1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "machine-cse"
33
34 STATISTIC(NumCoalesces, "Number of copies coalesced");
35 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs,
37 "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs,
39 "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
41
42 namespace {
43 class MachineCSE : public MachineFunctionPass {
44 const TargetInstrInfo *TII;
45 const TargetRegisterInfo *TRI;
46 AliasAnalysis *AA;
47 MachineDominatorTree *DT;
48 MachineRegisterInfo *MRI;
49 public:
50 static char ID; // Pass identification
MachineCSE()51 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
52 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
53 }
54
55 bool runOnMachineFunction(MachineFunction &MF) override;
56
getAnalysisUsage(AnalysisUsage & AU) const57 void getAnalysisUsage(AnalysisUsage &AU) const override {
58 AU.setPreservesCFG();
59 MachineFunctionPass::getAnalysisUsage(AU);
60 AU.addRequired<AliasAnalysis>();
61 AU.addPreservedID(MachineLoopInfoID);
62 AU.addRequired<MachineDominatorTree>();
63 AU.addPreserved<MachineDominatorTree>();
64 }
65
releaseMemory()66 void releaseMemory() override {
67 ScopeMap.clear();
68 Exps.clear();
69 }
70
71 private:
72 const unsigned LookAheadLimit;
73 typedef RecyclingAllocator<BumpPtrAllocator,
74 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
75 typedef ScopedHashTable<MachineInstr*, unsigned,
76 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
77 typedef ScopedHTType::ScopeTy ScopeType;
78 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
79 ScopedHTType VNT;
80 SmallVector<MachineInstr*, 64> Exps;
81 unsigned CurrVN;
82
83 bool PerformTrivialCopyPropagation(MachineInstr *MI,
84 MachineBasicBlock *MBB);
85 bool isPhysDefTriviallyDead(unsigned Reg,
86 MachineBasicBlock::const_iterator I,
87 MachineBasicBlock::const_iterator E) const;
88 bool hasLivePhysRegDefUses(const MachineInstr *MI,
89 const MachineBasicBlock *MBB,
90 SmallSet<unsigned,8> &PhysRefs,
91 SmallVectorImpl<unsigned> &PhysDefs,
92 bool &PhysUseDef) const;
93 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
94 SmallSet<unsigned,8> &PhysRefs,
95 SmallVectorImpl<unsigned> &PhysDefs,
96 bool &NonLocal) const;
97 bool isCSECandidate(MachineInstr *MI);
98 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
99 MachineInstr *CSMI, MachineInstr *MI);
100 void EnterScope(MachineBasicBlock *MBB);
101 void ExitScope(MachineBasicBlock *MBB);
102 bool ProcessBlock(MachineBasicBlock *MBB);
103 void ExitScopeIfDone(MachineDomTreeNode *Node,
104 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
105 bool PerformCSE(MachineDomTreeNode *Node);
106 };
107 } // end anonymous namespace
108
109 char MachineCSE::ID = 0;
110 char &llvm::MachineCSEID = MachineCSE::ID;
111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112 "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116 "Machine Common Subexpression Elimination", false, false)
117
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
121 /// be removed.
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
123 MachineBasicBlock *MBB) {
124 bool Changed = false;
125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126 MachineOperand &MO = MI->getOperand(i);
127 if (!MO.isReg() || !MO.isUse())
128 continue;
129 unsigned Reg = MO.getReg();
130 if (!TargetRegisterInfo::isVirtualRegister(Reg))
131 continue;
132 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
133 MachineInstr *DefMI = MRI->getVRegDef(Reg);
134 if (!DefMI->isCopy())
135 continue;
136 unsigned SrcReg = DefMI->getOperand(1).getReg();
137 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
138 continue;
139 if (DefMI->getOperand(0).getSubReg())
140 continue;
141 // FIXME: We should trivially coalesce subregister copies to expose CSE
142 // opportunities on instructions with truncated operands (see
143 // cse-add-with-overflow.ll). This can be done here as follows:
144 // if (SrcSubReg)
145 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
146 // SrcSubReg);
147 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
148 //
149 // The 2-addr pass has been updated to handle coalesced subregs. However,
150 // some machine-specific code still can't handle it.
151 // To handle it properly we also need a way find a constrained subregister
152 // class given a super-reg class and subreg index.
153 if (DefMI->getOperand(1).getSubReg())
154 continue;
155 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
156 if (!MRI->constrainRegClass(SrcReg, RC))
157 continue;
158 DEBUG(dbgs() << "Coalescing: " << *DefMI);
159 DEBUG(dbgs() << "*** to: " << *MI);
160 // Propagate SrcReg of copies to MI.
161 MO.setReg(SrcReg);
162 MRI->clearKillFlags(SrcReg);
163 // Coalesce single use copies.
164 if (OnlyOneUse) {
165 DefMI->eraseFromParent();
166 ++NumCoalesces;
167 }
168 Changed = true;
169 }
170
171 return Changed;
172 }
173
174 bool
isPhysDefTriviallyDead(unsigned Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const175 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
176 MachineBasicBlock::const_iterator I,
177 MachineBasicBlock::const_iterator E) const {
178 unsigned LookAheadLeft = LookAheadLimit;
179 while (LookAheadLeft) {
180 // Skip over dbg_value's.
181 while (I != E && I->isDebugValue())
182 ++I;
183
184 if (I == E)
185 // Reached end of block, register is obviously dead.
186 return true;
187
188 bool SeenDef = false;
189 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
190 const MachineOperand &MO = I->getOperand(i);
191 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
192 SeenDef = true;
193 if (!MO.isReg() || !MO.getReg())
194 continue;
195 if (!TRI->regsOverlap(MO.getReg(), Reg))
196 continue;
197 if (MO.isUse())
198 // Found a use!
199 return false;
200 SeenDef = true;
201 }
202 if (SeenDef)
203 // See a def of Reg (or an alias) before encountering any use, it's
204 // trivially dead.
205 return true;
206
207 --LookAheadLeft;
208 ++I;
209 }
210 return false;
211 }
212
213 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
214 /// physical registers (except for dead defs of physical registers). It also
215 /// returns the physical register def by reference if it's the only one and the
216 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & PhysUseDef) const217 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
218 const MachineBasicBlock *MBB,
219 SmallSet<unsigned,8> &PhysRefs,
220 SmallVectorImpl<unsigned> &PhysDefs,
221 bool &PhysUseDef) const{
222 // First, add all uses to PhysRefs.
223 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
224 const MachineOperand &MO = MI->getOperand(i);
225 if (!MO.isReg() || MO.isDef())
226 continue;
227 unsigned Reg = MO.getReg();
228 if (!Reg)
229 continue;
230 if (TargetRegisterInfo::isVirtualRegister(Reg))
231 continue;
232 // Reading constant physregs is ok.
233 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
234 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
235 PhysRefs.insert(*AI);
236 }
237
238 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
239 // (which currently contains only uses), set the PhysUseDef flag.
240 PhysUseDef = false;
241 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
242 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
243 const MachineOperand &MO = MI->getOperand(i);
244 if (!MO.isReg() || !MO.isDef())
245 continue;
246 unsigned Reg = MO.getReg();
247 if (!Reg)
248 continue;
249 if (TargetRegisterInfo::isVirtualRegister(Reg))
250 continue;
251 // Check against PhysRefs even if the def is "dead".
252 if (PhysRefs.count(Reg))
253 PhysUseDef = true;
254 // If the def is dead, it's ok. But the def may not marked "dead". That's
255 // common since this pass is run before livevariables. We can scan
256 // forward a few instructions and check if it is obviously dead.
257 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
258 PhysDefs.push_back(Reg);
259 }
260
261 // Finally, add all defs to PhysRefs as well.
262 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
263 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
264 PhysRefs.insert(*AI);
265
266 return !PhysRefs.empty();
267 }
268
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & NonLocal) const269 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
270 SmallSet<unsigned,8> &PhysRefs,
271 SmallVectorImpl<unsigned> &PhysDefs,
272 bool &NonLocal) const {
273 // For now conservatively returns false if the common subexpression is
274 // not in the same basic block as the given instruction. The only exception
275 // is if the common subexpression is in the sole predecessor block.
276 const MachineBasicBlock *MBB = MI->getParent();
277 const MachineBasicBlock *CSMBB = CSMI->getParent();
278
279 bool CrossMBB = false;
280 if (CSMBB != MBB) {
281 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
282 return false;
283
284 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
285 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
286 // Avoid extending live range of physical registers if they are
287 //allocatable or reserved.
288 return false;
289 }
290 CrossMBB = true;
291 }
292 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
293 MachineBasicBlock::const_iterator E = MI;
294 MachineBasicBlock::const_iterator EE = CSMBB->end();
295 unsigned LookAheadLeft = LookAheadLimit;
296 while (LookAheadLeft) {
297 // Skip over dbg_value's.
298 while (I != E && I != EE && I->isDebugValue())
299 ++I;
300
301 if (I == EE) {
302 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
303 (void)CrossMBB;
304 CrossMBB = false;
305 NonLocal = true;
306 I = MBB->begin();
307 EE = MBB->end();
308 continue;
309 }
310
311 if (I == E)
312 return true;
313
314 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
315 const MachineOperand &MO = I->getOperand(i);
316 // RegMasks go on instructions like calls that clobber lots of physregs.
317 // Don't attempt to CSE across such an instruction.
318 if (MO.isRegMask())
319 return false;
320 if (!MO.isReg() || !MO.isDef())
321 continue;
322 unsigned MOReg = MO.getReg();
323 if (TargetRegisterInfo::isVirtualRegister(MOReg))
324 continue;
325 if (PhysRefs.count(MOReg))
326 return false;
327 }
328
329 --LookAheadLeft;
330 ++I;
331 }
332
333 return false;
334 }
335
isCSECandidate(MachineInstr * MI)336 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
337 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
338 MI->isInlineAsm() || MI->isDebugValue())
339 return false;
340
341 // Ignore copies.
342 if (MI->isCopyLike())
343 return false;
344
345 // Ignore stuff that we obviously can't move.
346 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
347 MI->hasUnmodeledSideEffects())
348 return false;
349
350 if (MI->mayLoad()) {
351 // Okay, this instruction does a load. As a refinement, we allow the target
352 // to decide whether the loaded value is actually a constant. If so, we can
353 // actually use it as a load.
354 if (!MI->isInvariantLoad(AA))
355 // FIXME: we should be able to hoist loads with no other side effects if
356 // there are no other instructions which can change memory in this loop.
357 // This is a trivial form of alias analysis.
358 return false;
359 }
360 return true;
361 }
362
363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
364 /// common expression that defines Reg.
isProfitableToCSE(unsigned CSReg,unsigned Reg,MachineInstr * CSMI,MachineInstr * MI)365 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
366 MachineInstr *CSMI, MachineInstr *MI) {
367 // FIXME: Heuristics that works around the lack the live range splitting.
368
369 // If CSReg is used at all uses of Reg, CSE should not increase register
370 // pressure of CSReg.
371 bool MayIncreasePressure = true;
372 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
373 TargetRegisterInfo::isVirtualRegister(Reg)) {
374 MayIncreasePressure = false;
375 SmallPtrSet<MachineInstr*, 8> CSUses;
376 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
377 CSUses.insert(&MI);
378 }
379 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
380 if (!CSUses.count(&MI)) {
381 MayIncreasePressure = true;
382 break;
383 }
384 }
385 }
386 if (!MayIncreasePressure) return true;
387
388 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
389 // an immediate predecessor. We don't want to increase register pressure and
390 // end up causing other computation to be spilled.
391 if (TII->isAsCheapAsAMove(MI)) {
392 MachineBasicBlock *CSBB = CSMI->getParent();
393 MachineBasicBlock *BB = MI->getParent();
394 if (CSBB != BB && !CSBB->isSuccessor(BB))
395 return false;
396 }
397
398 // Heuristics #2: If the expression doesn't not use a vr and the only use
399 // of the redundant computation are copies, do not cse.
400 bool HasVRegUse = false;
401 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
402 const MachineOperand &MO = MI->getOperand(i);
403 if (MO.isReg() && MO.isUse() &&
404 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
405 HasVRegUse = true;
406 break;
407 }
408 }
409 if (!HasVRegUse) {
410 bool HasNonCopyUse = false;
411 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
412 // Ignore copies.
413 if (!MI.isCopyLike()) {
414 HasNonCopyUse = true;
415 break;
416 }
417 }
418 if (!HasNonCopyUse)
419 return false;
420 }
421
422 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
423 // it unless the defined value is already used in the BB of the new use.
424 bool HasPHI = false;
425 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
426 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
427 HasPHI |= MI.isPHI();
428 CSBBs.insert(MI.getParent());
429 }
430
431 if (!HasPHI)
432 return true;
433 return CSBBs.count(MI->getParent());
434 }
435
EnterScope(MachineBasicBlock * MBB)436 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
437 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
438 ScopeType *Scope = new ScopeType(VNT);
439 ScopeMap[MBB] = Scope;
440 }
441
ExitScope(MachineBasicBlock * MBB)442 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
443 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
444 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
445 assert(SI != ScopeMap.end());
446 delete SI->second;
447 ScopeMap.erase(SI);
448 }
449
ProcessBlock(MachineBasicBlock * MBB)450 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
451 bool Changed = false;
452
453 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
454 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
455 SmallVector<unsigned, 2> ImplicitDefs;
456 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
457 MachineInstr *MI = &*I;
458 ++I;
459
460 if (!isCSECandidate(MI))
461 continue;
462
463 bool FoundCSE = VNT.count(MI);
464 if (!FoundCSE) {
465 // Using trivial copy propagation to find more CSE opportunities.
466 if (PerformTrivialCopyPropagation(MI, MBB)) {
467 Changed = true;
468
469 // After coalescing MI itself may become a copy.
470 if (MI->isCopyLike())
471 continue;
472
473 // Try again to see if CSE is possible.
474 FoundCSE = VNT.count(MI);
475 }
476 }
477
478 // Commute commutable instructions.
479 bool Commuted = false;
480 if (!FoundCSE && MI->isCommutable()) {
481 MachineInstr *NewMI = TII->commuteInstruction(MI);
482 if (NewMI) {
483 Commuted = true;
484 FoundCSE = VNT.count(NewMI);
485 if (NewMI != MI) {
486 // New instruction. It doesn't need to be kept.
487 NewMI->eraseFromParent();
488 Changed = true;
489 } else if (!FoundCSE)
490 // MI was changed but it didn't help, commute it back!
491 (void)TII->commuteInstruction(MI);
492 }
493 }
494
495 // If the instruction defines physical registers and the values *may* be
496 // used, then it's not safe to replace it with a common subexpression.
497 // It's also not safe if the instruction uses physical registers.
498 bool CrossMBBPhysDef = false;
499 SmallSet<unsigned, 8> PhysRefs;
500 SmallVector<unsigned, 2> PhysDefs;
501 bool PhysUseDef = false;
502 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
503 PhysDefs, PhysUseDef)) {
504 FoundCSE = false;
505
506 // ... Unless the CS is local or is in the sole predecessor block
507 // and it also defines the physical register which is not clobbered
508 // in between and the physical register uses were not clobbered.
509 // This can never be the case if the instruction both uses and
510 // defines the same physical register, which was detected above.
511 if (!PhysUseDef) {
512 unsigned CSVN = VNT.lookup(MI);
513 MachineInstr *CSMI = Exps[CSVN];
514 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
515 FoundCSE = true;
516 }
517 }
518
519 if (!FoundCSE) {
520 VNT.insert(MI, CurrVN++);
521 Exps.push_back(MI);
522 continue;
523 }
524
525 // Found a common subexpression, eliminate it.
526 unsigned CSVN = VNT.lookup(MI);
527 MachineInstr *CSMI = Exps[CSVN];
528 DEBUG(dbgs() << "Examining: " << *MI);
529 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
530
531 // Check if it's profitable to perform this CSE.
532 bool DoCSE = true;
533 unsigned NumDefs = MI->getDesc().getNumDefs() +
534 MI->getDesc().getNumImplicitDefs();
535
536 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
537 MachineOperand &MO = MI->getOperand(i);
538 if (!MO.isReg() || !MO.isDef())
539 continue;
540 unsigned OldReg = MO.getReg();
541 unsigned NewReg = CSMI->getOperand(i).getReg();
542
543 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
544 // we should make sure it is not dead at CSMI.
545 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
546 ImplicitDefsToUpdate.push_back(i);
547
548 // Keep track of implicit defs of CSMI and MI, to clear possibly
549 // made-redundant kill flags.
550 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
551 ImplicitDefs.push_back(OldReg);
552
553 if (OldReg == NewReg) {
554 --NumDefs;
555 continue;
556 }
557
558 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
559 TargetRegisterInfo::isVirtualRegister(NewReg) &&
560 "Do not CSE physical register defs!");
561
562 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
563 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
564 DoCSE = false;
565 break;
566 }
567
568 // Don't perform CSE if the result of the old instruction cannot exist
569 // within the register class of the new instruction.
570 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
571 if (!MRI->constrainRegClass(NewReg, OldRC)) {
572 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
573 DoCSE = false;
574 break;
575 }
576
577 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
578 --NumDefs;
579 }
580
581 // Actually perform the elimination.
582 if (DoCSE) {
583 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
584 unsigned OldReg = CSEPairs[i].first;
585 unsigned NewReg = CSEPairs[i].second;
586 // OldReg may have been unused but is used now, clear the Dead flag
587 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
588 assert(Def != nullptr && "CSEd register has no unique definition?");
589 Def->clearRegisterDeads(NewReg);
590 // Replace with NewReg and clear kill flags which may be wrong now.
591 MRI->replaceRegWith(OldReg, NewReg);
592 MRI->clearKillFlags(NewReg);
593 }
594
595 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
596 // we should make sure it is not dead at CSMI.
597 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
598 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
599
600 // Go through implicit defs of CSMI and MI, and clear the kill flags on
601 // their uses in all the instructions between CSMI and MI.
602 // We might have made some of the kill flags redundant, consider:
603 // subs ... %NZCV<imp-def> <- CSMI
604 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
605 // subs ... %NZCV<imp-def> <- MI, to be eliminated
606 // csinc ... %NZCV<imp-use,kill>
607 // Since we eliminated MI, and reused a register imp-def'd by CSMI
608 // (here %NZCV), that register, if it was killed before MI, should have
609 // that kill flag removed, because it's lifetime was extended.
610 if (CSMI->getParent() == MI->getParent()) {
611 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
612 for (auto ImplicitDef : ImplicitDefs)
613 if (MachineOperand *MO = II->findRegisterUseOperand(
614 ImplicitDef, /*isKill=*/true, TRI))
615 MO->setIsKill(false);
616 } else {
617 // If the instructions aren't in the same BB, bail out and clear the
618 // kill flag on all uses of the imp-def'd register.
619 for (auto ImplicitDef : ImplicitDefs)
620 MRI->clearKillFlags(ImplicitDef);
621 }
622
623 if (CrossMBBPhysDef) {
624 // Add physical register defs now coming in from a predecessor to MBB
625 // livein list.
626 while (!PhysDefs.empty()) {
627 unsigned LiveIn = PhysDefs.pop_back_val();
628 if (!MBB->isLiveIn(LiveIn))
629 MBB->addLiveIn(LiveIn);
630 }
631 ++NumCrossBBCSEs;
632 }
633
634 MI->eraseFromParent();
635 ++NumCSEs;
636 if (!PhysRefs.empty())
637 ++NumPhysCSEs;
638 if (Commuted)
639 ++NumCommutes;
640 Changed = true;
641 } else {
642 VNT.insert(MI, CurrVN++);
643 Exps.push_back(MI);
644 }
645 CSEPairs.clear();
646 ImplicitDefsToUpdate.clear();
647 ImplicitDefs.clear();
648 }
649
650 return Changed;
651 }
652
653 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
654 /// dominator tree node if its a leaf or all of its children are done. Walk
655 /// up the dominator tree to destroy ancestors which are now done.
656 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)657 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
658 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
659 if (OpenChildren[Node])
660 return;
661
662 // Pop scope.
663 ExitScope(Node->getBlock());
664
665 // Now traverse upwards to pop ancestors whose offsprings are all done.
666 while (MachineDomTreeNode *Parent = Node->getIDom()) {
667 unsigned Left = --OpenChildren[Parent];
668 if (Left != 0)
669 break;
670 ExitScope(Parent->getBlock());
671 Node = Parent;
672 }
673 }
674
PerformCSE(MachineDomTreeNode * Node)675 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
676 SmallVector<MachineDomTreeNode*, 32> Scopes;
677 SmallVector<MachineDomTreeNode*, 8> WorkList;
678 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
679
680 CurrVN = 0;
681
682 // Perform a DFS walk to determine the order of visit.
683 WorkList.push_back(Node);
684 do {
685 Node = WorkList.pop_back_val();
686 Scopes.push_back(Node);
687 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
688 unsigned NumChildren = Children.size();
689 OpenChildren[Node] = NumChildren;
690 for (unsigned i = 0; i != NumChildren; ++i) {
691 MachineDomTreeNode *Child = Children[i];
692 WorkList.push_back(Child);
693 }
694 } while (!WorkList.empty());
695
696 // Now perform CSE.
697 bool Changed = false;
698 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
699 MachineDomTreeNode *Node = Scopes[i];
700 MachineBasicBlock *MBB = Node->getBlock();
701 EnterScope(MBB);
702 Changed |= ProcessBlock(MBB);
703 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
704 ExitScopeIfDone(Node, OpenChildren);
705 }
706
707 return Changed;
708 }
709
runOnMachineFunction(MachineFunction & MF)710 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
711 if (skipOptnoneFunction(*MF.getFunction()))
712 return false;
713
714 TII = MF.getSubtarget().getInstrInfo();
715 TRI = MF.getSubtarget().getRegisterInfo();
716 MRI = &MF.getRegInfo();
717 AA = &getAnalysis<AliasAnalysis>();
718 DT = &getAnalysis<MachineDominatorTree>();
719 return PerformCSE(DT->getRootNode());
720 }
721