.
4053The functions referenced by this array will be called in descending
4054order of priority (i.e. highest first) when the module is unloaded. The
4055order of functions with the same priority is not defined.
4056
4057If the third field is present, non-null, and points to a global variable
4058or function, the destructor function will only run if the associated
4059data from the current module is not discarded.
4060
4061Instruction Reference
4062=====================
4063
4064The LLVM instruction set consists of several different classifications
4065of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4066instructions <binaryops>`, :ref:`bitwise binary
4067instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4068:ref:`other instructions <otherops>`.
4069
4070.. _terminators:
4071
4072Terminator Instructions
4073-----------------------
4074
4075As mentioned :ref:`previously <functionstructure>`, every basic block in a
4076program ends with a "Terminator" instruction, which indicates which
4077block should be executed after the current block is finished. These
4078terminator instructions typically yield a '``void``' value: they produce
4079control flow, not values (the one exception being the
4080':ref:`invoke <i_invoke>`' instruction).
4081
4082The terminator instructions are: ':ref:`ret <i_ret>`',
4083':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4084':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
4085':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
4086
4087.. _i_ret:
4088
4089'``ret``' Instruction
4090^^^^^^^^^^^^^^^^^^^^^
4091
4092Syntax:
4093"""""""
4094
4095::
4096
4097      ret <type> <value>       ; Return a value from a non-void function
4098      ret void                 ; Return from void function
4099
4100Overview:
4101"""""""""
4102
4103The '``ret``' instruction is used to return control flow (and optionally
4104a value) from a function back to the caller.
4105
4106There are two forms of the '``ret``' instruction: one that returns a
4107value and then causes control flow, and one that just causes control
4108flow to occur.
4109
4110Arguments:
4111""""""""""
4112
4113The '``ret``' instruction optionally accepts a single argument, the
4114return value. The type of the return value must be a ':ref:`first
4115class <t_firstclass>`' type.
4116
4117A function is not :ref:`well formed <wellformed>` if it it has a non-void
4118return type and contains a '``ret``' instruction with no return value or
4119a return value with a type that does not match its type, or if it has a
4120void return type and contains a '``ret``' instruction with a return
4121value.
4122
4123Semantics:
4124""""""""""
4125
4126When the '``ret``' instruction is executed, control flow returns back to
4127the calling function's context. If the caller is a
4128":ref:`call <i_call>`" instruction, execution continues at the
4129instruction after the call. If the caller was an
4130":ref:`invoke <i_invoke>`" instruction, execution continues at the
4131beginning of the "normal" destination block. If the instruction returns
4132a value, that value shall set the call or invoke instruction's return
4133value.
4134
4135Example:
4136""""""""
4137
4138.. code-block:: llvm
4139
4140      ret i32 5                       ; Return an integer value of 5
4141      ret void                        ; Return from a void function
4142      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4143
4144.. _i_br:
4145
4146'``br``' Instruction
4147^^^^^^^^^^^^^^^^^^^^
4148
4149Syntax:
4150"""""""
4151
4152::
4153
4154      br i1 <cond>, label <iftrue>, label <iffalse>
4155      br label <dest>          ; Unconditional branch
4156
4157Overview:
4158"""""""""
4159
4160The '``br``' instruction is used to cause control flow to transfer to a
4161different basic block in the current function. There are two forms of
4162this instruction, corresponding to a conditional branch and an
4163unconditional branch.
4164
4165Arguments:
4166""""""""""
4167
4168The conditional branch form of the '``br``' instruction takes a single
4169'``i1``' value and two '``label``' values. The unconditional form of the
4170'``br``' instruction takes a single '``label``' value as a target.
4171
4172Semantics:
4173""""""""""
4174
4175Upon execution of a conditional '``br``' instruction, the '``i1``'
4176argument is evaluated. If the value is ``true``, control flows to the
4177'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4178to the '``iffalse``' ``label`` argument.
4179
4180Example:
4181""""""""
4182
4183.. code-block:: llvm
4184
4185    Test:
4186      %cond = icmp eq i32 %a, %b
4187      br i1 %cond, label %IfEqual, label %IfUnequal
4188    IfEqual:
4189      ret i32 1
4190    IfUnequal:
4191      ret i32 0
4192
4193.. _i_switch:
4194
4195'``switch``' Instruction
4196^^^^^^^^^^^^^^^^^^^^^^^^
4197
4198Syntax:
4199"""""""
4200
4201::
4202
4203      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4204
4205Overview:
4206"""""""""
4207
4208The '``switch``' instruction is used to transfer control flow to one of
4209several different places. It is a generalization of the '``br``'
4210instruction, allowing a branch to occur to one of many possible
4211destinations.
4212
4213Arguments:
4214""""""""""
4215
4216The '``switch``' instruction uses three parameters: an integer
4217comparison value '``value``', a default '``label``' destination, and an
4218array of pairs of comparison value constants and '``label``'s. The table
4219is not allowed to contain duplicate constant entries.
4220
4221Semantics:
4222""""""""""
4223
4224The ``switch`` instruction specifies a table of values and destinations.
4225When the '``switch``' instruction is executed, this table is searched
4226for the given value. If the value is found, control flow is transferred
4227to the corresponding destination; otherwise, control flow is transferred
4228to the default destination.
4229
4230Implementation:
4231"""""""""""""""
4232
4233Depending on properties of the target machine and the particular
4234``switch`` instruction, this instruction may be code generated in
4235different ways. For example, it could be generated as a series of
4236chained conditional branches or with a lookup table.
4237
4238Example:
4239""""""""
4240
4241.. code-block:: llvm
4242
4243     ; Emulate a conditional br instruction
4244     %Val = zext i1 %value to i32
4245     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4246
4247     ; Emulate an unconditional br instruction
4248     switch i32 0, label %dest [ ]
4249
4250     ; Implement a jump table:
4251     switch i32 %val, label %otherwise [ i32 0, label %onzero
4252                                         i32 1, label %onone
4253                                         i32 2, label %ontwo ]
4254
4255.. _i_indirectbr:
4256
4257'``indirectbr``' Instruction
4258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4259
4260Syntax:
4261"""""""
4262
4263::
4264
4265      indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4266
4267Overview:
4268"""""""""
4269
4270The '``indirectbr``' instruction implements an indirect branch to a
4271label within the current function, whose address is specified by
4272"``address``". Address must be derived from a
4273:ref:`blockaddress <blockaddress>` constant.
4274
4275Arguments:
4276""""""""""
4277
4278The '``address``' argument is the address of the label to jump to. The
4279rest of the arguments indicate the full set of possible destinations
4280that the address may point to. Blocks are allowed to occur multiple
4281times in the destination list, though this isn't particularly useful.
4282
4283This destination list is required so that dataflow analysis has an
4284accurate understanding of the CFG.
4285
4286Semantics:
4287""""""""""
4288
4289Control transfers to the block specified in the address argument. All
4290possible destination blocks must be listed in the label list, otherwise
4291this instruction has undefined behavior. This implies that jumps to
4292labels defined in other functions have undefined behavior as well.
4293
4294Implementation:
4295"""""""""""""""
4296
4297This is typically implemented with a jump through a register.
4298
4299Example:
4300""""""""
4301
4302.. code-block:: llvm
4303
4304     indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4305
4306.. _i_invoke:
4307
4308'``invoke``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
4316      <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4317                    to label <normal label> unwind label <exception label>
4318
4319Overview:
4320"""""""""
4321
4322The '``invoke``' instruction causes control to transfer to a specified
4323function, with the possibility of control flow transfer to either the
4324'``normal``' label or the '``exception``' label. If the callee function
4325returns with the "``ret``" instruction, control flow will return to the
4326"normal" label. If the callee (or any indirect callees) returns via the
4327":ref:`resume <i_resume>`" instruction or other exception handling
4328mechanism, control is interrupted and continued at the dynamically
4329nearest "exception" label.
4330
4331The '``exception``' label is a `landing
4332pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4333'``exception``' label is required to have the
4334":ref:`landingpad <i_landingpad>`" instruction, which contains the
4335information about the behavior of the program after unwinding happens,
4336as its first non-PHI instruction. The restrictions on the
4337"``landingpad``" instruction's tightly couples it to the "``invoke``"
4338instruction, so that the important information contained within the
4339"``landingpad``" instruction can't be lost through normal code motion.
4340
4341Arguments:
4342""""""""""
4343
4344This instruction requires several arguments:
4345
4346#. The optional "cconv" marker indicates which :ref:`calling
4347   convention <callingconv>` the call should use. If none is
4348   specified, the call defaults to using C calling conventions.
4349#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4350   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4351   are valid here.
4352#. '``ptr to function ty``': shall be the signature of the pointer to
4353   function value being invoked. In most cases, this is a direct
4354   function invocation, but indirect ``invoke``'s are just as possible,
4355   branching off an arbitrary pointer to function value.
4356#. '``function ptr val``': An LLVM value containing a pointer to a
4357   function to be invoked.
4358#. '``function args``': argument list whose types match the function
4359   signature argument types and parameter attributes. All arguments must
4360   be of :ref:`first class <t_firstclass>` type. If the function signature
4361   indicates the function accepts a variable number of arguments, the
4362   extra arguments can be specified.
4363#. '``normal label``': the label reached when the called function
4364   executes a '``ret``' instruction.
4365#. '``exception label``': the label reached when a callee returns via
4366   the :ref:`resume <i_resume>` instruction or other exception handling
4367   mechanism.
4368#. The optional :ref:`function attributes <fnattrs>` list. Only
4369   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4370   attributes are valid here.
4371
4372Semantics:
4373""""""""""
4374
4375This instruction is designed to operate as a standard '``call``'
4376instruction in most regards. The primary difference is that it
4377establishes an association with a label, which is used by the runtime
4378library to unwind the stack.
4379
4380This instruction is used in languages with destructors to ensure that
4381proper cleanup is performed in the case of either a ``longjmp`` or a
4382thrown exception. Additionally, this is important for implementation of
4383'``catch``' clauses in high-level languages that support them.
4384
4385For the purposes of the SSA form, the definition of the value returned
4386by the '``invoke``' instruction is deemed to occur on the edge from the
4387current block to the "normal" label. If the callee unwinds then no
4388return value is available.
4389
4390Example:
4391""""""""
4392
4393.. code-block:: llvm
4394
4395      %retval = invoke i32 @Test(i32 15) to label %Continue
4396                  unwind label %TestCleanup              ; i32:retval set
4397      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
4398                  unwind label %TestCleanup              ; i32:retval set
4399
4400.. _i_resume:
4401
4402'``resume``' Instruction
4403^^^^^^^^^^^^^^^^^^^^^^^^
4404
4405Syntax:
4406"""""""
4407
4408::
4409
4410      resume <type> <value>
4411
4412Overview:
4413"""""""""
4414
4415The '``resume``' instruction is a terminator instruction that has no
4416successors.
4417
4418Arguments:
4419""""""""""
4420
4421The '``resume``' instruction requires one argument, which must have the
4422same type as the result of any '``landingpad``' instruction in the same
4423function.
4424
4425Semantics:
4426""""""""""
4427
4428The '``resume``' instruction resumes propagation of an existing
4429(in-flight) exception whose unwinding was interrupted with a
4430:ref:`landingpad <i_landingpad>` instruction.
4431
4432Example:
4433""""""""
4434
4435.. code-block:: llvm
4436
4437      resume { i8*, i32 } %exn
4438
4439.. _i_unreachable:
4440
4441'``unreachable``' Instruction
4442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4443
4444Syntax:
4445"""""""
4446
4447::
4448
4449      unreachable
4450
4451Overview:
4452"""""""""
4453
4454The '``unreachable``' instruction has no defined semantics. This
4455instruction is used to inform the optimizer that a particular portion of
4456the code is not reachable. This can be used to indicate that the code
4457after a no-return function cannot be reached, and other facts.
4458
4459Semantics:
4460""""""""""
4461
4462The '``unreachable``' instruction has no defined semantics.
4463
4464.. _binaryops:
4465
4466Binary Operations
4467-----------------
4468
4469Binary operators are used to do most of the computation in a program.
4470They require two operands of the same type, execute an operation on
4471them, and produce a single value. The operands might represent multiple
4472data, as is the case with the :ref:`vector <t_vector>` data type. The
4473result value has the same type as its operands.
4474
4475There are several different binary operators:
4476
4477.. _i_add:
4478
4479'``add``' Instruction
4480^^^^^^^^^^^^^^^^^^^^^
4481
4482Syntax:
4483"""""""
4484
4485::
4486
4487      <result> = add <ty> <op1>, <op2>          ; yields ty:result
4488      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
4489      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
4490      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4491
4492Overview:
4493"""""""""
4494
4495The '``add``' instruction returns the sum of its two operands.
4496
4497Arguments:
4498""""""""""
4499
4500The two arguments to the '``add``' instruction must be
4501:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4502arguments must have identical types.
4503
4504Semantics:
4505""""""""""
4506
4507The value produced is the integer sum of the two operands.
4508
4509If the sum has unsigned overflow, the result returned is the
4510mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4511the result.
4512
4513Because LLVM integers use a two's complement representation, this
4514instruction is appropriate for both signed and unsigned integers.
4515
4516``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4517respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4518result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4519unsigned and/or signed overflow, respectively, occurs.
4520
4521Example:
4522""""""""
4523
4524.. code-block:: llvm
4525
4526      <result> = add i32 4, %var          ; yields i32:result = 4 + %var
4527
4528.. _i_fadd:
4529
4530'``fadd``' Instruction
4531^^^^^^^^^^^^^^^^^^^^^^
4532
4533Syntax:
4534"""""""
4535
4536::
4537
4538      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4539
4540Overview:
4541"""""""""
4542
4543The '``fadd``' instruction returns the sum of its two operands.
4544
4545Arguments:
4546""""""""""
4547
4548The two arguments to the '``fadd``' instruction must be :ref:`floating
4549point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4550Both arguments must have identical types.
4551
4552Semantics:
4553""""""""""
4554
4555The value produced is the floating point sum of the two operands. This
4556instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4557which are optimization hints to enable otherwise unsafe floating point
4558optimizations:
4559
4560Example:
4561""""""""
4562
4563.. code-block:: llvm
4564
4565      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
4566
4567'``sub``' Instruction
4568^^^^^^^^^^^^^^^^^^^^^
4569
4570Syntax:
4571"""""""
4572
4573::
4574
4575      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
4576      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
4577      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
4578      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4579
4580Overview:
4581"""""""""
4582
4583The '``sub``' instruction returns the difference of its two operands.
4584
4585Note that the '``sub``' instruction is used to represent the '``neg``'
4586instruction present in most other intermediate representations.
4587
4588Arguments:
4589""""""""""
4590
4591The two arguments to the '``sub``' instruction must be
4592:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4593arguments must have identical types.
4594
4595Semantics:
4596""""""""""
4597
4598The value produced is the integer difference of the two operands.
4599
4600If the difference has unsigned overflow, the result returned is the
4601mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4602the result.
4603
4604Because LLVM integers use a two's complement representation, this
4605instruction is appropriate for both signed and unsigned integers.
4606
4607``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4608respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4609result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4610unsigned and/or signed overflow, respectively, occurs.
4611
4612Example:
4613""""""""
4614
4615.. code-block:: llvm
4616
4617      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
4618      <result> = sub i32 0, %val          ; yields i32:result = -%var
4619
4620.. _i_fsub:
4621
4622'``fsub``' Instruction
4623^^^^^^^^^^^^^^^^^^^^^^
4624
4625Syntax:
4626"""""""
4627
4628::
4629
4630      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4631
4632Overview:
4633"""""""""
4634
4635The '``fsub``' instruction returns the difference of its two operands.
4636
4637Note that the '``fsub``' instruction is used to represent the '``fneg``'
4638instruction present in most other intermediate representations.
4639
4640Arguments:
4641""""""""""
4642
4643The two arguments to the '``fsub``' instruction must be :ref:`floating
4644point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4645Both arguments must have identical types.
4646
4647Semantics:
4648""""""""""
4649
4650The value produced is the floating point difference of the two operands.
4651This instruction can also take any number of :ref:`fast-math
4652flags <fastmath>`, which are optimization hints to enable otherwise
4653unsafe floating point optimizations:
4654
4655Example:
4656""""""""
4657
4658.. code-block:: llvm
4659
4660      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
4661      <result> = fsub float -0.0, %val          ; yields float:result = -%var
4662
4663'``mul``' Instruction
4664^^^^^^^^^^^^^^^^^^^^^
4665
4666Syntax:
4667"""""""
4668
4669::
4670
4671      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
4672      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
4673      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
4674      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4675
4676Overview:
4677"""""""""
4678
4679The '``mul``' instruction returns the product of its two operands.
4680
4681Arguments:
4682""""""""""
4683
4684The two arguments to the '``mul``' instruction must be
4685:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4686arguments must have identical types.
4687
4688Semantics:
4689""""""""""
4690
4691The value produced is the integer product of the two operands.
4692
4693If the result of the multiplication has unsigned overflow, the result
4694returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4695bit width of the result.
4696
4697Because LLVM integers use a two's complement representation, and the
4698result is the same width as the operands, this instruction returns the
4699correct result for both signed and unsigned integers. If a full product
4700(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4701sign-extended or zero-extended as appropriate to the width of the full
4702product.
4703
4704``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4705respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4706result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4707unsigned and/or signed overflow, respectively, occurs.
4708
4709Example:
4710""""""""
4711
4712.. code-block:: llvm
4713
4714      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
4715
4716.. _i_fmul:
4717
4718'``fmul``' Instruction
4719^^^^^^^^^^^^^^^^^^^^^^
4720
4721Syntax:
4722"""""""
4723
4724::
4725
4726      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4727
4728Overview:
4729"""""""""
4730
4731The '``fmul``' instruction returns the product of its two operands.
4732
4733Arguments:
4734""""""""""
4735
4736The two arguments to the '``fmul``' instruction must be :ref:`floating
4737point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4738Both arguments must have identical types.
4739
4740Semantics:
4741""""""""""
4742
4743The value produced is the floating point product of the two operands.
4744This instruction can also take any number of :ref:`fast-math
4745flags <fastmath>`, which are optimization hints to enable otherwise
4746unsafe floating point optimizations:
4747
4748Example:
4749""""""""
4750
4751.. code-block:: llvm
4752
4753      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
4754
4755'``udiv``' Instruction
4756^^^^^^^^^^^^^^^^^^^^^^
4757
4758Syntax:
4759"""""""
4760
4761::
4762
4763      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
4764      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
4765
4766Overview:
4767"""""""""
4768
4769The '``udiv``' instruction returns the quotient of its two operands.
4770
4771Arguments:
4772""""""""""
4773
4774The two arguments to the '``udiv``' instruction must be
4775:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4776arguments must have identical types.
4777
4778Semantics:
4779""""""""""
4780
4781The value produced is the unsigned integer quotient of the two operands.
4782
4783Note that unsigned integer division and signed integer division are
4784distinct operations; for signed integer division, use '``sdiv``'.
4785
4786Division by zero leads to undefined behavior.
4787
4788If the ``exact`` keyword is present, the result value of the ``udiv`` is
4789a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4790such, "((a udiv exact b) mul b) == a").
4791
4792Example:
4793""""""""
4794
4795.. code-block:: llvm
4796
4797      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
4798
4799'``sdiv``' Instruction
4800^^^^^^^^^^^^^^^^^^^^^^
4801
4802Syntax:
4803"""""""
4804
4805::
4806
4807      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
4808      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
4809
4810Overview:
4811"""""""""
4812
4813The '``sdiv``' instruction returns the quotient of its two operands.
4814
4815Arguments:
4816""""""""""
4817
4818The two arguments to the '``sdiv``' instruction must be
4819:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4820arguments must have identical types.
4821
4822Semantics:
4823""""""""""
4824
4825The value produced is the signed integer quotient of the two operands
4826rounded towards zero.
4827
4828Note that signed integer division and unsigned integer division are
4829distinct operations; for unsigned integer division, use '``udiv``'.
4830
4831Division by zero leads to undefined behavior. Overflow also leads to
4832undefined behavior; this is a rare case, but can occur, for example, by
4833doing a 32-bit division of -2147483648 by -1.
4834
4835If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4836a :ref:`poison value <poisonvalues>` if the result would be rounded.
4837
4838Example:
4839""""""""
4840
4841.. code-block:: llvm
4842
4843      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
4844
4845.. _i_fdiv:
4846
4847'``fdiv``' Instruction
4848^^^^^^^^^^^^^^^^^^^^^^
4849
4850Syntax:
4851"""""""
4852
4853::
4854
4855      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4856
4857Overview:
4858"""""""""
4859
4860The '``fdiv``' instruction returns the quotient of its two operands.
4861
4862Arguments:
4863""""""""""
4864
4865The two arguments to the '``fdiv``' instruction must be :ref:`floating
4866point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4867Both arguments must have identical types.
4868
4869Semantics:
4870""""""""""
4871
4872The value produced is the floating point quotient of the two operands.
4873This instruction can also take any number of :ref:`fast-math
4874flags <fastmath>`, which are optimization hints to enable otherwise
4875unsafe floating point optimizations:
4876
4877Example:
4878""""""""
4879
4880.. code-block:: llvm
4881
4882      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
4883
4884'``urem``' Instruction
4885^^^^^^^^^^^^^^^^^^^^^^
4886
4887Syntax:
4888"""""""
4889
4890::
4891
4892      <result> = urem <ty> <op1>, <op2>   ; yields ty:result
4893
4894Overview:
4895"""""""""
4896
4897The '``urem``' instruction returns the remainder from the unsigned
4898division of its two arguments.
4899
4900Arguments:
4901""""""""""
4902
4903The two arguments to the '``urem``' instruction must be
4904:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4905arguments must have identical types.
4906
4907Semantics:
4908""""""""""
4909
4910This instruction returns the unsigned integer *remainder* of a division.
4911This instruction always performs an unsigned division to get the
4912remainder.
4913
4914Note that unsigned integer remainder and signed integer remainder are
4915distinct operations; for signed integer remainder, use '``srem``'.
4916
4917Taking the remainder of a division by zero leads to undefined behavior.
4918
4919Example:
4920""""""""
4921
4922.. code-block:: llvm
4923
4924      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
4925
4926'``srem``' Instruction
4927^^^^^^^^^^^^^^^^^^^^^^
4928
4929Syntax:
4930"""""""
4931
4932::
4933
4934      <result> = srem <ty> <op1>, <op2>   ; yields ty:result
4935
4936Overview:
4937"""""""""
4938
4939The '``srem``' instruction returns the remainder from the signed
4940division of its two operands. This instruction can also take
4941:ref:`vector <t_vector>` versions of the values in which case the elements
4942must be integers.
4943
4944Arguments:
4945""""""""""
4946
4947The two arguments to the '``srem``' instruction must be
4948:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4949arguments must have identical types.
4950
4951Semantics:
4952""""""""""
4953
4954This instruction returns the *remainder* of a division (where the result
4955is either zero or has the same sign as the dividend, ``op1``), not the
4956*modulo* operator (where the result is either zero or has the same sign
4957as the divisor, ``op2``) of a value. For more information about the
4958difference, see `The Math
4959Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4960table of how this is implemented in various languages, please see
4961`Wikipedia: modulo
4962operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4963
4964Note that signed integer remainder and unsigned integer remainder are
4965distinct operations; for unsigned integer remainder, use '``urem``'.
4966
4967Taking the remainder of a division by zero leads to undefined behavior.
4968Overflow also leads to undefined behavior; this is a rare case, but can
4969occur, for example, by taking the remainder of a 32-bit division of
4970-2147483648 by -1. (The remainder doesn't actually overflow, but this
4971rule lets srem be implemented using instructions that return both the
4972result of the division and the remainder.)
4973
4974Example:
4975""""""""
4976
4977.. code-block:: llvm
4978
4979      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
4980
4981.. _i_frem:
4982
4983'``frem``' Instruction
4984^^^^^^^^^^^^^^^^^^^^^^
4985
4986Syntax:
4987"""""""
4988
4989::
4990
4991      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4992
4993Overview:
4994"""""""""
4995
4996The '``frem``' instruction returns the remainder from the division of
4997its two operands.
4998
4999Arguments:
5000""""""""""
5001
5002The two arguments to the '``frem``' instruction must be :ref:`floating
5003point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5004Both arguments must have identical types.
5005
5006Semantics:
5007""""""""""
5008
5009This instruction returns the *remainder* of a division. The remainder
5010has the same sign as the dividend. This instruction can also take any
5011number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5012to enable otherwise unsafe floating point optimizations:
5013
5014Example:
5015""""""""
5016
5017.. code-block:: llvm
5018
5019      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
5020
5021.. _bitwiseops:
5022
5023Bitwise Binary Operations
5024-------------------------
5025
5026Bitwise binary operators are used to do various forms of bit-twiddling
5027in a program. They are generally very efficient instructions and can
5028commonly be strength reduced from other instructions. They require two
5029operands of the same type, execute an operation on them, and produce a
5030single value. The resulting value is the same type as its operands.
5031
5032'``shl``' Instruction
5033^^^^^^^^^^^^^^^^^^^^^
5034
5035Syntax:
5036"""""""
5037
5038::
5039
5040      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
5041      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
5042      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
5043      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
5044
5045Overview:
5046"""""""""
5047
5048The '``shl``' instruction returns the first operand shifted to the left
5049a specified number of bits.
5050
5051Arguments:
5052""""""""""
5053
5054Both arguments to the '``shl``' instruction must be the same
5055:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5056'``op2``' is treated as an unsigned value.
5057
5058Semantics:
5059""""""""""
5060
5061The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5062where ``n`` is the width of the result. If ``op2`` is (statically or
5063dynamically) negative or equal to or larger than the number of bits in
5064``op1``, the result is undefined. If the arguments are vectors, each
5065vector element of ``op1`` is shifted by the corresponding shift amount
5066in ``op2``.
5067
5068If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5069value <poisonvalues>` if it shifts out any non-zero bits. If the
5070``nsw`` keyword is present, then the shift produces a :ref:`poison
5071value <poisonvalues>` if it shifts out any bits that disagree with the
5072resultant sign bit. As such, NUW/NSW have the same semantics as they
5073would if the shift were expressed as a mul instruction with the same
5074nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081      <result> = shl i32 4, %var   ; yields i32: 4 << %var
5082      <result> = shl i32 4, 2      ; yields i32: 16
5083      <result> = shl i32 1, 10     ; yields i32: 1024
5084      <result> = shl i32 1, 32     ; undefined
5085      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
5086
5087'``lshr``' Instruction
5088^^^^^^^^^^^^^^^^^^^^^^
5089
5090Syntax:
5091"""""""
5092
5093::
5094
5095      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
5096      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
5097
5098Overview:
5099"""""""""
5100
5101The '``lshr``' instruction (logical shift right) returns the first
5102operand shifted to the right a specified number of bits with zero fill.
5103
5104Arguments:
5105""""""""""
5106
5107Both arguments to the '``lshr``' instruction must be the same
5108:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5109'``op2``' is treated as an unsigned value.
5110
5111Semantics:
5112""""""""""
5113
5114This instruction always performs a logical shift right operation. The
5115most significant bits of the result will be filled with zero bits after
5116the shift. If ``op2`` is (statically or dynamically) equal to or larger
5117than the number of bits in ``op1``, the result is undefined. If the
5118arguments are vectors, each vector element of ``op1`` is shifted by the
5119corresponding shift amount in ``op2``.
5120
5121If the ``exact`` keyword is present, the result value of the ``lshr`` is
5122a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5123non-zero.
5124
5125Example:
5126""""""""
5127
5128.. code-block:: llvm
5129
5130      <result> = lshr i32 4, 1   ; yields i32:result = 2
5131      <result> = lshr i32 4, 2   ; yields i32:result = 1
5132      <result> = lshr i8  4, 3   ; yields i8:result = 0
5133      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
5134      <result> = lshr i32 1, 32  ; undefined
5135      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5136
5137'``ashr``' Instruction
5138^^^^^^^^^^^^^^^^^^^^^^
5139
5140Syntax:
5141"""""""
5142
5143::
5144
5145      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
5146      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
5147
5148Overview:
5149"""""""""
5150
5151The '``ashr``' instruction (arithmetic shift right) returns the first
5152operand shifted to the right a specified number of bits with sign
5153extension.
5154
5155Arguments:
5156""""""""""
5157
5158Both arguments to the '``ashr``' instruction must be the same
5159:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5160'``op2``' is treated as an unsigned value.
5161
5162Semantics:
5163""""""""""
5164
5165This instruction always performs an arithmetic shift right operation,
5166The most significant bits of the result will be filled with the sign bit
5167of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5168than the number of bits in ``op1``, the result is undefined. If the
5169arguments are vectors, each vector element of ``op1`` is shifted by the
5170corresponding shift amount in ``op2``.
5171
5172If the ``exact`` keyword is present, the result value of the ``ashr`` is
5173a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5174non-zero.
5175
5176Example:
5177""""""""
5178
5179.. code-block:: llvm
5180
5181      <result> = ashr i32 4, 1   ; yields i32:result = 2
5182      <result> = ashr i32 4, 2   ; yields i32:result = 1
5183      <result> = ashr i8  4, 3   ; yields i8:result = 0
5184      <result> = ashr i8 -2, 1   ; yields i8:result = -1
5185      <result> = ashr i32 1, 32  ; undefined
5186      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
5187
5188'``and``' Instruction
5189^^^^^^^^^^^^^^^^^^^^^
5190
5191Syntax:
5192"""""""
5193
5194::
5195
5196      <result> = and <ty> <op1>, <op2>   ; yields ty:result
5197
5198Overview:
5199"""""""""
5200
5201The '``and``' instruction returns the bitwise logical and of its two
5202operands.
5203
5204Arguments:
5205""""""""""
5206
5207The two arguments to the '``and``' instruction must be
5208:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5209arguments must have identical types.
5210
5211Semantics:
5212""""""""""
5213
5214The truth table used for the '``and``' instruction is:
5215
5216+-----+-----+-----+
5217| In0 | In1 | Out |
5218+-----+-----+-----+
5219|   0 |   0 |   0 |
5220+-----+-----+-----+
5221|   0 |   1 |   0 |
5222+-----+-----+-----+
5223|   1 |   0 |   0 |
5224+-----+-----+-----+
5225|   1 |   1 |   1 |
5226+-----+-----+-----+
5227
5228Example:
5229""""""""
5230
5231.. code-block:: llvm
5232
5233      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
5234      <result> = and i32 15, 40          ; yields i32:result = 8
5235      <result> = and i32 4, 8            ; yields i32:result = 0
5236
5237'``or``' Instruction
5238^^^^^^^^^^^^^^^^^^^^
5239
5240Syntax:
5241"""""""
5242
5243::
5244
5245      <result> = or <ty> <op1>, <op2>   ; yields ty:result
5246
5247Overview:
5248"""""""""
5249
5250The '``or``' instruction returns the bitwise logical inclusive or of its
5251two operands.
5252
5253Arguments:
5254""""""""""
5255
5256The two arguments to the '``or``' instruction must be
5257:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5258arguments must have identical types.
5259
5260Semantics:
5261""""""""""
5262
5263The truth table used for the '``or``' instruction is:
5264
5265+-----+-----+-----+
5266| In0 | In1 | Out |
5267+-----+-----+-----+
5268|   0 |   0 |   0 |
5269+-----+-----+-----+
5270|   0 |   1 |   1 |
5271+-----+-----+-----+
5272|   1 |   0 |   1 |
5273+-----+-----+-----+
5274|   1 |   1 |   1 |
5275+-----+-----+-----+
5276
5277Example:
5278""""""""
5279
5280::
5281
5282      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
5283      <result> = or i32 15, 40          ; yields i32:result = 47
5284      <result> = or i32 4, 8            ; yields i32:result = 12
5285
5286'``xor``' Instruction
5287^^^^^^^^^^^^^^^^^^^^^
5288
5289Syntax:
5290"""""""
5291
5292::
5293
5294      <result> = xor <ty> <op1>, <op2>   ; yields ty:result
5295
5296Overview:
5297"""""""""
5298
5299The '``xor``' instruction returns the bitwise logical exclusive or of
5300its two operands. The ``xor`` is used to implement the "one's
5301complement" operation, which is the "~" operator in C.
5302
5303Arguments:
5304""""""""""
5305
5306The two arguments to the '``xor``' instruction must be
5307:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5308arguments must have identical types.
5309
5310Semantics:
5311""""""""""
5312
5313The truth table used for the '``xor``' instruction is:
5314
5315+-----+-----+-----+
5316| In0 | In1 | Out |
5317+-----+-----+-----+
5318|   0 |   0 |   0 |
5319+-----+-----+-----+
5320|   0 |   1 |   1 |
5321+-----+-----+-----+
5322|   1 |   0 |   1 |
5323+-----+-----+-----+
5324|   1 |   1 |   0 |
5325+-----+-----+-----+
5326
5327Example:
5328""""""""
5329
5330.. code-block:: llvm
5331
5332      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
5333      <result> = xor i32 15, 40          ; yields i32:result = 39
5334      <result> = xor i32 4, 8            ; yields i32:result = 12
5335      <result> = xor i32 %V, -1          ; yields i32:result = ~%V
5336
5337Vector Operations
5338-----------------
5339
5340LLVM supports several instructions to represent vector operations in a
5341target-independent manner. These instructions cover the element-access
5342and vector-specific operations needed to process vectors effectively.
5343While LLVM does directly support these vector operations, many
5344sophisticated algorithms will want to use target-specific intrinsics to
5345take full advantage of a specific target.
5346
5347.. _i_extractelement:
5348
5349'``extractelement``' Instruction
5350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
5358
5359Overview:
5360"""""""""
5361
5362The '``extractelement``' instruction extracts a single scalar element
5363from a vector at a specified index.
5364
5365Arguments:
5366""""""""""
5367
5368The first operand of an '``extractelement``' instruction is a value of
5369:ref:`vector <t_vector>` type. The second operand is an index indicating
5370the position from which to extract the element. The index may be a
5371variable of any integer type.
5372
5373Semantics:
5374""""""""""
5375
5376The result is a scalar of the same type as the element type of ``val``.
5377Its value is the value at position ``idx`` of ``val``. If ``idx``
5378exceeds the length of ``val``, the results are undefined.
5379
5380Example:
5381""""""""
5382
5383.. code-block:: llvm
5384
5385      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
5386
5387.. _i_insertelement:
5388
5389'``insertelement``' Instruction
5390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5391
5392Syntax:
5393"""""""
5394
5395::
5396
5397      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
5398
5399Overview:
5400"""""""""
5401
5402The '``insertelement``' instruction inserts a scalar element into a
5403vector at a specified index.
5404
5405Arguments:
5406""""""""""
5407
5408The first operand of an '``insertelement``' instruction is a value of
5409:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5410type must equal the element type of the first operand. The third operand
5411is an index indicating the position at which to insert the value. The
5412index may be a variable of any integer type.
5413
5414Semantics:
5415""""""""""
5416
5417The result is a vector of the same type as ``val``. Its element values
5418are those of ``val`` except at position ``idx``, where it gets the value
5419``elt``. If ``idx`` exceeds the length of ``val``, the results are
5420undefined.
5421
5422Example:
5423""""""""
5424
5425.. code-block:: llvm
5426
5427      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
5428
5429.. _i_shufflevector:
5430
5431'``shufflevector``' Instruction
5432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5433
5434Syntax:
5435"""""""
5436
5437::
5438
5439      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
5440
5441Overview:
5442"""""""""
5443
5444The '``shufflevector``' instruction constructs a permutation of elements
5445from two input vectors, returning a vector with the same element type as
5446the input and length that is the same as the shuffle mask.
5447
5448Arguments:
5449""""""""""
5450
5451The first two operands of a '``shufflevector``' instruction are vectors
5452with the same type. The third argument is a shuffle mask whose element
5453type is always 'i32'. The result of the instruction is a vector whose
5454length is the same as the shuffle mask and whose element type is the
5455same as the element type of the first two operands.
5456
5457The shuffle mask operand is required to be a constant vector with either
5458constant integer or undef values.
5459
5460Semantics:
5461""""""""""
5462
5463The elements of the two input vectors are numbered from left to right
5464across both of the vectors. The shuffle mask operand specifies, for each
5465element of the result vector, which element of the two input vectors the
5466result element gets. The element selector may be undef (meaning "don't
5467care") and the second operand may be undef if performing a shuffle from
5468only one vector.
5469
5470Example:
5471""""""""
5472
5473.. code-block:: llvm
5474
5475      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5476                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
5477      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5478                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
5479      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5480                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
5481      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5482                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
5483
5484Aggregate Operations
5485--------------------
5486
5487LLVM supports several instructions for working with
5488:ref:`aggregate <t_aggregate>` values.
5489
5490.. _i_extractvalue:
5491
5492'``extractvalue``' Instruction
5493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5494
5495Syntax:
5496"""""""
5497
5498::
5499
5500      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5501
5502Overview:
5503"""""""""
5504
5505The '``extractvalue``' instruction extracts the value of a member field
5506from an :ref:`aggregate <t_aggregate>` value.
5507
5508Arguments:
5509""""""""""
5510
5511The first operand of an '``extractvalue``' instruction is a value of
5512:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5513constant indices to specify which value to extract in a similar manner
5514as indices in a '``getelementptr``' instruction.
5515
5516The major differences to ``getelementptr`` indexing are:
5517
5518-  Since the value being indexed is not a pointer, the first index is
5519   omitted and assumed to be zero.
5520-  At least one index must be specified.
5521-  Not only struct indices but also array indices must be in bounds.
5522
5523Semantics:
5524""""""""""
5525
5526The result is the value at the position in the aggregate specified by
5527the index operands.
5528
5529Example:
5530""""""""
5531
5532.. code-block:: llvm
5533
5534      <result> = extractvalue {i32, float} %agg, 0    ; yields i32
5535
5536.. _i_insertvalue:
5537
5538'``insertvalue``' Instruction
5539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5540
5541Syntax:
5542"""""""
5543
5544::
5545
5546      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
5547
5548Overview:
5549"""""""""
5550
5551The '``insertvalue``' instruction inserts a value into a member field in
5552an :ref:`aggregate <t_aggregate>` value.
5553
5554Arguments:
5555""""""""""
5556
5557The first operand of an '``insertvalue``' instruction is a value of
5558:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5559a first-class value to insert. The following operands are constant
5560indices indicating the position at which to insert the value in a
5561similar manner as indices in a '``extractvalue``' instruction. The value
5562to insert must have the same type as the value identified by the
5563indices.
5564
5565Semantics:
5566""""""""""
5567
5568The result is an aggregate of the same type as ``val``. Its value is
5569that of ``val`` except that the value at the position specified by the
5570indices is that of ``elt``.
5571
5572Example:
5573""""""""
5574
5575.. code-block:: llvm
5576
5577      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
5578      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
5579      %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
5580
5581.. _memoryops:
5582
5583Memory Access and Addressing Operations
5584---------------------------------------
5585
5586A key design point of an SSA-based representation is how it represents
5587memory. In LLVM, no memory locations are in SSA form, which makes things
5588very simple. This section describes how to read, write, and allocate
5589memory in LLVM.
5590
5591.. _i_alloca:
5592
5593'``alloca``' Instruction
5594^^^^^^^^^^^^^^^^^^^^^^^^
5595
5596Syntax:
5597"""""""
5598
5599::
5600
5601      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>]     ; yields type*:result
5602
5603Overview:
5604"""""""""
5605
5606The '``alloca``' instruction allocates memory on the stack frame of the
5607currently executing function, to be automatically released when this
5608function returns to its caller. The object is always allocated in the
5609generic address space (address space zero).
5610
5611Arguments:
5612""""""""""
5613
5614The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5615bytes of memory on the runtime stack, returning a pointer of the
5616appropriate type to the program. If "NumElements" is specified, it is
5617the number of elements allocated, otherwise "NumElements" is defaulted
5618to be one. If a constant alignment is specified, the value result of the
5619allocation is guaranteed to be aligned to at least that boundary. The
5620alignment may not be greater than ``1 << 29``. If not specified, or if
5621zero, the target can choose to align the allocation on any convenient
5622boundary compatible with the type.
5623
5624'``type``' may be any sized type.
5625
5626Semantics:
5627""""""""""
5628
5629Memory is allocated; a pointer is returned. The operation is undefined
5630if there is insufficient stack space for the allocation. '``alloca``'d
5631memory is automatically released when the function returns. The
5632'``alloca``' instruction is commonly used to represent automatic
5633variables that must have an address available. When the function returns
5634(either with the ``ret`` or ``resume`` instructions), the memory is
5635reclaimed. Allocating zero bytes is legal, but the result is undefined.
5636The order in which memory is allocated (ie., which way the stack grows)
5637is not specified.
5638
5639Example:
5640""""""""
5641
5642.. code-block:: llvm
5643
5644      %ptr = alloca i32                             ; yields i32*:ptr
5645      %ptr = alloca i32, i32 4                      ; yields i32*:ptr
5646      %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
5647      %ptr = alloca i32, align 1024                 ; yields i32*:ptr
5648
5649.. _i_load:
5650
5651'``load``' Instruction
5652^^^^^^^^^^^^^^^^^^^^^^
5653
5654Syntax:
5655"""""""
5656
5657::
5658
5659      <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
5660      <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5661      !<index> = !{ i32 1 }
5662
5663Overview:
5664"""""""""
5665
5666The '``load``' instruction is used to read from memory.
5667
5668Arguments:
5669""""""""""
5670
5671The argument to the ``load`` instruction specifies the memory address
5672from which to load. The type specified must be a :ref:`first
5673class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5674then the optimizer is not allowed to modify the number or order of
5675execution of this ``load`` with other :ref:`volatile
5676operations <volatile>`.
5677
5678If the ``load`` is marked as ``atomic``, it takes an extra
5679:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5680``release`` and ``acq_rel`` orderings are not valid on ``load``
5681instructions. Atomic loads produce :ref:`defined <memmodel>` results
5682when they may see multiple atomic stores. The type of the pointee must
5683be an integer type whose bit width is a power of two greater than or
5684equal to eight and less than or equal to a target-specific size limit.
5685``align`` must be explicitly specified on atomic loads, and the load has
5686undefined behavior if the alignment is not set to a value which is at
5687least the size in bytes of the pointee. ``!nontemporal`` does not have
5688any defined semantics for atomic loads.
5689
5690The optional constant ``align`` argument specifies the alignment of the
5691operation (that is, the alignment of the memory address). A value of 0
5692or an omitted ``align`` argument means that the operation has the ABI
5693alignment for the target. It is the responsibility of the code emitter
5694to ensure that the alignment information is correct. Overestimating the
5695alignment results in undefined behavior. Underestimating the alignment
5696may produce less efficient code. An alignment of 1 is always safe. The
5697maximum possible alignment is ``1 << 29``.
5698
5699The optional ``!nontemporal`` metadata must reference a single
5700metadata name ``<index>`` corresponding to a metadata node with one
5701``i32`` entry of value 1. The existence of the ``!nontemporal``
5702metadata on the instruction tells the optimizer and code generator
5703that this load is not expected to be reused in the cache. The code
5704generator may select special instructions to save cache bandwidth, such
5705as the ``MOVNT`` instruction on x86.
5706
5707The optional ``!invariant.load`` metadata must reference a single
5708metadata name ``<index>`` corresponding to a metadata node with no
5709entries. The existence of the ``!invariant.load`` metadata on the
5710instruction tells the optimizer and code generator that the address
5711operand to this load points to memory which can be assumed unchanged.
5712Being invariant does not imply that a location is dereferenceable,
5713but it does imply that once the location is known dereferenceable
5714its value is henceforth unchanging.
5715
5716The optional ``!nonnull`` metadata must reference a single
5717metadata name ``<index>`` corresponding to a metadata node with no
5718entries. The existence of the ``!nonnull`` metadata on the
5719instruction tells the optimizer that the value loaded is known to
5720never be null.  This is analogous to the ''nonnull'' attribute
5721on parameters and return values.  This metadata can only be applied
5722to loads of a pointer type.
5723
5724Semantics:
5725""""""""""
5726
5727The location of memory pointed to is loaded. If the value being loaded
5728is of scalar type then the number of bytes read does not exceed the
5729minimum number of bytes needed to hold all bits of the type. For
5730example, loading an ``i24`` reads at most three bytes. When loading a
5731value of a type like ``i20`` with a size that is not an integral number
5732of bytes, the result is undefined if the value was not originally
5733written using a store of the same type.
5734
5735Examples:
5736"""""""""
5737
5738.. code-block:: llvm
5739
5740      %ptr = alloca i32                               ; yields i32*:ptr
5741      store i32 3, i32* %ptr                          ; yields void
5742      %val = load i32, i32* %ptr                      ; yields i32:val = i32 3
5743
5744.. _i_store:
5745
5746'``store``' Instruction
5747^^^^^^^^^^^^^^^^^^^^^^^
5748
5749Syntax:
5750"""""""
5751
5752::
5753
5754      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields void
5755      store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields void
5756
5757Overview:
5758"""""""""
5759
5760The '``store``' instruction is used to write to memory.
5761
5762Arguments:
5763""""""""""
5764
5765There are two arguments to the ``store`` instruction: a value to store
5766and an address at which to store it. The type of the ``<pointer>``
5767operand must be a pointer to the :ref:`first class <t_firstclass>` type of
5768the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
5769then the optimizer is not allowed to modify the number or order of
5770execution of this ``store`` with other :ref:`volatile
5771operations <volatile>`.
5772
5773If the ``store`` is marked as ``atomic``, it takes an extra
5774:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5775``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5776instructions. Atomic loads produce :ref:`defined <memmodel>` results
5777when they may see multiple atomic stores. The type of the pointee must
5778be an integer type whose bit width is a power of two greater than or
5779equal to eight and less than or equal to a target-specific size limit.
5780``align`` must be explicitly specified on atomic stores, and the store
5781has undefined behavior if the alignment is not set to a value which is
5782at least the size in bytes of the pointee. ``!nontemporal`` does not
5783have any defined semantics for atomic stores.
5784
5785The optional constant ``align`` argument specifies the alignment of the
5786operation (that is, the alignment of the memory address). A value of 0
5787or an omitted ``align`` argument means that the operation has the ABI
5788alignment for the target. It is the responsibility of the code emitter
5789to ensure that the alignment information is correct. Overestimating the
5790alignment results in undefined behavior. Underestimating the
5791alignment may produce less efficient code. An alignment of 1 is always
5792safe. The maximum possible alignment is ``1 << 29``.
5793
5794The optional ``!nontemporal`` metadata must reference a single metadata
5795name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
5796value 1. The existence of the ``!nontemporal`` metadata on the instruction
5797tells the optimizer and code generator that this load is not expected to
5798be reused in the cache. The code generator may select special
5799instructions to save cache bandwidth, such as the MOVNT instruction on
5800x86.
5801
5802Semantics:
5803""""""""""
5804
5805The contents of memory are updated to contain ``<value>`` at the
5806location specified by the ``<pointer>`` operand. If ``<value>`` is
5807of scalar type then the number of bytes written does not exceed the
5808minimum number of bytes needed to hold all bits of the type. For
5809example, storing an ``i24`` writes at most three bytes. When writing a
5810value of a type like ``i20`` with a size that is not an integral number
5811of bytes, it is unspecified what happens to the extra bits that do not
5812belong to the type, but they will typically be overwritten.
5813
5814Example:
5815""""""""
5816
5817.. code-block:: llvm
5818
5819      %ptr = alloca i32                               ; yields i32*:ptr
5820      store i32 3, i32* %ptr                          ; yields void
5821      %val = load i32* %ptr                           ; yields i32:val = i32 3
5822
5823.. _i_fence:
5824
5825'``fence``' Instruction
5826^^^^^^^^^^^^^^^^^^^^^^^
5827
5828Syntax:
5829"""""""
5830
5831::
5832
5833      fence [singlethread] <ordering>                   ; yields void
5834
5835Overview:
5836"""""""""
5837
5838The '``fence``' instruction is used to introduce happens-before edges
5839between operations.
5840
5841Arguments:
5842""""""""""
5843
5844'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5845defines what *synchronizes-with* edges they add. They can only be given
5846``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5847
5848Semantics:
5849""""""""""
5850
5851A fence A which has (at least) ``release`` ordering semantics
5852*synchronizes with* a fence B with (at least) ``acquire`` ordering
5853semantics if and only if there exist atomic operations X and Y, both
5854operating on some atomic object M, such that A is sequenced before X, X
5855modifies M (either directly or through some side effect of a sequence
5856headed by X), Y is sequenced before B, and Y observes M. This provides a
5857*happens-before* dependency between A and B. Rather than an explicit
5858``fence``, one (but not both) of the atomic operations X or Y might
5859provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5860still *synchronize-with* the explicit ``fence`` and establish the
5861*happens-before* edge.
5862
5863A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5864``acquire`` and ``release`` semantics specified above, participates in
5865the global program order of other ``seq_cst`` operations and/or fences.
5866
5867The optional ":ref:`singlethread <singlethread>`" argument specifies
5868that the fence only synchronizes with other fences in the same thread.
5869(This is useful for interacting with signal handlers.)
5870
5871Example:
5872""""""""
5873
5874.. code-block:: llvm
5875
5876      fence acquire                          ; yields void
5877      fence singlethread seq_cst             ; yields void
5878
5879.. _i_cmpxchg:
5880
5881'``cmpxchg``' Instruction
5882^^^^^^^^^^^^^^^^^^^^^^^^^
5883
5884Syntax:
5885"""""""
5886
5887::
5888
5889      cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields  { ty, i1 }
5890
5891Overview:
5892"""""""""
5893
5894The '``cmpxchg``' instruction is used to atomically modify memory. It
5895loads a value in memory and compares it to a given value. If they are
5896equal, it tries to store a new value into the memory.
5897
5898Arguments:
5899""""""""""
5900
5901There are three arguments to the '``cmpxchg``' instruction: an address
5902to operate on, a value to compare to the value currently be at that
5903address, and a new value to place at that address if the compared values
5904are equal. The type of '<cmp>' must be an integer type whose bit width
5905is a power of two greater than or equal to eight and less than or equal
5906to a target-specific size limit. '<cmp>' and '<new>' must have the same
5907type, and the type of '<pointer>' must be a pointer to that type. If the
5908``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5909to modify the number or order of execution of this ``cmpxchg`` with
5910other :ref:`volatile operations <volatile>`.
5911
5912The success and failure :ref:`ordering <ordering>` arguments specify how this
5913``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5914must be at least ``monotonic``, the ordering constraint on failure must be no
5915stronger than that on success, and the failure ordering cannot be either
5916``release`` or ``acq_rel``.
5917
5918The optional "``singlethread``" argument declares that the ``cmpxchg``
5919is only atomic with respect to code (usually signal handlers) running in
5920the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5921respect to all other code in the system.
5922
5923The pointer passed into cmpxchg must have alignment greater than or
5924equal to the size in memory of the operand.
5925
5926Semantics:
5927""""""""""
5928
5929The contents of memory at the location specified by the '``<pointer>``' operand
5930is read and compared to '``<cmp>``'; if the read value is the equal, the
5931'``<new>``' is written. The original value at the location is returned, together
5932with a flag indicating success (true) or failure (false).
5933
5934If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5935permitted: the operation may not write ``<new>`` even if the comparison
5936matched.
5937
5938If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5939if the value loaded equals ``cmp``.
5940
5941A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5942identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5943load with an ordering parameter determined the second ordering parameter.
5944
5945Example:
5946""""""""
5947
5948.. code-block:: llvm
5949
5950    entry:
5951      %orig = atomic load i32, i32* %ptr unordered                ; yields i32
5952      br label %loop
5953
5954    loop:
5955      %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5956      %squared = mul i32 %cmp, %cmp
5957      %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
5958      %value_loaded = extractvalue { i32, i1 } %val_success, 0
5959      %success = extractvalue { i32, i1 } %val_success, 1
5960      br i1 %success, label %done, label %loop
5961
5962    done:
5963      ...
5964
5965.. _i_atomicrmw:
5966
5967'``atomicrmw``' Instruction
5968^^^^^^^^^^^^^^^^^^^^^^^^^^^
5969
5970Syntax:
5971"""""""
5972
5973::
5974
5975      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields ty
5976
5977Overview:
5978"""""""""
5979
5980The '``atomicrmw``' instruction is used to atomically modify memory.
5981
5982Arguments:
5983""""""""""
5984
5985There are three arguments to the '``atomicrmw``' instruction: an
5986operation to apply, an address whose value to modify, an argument to the
5987operation. The operation must be one of the following keywords:
5988
5989-  xchg
5990-  add
5991-  sub
5992-  and
5993-  nand
5994-  or
5995-  xor
5996-  max
5997-  min
5998-  umax
5999-  umin
6000
6001The type of '<value>' must be an integer type whose bit width is a power
6002of two greater than or equal to eight and less than or equal to a
6003target-specific size limit. The type of the '``<pointer>``' operand must
6004be a pointer to that type. If the ``atomicrmw`` is marked as
6005``volatile``, then the optimizer is not allowed to modify the number or
6006order of execution of this ``atomicrmw`` with other :ref:`volatile
6007operations <volatile>`.
6008
6009Semantics:
6010""""""""""
6011
6012The contents of memory at the location specified by the '``<pointer>``'
6013operand are atomically read, modified, and written back. The original
6014value at the location is returned. The modification is specified by the
6015operation argument:
6016
6017-  xchg: ``*ptr = val``
6018-  add: ``*ptr = *ptr + val``
6019-  sub: ``*ptr = *ptr - val``
6020-  and: ``*ptr = *ptr & val``
6021-  nand: ``*ptr = ~(*ptr & val)``
6022-  or: ``*ptr = *ptr | val``
6023-  xor: ``*ptr = *ptr ^ val``
6024-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6025-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6026-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6027   comparison)
6028-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6029   comparison)
6030
6031Example:
6032""""""""
6033
6034.. code-block:: llvm
6035
6036      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
6037
6038.. _i_getelementptr:
6039
6040'``getelementptr``' Instruction
6041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6042
6043Syntax:
6044"""""""
6045
6046::
6047
6048      <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6049      <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6050      <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
6051
6052Overview:
6053"""""""""
6054
6055The '``getelementptr``' instruction is used to get the address of a
6056subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
6057address calculation only and does not access memory.
6058
6059Arguments:
6060""""""""""
6061
6062The first argument is always a type used as the basis for the calculations.
6063The second argument is always a pointer or a vector of pointers, and is the
6064base address to start from. The remaining arguments are indices
6065that indicate which of the elements of the aggregate object are indexed.
6066The interpretation of each index is dependent on the type being indexed
6067into. The first index always indexes the pointer value given as the
6068first argument, the second index indexes a value of the type pointed to
6069(not necessarily the value directly pointed to, since the first index
6070can be non-zero), etc. The first type indexed into must be a pointer
6071value, subsequent types can be arrays, vectors, and structs. Note that
6072subsequent types being indexed into can never be pointers, since that
6073would require loading the pointer before continuing calculation.
6074
6075The type of each index argument depends on the type it is indexing into.
6076When indexing into a (optionally packed) structure, only ``i32`` integer
6077**constants** are allowed (when using a vector of indices they must all
6078be the **same** ``i32`` integer constant). When indexing into an array,
6079pointer or vector, integers of any width are allowed, and they are not
6080required to be constant. These integers are treated as signed values
6081where relevant.
6082
6083For example, let's consider a C code fragment and how it gets compiled
6084to LLVM:
6085
6086.. code-block:: c
6087
6088    struct RT {
6089      char A;
6090      int B[10][20];
6091      char C;
6092    };
6093    struct ST {
6094      int X;
6095      double Y;
6096      struct RT Z;
6097    };
6098
6099    int *foo(struct ST *s) {
6100      return &s[1].Z.B[5][13];
6101    }
6102
6103The LLVM code generated by Clang is:
6104
6105.. code-block:: llvm
6106
6107    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6108    %struct.ST = type { i32, double, %struct.RT }
6109
6110    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6111    entry:
6112      %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
6113      ret i32* %arrayidx
6114    }
6115
6116Semantics:
6117""""""""""
6118
6119In the example above, the first index is indexing into the
6120'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6121= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6122indexes into the third element of the structure, yielding a
6123'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6124structure. The third index indexes into the second element of the
6125structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6126dimensions of the array are subscripted into, yielding an '``i32``'
6127type. The '``getelementptr``' instruction returns a pointer to this
6128element, thus computing a value of '``i32*``' type.
6129
6130Note that it is perfectly legal to index partially through a structure,
6131returning a pointer to an inner element. Because of this, the LLVM code
6132for the given testcase is equivalent to:
6133
6134.. code-block:: llvm
6135
6136    define i32* @foo(%struct.ST* %s) {
6137      %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1                        ; yields %struct.ST*:%t1
6138      %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2                ; yields %struct.RT*:%t2
6139      %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1                ; yields [10 x [20 x i32]]*:%t3
6140      %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
6141      %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13               ; yields i32*:%t5
6142      ret i32* %t5
6143    }
6144
6145If the ``inbounds`` keyword is present, the result value of the
6146``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6147pointer is not an *in bounds* address of an allocated object, or if any
6148of the addresses that would be formed by successive addition of the
6149offsets implied by the indices to the base address with infinitely
6150precise signed arithmetic are not an *in bounds* address of that
6151allocated object. The *in bounds* addresses for an allocated object are
6152all the addresses that point into the object, plus the address one byte
6153past the end. In cases where the base is a vector of pointers the
6154``inbounds`` keyword applies to each of the computations element-wise.
6155
6156If the ``inbounds`` keyword is not present, the offsets are added to the
6157base address with silently-wrapping two's complement arithmetic. If the
6158offsets have a different width from the pointer, they are sign-extended
6159or truncated to the width of the pointer. The result value of the
6160``getelementptr`` may be outside the object pointed to by the base
6161pointer. The result value may not necessarily be used to access memory
6162though, even if it happens to point into allocated storage. See the
6163:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6164information.
6165
6166The getelementptr instruction is often confusing. For some more insight
6167into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6168
6169Example:
6170""""""""
6171
6172.. code-block:: llvm
6173
6174        ; yields [12 x i8]*:aptr
6175        %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
6176        ; yields i8*:vptr
6177        %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
6178        ; yields i8*:eptr
6179        %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
6180        ; yields i32*:iptr
6181        %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
6182
6183In cases where the pointer argument is a vector of pointers, each index
6184must be a vector with the same number of elements. For example:
6185
6186.. code-block:: llvm
6187
6188     %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
6189
6190Conversion Operations
6191---------------------
6192
6193The instructions in this category are the conversion instructions
6194(casting) which all take a single operand and a type. They perform
6195various bit conversions on the operand.
6196
6197'``trunc .. to``' Instruction
6198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6199
6200Syntax:
6201"""""""
6202
6203::
6204
6205      <result> = trunc <ty> <value> to <ty2>             ; yields ty2
6206
6207Overview:
6208"""""""""
6209
6210The '``trunc``' instruction truncates its operand to the type ``ty2``.
6211
6212Arguments:
6213""""""""""
6214
6215The '``trunc``' instruction takes a value to trunc, and a type to trunc
6216it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6217of the same number of integers. The bit size of the ``value`` must be
6218larger than the bit size of the destination type, ``ty2``. Equal sized
6219types are not allowed.
6220
6221Semantics:
6222""""""""""
6223
6224The '``trunc``' instruction truncates the high order bits in ``value``
6225and converts the remaining bits to ``ty2``. Since the source size must
6226be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6227It will always truncate bits.
6228
6229Example:
6230""""""""
6231
6232.. code-block:: llvm
6233
6234      %X = trunc i32 257 to i8                        ; yields i8:1
6235      %Y = trunc i32 123 to i1                        ; yields i1:true
6236      %Z = trunc i32 122 to i1                        ; yields i1:false
6237      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6238
6239'``zext .. to``' Instruction
6240^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6241
6242Syntax:
6243"""""""
6244
6245::
6246
6247      <result> = zext <ty> <value> to <ty2>             ; yields ty2
6248
6249Overview:
6250"""""""""
6251
6252The '``zext``' instruction zero extends its operand to type ``ty2``.
6253
6254Arguments:
6255""""""""""
6256
6257The '``zext``' instruction takes a value to cast, and a type to cast it
6258to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6259the same number of integers. The bit size of the ``value`` must be
6260smaller than the bit size of the destination type, ``ty2``.
6261
6262Semantics:
6263""""""""""
6264
6265The ``zext`` fills the high order bits of the ``value`` with zero bits
6266until it reaches the size of the destination type, ``ty2``.
6267
6268When zero extending from i1, the result will always be either 0 or 1.
6269
6270Example:
6271""""""""
6272
6273.. code-block:: llvm
6274
6275      %X = zext i32 257 to i64              ; yields i64:257
6276      %Y = zext i1 true to i32              ; yields i32:1
6277      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6278
6279'``sext .. to``' Instruction
6280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6281
6282Syntax:
6283"""""""
6284
6285::
6286
6287      <result> = sext <ty> <value> to <ty2>             ; yields ty2
6288
6289Overview:
6290"""""""""
6291
6292The '``sext``' sign extends ``value`` to the type ``ty2``.
6293
6294Arguments:
6295""""""""""
6296
6297The '``sext``' instruction takes a value to cast, and a type to cast it
6298to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6299the same number of integers. The bit size of the ``value`` must be
6300smaller than the bit size of the destination type, ``ty2``.
6301
6302Semantics:
6303""""""""""
6304
6305The '``sext``' instruction performs a sign extension by copying the sign
6306bit (highest order bit) of the ``value`` until it reaches the bit size
6307of the type ``ty2``.
6308
6309When sign extending from i1, the extension always results in -1 or 0.
6310
6311Example:
6312""""""""
6313
6314.. code-block:: llvm
6315
6316      %X = sext i8  -1 to i16              ; yields i16   :65535
6317      %Y = sext i1 true to i32             ; yields i32:-1
6318      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6319
6320'``fptrunc .. to``' Instruction
6321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
6328      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
6329
6330Overview:
6331"""""""""
6332
6333The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6334
6335Arguments:
6336""""""""""
6337
6338The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6339value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6340The size of ``value`` must be larger than the size of ``ty2``. This
6341implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6342
6343Semantics:
6344""""""""""
6345
6346The '``fptrunc``' instruction truncates a ``value`` from a larger
6347:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6348point <t_floating>` type. If the value cannot fit within the
6349destination type, ``ty2``, then the results are undefined.
6350
6351Example:
6352""""""""
6353
6354.. code-block:: llvm
6355
6356      %X = fptrunc double 123.0 to float         ; yields float:123.0
6357      %Y = fptrunc double 1.0E+300 to float      ; yields undefined
6358
6359'``fpext .. to``' Instruction
6360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
6367      <result> = fpext <ty> <value> to <ty2>             ; yields ty2
6368
6369Overview:
6370"""""""""
6371
6372The '``fpext``' extends a floating point ``value`` to a larger floating
6373point value.
6374
6375Arguments:
6376""""""""""
6377
6378The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6379``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6380to. The source type must be smaller than the destination type.
6381
6382Semantics:
6383""""""""""
6384
6385The '``fpext``' instruction extends the ``value`` from a smaller
6386:ref:`floating point <t_floating>` type to a larger :ref:`floating
6387point <t_floating>` type. The ``fpext`` cannot be used to make a
6388*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6389*no-op cast* for a floating point cast.
6390
6391Example:
6392""""""""
6393
6394.. code-block:: llvm
6395
6396      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
6397      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
6398
6399'``fptoui .. to``' Instruction
6400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6401
6402Syntax:
6403"""""""
6404
6405::
6406
6407      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
6408
6409Overview:
6410"""""""""
6411
6412The '``fptoui``' converts a floating point ``value`` to its unsigned
6413integer equivalent of type ``ty2``.
6414
6415Arguments:
6416""""""""""
6417
6418The '``fptoui``' instruction takes a value to cast, which must be a
6419scalar or vector :ref:`floating point <t_floating>` value, and a type to
6420cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6421``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6422type with the same number of elements as ``ty``
6423
6424Semantics:
6425""""""""""
6426
6427The '``fptoui``' instruction converts its :ref:`floating
6428point <t_floating>` operand into the nearest (rounding towards zero)
6429unsigned integer value. If the value cannot fit in ``ty2``, the results
6430are undefined.
6431
6432Example:
6433""""""""
6434
6435.. code-block:: llvm
6436
6437      %X = fptoui double 123.0 to i32      ; yields i32:123
6438      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
6439      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
6440
6441'``fptosi .. to``' Instruction
6442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6443
6444Syntax:
6445"""""""
6446
6447::
6448
6449      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
6450
6451Overview:
6452"""""""""
6453
6454The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6455``value`` to type ``ty2``.
6456
6457Arguments:
6458""""""""""
6459
6460The '``fptosi``' instruction takes a value to cast, which must be a
6461scalar or vector :ref:`floating point <t_floating>` value, and a type to
6462cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6463``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6464type with the same number of elements as ``ty``
6465
6466Semantics:
6467""""""""""
6468
6469The '``fptosi``' instruction converts its :ref:`floating
6470point <t_floating>` operand into the nearest (rounding towards zero)
6471signed integer value. If the value cannot fit in ``ty2``, the results
6472are undefined.
6473
6474Example:
6475""""""""
6476
6477.. code-block:: llvm
6478
6479      %X = fptosi double -123.0 to i32      ; yields i32:-123
6480      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
6481      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
6482
6483'``uitofp .. to``' Instruction
6484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6485
6486Syntax:
6487"""""""
6488
6489::
6490
6491      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
6492
6493Overview:
6494"""""""""
6495
6496The '``uitofp``' instruction regards ``value`` as an unsigned integer
6497and converts that value to the ``ty2`` type.
6498
6499Arguments:
6500""""""""""
6501
6502The '``uitofp``' instruction takes a value to cast, which must be a
6503scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6504``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6505``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6506type with the same number of elements as ``ty``
6507
6508Semantics:
6509""""""""""
6510
6511The '``uitofp``' instruction interprets its operand as an unsigned
6512integer quantity and converts it to the corresponding floating point
6513value. If the value cannot fit in the floating point value, the results
6514are undefined.
6515
6516Example:
6517""""""""
6518
6519.. code-block:: llvm
6520
6521      %X = uitofp i32 257 to float         ; yields float:257.0
6522      %Y = uitofp i8 -1 to double          ; yields double:255.0
6523
6524'``sitofp .. to``' Instruction
6525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6526
6527Syntax:
6528"""""""
6529
6530::
6531
6532      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
6533
6534Overview:
6535"""""""""
6536
6537The '``sitofp``' instruction regards ``value`` as a signed integer and
6538converts that value to the ``ty2`` type.
6539
6540Arguments:
6541""""""""""
6542
6543The '``sitofp``' instruction takes a value to cast, which must be a
6544scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6545``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6546``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6547type with the same number of elements as ``ty``
6548
6549Semantics:
6550""""""""""
6551
6552The '``sitofp``' instruction interprets its operand as a signed integer
6553quantity and converts it to the corresponding floating point value. If
6554the value cannot fit in the floating point value, the results are
6555undefined.
6556
6557Example:
6558""""""""
6559
6560.. code-block:: llvm
6561
6562      %X = sitofp i32 257 to float         ; yields float:257.0
6563      %Y = sitofp i8 -1 to double          ; yields double:-1.0
6564
6565.. _i_ptrtoint:
6566
6567'``ptrtoint .. to``' Instruction
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
6575      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
6576
6577Overview:
6578"""""""""
6579
6580The '``ptrtoint``' instruction converts the pointer or a vector of
6581pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6582
6583Arguments:
6584""""""""""
6585
6586The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6587a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6588type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6589a vector of integers type.
6590
6591Semantics:
6592""""""""""
6593
6594The '``ptrtoint``' instruction converts ``value`` to integer type
6595``ty2`` by interpreting the pointer value as an integer and either
6596truncating or zero extending that value to the size of the integer type.
6597If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6598``value`` is larger than ``ty2`` then a truncation is done. If they are
6599the same size, then nothing is done (*no-op cast*) other than a type
6600change.
6601
6602Example:
6603""""""""
6604
6605.. code-block:: llvm
6606
6607      %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
6608      %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
6609      %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6610
6611.. _i_inttoptr:
6612
6613'``inttoptr .. to``' Instruction
6614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6615
6616Syntax:
6617"""""""
6618
6619::
6620
6621      <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
6622
6623Overview:
6624"""""""""
6625
6626The '``inttoptr``' instruction converts an integer ``value`` to a
6627pointer type, ``ty2``.
6628
6629Arguments:
6630""""""""""
6631
6632The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6633cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6634type.
6635
6636Semantics:
6637""""""""""
6638
6639The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6640applying either a zero extension or a truncation depending on the size
6641of the integer ``value``. If ``value`` is larger than the size of a
6642pointer then a truncation is done. If ``value`` is smaller than the size
6643of a pointer then a zero extension is done. If they are the same size,
6644nothing is done (*no-op cast*).
6645
6646Example:
6647""""""""
6648
6649.. code-block:: llvm
6650
6651      %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
6652      %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
6653      %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
6654      %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6655
6656.. _i_bitcast:
6657
6658'``bitcast .. to``' Instruction
6659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6660
6661Syntax:
6662"""""""
6663
6664::
6665
6666      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
6667
6668Overview:
6669"""""""""
6670
6671The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6672changing any bits.
6673
6674Arguments:
6675""""""""""
6676
6677The '``bitcast``' instruction takes a value to cast, which must be a
6678non-aggregate first class value, and a type to cast it to, which must
6679also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6680bit sizes of ``value`` and the destination type, ``ty2``, must be
6681identical.  If the source type is a pointer, the destination type must
6682also be a pointer of the same size. This instruction supports bitwise
6683conversion of vectors to integers and to vectors of other types (as
6684long as they have the same size).
6685
6686Semantics:
6687""""""""""
6688
6689The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6690is always a *no-op cast* because no bits change with this
6691conversion. The conversion is done as if the ``value`` had been stored
6692to memory and read back as type ``ty2``. Pointer (or vector of
6693pointers) types may only be converted to other pointer (or vector of
6694pointers) types with the same address space through this instruction.
6695To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6696or :ref:`ptrtoint <i_ptrtoint>` instructions first.
6697
6698Example:
6699""""""""
6700
6701.. code-block:: llvm
6702
6703      %X = bitcast i8 255 to i8              ; yields i8 :-1
6704      %Y = bitcast i32* %x to sint*          ; yields sint*:%x
6705      %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
6706      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6707
6708.. _i_addrspacecast:
6709
6710'``addrspacecast .. to``' Instruction
6711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
6718      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
6719
6720Overview:
6721"""""""""
6722
6723The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6724address space ``n`` to type ``pty2`` in address space ``m``.
6725
6726Arguments:
6727""""""""""
6728
6729The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6730to cast and a pointer type to cast it to, which must have a different
6731address space.
6732
6733Semantics:
6734""""""""""
6735
6736The '``addrspacecast``' instruction converts the pointer value
6737``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
6738value modification, depending on the target and the address space
6739pair. Pointer conversions within the same address space must be
6740performed with the ``bitcast`` instruction. Note that if the address space
6741conversion is legal then both result and operand refer to the same memory
6742location.
6743
6744Example:
6745""""""""
6746
6747.. code-block:: llvm
6748
6749      %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
6750      %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
6751      %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
6752
6753.. _otherops:
6754
6755Other Operations
6756----------------
6757
6758The instructions in this category are the "miscellaneous" instructions,
6759which defy better classification.
6760
6761.. _i_icmp:
6762
6763'``icmp``' Instruction
6764^^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769::
6770
6771      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
6772
6773Overview:
6774"""""""""
6775
6776The '``icmp``' instruction returns a boolean value or a vector of
6777boolean values based on comparison of its two integer, integer vector,
6778pointer, or pointer vector operands.
6779
6780Arguments:
6781""""""""""
6782
6783The '``icmp``' instruction takes three operands. The first operand is
6784the condition code indicating the kind of comparison to perform. It is
6785not a value, just a keyword. The possible condition code are:
6786
6787#. ``eq``: equal
6788#. ``ne``: not equal
6789#. ``ugt``: unsigned greater than
6790#. ``uge``: unsigned greater or equal
6791#. ``ult``: unsigned less than
6792#. ``ule``: unsigned less or equal
6793#. ``sgt``: signed greater than
6794#. ``sge``: signed greater or equal
6795#. ``slt``: signed less than
6796#. ``sle``: signed less or equal
6797
6798The remaining two arguments must be :ref:`integer <t_integer>` or
6799:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6800must also be identical types.
6801
6802Semantics:
6803""""""""""
6804
6805The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6806code given as ``cond``. The comparison performed always yields either an
6807:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6808
6809#. ``eq``: yields ``true`` if the operands are equal, ``false``
6810   otherwise. No sign interpretation is necessary or performed.
6811#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6812   otherwise. No sign interpretation is necessary or performed.
6813#. ``ugt``: interprets the operands as unsigned values and yields
6814   ``true`` if ``op1`` is greater than ``op2``.
6815#. ``uge``: interprets the operands as unsigned values and yields
6816   ``true`` if ``op1`` is greater than or equal to ``op2``.
6817#. ``ult``: interprets the operands as unsigned values and yields
6818   ``true`` if ``op1`` is less than ``op2``.
6819#. ``ule``: interprets the operands as unsigned values and yields
6820   ``true`` if ``op1`` is less than or equal to ``op2``.
6821#. ``sgt``: interprets the operands as signed values and yields ``true``
6822   if ``op1`` is greater than ``op2``.
6823#. ``sge``: interprets the operands as signed values and yields ``true``
6824   if ``op1`` is greater than or equal to ``op2``.
6825#. ``slt``: interprets the operands as signed values and yields ``true``
6826   if ``op1`` is less than ``op2``.
6827#. ``sle``: interprets the operands as signed values and yields ``true``
6828   if ``op1`` is less than or equal to ``op2``.
6829
6830If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6831are compared as if they were integers.
6832
6833If the operands are integer vectors, then they are compared element by
6834element. The result is an ``i1`` vector with the same number of elements
6835as the values being compared. Otherwise, the result is an ``i1``.
6836
6837Example:
6838""""""""
6839
6840.. code-block:: llvm
6841
6842      <result> = icmp eq i32 4, 5          ; yields: result=false
6843      <result> = icmp ne float* %X, %X     ; yields: result=false
6844      <result> = icmp ult i16  4, 5        ; yields: result=true
6845      <result> = icmp sgt i16  4, 5        ; yields: result=false
6846      <result> = icmp ule i16 -4, 5        ; yields: result=false
6847      <result> = icmp sge i16  4, 5        ; yields: result=false
6848
6849Note that the code generator does not yet support vector types with the
6850``icmp`` instruction.
6851
6852.. _i_fcmp:
6853
6854'``fcmp``' Instruction
6855^^^^^^^^^^^^^^^^^^^^^^
6856
6857Syntax:
6858"""""""
6859
6860::
6861
6862      <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
6863
6864Overview:
6865"""""""""
6866
6867The '``fcmp``' instruction returns a boolean value or vector of boolean
6868values based on comparison of its operands.
6869
6870If the operands are floating point scalars, then the result type is a
6871boolean (:ref:`i1 <t_integer>`).
6872
6873If the operands are floating point vectors, then the result type is a
6874vector of boolean with the same number of elements as the operands being
6875compared.
6876
6877Arguments:
6878""""""""""
6879
6880The '``fcmp``' instruction takes three operands. The first operand is
6881the condition code indicating the kind of comparison to perform. It is
6882not a value, just a keyword. The possible condition code are:
6883
6884#. ``false``: no comparison, always returns false
6885#. ``oeq``: ordered and equal
6886#. ``ogt``: ordered and greater than
6887#. ``oge``: ordered and greater than or equal
6888#. ``olt``: ordered and less than
6889#. ``ole``: ordered and less than or equal
6890#. ``one``: ordered and not equal
6891#. ``ord``: ordered (no nans)
6892#. ``ueq``: unordered or equal
6893#. ``ugt``: unordered or greater than
6894#. ``uge``: unordered or greater than or equal
6895#. ``ult``: unordered or less than
6896#. ``ule``: unordered or less than or equal
6897#. ``une``: unordered or not equal
6898#. ``uno``: unordered (either nans)
6899#. ``true``: no comparison, always returns true
6900
6901*Ordered* means that neither operand is a QNAN while *unordered* means
6902that either operand may be a QNAN.
6903
6904Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6905point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6906type. They must have identical types.
6907
6908Semantics:
6909""""""""""
6910
6911The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6912condition code given as ``cond``. If the operands are vectors, then the
6913vectors are compared element by element. Each comparison performed
6914always yields an :ref:`i1 <t_integer>` result, as follows:
6915
6916#. ``false``: always yields ``false``, regardless of operands.
6917#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6918   is equal to ``op2``.
6919#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6920   is greater than ``op2``.
6921#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6922   is greater than or equal to ``op2``.
6923#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6924   is less than ``op2``.
6925#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6926   is less than or equal to ``op2``.
6927#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6928   is not equal to ``op2``.
6929#. ``ord``: yields ``true`` if both operands are not a QNAN.
6930#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6931   equal to ``op2``.
6932#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6933   greater than ``op2``.
6934#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6935   greater than or equal to ``op2``.
6936#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6937   less than ``op2``.
6938#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6939   less than or equal to ``op2``.
6940#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6941   not equal to ``op2``.
6942#. ``uno``: yields ``true`` if either operand is a QNAN.
6943#. ``true``: always yields ``true``, regardless of operands.
6944
6945Example:
6946""""""""
6947
6948.. code-block:: llvm
6949
6950      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
6951      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
6952      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
6953      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
6954
6955Note that the code generator does not yet support vector types with the
6956``fcmp`` instruction.
6957
6958.. _i_phi:
6959
6960'``phi``' Instruction
6961^^^^^^^^^^^^^^^^^^^^^
6962
6963Syntax:
6964"""""""
6965
6966::
6967
6968      <result> = phi <ty> [ <val0>, <label0>], ...
6969
6970Overview:
6971"""""""""
6972
6973The '``phi``' instruction is used to implement the φ node in the SSA
6974graph representing the function.
6975
6976Arguments:
6977""""""""""
6978
6979The type of the incoming values is specified with the first type field.
6980After this, the '``phi``' instruction takes a list of pairs as
6981arguments, with one pair for each predecessor basic block of the current
6982block. Only values of :ref:`first class <t_firstclass>` type may be used as
6983the value arguments to the PHI node. Only labels may be used as the
6984label arguments.
6985
6986There must be no non-phi instructions between the start of a basic block
6987and the PHI instructions: i.e. PHI instructions must be first in a basic
6988block.
6989
6990For the purposes of the SSA form, the use of each incoming value is
6991deemed to occur on the edge from the corresponding predecessor block to
6992the current block (but after any definition of an '``invoke``'
6993instruction's return value on the same edge).
6994
6995Semantics:
6996""""""""""
6997
6998At runtime, the '``phi``' instruction logically takes on the value
6999specified by the pair corresponding to the predecessor basic block that
7000executed just prior to the current block.
7001
7002Example:
7003""""""""
7004
7005.. code-block:: llvm
7006
7007    Loop:       ; Infinite loop that counts from 0 on up...
7008      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7009      %nextindvar = add i32 %indvar, 1
7010      br label %Loop
7011
7012.. _i_select:
7013
7014'``select``' Instruction
7015^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
7022      <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
7023
7024      selty is either i1 or {<N x i1>}
7025
7026Overview:
7027"""""""""
7028
7029The '``select``' instruction is used to choose one value based on a
7030condition, without IR-level branching.
7031
7032Arguments:
7033""""""""""
7034
7035The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7036values indicating the condition, and two values of the same :ref:`first
7037class <t_firstclass>` type.
7038
7039Semantics:
7040""""""""""
7041
7042If the condition is an i1 and it evaluates to 1, the instruction returns
7043the first value argument; otherwise, it returns the second value
7044argument.
7045
7046If the condition is a vector of i1, then the value arguments must be
7047vectors of the same size, and the selection is done element by element.
7048
7049If the condition is an i1 and the value arguments are vectors of the
7050same size, then an entire vector is selected.
7051
7052Example:
7053""""""""
7054
7055.. code-block:: llvm
7056
7057      %X = select i1 true, i8 17, i8 42          ; yields i8:17
7058
7059.. _i_call:
7060
7061'``call``' Instruction
7062^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
7069      <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
7070
7071Overview:
7072"""""""""
7073
7074The '``call``' instruction represents a simple function call.
7075
7076Arguments:
7077""""""""""
7078
7079This instruction requires several arguments:
7080
7081#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7082   should perform tail call optimization.  The ``tail`` marker is a hint that
7083   `can be ignored <CodeGenerator.html#sibcallopt>`_.  The ``musttail`` marker
7084   means that the call must be tail call optimized in order for the program to
7085   be correct.  The ``musttail`` marker provides these guarantees:
7086
7087   #. The call will not cause unbounded stack growth if it is part of a
7088      recursive cycle in the call graph.
7089   #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7090      forwarded in place.
7091
7092   Both markers imply that the callee does not access allocas or varargs from
7093   the caller.  Calls marked ``musttail`` must obey the following additional
7094   rules:
7095
7096   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7097     or a pointer bitcast followed by a ret instruction.
7098   - The ret instruction must return the (possibly bitcasted) value
7099     produced by the call or void.
7100   - The caller and callee prototypes must match.  Pointer types of
7101     parameters or return types may differ in pointee type, but not
7102     in address space.
7103   - The calling conventions of the caller and callee must match.
7104   - All ABI-impacting function attributes, such as sret, byval, inreg,
7105     returned, and inalloca, must match.
7106   - The callee must be varargs iff the caller is varargs. Bitcasting a
7107     non-varargs function to the appropriate varargs type is legal so
7108     long as the non-varargs prefixes obey the other rules.
7109
7110   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7111   the following conditions are met:
7112
7113   -  Caller and callee both have the calling convention ``fastcc``.
7114   -  The call is in tail position (ret immediately follows call and ret
7115      uses value of call or is void).
7116   -  Option ``-tailcallopt`` is enabled, or
7117      ``llvm::GuaranteedTailCallOpt`` is ``true``.
7118   -  `Platform-specific constraints are
7119      met. <CodeGenerator.html#tailcallopt>`_
7120
7121#. The optional "cconv" marker indicates which :ref:`calling
7122   convention <callingconv>` the call should use. If none is
7123   specified, the call defaults to using C calling conventions. The
7124   calling convention of the call must match the calling convention of
7125   the target function, or else the behavior is undefined.
7126#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7127   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7128   are valid here.
7129#. '``ty``': the type of the call instruction itself which is also the
7130   type of the return value. Functions that return no value are marked
7131   ``void``.
7132#. '``fnty``': shall be the signature of the pointer to function value
7133   being invoked. The argument types must match the types implied by
7134   this signature. This type can be omitted if the function is not
7135   varargs and if the function type does not return a pointer to a
7136   function.
7137#. '``fnptrval``': An LLVM value containing a pointer to a function to
7138   be invoked. In most cases, this is a direct function invocation, but
7139   indirect ``call``'s are just as possible, calling an arbitrary pointer
7140   to function value.
7141#. '``function args``': argument list whose types match the function
7142   signature argument types and parameter attributes. All arguments must
7143   be of :ref:`first class <t_firstclass>` type. If the function signature
7144   indicates the function accepts a variable number of arguments, the
7145   extra arguments can be specified.
7146#. The optional :ref:`function attributes <fnattrs>` list. Only
7147   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7148   attributes are valid here.
7149
7150Semantics:
7151""""""""""
7152
7153The '``call``' instruction is used to cause control flow to transfer to
7154a specified function, with its incoming arguments bound to the specified
7155values. Upon a '``ret``' instruction in the called function, control
7156flow continues with the instruction after the function call, and the
7157return value of the function is bound to the result argument.
7158
7159Example:
7160""""""""
7161
7162.. code-block:: llvm
7163
7164      %retval = call i32 @test(i32 %argc)
7165      call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
7166      %X = tail call i32 @foo()                                    ; yields i32
7167      %Y = tail call fastcc i32 @foo()  ; yields i32
7168      call void %foo(i8 97 signext)
7169
7170      %struct.A = type { i32, i8 }
7171      %r = call %struct.A @foo()                        ; yields { i32, i8 }
7172      %gr = extractvalue %struct.A %r, 0                ; yields i32
7173      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
7174      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
7175      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
7176
7177llvm treats calls to some functions with names and arguments that match
7178the standard C99 library as being the C99 library functions, and may
7179perform optimizations or generate code for them under that assumption.
7180This is something we'd like to change in the future to provide better
7181support for freestanding environments and non-C-based languages.
7182
7183.. _i_va_arg:
7184
7185'``va_arg``' Instruction
7186^^^^^^^^^^^^^^^^^^^^^^^^
7187
7188Syntax:
7189"""""""
7190
7191::
7192
7193      <resultval> = va_arg <va_list*> <arglist>, <argty>
7194
7195Overview:
7196"""""""""
7197
7198The '``va_arg``' instruction is used to access arguments passed through
7199the "variable argument" area of a function call. It is used to implement
7200the ``va_arg`` macro in C.
7201
7202Arguments:
7203""""""""""
7204
7205This instruction takes a ``va_list*`` value and the type of the
7206argument. It returns a value of the specified argument type and
7207increments the ``va_list`` to point to the next argument. The actual
7208type of ``va_list`` is target specific.
7209
7210Semantics:
7211""""""""""
7212
7213The '``va_arg``' instruction loads an argument of the specified type
7214from the specified ``va_list`` and causes the ``va_list`` to point to
7215the next argument. For more information, see the variable argument
7216handling :ref:`Intrinsic Functions <int_varargs>`.
7217
7218It is legal for this instruction to be called in a function which does
7219not take a variable number of arguments, for example, the ``vfprintf``
7220function.
7221
7222``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7223function <intrinsics>` because it takes a type as an argument.
7224
7225Example:
7226""""""""
7227
7228See the :ref:`variable argument processing <int_varargs>` section.
7229
7230Note that the code generator does not yet fully support va\_arg on many
7231targets. Also, it does not currently support va\_arg with aggregate
7232types on any target.
7233
7234.. _i_landingpad:
7235
7236'``landingpad``' Instruction
7237^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242::
7243
7244      <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
7245      <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
7246
7247      <clause> := catch <type> <value>
7248      <clause> := filter <array constant type> <array constant>
7249
7250Overview:
7251"""""""""
7252
7253The '``landingpad``' instruction is used by `LLVM's exception handling
7254system <ExceptionHandling.html#overview>`_ to specify that a basic block
7255is a landing pad --- one where the exception lands, and corresponds to the
7256code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
7257defines values supplied by the personality function (``pers_fn``) upon
7258re-entry to the function. The ``resultval`` has the type ``resultty``.
7259
7260Arguments:
7261""""""""""
7262
7263This instruction takes a ``pers_fn`` value. This is the personality
7264function associated with the unwinding mechanism. The optional
7265``cleanup`` flag indicates that the landing pad block is a cleanup.
7266
7267A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
7268contains the global variable representing the "type" that may be caught
7269or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7270clause takes an array constant as its argument. Use
7271"``[0 x i8**] undef``" for a filter which cannot throw. The
7272'``landingpad``' instruction must contain *at least* one ``clause`` or
7273the ``cleanup`` flag.
7274
7275Semantics:
7276""""""""""
7277
7278The '``landingpad``' instruction defines the values which are set by the
7279personality function (``pers_fn``) upon re-entry to the function, and
7280therefore the "result type" of the ``landingpad`` instruction. As with
7281calling conventions, how the personality function results are
7282represented in LLVM IR is target specific.
7283
7284The clauses are applied in order from top to bottom. If two
7285``landingpad`` instructions are merged together through inlining, the
7286clauses from the calling function are appended to the list of clauses.
7287When the call stack is being unwound due to an exception being thrown,
7288the exception is compared against each ``clause`` in turn. If it doesn't
7289match any of the clauses, and the ``cleanup`` flag is not set, then
7290unwinding continues further up the call stack.
7291
7292The ``landingpad`` instruction has several restrictions:
7293
7294-  A landing pad block is a basic block which is the unwind destination
7295   of an '``invoke``' instruction.
7296-  A landing pad block must have a '``landingpad``' instruction as its
7297   first non-PHI instruction.
7298-  There can be only one '``landingpad``' instruction within the landing
7299   pad block.
7300-  A basic block that is not a landing pad block may not include a
7301   '``landingpad``' instruction.
7302-  All '``landingpad``' instructions in a function must have the same
7303   personality function.
7304
7305Example:
7306""""""""
7307
7308.. code-block:: llvm
7309
7310      ;; A landing pad which can catch an integer.
7311      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7312               catch i8** @_ZTIi
7313      ;; A landing pad that is a cleanup.
7314      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7315               cleanup
7316      ;; A landing pad which can catch an integer and can only throw a double.
7317      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7318               catch i8** @_ZTIi
7319               filter [1 x i8**] [@_ZTId]
7320
7321.. _intrinsics:
7322
7323Intrinsic Functions
7324===================
7325
7326LLVM supports the notion of an "intrinsic function". These functions
7327have well known names and semantics and are required to follow certain
7328restrictions. Overall, these intrinsics represent an extension mechanism
7329for the LLVM language that does not require changing all of the
7330transformations in LLVM when adding to the language (or the bitcode
7331reader/writer, the parser, etc...).
7332
7333Intrinsic function names must all start with an "``llvm.``" prefix. This
7334prefix is reserved in LLVM for intrinsic names; thus, function names may
7335not begin with this prefix. Intrinsic functions must always be external
7336functions: you cannot define the body of intrinsic functions. Intrinsic
7337functions may only be used in call or invoke instructions: it is illegal
7338to take the address of an intrinsic function. Additionally, because
7339intrinsic functions are part of the LLVM language, it is required if any
7340are added that they be documented here.
7341
7342Some intrinsic functions can be overloaded, i.e., the intrinsic
7343represents a family of functions that perform the same operation but on
7344different data types. Because LLVM can represent over 8 million
7345different integer types, overloading is used commonly to allow an
7346intrinsic function to operate on any integer type. One or more of the
7347argument types or the result type can be overloaded to accept any
7348integer type. Argument types may also be defined as exactly matching a
7349previous argument's type or the result type. This allows an intrinsic
7350function which accepts multiple arguments, but needs all of them to be
7351of the same type, to only be overloaded with respect to a single
7352argument or the result.
7353
7354Overloaded intrinsics will have the names of its overloaded argument
7355types encoded into its function name, each preceded by a period. Only
7356those types which are overloaded result in a name suffix. Arguments
7357whose type is matched against another type do not. For example, the
7358``llvm.ctpop`` function can take an integer of any width and returns an
7359integer of exactly the same integer width. This leads to a family of
7360functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7361``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7362overloaded, and only one type suffix is required. Because the argument's
7363type is matched against the return type, it does not require its own
7364name suffix.
7365
7366To learn how to add an intrinsic function, please see the `Extending
7367LLVM Guide <ExtendingLLVM.html>`_.
7368
7369.. _int_varargs:
7370
7371Variable Argument Handling Intrinsics
7372-------------------------------------
7373
7374Variable argument support is defined in LLVM with the
7375:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7376functions. These functions are related to the similarly named macros
7377defined in the ``<stdarg.h>`` header file.
7378
7379All of these functions operate on arguments that use a target-specific
7380value type "``va_list``". The LLVM assembly language reference manual
7381does not define what this type is, so all transformations should be
7382prepared to handle these functions regardless of the type used.
7383
7384This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7385variable argument handling intrinsic functions are used.
7386
7387.. code-block:: llvm
7388
7389    ; This struct is different for every platform. For most platforms,
7390    ; it is merely an i8*.
7391    %struct.va_list = type { i8* }
7392
7393    ; For Unix x86_64 platforms, va_list is the following struct:
7394    ; %struct.va_list = type { i32, i32, i8*, i8* }
7395
7396    define i32 @test(i32 %X, ...) {
7397      ; Initialize variable argument processing
7398      %ap = alloca %struct.va_list
7399      %ap2 = bitcast %struct.va_list* %ap to i8*
7400      call void @llvm.va_start(i8* %ap2)
7401
7402      ; Read a single integer argument
7403      %tmp = va_arg i8* %ap2, i32
7404
7405      ; Demonstrate usage of llvm.va_copy and llvm.va_end
7406      %aq = alloca i8*
7407      %aq2 = bitcast i8** %aq to i8*
7408      call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7409      call void @llvm.va_end(i8* %aq2)
7410
7411      ; Stop processing of arguments.
7412      call void @llvm.va_end(i8* %ap2)
7413      ret i32 %tmp
7414    }
7415
7416    declare void @llvm.va_start(i8*)
7417    declare void @llvm.va_copy(i8*, i8*)
7418    declare void @llvm.va_end(i8*)
7419
7420.. _int_va_start:
7421
7422'``llvm.va_start``' Intrinsic
7423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7424
7425Syntax:
7426"""""""
7427
7428::
7429
7430      declare void @llvm.va_start(i8* <arglist>)
7431
7432Overview:
7433"""""""""
7434
7435The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7436subsequent use by ``va_arg``.
7437
7438Arguments:
7439""""""""""
7440
7441The argument is a pointer to a ``va_list`` element to initialize.
7442
7443Semantics:
7444""""""""""
7445
7446The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7447available in C. In a target-dependent way, it initializes the
7448``va_list`` element to which the argument points, so that the next call
7449to ``va_arg`` will produce the first variable argument passed to the
7450function. Unlike the C ``va_start`` macro, this intrinsic does not need
7451to know the last argument of the function as the compiler can figure
7452that out.
7453
7454'``llvm.va_end``' Intrinsic
7455^^^^^^^^^^^^^^^^^^^^^^^^^^^
7456
7457Syntax:
7458"""""""
7459
7460::
7461
7462      declare void @llvm.va_end(i8* <arglist>)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7468initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7469
7470Arguments:
7471""""""""""
7472
7473The argument is a pointer to a ``va_list`` to destroy.
7474
7475Semantics:
7476""""""""""
7477
7478The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7479available in C. In a target-dependent way, it destroys the ``va_list``
7480element to which the argument points. Calls to
7481:ref:`llvm.va_start <int_va_start>` and
7482:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7483``llvm.va_end``.
7484
7485.. _int_va_copy:
7486
7487'``llvm.va_copy``' Intrinsic
7488^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493::
7494
7495      declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7496
7497Overview:
7498"""""""""
7499
7500The '``llvm.va_copy``' intrinsic copies the current argument position
7501from the source argument list to the destination argument list.
7502
7503Arguments:
7504""""""""""
7505
7506The first argument is a pointer to a ``va_list`` element to initialize.
7507The second argument is a pointer to a ``va_list`` element to copy from.
7508
7509Semantics:
7510""""""""""
7511
7512The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7513available in C. In a target-dependent way, it copies the source
7514``va_list`` element into the destination ``va_list`` element. This
7515intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7516arbitrarily complex and require, for example, memory allocation.
7517
7518Accurate Garbage Collection Intrinsics
7519--------------------------------------
7520
7521LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
7522(GC) requires the frontend to generate code containing appropriate intrinsic
7523calls and select an appropriate GC strategy which knows how to lower these
7524intrinsics in a manner which is appropriate for the target collector.
7525
7526These intrinsics allow identification of :ref:`GC roots on the
7527stack <int_gcroot>`, as well as garbage collector implementations that
7528require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7529Frontends for type-safe garbage collected languages should generate
7530these intrinsics to make use of the LLVM garbage collectors. For more
7531details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
7532
7533Experimental Statepoint Intrinsics
7534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7535
7536LLVM provides an second experimental set of intrinsics for describing garbage
7537collection safepoints in compiled code.  These intrinsics are an alternative
7538to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7539:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.  The
7540differences in approach are covered in the `Garbage Collection with LLVM
7541<GarbageCollection.html>`_ documentation.  The intrinsics themselves are
7542described in :doc:`Statepoints`.
7543
7544.. _int_gcroot:
7545
7546'``llvm.gcroot``' Intrinsic
7547^^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552::
7553
7554      declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7555
7556Overview:
7557"""""""""
7558
7559The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7560the code generator, and allows some metadata to be associated with it.
7561
7562Arguments:
7563""""""""""
7564
7565The first argument specifies the address of a stack object that contains
7566the root pointer. The second pointer (which must be either a constant or
7567a global value address) contains the meta-data to be associated with the
7568root.
7569
7570Semantics:
7571""""""""""
7572
7573At runtime, a call to this intrinsic stores a null pointer into the
7574"ptrloc" location. At compile-time, the code generator generates
7575information to allow the runtime to find the pointer at GC safe points.
7576The '``llvm.gcroot``' intrinsic may only be used in a function which
7577:ref:`specifies a GC algorithm <gc>`.
7578
7579.. _int_gcread:
7580
7581'``llvm.gcread``' Intrinsic
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
7589      declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7590
7591Overview:
7592"""""""""
7593
7594The '``llvm.gcread``' intrinsic identifies reads of references from heap
7595locations, allowing garbage collector implementations that require read
7596barriers.
7597
7598Arguments:
7599""""""""""
7600
7601The second argument is the address to read from, which should be an
7602address allocated from the garbage collector. The first object is a
7603pointer to the start of the referenced object, if needed by the language
7604runtime (otherwise null).
7605
7606Semantics:
7607""""""""""
7608
7609The '``llvm.gcread``' intrinsic has the same semantics as a load
7610instruction, but may be replaced with substantially more complex code by
7611the garbage collector runtime, as needed. The '``llvm.gcread``'
7612intrinsic may only be used in a function which :ref:`specifies a GC
7613algorithm <gc>`.
7614
7615.. _int_gcwrite:
7616
7617'``llvm.gcwrite``' Intrinsic
7618^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7619
7620Syntax:
7621"""""""
7622
7623::
7624
7625      declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7626
7627Overview:
7628"""""""""
7629
7630The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7631locations, allowing garbage collector implementations that require write
7632barriers (such as generational or reference counting collectors).
7633
7634Arguments:
7635""""""""""
7636
7637The first argument is the reference to store, the second is the start of
7638the object to store it to, and the third is the address of the field of
7639Obj to store to. If the runtime does not require a pointer to the
7640object, Obj may be null.
7641
7642Semantics:
7643""""""""""
7644
7645The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7646instruction, but may be replaced with substantially more complex code by
7647the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7648intrinsic may only be used in a function which :ref:`specifies a GC
7649algorithm <gc>`.
7650
7651Code Generator Intrinsics
7652-------------------------
7653
7654These intrinsics are provided by LLVM to expose special features that
7655may only be implemented with code generator support.
7656
7657'``llvm.returnaddress``' Intrinsic
7658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7659
7660Syntax:
7661"""""""
7662
7663::
7664
7665      declare i8  *@llvm.returnaddress(i32 <level>)
7666
7667Overview:
7668"""""""""
7669
7670The '``llvm.returnaddress``' intrinsic attempts to compute a
7671target-specific value indicating the return address of the current
7672function or one of its callers.
7673
7674Arguments:
7675""""""""""
7676
7677The argument to this intrinsic indicates which function to return the
7678address for. Zero indicates the calling function, one indicates its
7679caller, etc. The argument is **required** to be a constant integer
7680value.
7681
7682Semantics:
7683""""""""""
7684
7685The '``llvm.returnaddress``' intrinsic either returns a pointer
7686indicating the return address of the specified call frame, or zero if it
7687cannot be identified. The value returned by this intrinsic is likely to
7688be incorrect or 0 for arguments other than zero, so it should only be
7689used for debugging purposes.
7690
7691Note that calling this intrinsic does not prevent function inlining or
7692other aggressive transformations, so the value returned may not be that
7693of the obvious source-language caller.
7694
7695'``llvm.frameaddress``' Intrinsic
7696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7697
7698Syntax:
7699"""""""
7700
7701::
7702
7703      declare i8* @llvm.frameaddress(i32 <level>)
7704
7705Overview:
7706"""""""""
7707
7708The '``llvm.frameaddress``' intrinsic attempts to return the
7709target-specific frame pointer value for the specified stack frame.
7710
7711Arguments:
7712""""""""""
7713
7714The argument to this intrinsic indicates which function to return the
7715frame pointer for. Zero indicates the calling function, one indicates
7716its caller, etc. The argument is **required** to be a constant integer
7717value.
7718
7719Semantics:
7720""""""""""
7721
7722The '``llvm.frameaddress``' intrinsic either returns a pointer
7723indicating the frame address of the specified call frame, or zero if it
7724cannot be identified. The value returned by this intrinsic is likely to
7725be incorrect or 0 for arguments other than zero, so it should only be
7726used for debugging purposes.
7727
7728Note that calling this intrinsic does not prevent function inlining or
7729other aggressive transformations, so the value returned may not be that
7730of the obvious source-language caller.
7731
7732'``llvm.frameescape``' and '``llvm.framerecover``' Intrinsics
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740      declare void @llvm.frameescape(...)
7741      declare i8* @llvm.framerecover(i8* %func, i8* %fp, i32 %idx)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.frameescape``' intrinsic escapes offsets of a collection of static
7747allocas, and the '``llvm.framerecover``' intrinsic applies those offsets to a
7748live frame pointer to recover the address of the allocation. The offset is
7749computed during frame layout of the caller of ``llvm.frameescape``.
7750
7751Arguments:
7752""""""""""
7753
7754All arguments to '``llvm.frameescape``' must be pointers to static allocas or
7755casts of static allocas. Each function can only call '``llvm.frameescape``'
7756once, and it can only do so from the entry block.
7757
7758The ``func`` argument to '``llvm.framerecover``' must be a constant
7759bitcasted pointer to a function defined in the current module. The code
7760generator cannot determine the frame allocation offset of functions defined in
7761other modules.
7762
7763The ``fp`` argument to '``llvm.framerecover``' must be a frame
7764pointer of a call frame that is currently live. The return value of
7765'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7766also expose the frame pointer through stack unwinding mechanisms.
7767
7768The ``idx`` argument to '``llvm.framerecover``' indicates which alloca passed to
7769'``llvm.frameescape``' to recover. It is zero-indexed.
7770
7771Semantics:
7772""""""""""
7773
7774These intrinsics allow a group of functions to access one stack memory
7775allocation in an ancestor stack frame. The memory returned from
7776'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7777memory is only aligned to the ABI-required stack alignment.  Each function may
7778only call '``llvm.frameallocate``' one or zero times from the function entry
7779block.  The frame allocation intrinsic inhibits inlining, as any frame
7780allocations in the inlined function frame are likely to be at a different
7781offset from the one used by '``llvm.framerecover``' called with the
7782uninlined function.
7783
7784.. _int_read_register:
7785.. _int_write_register:
7786
7787'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793::
7794
7795      declare i32 @llvm.read_register.i32(metadata)
7796      declare i64 @llvm.read_register.i64(metadata)
7797      declare void @llvm.write_register.i32(metadata, i32 @value)
7798      declare void @llvm.write_register.i64(metadata, i64 @value)
7799      !0 = !{!"sp\00"}
7800
7801Overview:
7802"""""""""
7803
7804The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7805provides access to the named register. The register must be valid on
7806the architecture being compiled to. The type needs to be compatible
7807with the register being read.
7808
7809Semantics:
7810""""""""""
7811
7812The '``llvm.read_register``' intrinsic returns the current value of the
7813register, where possible. The '``llvm.write_register``' intrinsic sets
7814the current value of the register, where possible.
7815
7816This is useful to implement named register global variables that need
7817to always be mapped to a specific register, as is common practice on
7818bare-metal programs including OS kernels.
7819
7820The compiler doesn't check for register availability or use of the used
7821register in surrounding code, including inline assembly. Because of that,
7822allocatable registers are not supported.
7823
7824Warning: So far it only works with the stack pointer on selected
7825architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
7826work is needed to support other registers and even more so, allocatable
7827registers.
7828
7829.. _int_stacksave:
7830
7831'``llvm.stacksave``' Intrinsic
7832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7833
7834Syntax:
7835"""""""
7836
7837::
7838
7839      declare i8* @llvm.stacksave()
7840
7841Overview:
7842"""""""""
7843
7844The '``llvm.stacksave``' intrinsic is used to remember the current state
7845of the function stack, for use with
7846:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7847implementing language features like scoped automatic variable sized
7848arrays in C99.
7849
7850Semantics:
7851""""""""""
7852
7853This intrinsic returns a opaque pointer value that can be passed to
7854:ref:`llvm.stackrestore <int_stackrestore>`. When an
7855``llvm.stackrestore`` intrinsic is executed with a value saved from
7856``llvm.stacksave``, it effectively restores the state of the stack to
7857the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7858practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7859were allocated after the ``llvm.stacksave`` was executed.
7860
7861.. _int_stackrestore:
7862
7863'``llvm.stackrestore``' Intrinsic
7864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7865
7866Syntax:
7867"""""""
7868
7869::
7870
7871      declare void @llvm.stackrestore(i8* %ptr)
7872
7873Overview:
7874"""""""""
7875
7876The '``llvm.stackrestore``' intrinsic is used to restore the state of
7877the function stack to the state it was in when the corresponding
7878:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7879useful for implementing language features like scoped automatic variable
7880sized arrays in C99.
7881
7882Semantics:
7883""""""""""
7884
7885See the description for :ref:`llvm.stacksave <int_stacksave>`.
7886
7887'``llvm.prefetch``' Intrinsic
7888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7889
7890Syntax:
7891"""""""
7892
7893::
7894
7895      declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7896
7897Overview:
7898"""""""""
7899
7900The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7901insert a prefetch instruction if supported; otherwise, it is a noop.
7902Prefetches have no effect on the behavior of the program but can change
7903its performance characteristics.
7904
7905Arguments:
7906""""""""""
7907
7908``address`` is the address to be prefetched, ``rw`` is the specifier
7909determining if the fetch should be for a read (0) or write (1), and
7910``locality`` is a temporal locality specifier ranging from (0) - no
7911locality, to (3) - extremely local keep in cache. The ``cache type``
7912specifies whether the prefetch is performed on the data (1) or
7913instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7914arguments must be constant integers.
7915
7916Semantics:
7917""""""""""
7918
7919This intrinsic does not modify the behavior of the program. In
7920particular, prefetches cannot trap and do not produce a value. On
7921targets that support this intrinsic, the prefetch can provide hints to
7922the processor cache for better performance.
7923
7924'``llvm.pcmarker``' Intrinsic
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930::
7931
7932      declare void @llvm.pcmarker(i32 <id>)
7933
7934Overview:
7935"""""""""
7936
7937The '``llvm.pcmarker``' intrinsic is a method to export a Program
7938Counter (PC) in a region of code to simulators and other tools. The
7939method is target specific, but it is expected that the marker will use
7940exported symbols to transmit the PC of the marker. The marker makes no
7941guarantees that it will remain with any specific instruction after
7942optimizations. It is possible that the presence of a marker will inhibit
7943optimizations. The intended use is to be inserted after optimizations to
7944allow correlations of simulation runs.
7945
7946Arguments:
7947""""""""""
7948
7949``id`` is a numerical id identifying the marker.
7950
7951Semantics:
7952""""""""""
7953
7954This intrinsic does not modify the behavior of the program. Backends
7955that do not support this intrinsic may ignore it.
7956
7957'``llvm.readcyclecounter``' Intrinsic
7958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7959
7960Syntax:
7961"""""""
7962
7963::
7964
7965      declare i64 @llvm.readcyclecounter()
7966
7967Overview:
7968"""""""""
7969
7970The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7971counter register (or similar low latency, high accuracy clocks) on those
7972targets that support it. On X86, it should map to RDTSC. On Alpha, it
7973should map to RPCC. As the backing counters overflow quickly (on the
7974order of 9 seconds on alpha), this should only be used for small
7975timings.
7976
7977Semantics:
7978""""""""""
7979
7980When directly supported, reading the cycle counter should not modify any
7981memory. Implementations are allowed to either return a application
7982specific value or a system wide value. On backends without support, this
7983is lowered to a constant 0.
7984
7985Note that runtime support may be conditional on the privilege-level code is
7986running at and the host platform.
7987
7988'``llvm.clear_cache``' Intrinsic
7989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994::
7995
7996      declare void @llvm.clear_cache(i8*, i8*)
7997
7998Overview:
7999"""""""""
8000
8001The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8002in the specified range to the execution unit of the processor. On
8003targets with non-unified instruction and data cache, the implementation
8004flushes the instruction cache.
8005
8006Semantics:
8007""""""""""
8008
8009On platforms with coherent instruction and data caches (e.g. x86), this
8010intrinsic is a nop. On platforms with non-coherent instruction and data
8011cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
8012instructions or a system call, if cache flushing requires special
8013privileges.
8014
8015The default behavior is to emit a call to ``__clear_cache`` from the run
8016time library.
8017
8018This instrinsic does *not* empty the instruction pipeline. Modifications
8019of the current function are outside the scope of the intrinsic.
8020
8021'``llvm.instrprof_increment``' Intrinsic
8022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027::
8028
8029      declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8030                                             i32 <num-counters>, i32 <index>)
8031
8032Overview:
8033"""""""""
8034
8035The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8036frontend for use with instrumentation based profiling. These will be
8037lowered by the ``-instrprof`` pass to generate execution counts of a
8038program at runtime.
8039
8040Arguments:
8041""""""""""
8042
8043The first argument is a pointer to a global variable containing the
8044name of the entity being instrumented. This should generally be the
8045(mangled) function name for a set of counters.
8046
8047The second argument is a hash value that can be used by the consumer
8048of the profile data to detect changes to the instrumented source, and
8049the third is the number of counters associated with ``name``. It is an
8050error if ``hash`` or ``num-counters`` differ between two instances of
8051``instrprof_increment`` that refer to the same name.
8052
8053The last argument refers to which of the counters for ``name`` should
8054be incremented. It should be a value between 0 and ``num-counters``.
8055
8056Semantics:
8057""""""""""
8058
8059This intrinsic represents an increment of a profiling counter. It will
8060cause the ``-instrprof`` pass to generate the appropriate data
8061structures and the code to increment the appropriate value, in a
8062format that can be written out by a compiler runtime and consumed via
8063the ``llvm-profdata`` tool.
8064
8065Standard C Library Intrinsics
8066-----------------------------
8067
8068LLVM provides intrinsics for a few important standard C library
8069functions. These intrinsics allow source-language front-ends to pass
8070information about the alignment of the pointer arguments to the code
8071generator, providing opportunity for more efficient code generation.
8072
8073.. _int_memcpy:
8074
8075'``llvm.memcpy``' Intrinsic
8076^^^^^^^^^^^^^^^^^^^^^^^^^^^
8077
8078Syntax:
8079"""""""
8080
8081This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8082integer bit width and for different address spaces. Not all targets
8083support all bit widths however.
8084
8085::
8086
8087      declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8088                                              i32 <len>, i32 <align>, i1 <isvolatile>)
8089      declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8090                                              i64 <len>, i32 <align>, i1 <isvolatile>)
8091
8092Overview:
8093"""""""""
8094
8095The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8096source location to the destination location.
8097
8098Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8099intrinsics do not return a value, takes extra alignment/isvolatile
8100arguments and the pointers can be in specified address spaces.
8101
8102Arguments:
8103""""""""""
8104
8105The first argument is a pointer to the destination, the second is a
8106pointer to the source. The third argument is an integer argument
8107specifying the number of bytes to copy, the fourth argument is the
8108alignment of the source and destination locations, and the fifth is a
8109boolean indicating a volatile access.
8110
8111If the call to this intrinsic has an alignment value that is not 0 or 1,
8112then the caller guarantees that both the source and destination pointers
8113are aligned to that boundary.
8114
8115If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8116a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8117very cleanly specified and it is unwise to depend on it.
8118
8119Semantics:
8120""""""""""
8121
8122The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8123source location to the destination location, which are not allowed to
8124overlap. It copies "len" bytes of memory over. If the argument is known
8125to be aligned to some boundary, this can be specified as the fourth
8126argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
8127
8128'``llvm.memmove``' Intrinsic
8129^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131Syntax:
8132"""""""
8133
8134This is an overloaded intrinsic. You can use llvm.memmove on any integer
8135bit width and for different address space. Not all targets support all
8136bit widths however.
8137
8138::
8139
8140      declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8141                                               i32 <len>, i32 <align>, i1 <isvolatile>)
8142      declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8143                                               i64 <len>, i32 <align>, i1 <isvolatile>)
8144
8145Overview:
8146"""""""""
8147
8148The '``llvm.memmove.*``' intrinsics move a block of memory from the
8149source location to the destination location. It is similar to the
8150'``llvm.memcpy``' intrinsic but allows the two memory locations to
8151overlap.
8152
8153Note that, unlike the standard libc function, the ``llvm.memmove.*``
8154intrinsics do not return a value, takes extra alignment/isvolatile
8155arguments and the pointers can be in specified address spaces.
8156
8157Arguments:
8158""""""""""
8159
8160The first argument is a pointer to the destination, the second is a
8161pointer to the source. The third argument is an integer argument
8162specifying the number of bytes to copy, the fourth argument is the
8163alignment of the source and destination locations, and the fifth is a
8164boolean indicating a volatile access.
8165
8166If the call to this intrinsic has an alignment value that is not 0 or 1,
8167then the caller guarantees that the source and destination pointers are
8168aligned to that boundary.
8169
8170If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8171is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8172not very cleanly specified and it is unwise to depend on it.
8173
8174Semantics:
8175""""""""""
8176
8177The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8178source location to the destination location, which may overlap. It
8179copies "len" bytes of memory over. If the argument is known to be
8180aligned to some boundary, this can be specified as the fourth argument,
8181otherwise it should be set to 0 or 1 (both meaning no alignment).
8182
8183'``llvm.memset.*``' Intrinsics
8184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8185
8186Syntax:
8187"""""""
8188
8189This is an overloaded intrinsic. You can use llvm.memset on any integer
8190bit width and for different address spaces. However, not all targets
8191support all bit widths.
8192
8193::
8194
8195      declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8196                                         i32 <len>, i32 <align>, i1 <isvolatile>)
8197      declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8198                                         i64 <len>, i32 <align>, i1 <isvolatile>)
8199
8200Overview:
8201"""""""""
8202
8203The '``llvm.memset.*``' intrinsics fill a block of memory with a
8204particular byte value.
8205
8206Note that, unlike the standard libc function, the ``llvm.memset``
8207intrinsic does not return a value and takes extra alignment/volatile
8208arguments. Also, the destination can be in an arbitrary address space.
8209
8210Arguments:
8211""""""""""
8212
8213The first argument is a pointer to the destination to fill, the second
8214is the byte value with which to fill it, the third argument is an
8215integer argument specifying the number of bytes to fill, and the fourth
8216argument is the known alignment of the destination location.
8217
8218If the call to this intrinsic has an alignment value that is not 0 or 1,
8219then the caller guarantees that the destination pointer is aligned to
8220that boundary.
8221
8222If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8223a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8224very cleanly specified and it is unwise to depend on it.
8225
8226Semantics:
8227""""""""""
8228
8229The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8230at the destination location. If the argument is known to be aligned to
8231some boundary, this can be specified as the fourth argument, otherwise
8232it should be set to 0 or 1 (both meaning no alignment).
8233
8234'``llvm.sqrt.*``' Intrinsic
8235^^^^^^^^^^^^^^^^^^^^^^^^^^^
8236
8237Syntax:
8238"""""""
8239
8240This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8241floating point or vector of floating point type. Not all targets support
8242all types however.
8243
8244::
8245
8246      declare float     @llvm.sqrt.f32(float %Val)
8247      declare double    @llvm.sqrt.f64(double %Val)
8248      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
8249      declare fp128     @llvm.sqrt.f128(fp128 %Val)
8250      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8251
8252Overview:
8253"""""""""
8254
8255The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8256returning the same value as the libm '``sqrt``' functions would. Unlike
8257``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8258negative numbers other than -0.0 (which allows for better optimization,
8259because there is no need to worry about errno being set).
8260``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8261
8262Arguments:
8263""""""""""
8264
8265The argument and return value are floating point numbers of the same
8266type.
8267
8268Semantics:
8269""""""""""
8270
8271This function returns the sqrt of the specified operand if it is a
8272nonnegative floating point number.
8273
8274'``llvm.powi.*``' Intrinsic
8275^^^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8281floating point or vector of floating point type. Not all targets support
8282all types however.
8283
8284::
8285
8286      declare float     @llvm.powi.f32(float  %Val, i32 %power)
8287      declare double    @llvm.powi.f64(double %Val, i32 %power)
8288      declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
8289      declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
8290      declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
8291
8292Overview:
8293"""""""""
8294
8295The '``llvm.powi.*``' intrinsics return the first operand raised to the
8296specified (positive or negative) power. The order of evaluation of
8297multiplications is not defined. When a vector of floating point type is
8298used, the second argument remains a scalar integer value.
8299
8300Arguments:
8301""""""""""
8302
8303The second argument is an integer power, and the first is a value to
8304raise to that power.
8305
8306Semantics:
8307""""""""""
8308
8309This function returns the first value raised to the second power with an
8310unspecified sequence of rounding operations.
8311
8312'``llvm.sin.*``' Intrinsic
8313^^^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8319floating point or vector of floating point type. Not all targets support
8320all types however.
8321
8322::
8323
8324      declare float     @llvm.sin.f32(float  %Val)
8325      declare double    @llvm.sin.f64(double %Val)
8326      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
8327      declare fp128     @llvm.sin.f128(fp128 %Val)
8328      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
8329
8330Overview:
8331"""""""""
8332
8333The '``llvm.sin.*``' intrinsics return the sine of the operand.
8334
8335Arguments:
8336""""""""""
8337
8338The argument and return value are floating point numbers of the same
8339type.
8340
8341Semantics:
8342""""""""""
8343
8344This function returns the sine of the specified operand, returning the
8345same values as the libm ``sin`` functions would, and handles error
8346conditions in the same way.
8347
8348'``llvm.cos.*``' Intrinsic
8349^^^^^^^^^^^^^^^^^^^^^^^^^^
8350
8351Syntax:
8352"""""""
8353
8354This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8355floating point or vector of floating point type. Not all targets support
8356all types however.
8357
8358::
8359
8360      declare float     @llvm.cos.f32(float  %Val)
8361      declare double    @llvm.cos.f64(double %Val)
8362      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
8363      declare fp128     @llvm.cos.f128(fp128 %Val)
8364      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
8365
8366Overview:
8367"""""""""
8368
8369The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8370
8371Arguments:
8372""""""""""
8373
8374The argument and return value are floating point numbers of the same
8375type.
8376
8377Semantics:
8378""""""""""
8379
8380This function returns the cosine of the specified operand, returning the
8381same values as the libm ``cos`` functions would, and handles error
8382conditions in the same way.
8383
8384'``llvm.pow.*``' Intrinsic
8385^^^^^^^^^^^^^^^^^^^^^^^^^^
8386
8387Syntax:
8388"""""""
8389
8390This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8391floating point or vector of floating point type. Not all targets support
8392all types however.
8393
8394::
8395
8396      declare float     @llvm.pow.f32(float  %Val, float %Power)
8397      declare double    @llvm.pow.f64(double %Val, double %Power)
8398      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
8399      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
8400      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
8401
8402Overview:
8403"""""""""
8404
8405The '``llvm.pow.*``' intrinsics return the first operand raised to the
8406specified (positive or negative) power.
8407
8408Arguments:
8409""""""""""
8410
8411The second argument is a floating point power, and the first is a value
8412to raise to that power.
8413
8414Semantics:
8415""""""""""
8416
8417This function returns the first value raised to the second power,
8418returning the same values as the libm ``pow`` functions would, and
8419handles error conditions in the same way.
8420
8421'``llvm.exp.*``' Intrinsic
8422^^^^^^^^^^^^^^^^^^^^^^^^^^
8423
8424Syntax:
8425"""""""
8426
8427This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8428floating point or vector of floating point type. Not all targets support
8429all types however.
8430
8431::
8432
8433      declare float     @llvm.exp.f32(float  %Val)
8434      declare double    @llvm.exp.f64(double %Val)
8435      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
8436      declare fp128     @llvm.exp.f128(fp128 %Val)
8437      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
8438
8439Overview:
8440"""""""""
8441
8442The '``llvm.exp.*``' intrinsics perform the exp function.
8443
8444Arguments:
8445""""""""""
8446
8447The argument and return value are floating point numbers of the same
8448type.
8449
8450Semantics:
8451""""""""""
8452
8453This function returns the same values as the libm ``exp`` functions
8454would, and handles error conditions in the same way.
8455
8456'``llvm.exp2.*``' Intrinsic
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8463floating point or vector of floating point type. Not all targets support
8464all types however.
8465
8466::
8467
8468      declare float     @llvm.exp2.f32(float  %Val)
8469      declare double    @llvm.exp2.f64(double %Val)
8470      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
8471      declare fp128     @llvm.exp2.f128(fp128 %Val)
8472      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
8473
8474Overview:
8475"""""""""
8476
8477The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8478
8479Arguments:
8480""""""""""
8481
8482The argument and return value are floating point numbers of the same
8483type.
8484
8485Semantics:
8486""""""""""
8487
8488This function returns the same values as the libm ``exp2`` functions
8489would, and handles error conditions in the same way.
8490
8491'``llvm.log.*``' Intrinsic
8492^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497This is an overloaded intrinsic. You can use ``llvm.log`` on any
8498floating point or vector of floating point type. Not all targets support
8499all types however.
8500
8501::
8502
8503      declare float     @llvm.log.f32(float  %Val)
8504      declare double    @llvm.log.f64(double %Val)
8505      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
8506      declare fp128     @llvm.log.f128(fp128 %Val)
8507      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
8508
8509Overview:
8510"""""""""
8511
8512The '``llvm.log.*``' intrinsics perform the log function.
8513
8514Arguments:
8515""""""""""
8516
8517The argument and return value are floating point numbers of the same
8518type.
8519
8520Semantics:
8521""""""""""
8522
8523This function returns the same values as the libm ``log`` functions
8524would, and handles error conditions in the same way.
8525
8526'``llvm.log10.*``' Intrinsic
8527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8528
8529Syntax:
8530"""""""
8531
8532This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8533floating point or vector of floating point type. Not all targets support
8534all types however.
8535
8536::
8537
8538      declare float     @llvm.log10.f32(float  %Val)
8539      declare double    @llvm.log10.f64(double %Val)
8540      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
8541      declare fp128     @llvm.log10.f128(fp128 %Val)
8542      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
8543
8544Overview:
8545"""""""""
8546
8547The '``llvm.log10.*``' intrinsics perform the log10 function.
8548
8549Arguments:
8550""""""""""
8551
8552The argument and return value are floating point numbers of the same
8553type.
8554
8555Semantics:
8556""""""""""
8557
8558This function returns the same values as the libm ``log10`` functions
8559would, and handles error conditions in the same way.
8560
8561'``llvm.log2.*``' Intrinsic
8562^^^^^^^^^^^^^^^^^^^^^^^^^^^
8563
8564Syntax:
8565"""""""
8566
8567This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8568floating point or vector of floating point type. Not all targets support
8569all types however.
8570
8571::
8572
8573      declare float     @llvm.log2.f32(float  %Val)
8574      declare double    @llvm.log2.f64(double %Val)
8575      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
8576      declare fp128     @llvm.log2.f128(fp128 %Val)
8577      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
8578
8579Overview:
8580"""""""""
8581
8582The '``llvm.log2.*``' intrinsics perform the log2 function.
8583
8584Arguments:
8585""""""""""
8586
8587The argument and return value are floating point numbers of the same
8588type.
8589
8590Semantics:
8591""""""""""
8592
8593This function returns the same values as the libm ``log2`` functions
8594would, and handles error conditions in the same way.
8595
8596'``llvm.fma.*``' Intrinsic
8597^^^^^^^^^^^^^^^^^^^^^^^^^^
8598
8599Syntax:
8600"""""""
8601
8602This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8603floating point or vector of floating point type. Not all targets support
8604all types however.
8605
8606::
8607
8608      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
8609      declare double    @llvm.fma.f64(double %a, double %b, double %c)
8610      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8611      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8612      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8613
8614Overview:
8615"""""""""
8616
8617The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8618operation.
8619
8620Arguments:
8621""""""""""
8622
8623The argument and return value are floating point numbers of the same
8624type.
8625
8626Semantics:
8627""""""""""
8628
8629This function returns the same values as the libm ``fma`` functions
8630would, and does not set errno.
8631
8632'``llvm.fabs.*``' Intrinsic
8633^^^^^^^^^^^^^^^^^^^^^^^^^^^
8634
8635Syntax:
8636"""""""
8637
8638This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8639floating point or vector of floating point type. Not all targets support
8640all types however.
8641
8642::
8643
8644      declare float     @llvm.fabs.f32(float  %Val)
8645      declare double    @llvm.fabs.f64(double %Val)
8646      declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
8647      declare fp128     @llvm.fabs.f128(fp128 %Val)
8648      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8649
8650Overview:
8651"""""""""
8652
8653The '``llvm.fabs.*``' intrinsics return the absolute value of the
8654operand.
8655
8656Arguments:
8657""""""""""
8658
8659The argument and return value are floating point numbers of the same
8660type.
8661
8662Semantics:
8663""""""""""
8664
8665This function returns the same values as the libm ``fabs`` functions
8666would, and handles error conditions in the same way.
8667
8668'``llvm.minnum.*``' Intrinsic
8669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8670
8671Syntax:
8672"""""""
8673
8674This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8675floating point or vector of floating point type. Not all targets support
8676all types however.
8677
8678::
8679
8680      declare float     @llvm.minnum.f32(float %Val0, float %Val1)
8681      declare double    @llvm.minnum.f64(double %Val0, double %Val1)
8682      declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8683      declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8684      declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
8685
8686Overview:
8687"""""""""
8688
8689The '``llvm.minnum.*``' intrinsics return the minimum of the two
8690arguments.
8691
8692
8693Arguments:
8694""""""""""
8695
8696The arguments and return value are floating point numbers of the same
8697type.
8698
8699Semantics:
8700""""""""""
8701
8702Follows the IEEE-754 semantics for minNum, which also match for libm's
8703fmin.
8704
8705If either operand is a NaN, returns the other non-NaN operand. Returns
8706NaN only if both operands are NaN. If the operands compare equal,
8707returns a value that compares equal to both operands. This means that
8708fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8709
8710'``llvm.maxnum.*``' Intrinsic
8711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8712
8713Syntax:
8714"""""""
8715
8716This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8717floating point or vector of floating point type. Not all targets support
8718all types however.
8719
8720::
8721
8722      declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
8723      declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
8724      declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
8725      declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8726      declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
8727
8728Overview:
8729"""""""""
8730
8731The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8732arguments.
8733
8734
8735Arguments:
8736""""""""""
8737
8738The arguments and return value are floating point numbers of the same
8739type.
8740
8741Semantics:
8742""""""""""
8743Follows the IEEE-754 semantics for maxNum, which also match for libm's
8744fmax.
8745
8746If either operand is a NaN, returns the other non-NaN operand. Returns
8747NaN only if both operands are NaN. If the operands compare equal,
8748returns a value that compares equal to both operands. This means that
8749fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8750
8751'``llvm.copysign.*``' Intrinsic
8752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8753
8754Syntax:
8755"""""""
8756
8757This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8758floating point or vector of floating point type. Not all targets support
8759all types however.
8760
8761::
8762
8763      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
8764      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
8765      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
8766      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8767      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
8768
8769Overview:
8770"""""""""
8771
8772The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8773first operand and the sign of the second operand.
8774
8775Arguments:
8776""""""""""
8777
8778The arguments and return value are floating point numbers of the same
8779type.
8780
8781Semantics:
8782""""""""""
8783
8784This function returns the same values as the libm ``copysign``
8785functions would, and handles error conditions in the same way.
8786
8787'``llvm.floor.*``' Intrinsic
8788^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8789
8790Syntax:
8791"""""""
8792
8793This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8794floating point or vector of floating point type. Not all targets support
8795all types however.
8796
8797::
8798
8799      declare float     @llvm.floor.f32(float  %Val)
8800      declare double    @llvm.floor.f64(double %Val)
8801      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
8802      declare fp128     @llvm.floor.f128(fp128 %Val)
8803      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
8804
8805Overview:
8806"""""""""
8807
8808The '``llvm.floor.*``' intrinsics return the floor of the operand.
8809
8810Arguments:
8811""""""""""
8812
8813The argument and return value are floating point numbers of the same
8814type.
8815
8816Semantics:
8817""""""""""
8818
8819This function returns the same values as the libm ``floor`` functions
8820would, and handles error conditions in the same way.
8821
8822'``llvm.ceil.*``' Intrinsic
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8829floating point or vector of floating point type. Not all targets support
8830all types however.
8831
8832::
8833
8834      declare float     @llvm.ceil.f32(float  %Val)
8835      declare double    @llvm.ceil.f64(double %Val)
8836      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
8837      declare fp128     @llvm.ceil.f128(fp128 %Val)
8838      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
8839
8840Overview:
8841"""""""""
8842
8843The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8844
8845Arguments:
8846""""""""""
8847
8848The argument and return value are floating point numbers of the same
8849type.
8850
8851Semantics:
8852""""""""""
8853
8854This function returns the same values as the libm ``ceil`` functions
8855would, and handles error conditions in the same way.
8856
8857'``llvm.trunc.*``' Intrinsic
8858^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8859
8860Syntax:
8861"""""""
8862
8863This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8864floating point or vector of floating point type. Not all targets support
8865all types however.
8866
8867::
8868
8869      declare float     @llvm.trunc.f32(float  %Val)
8870      declare double    @llvm.trunc.f64(double %Val)
8871      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
8872      declare fp128     @llvm.trunc.f128(fp128 %Val)
8873      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
8874
8875Overview:
8876"""""""""
8877
8878The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8879nearest integer not larger in magnitude than the operand.
8880
8881Arguments:
8882""""""""""
8883
8884The argument and return value are floating point numbers of the same
8885type.
8886
8887Semantics:
8888""""""""""
8889
8890This function returns the same values as the libm ``trunc`` functions
8891would, and handles error conditions in the same way.
8892
8893'``llvm.rint.*``' Intrinsic
8894^^^^^^^^^^^^^^^^^^^^^^^^^^^
8895
8896Syntax:
8897"""""""
8898
8899This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8900floating point or vector of floating point type. Not all targets support
8901all types however.
8902
8903::
8904
8905      declare float     @llvm.rint.f32(float  %Val)
8906      declare double    @llvm.rint.f64(double %Val)
8907      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
8908      declare fp128     @llvm.rint.f128(fp128 %Val)
8909      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8915nearest integer. It may raise an inexact floating-point exception if the
8916operand isn't an integer.
8917
8918Arguments:
8919""""""""""
8920
8921The argument and return value are floating point numbers of the same
8922type.
8923
8924Semantics:
8925""""""""""
8926
8927This function returns the same values as the libm ``rint`` functions
8928would, and handles error conditions in the same way.
8929
8930'``llvm.nearbyint.*``' Intrinsic
8931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8932
8933Syntax:
8934"""""""
8935
8936This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8937floating point or vector of floating point type. Not all targets support
8938all types however.
8939
8940::
8941
8942      declare float     @llvm.nearbyint.f32(float  %Val)
8943      declare double    @llvm.nearbyint.f64(double %Val)
8944      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
8945      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
8946      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
8947
8948Overview:
8949"""""""""
8950
8951The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8952nearest integer.
8953
8954Arguments:
8955""""""""""
8956
8957The argument and return value are floating point numbers of the same
8958type.
8959
8960Semantics:
8961""""""""""
8962
8963This function returns the same values as the libm ``nearbyint``
8964functions would, and handles error conditions in the same way.
8965
8966'``llvm.round.*``' Intrinsic
8967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8968
8969Syntax:
8970"""""""
8971
8972This is an overloaded intrinsic. You can use ``llvm.round`` on any
8973floating point or vector of floating point type. Not all targets support
8974all types however.
8975
8976::
8977
8978      declare float     @llvm.round.f32(float  %Val)
8979      declare double    @llvm.round.f64(double %Val)
8980      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
8981      declare fp128     @llvm.round.f128(fp128 %Val)
8982      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
8983
8984Overview:
8985"""""""""
8986
8987The '``llvm.round.*``' intrinsics returns the operand rounded to the
8988nearest integer.
8989
8990Arguments:
8991""""""""""
8992
8993The argument and return value are floating point numbers of the same
8994type.
8995
8996Semantics:
8997""""""""""
8998
8999This function returns the same values as the libm ``round``
9000functions would, and handles error conditions in the same way.
9001
9002Bit Manipulation Intrinsics
9003---------------------------
9004
9005LLVM provides intrinsics for a few important bit manipulation
9006operations. These allow efficient code generation for some algorithms.
9007
9008'``llvm.bswap.*``' Intrinsics
9009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9010
9011Syntax:
9012"""""""
9013
9014This is an overloaded intrinsic function. You can use bswap on any
9015integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9016
9017::
9018
9019      declare i16 @llvm.bswap.i16(i16 <id>)
9020      declare i32 @llvm.bswap.i32(i32 <id>)
9021      declare i64 @llvm.bswap.i64(i64 <id>)
9022
9023Overview:
9024"""""""""
9025
9026The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9027values with an even number of bytes (positive multiple of 16 bits).
9028These are useful for performing operations on data that is not in the
9029target's native byte order.
9030
9031Semantics:
9032""""""""""
9033
9034The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9035and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9036intrinsic returns an i32 value that has the four bytes of the input i32
9037swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9038returned i32 will have its bytes in 3, 2, 1, 0 order. The
9039``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9040concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9041respectively).
9042
9043'``llvm.ctpop.*``' Intrinsic
9044^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9045
9046Syntax:
9047"""""""
9048
9049This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9050bit width, or on any vector with integer elements. Not all targets
9051support all bit widths or vector types, however.
9052
9053::
9054
9055      declare i8 @llvm.ctpop.i8(i8  <src>)
9056      declare i16 @llvm.ctpop.i16(i16 <src>)
9057      declare i32 @llvm.ctpop.i32(i32 <src>)
9058      declare i64 @llvm.ctpop.i64(i64 <src>)
9059      declare i256 @llvm.ctpop.i256(i256 <src>)
9060      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9061
9062Overview:
9063"""""""""
9064
9065The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9066in a value.
9067
9068Arguments:
9069""""""""""
9070
9071The only argument is the value to be counted. The argument may be of any
9072integer type, or a vector with integer elements. The return type must
9073match the argument type.
9074
9075Semantics:
9076""""""""""
9077
9078The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9079each element of a vector.
9080
9081'``llvm.ctlz.*``' Intrinsic
9082^^^^^^^^^^^^^^^^^^^^^^^^^^^
9083
9084Syntax:
9085"""""""
9086
9087This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9088integer bit width, or any vector whose elements are integers. Not all
9089targets support all bit widths or vector types, however.
9090
9091::
9092
9093      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
9094      declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
9095      declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
9096      declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
9097      declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9098      declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9099
9100Overview:
9101"""""""""
9102
9103The '``llvm.ctlz``' family of intrinsic functions counts the number of
9104leading zeros in a variable.
9105
9106Arguments:
9107""""""""""
9108
9109The first argument is the value to be counted. This argument may be of
9110any integer type, or a vector with integer element type. The return
9111type must match the first argument type.
9112
9113The second argument must be a constant and is a flag to indicate whether
9114the intrinsic should ensure that a zero as the first argument produces a
9115defined result. Historically some architectures did not provide a
9116defined result for zero values as efficiently, and many algorithms are
9117now predicated on avoiding zero-value inputs.
9118
9119Semantics:
9120""""""""""
9121
9122The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9123zeros in a variable, or within each element of the vector. If
9124``src == 0`` then the result is the size in bits of the type of ``src``
9125if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9126``llvm.ctlz(i32 2) = 30``.
9127
9128'``llvm.cttz.*``' Intrinsic
9129^^^^^^^^^^^^^^^^^^^^^^^^^^^
9130
9131Syntax:
9132"""""""
9133
9134This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9135integer bit width, or any vector of integer elements. Not all targets
9136support all bit widths or vector types, however.
9137
9138::
9139
9140      declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
9141      declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
9142      declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
9143      declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
9144      declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9145      declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9146
9147Overview:
9148"""""""""
9149
9150The '``llvm.cttz``' family of intrinsic functions counts the number of
9151trailing zeros.
9152
9153Arguments:
9154""""""""""
9155
9156The first argument is the value to be counted. This argument may be of
9157any integer type, or a vector with integer element type. The return
9158type must match the first argument type.
9159
9160The second argument must be a constant and is a flag to indicate whether
9161the intrinsic should ensure that a zero as the first argument produces a
9162defined result. Historically some architectures did not provide a
9163defined result for zero values as efficiently, and many algorithms are
9164now predicated on avoiding zero-value inputs.
9165
9166Semantics:
9167""""""""""
9168
9169The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9170zeros in a variable, or within each element of a vector. If ``src == 0``
9171then the result is the size in bits of the type of ``src`` if
9172``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9173``llvm.cttz(2) = 1``.
9174
9175.. _int_overflow:
9176
9177Arithmetic with Overflow Intrinsics
9178-----------------------------------
9179
9180LLVM provides intrinsics for some arithmetic with overflow operations.
9181
9182'``llvm.sadd.with.overflow.*``' Intrinsics
9183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9184
9185Syntax:
9186"""""""
9187
9188This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9189on any integer bit width.
9190
9191::
9192
9193      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9194      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9195      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9196
9197Overview:
9198"""""""""
9199
9200The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9201a signed addition of the two arguments, and indicate whether an overflow
9202occurred during the signed summation.
9203
9204Arguments:
9205""""""""""
9206
9207The arguments (%a and %b) and the first element of the result structure
9208may be of integer types of any bit width, but they must have the same
9209bit width. The second element of the result structure must be of type
9210``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9211addition.
9212
9213Semantics:
9214""""""""""
9215
9216The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9217a signed addition of the two variables. They return a structure --- the
9218first element of which is the signed summation, and the second element
9219of which is a bit specifying if the signed summation resulted in an
9220overflow.
9221
9222Examples:
9223"""""""""
9224
9225.. code-block:: llvm
9226
9227      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9228      %sum = extractvalue {i32, i1} %res, 0
9229      %obit = extractvalue {i32, i1} %res, 1
9230      br i1 %obit, label %overflow, label %normal
9231
9232'``llvm.uadd.with.overflow.*``' Intrinsics
9233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9234
9235Syntax:
9236"""""""
9237
9238This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9239on any integer bit width.
9240
9241::
9242
9243      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9244      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9245      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9246
9247Overview:
9248"""""""""
9249
9250The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9251an unsigned addition of the two arguments, and indicate whether a carry
9252occurred during the unsigned summation.
9253
9254Arguments:
9255""""""""""
9256
9257The arguments (%a and %b) and the first element of the result structure
9258may be of integer types of any bit width, but they must have the same
9259bit width. The second element of the result structure must be of type
9260``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9261addition.
9262
9263Semantics:
9264""""""""""
9265
9266The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9267an unsigned addition of the two arguments. They return a structure --- the
9268first element of which is the sum, and the second element of which is a
9269bit specifying if the unsigned summation resulted in a carry.
9270
9271Examples:
9272"""""""""
9273
9274.. code-block:: llvm
9275
9276      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9277      %sum = extractvalue {i32, i1} %res, 0
9278      %obit = extractvalue {i32, i1} %res, 1
9279      br i1 %obit, label %carry, label %normal
9280
9281'``llvm.ssub.with.overflow.*``' Intrinsics
9282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9283
9284Syntax:
9285"""""""
9286
9287This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9288on any integer bit width.
9289
9290::
9291
9292      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9293      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9294      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9300a signed subtraction of the two arguments, and indicate whether an
9301overflow occurred during the signed subtraction.
9302
9303Arguments:
9304""""""""""
9305
9306The arguments (%a and %b) and the first element of the result structure
9307may be of integer types of any bit width, but they must have the same
9308bit width. The second element of the result structure must be of type
9309``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9310subtraction.
9311
9312Semantics:
9313""""""""""
9314
9315The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9316a signed subtraction of the two arguments. They return a structure --- the
9317first element of which is the subtraction, and the second element of
9318which is a bit specifying if the signed subtraction resulted in an
9319overflow.
9320
9321Examples:
9322"""""""""
9323
9324.. code-block:: llvm
9325
9326      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9327      %sum = extractvalue {i32, i1} %res, 0
9328      %obit = extractvalue {i32, i1} %res, 1
9329      br i1 %obit, label %overflow, label %normal
9330
9331'``llvm.usub.with.overflow.*``' Intrinsics
9332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9333
9334Syntax:
9335"""""""
9336
9337This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9338on any integer bit width.
9339
9340::
9341
9342      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9343      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9344      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9350an unsigned subtraction of the two arguments, and indicate whether an
9351overflow occurred during the unsigned subtraction.
9352
9353Arguments:
9354""""""""""
9355
9356The arguments (%a and %b) and the first element of the result structure
9357may be of integer types of any bit width, but they must have the same
9358bit width. The second element of the result structure must be of type
9359``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9360subtraction.
9361
9362Semantics:
9363""""""""""
9364
9365The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9366an unsigned subtraction of the two arguments. They return a structure ---
9367the first element of which is the subtraction, and the second element of
9368which is a bit specifying if the unsigned subtraction resulted in an
9369overflow.
9370
9371Examples:
9372"""""""""
9373
9374.. code-block:: llvm
9375
9376      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9377      %sum = extractvalue {i32, i1} %res, 0
9378      %obit = extractvalue {i32, i1} %res, 1
9379      br i1 %obit, label %overflow, label %normal
9380
9381'``llvm.smul.with.overflow.*``' Intrinsics
9382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9383
9384Syntax:
9385"""""""
9386
9387This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9388on any integer bit width.
9389
9390::
9391
9392      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9393      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9394      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9395
9396Overview:
9397"""""""""
9398
9399The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9400a signed multiplication of the two arguments, and indicate whether an
9401overflow occurred during the signed multiplication.
9402
9403Arguments:
9404""""""""""
9405
9406The arguments (%a and %b) and the first element of the result structure
9407may be of integer types of any bit width, but they must have the same
9408bit width. The second element of the result structure must be of type
9409``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9410multiplication.
9411
9412Semantics:
9413""""""""""
9414
9415The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9416a signed multiplication of the two arguments. They return a structure ---
9417the first element of which is the multiplication, and the second element
9418of which is a bit specifying if the signed multiplication resulted in an
9419overflow.
9420
9421Examples:
9422"""""""""
9423
9424.. code-block:: llvm
9425
9426      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9427      %sum = extractvalue {i32, i1} %res, 0
9428      %obit = extractvalue {i32, i1} %res, 1
9429      br i1 %obit, label %overflow, label %normal
9430
9431'``llvm.umul.with.overflow.*``' Intrinsics
9432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9433
9434Syntax:
9435"""""""
9436
9437This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9438on any integer bit width.
9439
9440::
9441
9442      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9443      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9444      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9445
9446Overview:
9447"""""""""
9448
9449The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9450a unsigned multiplication of the two arguments, and indicate whether an
9451overflow occurred during the unsigned multiplication.
9452
9453Arguments:
9454""""""""""
9455
9456The arguments (%a and %b) and the first element of the result structure
9457may be of integer types of any bit width, but they must have the same
9458bit width. The second element of the result structure must be of type
9459``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9460multiplication.
9461
9462Semantics:
9463""""""""""
9464
9465The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9466an unsigned multiplication of the two arguments. They return a structure ---
9467the first element of which is the multiplication, and the second
9468element of which is a bit specifying if the unsigned multiplication
9469resulted in an overflow.
9470
9471Examples:
9472"""""""""
9473
9474.. code-block:: llvm
9475
9476      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9477      %sum = extractvalue {i32, i1} %res, 0
9478      %obit = extractvalue {i32, i1} %res, 1
9479      br i1 %obit, label %overflow, label %normal
9480
9481Specialised Arithmetic Intrinsics
9482---------------------------------
9483
9484'``llvm.fmuladd.*``' Intrinsic
9485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9486
9487Syntax:
9488"""""""
9489
9490::
9491
9492      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9493      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9494
9495Overview:
9496"""""""""
9497
9498The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
9499expressions that can be fused if the code generator determines that (a) the
9500target instruction set has support for a fused operation, and (b) that the
9501fused operation is more efficient than the equivalent, separate pair of mul
9502and add instructions.
9503
9504Arguments:
9505""""""""""
9506
9507The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9508multiplicands, a and b, and an addend c.
9509
9510Semantics:
9511""""""""""
9512
9513The expression:
9514
9515::
9516
9517      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9518
9519is equivalent to the expression a \* b + c, except that rounding will
9520not be performed between the multiplication and addition steps if the
9521code generator fuses the operations. Fusion is not guaranteed, even if
9522the target platform supports it. If a fused multiply-add is required the
9523corresponding llvm.fma.\* intrinsic function should be used
9524instead. This never sets errno, just as '``llvm.fma.*``'.
9525
9526Examples:
9527"""""""""
9528
9529.. code-block:: llvm
9530
9531      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
9532
9533Half Precision Floating Point Intrinsics
9534----------------------------------------
9535
9536For most target platforms, half precision floating point is a
9537storage-only format. This means that it is a dense encoding (in memory)
9538but does not support computation in the format.
9539
9540This means that code must first load the half-precision floating point
9541value as an i16, then convert it to float with
9542:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9543then be performed on the float value (including extending to double
9544etc). To store the value back to memory, it is first converted to float
9545if needed, then converted to i16 with
9546:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9547i16 value.
9548
9549.. _int_convert_to_fp16:
9550
9551'``llvm.convert.to.fp16``' Intrinsic
9552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9553
9554Syntax:
9555"""""""
9556
9557::
9558
9559      declare i16 @llvm.convert.to.fp16.f32(float %a)
9560      declare i16 @llvm.convert.to.fp16.f64(double %a)
9561
9562Overview:
9563"""""""""
9564
9565The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9566conventional floating point type to half precision floating point format.
9567
9568Arguments:
9569""""""""""
9570
9571The intrinsic function contains single argument - the value to be
9572converted.
9573
9574Semantics:
9575""""""""""
9576
9577The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9578conventional floating point format to half precision floating point format. The
9579return value is an ``i16`` which contains the converted number.
9580
9581Examples:
9582"""""""""
9583
9584.. code-block:: llvm
9585
9586      %res = call i16 @llvm.convert.to.fp16.f32(float %a)
9587      store i16 %res, i16* @x, align 2
9588
9589.. _int_convert_from_fp16:
9590
9591'``llvm.convert.from.fp16``' Intrinsic
9592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9593
9594Syntax:
9595"""""""
9596
9597::
9598
9599      declare float @llvm.convert.from.fp16.f32(i16 %a)
9600      declare double @llvm.convert.from.fp16.f64(i16 %a)
9601
9602Overview:
9603"""""""""
9604
9605The '``llvm.convert.from.fp16``' intrinsic function performs a
9606conversion from half precision floating point format to single precision
9607floating point format.
9608
9609Arguments:
9610""""""""""
9611
9612The intrinsic function contains single argument - the value to be
9613converted.
9614
9615Semantics:
9616""""""""""
9617
9618The '``llvm.convert.from.fp16``' intrinsic function performs a
9619conversion from half single precision floating point format to single
9620precision floating point format. The input half-float value is
9621represented by an ``i16`` value.
9622
9623Examples:
9624"""""""""
9625
9626.. code-block:: llvm
9627
9628      %a = load i16, i16* @x, align 2
9629      %res = call float @llvm.convert.from.fp16(i16 %a)
9630
9631.. _dbg_intrinsics:
9632
9633Debugger Intrinsics
9634-------------------
9635
9636The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9637prefix), are described in the `LLVM Source Level
9638Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9639document.
9640
9641Exception Handling Intrinsics
9642-----------------------------
9643
9644The LLVM exception handling intrinsics (which all start with
9645``llvm.eh.`` prefix), are described in the `LLVM Exception
9646Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9647
9648.. _int_trampoline:
9649
9650Trampoline Intrinsics
9651---------------------
9652
9653These intrinsics make it possible to excise one parameter, marked with
9654the :ref:`nest <nest>` attribute, from a function. The result is a
9655callable function pointer lacking the nest parameter - the caller does
9656not need to provide a value for it. Instead, the value to use is stored
9657in advance in a "trampoline", a block of memory usually allocated on the
9658stack, which also contains code to splice the nest value into the
9659argument list. This is used to implement the GCC nested function address
9660extension.
9661
9662For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9663then the resulting function pointer has signature ``i32 (i32, i32)*``.
9664It can be created as follows:
9665
9666.. code-block:: llvm
9667
9668      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9669      %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
9670      call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9671      %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9672      %fp = bitcast i8* %p to i32 (i32, i32)*
9673
9674The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9675``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9676
9677.. _int_it:
9678
9679'``llvm.init.trampoline``' Intrinsic
9680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9681
9682Syntax:
9683"""""""
9684
9685::
9686
9687      declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9688
9689Overview:
9690"""""""""
9691
9692This fills the memory pointed to by ``tramp`` with executable code,
9693turning it into a trampoline.
9694
9695Arguments:
9696""""""""""
9697
9698The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9699pointers. The ``tramp`` argument must point to a sufficiently large and
9700sufficiently aligned block of memory; this memory is written to by the
9701intrinsic. Note that the size and the alignment are target-specific -
9702LLVM currently provides no portable way of determining them, so a
9703front-end that generates this intrinsic needs to have some
9704target-specific knowledge. The ``func`` argument must hold a function
9705bitcast to an ``i8*``.
9706
9707Semantics:
9708""""""""""
9709
9710The block of memory pointed to by ``tramp`` is filled with target
9711dependent code, turning it into a function. Then ``tramp`` needs to be
9712passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9713be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9714function's signature is the same as that of ``func`` with any arguments
9715marked with the ``nest`` attribute removed. At most one such ``nest``
9716argument is allowed, and it must be of pointer type. Calling the new
9717function is equivalent to calling ``func`` with the same argument list,
9718but with ``nval`` used for the missing ``nest`` argument. If, after
9719calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9720modified, then the effect of any later call to the returned function
9721pointer is undefined.
9722
9723.. _int_at:
9724
9725'``llvm.adjust.trampoline``' Intrinsic
9726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9727
9728Syntax:
9729"""""""
9730
9731::
9732
9733      declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9734
9735Overview:
9736"""""""""
9737
9738This performs any required machine-specific adjustment to the address of
9739a trampoline (passed as ``tramp``).
9740
9741Arguments:
9742""""""""""
9743
9744``tramp`` must point to a block of memory which already has trampoline
9745code filled in by a previous call to
9746:ref:`llvm.init.trampoline <int_it>`.
9747
9748Semantics:
9749""""""""""
9750
9751On some architectures the address of the code to be executed needs to be
9752different than the address where the trampoline is actually stored. This
9753intrinsic returns the executable address corresponding to ``tramp``
9754after performing the required machine specific adjustments. The pointer
9755returned can then be :ref:`bitcast and executed <int_trampoline>`.
9756
9757Masked Vector Load and Store Intrinsics
9758---------------------------------------
9759
9760LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9761
9762.. _int_mload:
9763
9764'``llvm.masked.load.*``' Intrinsics
9765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9766
9767Syntax:
9768"""""""
9769This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9770
9771::
9772
9773      declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9774      declare <2 x double> @llvm.masked.load.v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
9775
9776Overview:
9777"""""""""
9778
9779Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9780
9781
9782Arguments:
9783""""""""""
9784
9785The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9786
9787
9788Semantics:
9789""""""""""
9790
9791The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9792The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9793
9794
9795::
9796
9797       %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9798
9799       ;; The result of the two following instructions is identical aside from potential memory access exception
9800       %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
9801       %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
9802
9803.. _int_mstore:
9804
9805'``llvm.masked.store.*``' Intrinsics
9806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9807
9808Syntax:
9809"""""""
9810This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9811
9812::
9813
9814       declare void @llvm.masked.store.v8i32 (<8 x i32>  <value>, <8 x i32> * <ptr>, i32 <alignment>,  <8 x i1>  <mask>)
9815       declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
9816
9817Overview:
9818"""""""""
9819
9820Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9821
9822Arguments:
9823""""""""""
9824
9825The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9826
9827
9828Semantics:
9829""""""""""
9830
9831The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9832The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9833
9834::
9835
9836       call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)
9837
9838       ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
9839       %oldval = load <16 x float>, <16 x float>* %ptr, align 4
9840       %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9841       store <16 x float> %res, <16 x float>* %ptr, align 4
9842
9843
9844Memory Use Markers
9845------------------
9846
9847This class of intrinsics provides information about the lifetime of
9848memory objects and ranges where variables are immutable.
9849
9850.. _int_lifestart:
9851
9852'``llvm.lifetime.start``' Intrinsic
9853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9854
9855Syntax:
9856"""""""
9857
9858::
9859
9860      declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9861
9862Overview:
9863"""""""""
9864
9865The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9866object's lifetime.
9867
9868Arguments:
9869""""""""""
9870
9871The first argument is a constant integer representing the size of the
9872object, or -1 if it is variable sized. The second argument is a pointer
9873to the object.
9874
9875Semantics:
9876""""""""""
9877
9878This intrinsic indicates that before this point in the code, the value
9879of the memory pointed to by ``ptr`` is dead. This means that it is known
9880to never be used and has an undefined value. A load from the pointer
9881that precedes this intrinsic can be replaced with ``'undef'``.
9882
9883.. _int_lifeend:
9884
9885'``llvm.lifetime.end``' Intrinsic
9886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9887
9888Syntax:
9889"""""""
9890
9891::
9892
9893      declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9894
9895Overview:
9896"""""""""
9897
9898The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9899object's lifetime.
9900
9901Arguments:
9902""""""""""
9903
9904The first argument is a constant integer representing the size of the
9905object, or -1 if it is variable sized. The second argument is a pointer
9906to the object.
9907
9908Semantics:
9909""""""""""
9910
9911This intrinsic indicates that after this point in the code, the value of
9912the memory pointed to by ``ptr`` is dead. This means that it is known to
9913never be used and has an undefined value. Any stores into the memory
9914object following this intrinsic may be removed as dead.
9915
9916'``llvm.invariant.start``' Intrinsic
9917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9918
9919Syntax:
9920"""""""
9921
9922::
9923
9924      declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9925
9926Overview:
9927"""""""""
9928
9929The '``llvm.invariant.start``' intrinsic specifies that the contents of
9930a memory object will not change.
9931
9932Arguments:
9933""""""""""
9934
9935The first argument is a constant integer representing the size of the
9936object, or -1 if it is variable sized. The second argument is a pointer
9937to the object.
9938
9939Semantics:
9940""""""""""
9941
9942This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9943the return value, the referenced memory location is constant and
9944unchanging.
9945
9946'``llvm.invariant.end``' Intrinsic
9947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9948
9949Syntax:
9950"""""""
9951
9952::
9953
9954      declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9955
9956Overview:
9957"""""""""
9958
9959The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9960memory object are mutable.
9961
9962Arguments:
9963""""""""""
9964
9965The first argument is the matching ``llvm.invariant.start`` intrinsic.
9966The second argument is a constant integer representing the size of the
9967object, or -1 if it is variable sized and the third argument is a
9968pointer to the object.
9969
9970Semantics:
9971""""""""""
9972
9973This intrinsic indicates that the memory is mutable again.
9974
9975General Intrinsics
9976------------------
9977
9978This class of intrinsics is designed to be generic and has no specific
9979purpose.
9980
9981'``llvm.var.annotation``' Intrinsic
9982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9983
9984Syntax:
9985"""""""
9986
9987::
9988
9989      declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9990
9991Overview:
9992"""""""""
9993
9994The '``llvm.var.annotation``' intrinsic.
9995
9996Arguments:
9997""""""""""
9998
9999The first argument is a pointer to a value, the second is a pointer to a
10000global string, the third is a pointer to a global string which is the
10001source file name, and the last argument is the line number.
10002
10003Semantics:
10004""""""""""
10005
10006This intrinsic allows annotation of local variables with arbitrary
10007strings. This can be useful for special purpose optimizations that want
10008to look for these annotations. These have no other defined use; they are
10009ignored by code generation and optimization.
10010
10011'``llvm.ptr.annotation.*``' Intrinsic
10012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10013
10014Syntax:
10015"""""""
10016
10017This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10018pointer to an integer of any width. *NOTE* you must specify an address space for
10019the pointer. The identifier for the default address space is the integer
10020'``0``'.
10021
10022::
10023
10024      declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
10025      declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
10026      declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
10027      declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
10028      declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
10029
10030Overview:
10031"""""""""
10032
10033The '``llvm.ptr.annotation``' intrinsic.
10034
10035Arguments:
10036""""""""""
10037
10038The first argument is a pointer to an integer value of arbitrary bitwidth
10039(result of some expression), the second is a pointer to a global string, the
10040third is a pointer to a global string which is the source file name, and the
10041last argument is the line number. It returns the value of the first argument.
10042
10043Semantics:
10044""""""""""
10045
10046This intrinsic allows annotation of a pointer to an integer with arbitrary
10047strings. This can be useful for special purpose optimizations that want to look
10048for these annotations. These have no other defined use; they are ignored by code
10049generation and optimization.
10050
10051'``llvm.annotation.*``' Intrinsic
10052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10053
10054Syntax:
10055"""""""
10056
10057This is an overloaded intrinsic. You can use '``llvm.annotation``' on
10058any integer bit width.
10059
10060::
10061
10062      declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
10063      declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
10064      declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
10065      declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
10066      declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
10067
10068Overview:
10069"""""""""
10070
10071The '``llvm.annotation``' intrinsic.
10072
10073Arguments:
10074""""""""""
10075
10076The first argument is an integer value (result of some expression), the
10077second is a pointer to a global string, the third is a pointer to a
10078global string which is the source file name, and the last argument is
10079the line number. It returns the value of the first argument.
10080
10081Semantics:
10082""""""""""
10083
10084This intrinsic allows annotations to be put on arbitrary expressions
10085with arbitrary strings. This can be useful for special purpose
10086optimizations that want to look for these annotations. These have no
10087other defined use; they are ignored by code generation and optimization.
10088
10089'``llvm.trap``' Intrinsic
10090^^^^^^^^^^^^^^^^^^^^^^^^^
10091
10092Syntax:
10093"""""""
10094
10095::
10096
10097      declare void @llvm.trap() noreturn nounwind
10098
10099Overview:
10100"""""""""
10101
10102The '``llvm.trap``' intrinsic.
10103
10104Arguments:
10105""""""""""
10106
10107None.
10108
10109Semantics:
10110""""""""""
10111
10112This intrinsic is lowered to the target dependent trap instruction. If
10113the target does not have a trap instruction, this intrinsic will be
10114lowered to a call of the ``abort()`` function.
10115
10116'``llvm.debugtrap``' Intrinsic
10117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10118
10119Syntax:
10120"""""""
10121
10122::
10123
10124      declare void @llvm.debugtrap() nounwind
10125
10126Overview:
10127"""""""""
10128
10129The '``llvm.debugtrap``' intrinsic.
10130
10131Arguments:
10132""""""""""
10133
10134None.
10135
10136Semantics:
10137""""""""""
10138
10139This intrinsic is lowered to code which is intended to cause an
10140execution trap with the intention of requesting the attention of a
10141debugger.
10142
10143'``llvm.stackprotector``' Intrinsic
10144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10145
10146Syntax:
10147"""""""
10148
10149::
10150
10151      declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10152
10153Overview:
10154"""""""""
10155
10156The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10157onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10158is placed on the stack before local variables.
10159
10160Arguments:
10161""""""""""
10162
10163The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10164The first argument is the value loaded from the stack guard
10165``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10166enough space to hold the value of the guard.
10167
10168Semantics:
10169""""""""""
10170
10171This intrinsic causes the prologue/epilogue inserter to force the position of
10172the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10173to ensure that if a local variable on the stack is overwritten, it will destroy
10174the value of the guard. When the function exits, the guard on the stack is
10175checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10176different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10177calling the ``__stack_chk_fail()`` function.
10178
10179'``llvm.stackprotectorcheck``' Intrinsic
10180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10181
10182Syntax:
10183"""""""
10184
10185::
10186
10187      declare void @llvm.stackprotectorcheck(i8** <guard>)
10188
10189Overview:
10190"""""""""
10191
10192The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
10193created stack protector and if they are not equal calls the
10194``__stack_chk_fail()`` function.
10195
10196Arguments:
10197""""""""""
10198
10199The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10200the variable ``@__stack_chk_guard``.
10201
10202Semantics:
10203""""""""""
10204
10205This intrinsic is provided to perform the stack protector check by comparing
10206``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10207values do not match call the ``__stack_chk_fail()`` function.
10208
10209The reason to provide this as an IR level intrinsic instead of implementing it
10210via other IR operations is that in order to perform this operation at the IR
10211level without an intrinsic, one would need to create additional basic blocks to
10212handle the success/failure cases. This makes it difficult to stop the stack
10213protector check from disrupting sibling tail calls in Codegen. With this
10214intrinsic, we are able to generate the stack protector basic blocks late in
10215codegen after the tail call decision has occurred.
10216
10217'``llvm.objectsize``' Intrinsic
10218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10219
10220Syntax:
10221"""""""
10222
10223::
10224
10225      declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10226      declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10227
10228Overview:
10229"""""""""
10230
10231The ``llvm.objectsize`` intrinsic is designed to provide information to
10232the optimizers to determine at compile time whether a) an operation
10233(like memcpy) will overflow a buffer that corresponds to an object, or
10234b) that a runtime check for overflow isn't necessary. An object in this
10235context means an allocation of a specific class, structure, array, or
10236other object.
10237
10238Arguments:
10239""""""""""
10240
10241The ``llvm.objectsize`` intrinsic takes two arguments. The first
10242argument is a pointer to or into the ``object``. The second argument is
10243a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10244or -1 (if false) when the object size is unknown. The second argument
10245only accepts constants.
10246
10247Semantics:
10248""""""""""
10249
10250The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10251the size of the object concerned. If the size cannot be determined at
10252compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10253on the ``min`` argument).
10254
10255'``llvm.expect``' Intrinsic
10256^^^^^^^^^^^^^^^^^^^^^^^^^^^
10257
10258Syntax:
10259"""""""
10260
10261This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10262integer bit width.
10263
10264::
10265
10266      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
10267      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10268      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10269
10270Overview:
10271"""""""""
10272
10273The ``llvm.expect`` intrinsic provides information about expected (the
10274most probable) value of ``val``, which can be used by optimizers.
10275
10276Arguments:
10277""""""""""
10278
10279The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10280a value. The second argument is an expected value, this needs to be a
10281constant value, variables are not allowed.
10282
10283Semantics:
10284""""""""""
10285
10286This intrinsic is lowered to the ``val``.
10287
10288'``llvm.assume``' Intrinsic
10289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10290
10291Syntax:
10292"""""""
10293
10294::
10295
10296      declare void @llvm.assume(i1 %cond)
10297
10298Overview:
10299"""""""""
10300
10301The ``llvm.assume`` allows the optimizer to assume that the provided
10302condition is true. This information can then be used in simplifying other parts
10303of the code.
10304
10305Arguments:
10306""""""""""
10307
10308The condition which the optimizer may assume is always true.
10309
10310Semantics:
10311""""""""""
10312
10313The intrinsic allows the optimizer to assume that the provided condition is
10314always true whenever the control flow reaches the intrinsic call. No code is
10315generated for this intrinsic, and instructions that contribute only to the
10316provided condition are not used for code generation. If the condition is
10317violated during execution, the behavior is undefined.
10318
10319Note that the optimizer might limit the transformations performed on values
10320used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10321only used to form the intrinsic's input argument. This might prove undesirable
10322if the extra information provided by the ``llvm.assume`` intrinsic does not cause
10323sufficient overall improvement in code quality. For this reason,
10324``llvm.assume`` should not be used to document basic mathematical invariants
10325that the optimizer can otherwise deduce or facts that are of little use to the
10326optimizer.
10327
10328.. _bitset.test:
10329
10330'``llvm.bitset.test``' Intrinsic
10331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10332
10333Syntax:
10334"""""""
10335
10336::
10337
10338      declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10339
10340
10341Arguments:
10342""""""""""
10343
10344The first argument is a pointer to be tested. The second argument is a
10345metadata string containing the name of a :doc:`bitset <BitSets>`.
10346
10347Overview:
10348"""""""""
10349
10350The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10351member of the given bitset.
10352
10353'``llvm.donothing``' Intrinsic
10354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10355
10356Syntax:
10357"""""""
10358
10359::
10360
10361      declare void @llvm.donothing() nounwind readnone
10362
10363Overview:
10364"""""""""
10365
10366The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10367two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10368with an invoke instruction.
10369
10370Arguments:
10371""""""""""
10372
10373None.
10374
10375Semantics:
10376""""""""""
10377
10378This intrinsic does nothing, and it's removed by optimizers and ignored
10379by codegen.
10380
10381Stack Map Intrinsics
10382--------------------
10383
10384LLVM provides experimental intrinsics to support runtime patching
10385mechanisms commonly desired in dynamic language JITs. These intrinsics
10386are described in :doc:`StackMaps`.
10387