1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "misched"
37
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45 cl::desc("Print critical path length to stdout"));
46 }
47
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50 cl::desc("Pop up a window to show MISched dags after they are processed"));
51
52 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
53 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
54
55 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
56 cl::desc("Only schedule this function"));
57 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
58 cl::desc("Only schedule this MBB#"));
59 #else
60 static bool ViewMISchedDAGs = false;
61 #endif // NDEBUG
62
63 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
64 cl::desc("Enable register pressure scheduling."), cl::init(true));
65
66 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
67 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
68
69 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
70 cl::desc("Enable load clustering."), cl::init(true));
71
72 // Experimental heuristics
73 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
74 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
75
76 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
77 cl::desc("Verify machine instrs before and after machine scheduling"));
78
79 // DAG subtrees must have at least this many nodes.
80 static const unsigned MinSubtreeSize = 8;
81
82 // Pin the vtables to this file.
anchor()83 void MachineSchedStrategy::anchor() {}
anchor()84 void ScheduleDAGMutation::anchor() {}
85
86 //===----------------------------------------------------------------------===//
87 // Machine Instruction Scheduling Pass and Registry
88 //===----------------------------------------------------------------------===//
89
MachineSchedContext()90 MachineSchedContext::MachineSchedContext():
91 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
92 RegClassInfo = new RegisterClassInfo();
93 }
94
~MachineSchedContext()95 MachineSchedContext::~MachineSchedContext() {
96 delete RegClassInfo;
97 }
98
99 namespace {
100 /// Base class for a machine scheduler class that can run at any point.
101 class MachineSchedulerBase : public MachineSchedContext,
102 public MachineFunctionPass {
103 public:
MachineSchedulerBase(char & ID)104 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
105
106 void print(raw_ostream &O, const Module* = nullptr) const override;
107
108 protected:
109 void scheduleRegions(ScheduleDAGInstrs &Scheduler);
110 };
111
112 /// MachineScheduler runs after coalescing and before register allocation.
113 class MachineScheduler : public MachineSchedulerBase {
114 public:
115 MachineScheduler();
116
117 void getAnalysisUsage(AnalysisUsage &AU) const override;
118
119 bool runOnMachineFunction(MachineFunction&) override;
120
121 static char ID; // Class identification, replacement for typeinfo
122
123 protected:
124 ScheduleDAGInstrs *createMachineScheduler();
125 };
126
127 /// PostMachineScheduler runs after shortly before code emission.
128 class PostMachineScheduler : public MachineSchedulerBase {
129 public:
130 PostMachineScheduler();
131
132 void getAnalysisUsage(AnalysisUsage &AU) const override;
133
134 bool runOnMachineFunction(MachineFunction&) override;
135
136 static char ID; // Class identification, replacement for typeinfo
137
138 protected:
139 ScheduleDAGInstrs *createPostMachineScheduler();
140 };
141 } // namespace
142
143 char MachineScheduler::ID = 0;
144
145 char &llvm::MachineSchedulerID = MachineScheduler::ID;
146
147 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
148 "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)149 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
150 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
151 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
152 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
153 "Machine Instruction Scheduler", false, false)
154
155 MachineScheduler::MachineScheduler()
156 : MachineSchedulerBase(ID) {
157 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
158 }
159
getAnalysisUsage(AnalysisUsage & AU) const160 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
161 AU.setPreservesCFG();
162 AU.addRequiredID(MachineDominatorsID);
163 AU.addRequired<MachineLoopInfo>();
164 AU.addRequired<AliasAnalysis>();
165 AU.addRequired<TargetPassConfig>();
166 AU.addRequired<SlotIndexes>();
167 AU.addPreserved<SlotIndexes>();
168 AU.addRequired<LiveIntervals>();
169 AU.addPreserved<LiveIntervals>();
170 MachineFunctionPass::getAnalysisUsage(AU);
171 }
172
173 char PostMachineScheduler::ID = 0;
174
175 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
176
177 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
178 "PostRA Machine Instruction Scheduler", false, false)
179
PostMachineScheduler()180 PostMachineScheduler::PostMachineScheduler()
181 : MachineSchedulerBase(ID) {
182 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
183 }
184
getAnalysisUsage(AnalysisUsage & AU) const185 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
186 AU.setPreservesCFG();
187 AU.addRequiredID(MachineDominatorsID);
188 AU.addRequired<MachineLoopInfo>();
189 AU.addRequired<TargetPassConfig>();
190 MachineFunctionPass::getAnalysisUsage(AU);
191 }
192
193 MachinePassRegistry MachineSchedRegistry::Registry;
194
195 /// A dummy default scheduler factory indicates whether the scheduler
196 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)197 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
198 return nullptr;
199 }
200
201 /// MachineSchedOpt allows command line selection of the scheduler.
202 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
203 RegisterPassParser<MachineSchedRegistry> >
204 MachineSchedOpt("misched",
205 cl::init(&useDefaultMachineSched), cl::Hidden,
206 cl::desc("Machine instruction scheduler to use"));
207
208 static MachineSchedRegistry
209 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
210 useDefaultMachineSched);
211
212 static cl::opt<bool> EnableMachineSched(
213 "enable-misched",
214 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
215 cl::Hidden);
216
217 /// Forward declare the standard machine scheduler. This will be used as the
218 /// default scheduler if the target does not set a default.
219 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
220 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
221
222 /// Decrement this iterator until reaching the top or a non-debug instr.
223 static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator Beg)224 priorNonDebug(MachineBasicBlock::const_iterator I,
225 MachineBasicBlock::const_iterator Beg) {
226 assert(I != Beg && "reached the top of the region, cannot decrement");
227 while (--I != Beg) {
228 if (!I->isDebugValue())
229 break;
230 }
231 return I;
232 }
233
234 /// Non-const version.
235 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator Beg)236 priorNonDebug(MachineBasicBlock::iterator I,
237 MachineBasicBlock::const_iterator Beg) {
238 return const_cast<MachineInstr*>(
239 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
240 }
241
242 /// If this iterator is a debug value, increment until reaching the End or a
243 /// non-debug instruction.
244 static MachineBasicBlock::const_iterator
nextIfDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator End)245 nextIfDebug(MachineBasicBlock::const_iterator I,
246 MachineBasicBlock::const_iterator End) {
247 for(; I != End; ++I) {
248 if (!I->isDebugValue())
249 break;
250 }
251 return I;
252 }
253
254 /// Non-const version.
255 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator End)256 nextIfDebug(MachineBasicBlock::iterator I,
257 MachineBasicBlock::const_iterator End) {
258 // Cast the return value to nonconst MachineInstr, then cast to an
259 // instr_iterator, which does not check for null, finally return a
260 // bundle_iterator.
261 return MachineBasicBlock::instr_iterator(
262 const_cast<MachineInstr*>(
263 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
264 }
265
266 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
createMachineScheduler()267 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
268 // Select the scheduler, or set the default.
269 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
270 if (Ctor != useDefaultMachineSched)
271 return Ctor(this);
272
273 // Get the default scheduler set by the target for this function.
274 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
275 if (Scheduler)
276 return Scheduler;
277
278 // Default to GenericScheduler.
279 return createGenericSchedLive(this);
280 }
281
282 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
283 /// the caller. We don't have a command line option to override the postRA
284 /// scheduler. The Target must configure it.
createPostMachineScheduler()285 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
286 // Get the postRA scheduler set by the target for this function.
287 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
288 if (Scheduler)
289 return Scheduler;
290
291 // Default to GenericScheduler.
292 return createGenericSchedPostRA(this);
293 }
294
295 /// Top-level MachineScheduler pass driver.
296 ///
297 /// Visit blocks in function order. Divide each block into scheduling regions
298 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
299 /// consistent with the DAG builder, which traverses the interior of the
300 /// scheduling regions bottom-up.
301 ///
302 /// This design avoids exposing scheduling boundaries to the DAG builder,
303 /// simplifying the DAG builder's support for "special" target instructions.
304 /// At the same time the design allows target schedulers to operate across
305 /// scheduling boundaries, for example to bundle the boudary instructions
306 /// without reordering them. This creates complexity, because the target
307 /// scheduler must update the RegionBegin and RegionEnd positions cached by
308 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
309 /// design would be to split blocks at scheduling boundaries, but LLVM has a
310 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)311 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
312 if (EnableMachineSched.getNumOccurrences()) {
313 if (!EnableMachineSched)
314 return false;
315 } else if (!mf.getSubtarget().enableMachineScheduler())
316 return false;
317
318 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
319
320 // Initialize the context of the pass.
321 MF = &mf;
322 MLI = &getAnalysis<MachineLoopInfo>();
323 MDT = &getAnalysis<MachineDominatorTree>();
324 PassConfig = &getAnalysis<TargetPassConfig>();
325 AA = &getAnalysis<AliasAnalysis>();
326
327 LIS = &getAnalysis<LiveIntervals>();
328
329 if (VerifyScheduling) {
330 DEBUG(LIS->dump());
331 MF->verify(this, "Before machine scheduling.");
332 }
333 RegClassInfo->runOnMachineFunction(*MF);
334
335 // Instantiate the selected scheduler for this target, function, and
336 // optimization level.
337 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
338 scheduleRegions(*Scheduler);
339
340 DEBUG(LIS->dump());
341 if (VerifyScheduling)
342 MF->verify(this, "After machine scheduling.");
343 return true;
344 }
345
runOnMachineFunction(MachineFunction & mf)346 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
347 if (skipOptnoneFunction(*mf.getFunction()))
348 return false;
349
350 if (!mf.getSubtarget().enablePostMachineScheduler()) {
351 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
352 return false;
353 }
354 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
355
356 // Initialize the context of the pass.
357 MF = &mf;
358 PassConfig = &getAnalysis<TargetPassConfig>();
359
360 if (VerifyScheduling)
361 MF->verify(this, "Before post machine scheduling.");
362
363 // Instantiate the selected scheduler for this target, function, and
364 // optimization level.
365 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
366 scheduleRegions(*Scheduler);
367
368 if (VerifyScheduling)
369 MF->verify(this, "After post machine scheduling.");
370 return true;
371 }
372
373 /// Return true of the given instruction should not be included in a scheduling
374 /// region.
375 ///
376 /// MachineScheduler does not currently support scheduling across calls. To
377 /// handle calls, the DAG builder needs to be modified to create register
378 /// anti/output dependencies on the registers clobbered by the call's regmask
379 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
380 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
381 /// the boundary, but there would be no benefit to postRA scheduling across
382 /// calls this late anyway.
isSchedBoundary(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB,MachineFunction * MF,const TargetInstrInfo * TII,bool IsPostRA)383 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
384 MachineBasicBlock *MBB,
385 MachineFunction *MF,
386 const TargetInstrInfo *TII,
387 bool IsPostRA) {
388 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
389 }
390
391 /// Main driver for both MachineScheduler and PostMachineScheduler.
scheduleRegions(ScheduleDAGInstrs & Scheduler)392 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
393 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
394 bool IsPostRA = Scheduler.isPostRA();
395
396 // Visit all machine basic blocks.
397 //
398 // TODO: Visit blocks in global postorder or postorder within the bottom-up
399 // loop tree. Then we can optionally compute global RegPressure.
400 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
401 MBB != MBBEnd; ++MBB) {
402
403 Scheduler.startBlock(MBB);
404
405 #ifndef NDEBUG
406 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
407 continue;
408 if (SchedOnlyBlock.getNumOccurrences()
409 && (int)SchedOnlyBlock != MBB->getNumber())
410 continue;
411 #endif
412
413 // Break the block into scheduling regions [I, RegionEnd), and schedule each
414 // region as soon as it is discovered. RegionEnd points the scheduling
415 // boundary at the bottom of the region. The DAG does not include RegionEnd,
416 // but the region does (i.e. the next RegionEnd is above the previous
417 // RegionBegin). If the current block has no terminator then RegionEnd ==
418 // MBB->end() for the bottom region.
419 //
420 // The Scheduler may insert instructions during either schedule() or
421 // exitRegion(), even for empty regions. So the local iterators 'I' and
422 // 'RegionEnd' are invalid across these calls.
423 //
424 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
425 // as a single instruction.
426 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
427 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
428 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
429
430 // Avoid decrementing RegionEnd for blocks with no terminator.
431 if (RegionEnd != MBB->end() ||
432 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
433 --RegionEnd;
434 // Count the boundary instruction.
435 --RemainingInstrs;
436 }
437
438 // The next region starts above the previous region. Look backward in the
439 // instruction stream until we find the nearest boundary.
440 unsigned NumRegionInstrs = 0;
441 MachineBasicBlock::iterator I = RegionEnd;
442 for(;I != MBB->begin(); --I, --RemainingInstrs) {
443 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
444 break;
445 if (!I->isDebugValue())
446 ++NumRegionInstrs;
447 }
448 // Notify the scheduler of the region, even if we may skip scheduling
449 // it. Perhaps it still needs to be bundled.
450 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
451
452 // Skip empty scheduling regions (0 or 1 schedulable instructions).
453 if (I == RegionEnd || I == std::prev(RegionEnd)) {
454 // Close the current region. Bundle the terminator if needed.
455 // This invalidates 'RegionEnd' and 'I'.
456 Scheduler.exitRegion();
457 continue;
458 }
459 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
460 << "MI Scheduling **********\n");
461 DEBUG(dbgs() << MF->getName()
462 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
463 << "\n From: " << *I << " To: ";
464 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
465 else dbgs() << "End";
466 dbgs() << " RegionInstrs: " << NumRegionInstrs
467 << " Remaining: " << RemainingInstrs << "\n");
468 if (DumpCriticalPathLength) {
469 errs() << MF->getName();
470 errs() << ":BB# " << MBB->getNumber();
471 errs() << " " << MBB->getName() << " \n";
472 }
473
474 // Schedule a region: possibly reorder instructions.
475 // This invalidates 'RegionEnd' and 'I'.
476 Scheduler.schedule();
477
478 // Close the current region.
479 Scheduler.exitRegion();
480
481 // Scheduling has invalidated the current iterator 'I'. Ask the
482 // scheduler for the top of it's scheduled region.
483 RegionEnd = Scheduler.begin();
484 }
485 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
486 Scheduler.finishBlock();
487 if (Scheduler.isPostRA()) {
488 // FIXME: Ideally, no further passes should rely on kill flags. However,
489 // thumb2 size reduction is currently an exception.
490 Scheduler.fixupKills(MBB);
491 }
492 }
493 Scheduler.finalizeSchedule();
494 }
495
print(raw_ostream & O,const Module * m) const496 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
497 // unimplemented
498 }
499
500 LLVM_DUMP_METHOD
dump()501 void ReadyQueue::dump() {
502 dbgs() << Name << ": ";
503 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
504 dbgs() << Queue[i]->NodeNum << " ";
505 dbgs() << "\n";
506 }
507
508 //===----------------------------------------------------------------------===//
509 // ScheduleDAGMI - Basic machine instruction scheduling. This is
510 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
511 // virtual registers.
512 // ===----------------------------------------------------------------------===/
513
514 // Provide a vtable anchor.
~ScheduleDAGMI()515 ScheduleDAGMI::~ScheduleDAGMI() {
516 }
517
canAddEdge(SUnit * SuccSU,SUnit * PredSU)518 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
519 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
520 }
521
addEdge(SUnit * SuccSU,const SDep & PredDep)522 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
523 if (SuccSU != &ExitSU) {
524 // Do not use WillCreateCycle, it assumes SD scheduling.
525 // If Pred is reachable from Succ, then the edge creates a cycle.
526 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
527 return false;
528 Topo.AddPred(SuccSU, PredDep.getSUnit());
529 }
530 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
531 // Return true regardless of whether a new edge needed to be inserted.
532 return true;
533 }
534
535 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
536 /// NumPredsLeft reaches zero, release the successor node.
537 ///
538 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)539 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
540 SUnit *SuccSU = SuccEdge->getSUnit();
541
542 if (SuccEdge->isWeak()) {
543 --SuccSU->WeakPredsLeft;
544 if (SuccEdge->isCluster())
545 NextClusterSucc = SuccSU;
546 return;
547 }
548 #ifndef NDEBUG
549 if (SuccSU->NumPredsLeft == 0) {
550 dbgs() << "*** Scheduling failed! ***\n";
551 SuccSU->dump(this);
552 dbgs() << " has been released too many times!\n";
553 llvm_unreachable(nullptr);
554 }
555 #endif
556 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
557 // CurrCycle may have advanced since then.
558 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
559 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
560
561 --SuccSU->NumPredsLeft;
562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
563 SchedImpl->releaseTopNode(SuccSU);
564 }
565
566 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)567 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
569 I != E; ++I) {
570 releaseSucc(SU, &*I);
571 }
572 }
573
574 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
575 /// NumSuccsLeft reaches zero, release the predecessor node.
576 ///
577 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)578 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
579 SUnit *PredSU = PredEdge->getSUnit();
580
581 if (PredEdge->isWeak()) {
582 --PredSU->WeakSuccsLeft;
583 if (PredEdge->isCluster())
584 NextClusterPred = PredSU;
585 return;
586 }
587 #ifndef NDEBUG
588 if (PredSU->NumSuccsLeft == 0) {
589 dbgs() << "*** Scheduling failed! ***\n";
590 PredSU->dump(this);
591 dbgs() << " has been released too many times!\n";
592 llvm_unreachable(nullptr);
593 }
594 #endif
595 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
596 // CurrCycle may have advanced since then.
597 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
598 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
599
600 --PredSU->NumSuccsLeft;
601 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
602 SchedImpl->releaseBottomNode(PredSU);
603 }
604
605 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)606 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
607 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
608 I != E; ++I) {
609 releasePred(SU, &*I);
610 }
611 }
612
613 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
614 /// crossing a scheduling boundary. [begin, end) includes all instructions in
615 /// the region, including the boundary itself and single-instruction regions
616 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)617 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
618 MachineBasicBlock::iterator begin,
619 MachineBasicBlock::iterator end,
620 unsigned regioninstrs)
621 {
622 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
623
624 SchedImpl->initPolicy(begin, end, regioninstrs);
625 }
626
627 /// This is normally called from the main scheduler loop but may also be invoked
628 /// by the scheduling strategy to perform additional code motion.
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)629 void ScheduleDAGMI::moveInstruction(
630 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
631 // Advance RegionBegin if the first instruction moves down.
632 if (&*RegionBegin == MI)
633 ++RegionBegin;
634
635 // Update the instruction stream.
636 BB->splice(InsertPos, BB, MI);
637
638 // Update LiveIntervals
639 if (LIS)
640 LIS->handleMove(MI, /*UpdateFlags=*/true);
641
642 // Recede RegionBegin if an instruction moves above the first.
643 if (RegionBegin == InsertPos)
644 RegionBegin = MI;
645 }
646
checkSchedLimit()647 bool ScheduleDAGMI::checkSchedLimit() {
648 #ifndef NDEBUG
649 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
650 CurrentTop = CurrentBottom;
651 return false;
652 }
653 ++NumInstrsScheduled;
654 #endif
655 return true;
656 }
657
658 /// Per-region scheduling driver, called back from
659 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
660 /// does not consider liveness or register pressure. It is useful for PostRA
661 /// scheduling and potentially other custom schedulers.
schedule()662 void ScheduleDAGMI::schedule() {
663 // Build the DAG.
664 buildSchedGraph(AA);
665
666 Topo.InitDAGTopologicalSorting();
667
668 postprocessDAG();
669
670 SmallVector<SUnit*, 8> TopRoots, BotRoots;
671 findRootsAndBiasEdges(TopRoots, BotRoots);
672
673 // Initialize the strategy before modifying the DAG.
674 // This may initialize a DFSResult to be used for queue priority.
675 SchedImpl->initialize(this);
676
677 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
678 SUnits[su].dumpAll(this));
679 if (ViewMISchedDAGs) viewGraph();
680
681 // Initialize ready queues now that the DAG and priority data are finalized.
682 initQueues(TopRoots, BotRoots);
683
684 bool IsTopNode = false;
685 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
686 assert(!SU->isScheduled && "Node already scheduled");
687 if (!checkSchedLimit())
688 break;
689
690 MachineInstr *MI = SU->getInstr();
691 if (IsTopNode) {
692 assert(SU->isTopReady() && "node still has unscheduled dependencies");
693 if (&*CurrentTop == MI)
694 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
695 else
696 moveInstruction(MI, CurrentTop);
697 }
698 else {
699 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
700 MachineBasicBlock::iterator priorII =
701 priorNonDebug(CurrentBottom, CurrentTop);
702 if (&*priorII == MI)
703 CurrentBottom = priorII;
704 else {
705 if (&*CurrentTop == MI)
706 CurrentTop = nextIfDebug(++CurrentTop, priorII);
707 moveInstruction(MI, CurrentBottom);
708 CurrentBottom = MI;
709 }
710 }
711 // Notify the scheduling strategy before updating the DAG.
712 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
713 // runs, it can then use the accurate ReadyCycle time to determine whether
714 // newly released nodes can move to the readyQ.
715 SchedImpl->schedNode(SU, IsTopNode);
716
717 updateQueues(SU, IsTopNode);
718 }
719 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
720
721 placeDebugValues();
722
723 DEBUG({
724 unsigned BBNum = begin()->getParent()->getNumber();
725 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
726 dumpSchedule();
727 dbgs() << '\n';
728 });
729 }
730
731 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()732 void ScheduleDAGMI::postprocessDAG() {
733 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
734 Mutations[i]->apply(this);
735 }
736 }
737
738 void ScheduleDAGMI::
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)739 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
740 SmallVectorImpl<SUnit*> &BotRoots) {
741 for (std::vector<SUnit>::iterator
742 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
743 SUnit *SU = &(*I);
744 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
745
746 // Order predecessors so DFSResult follows the critical path.
747 SU->biasCriticalPath();
748
749 // A SUnit is ready to top schedule if it has no predecessors.
750 if (!I->NumPredsLeft)
751 TopRoots.push_back(SU);
752 // A SUnit is ready to bottom schedule if it has no successors.
753 if (!I->NumSuccsLeft)
754 BotRoots.push_back(SU);
755 }
756 ExitSU.biasCriticalPath();
757 }
758
759 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)760 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
761 ArrayRef<SUnit*> BotRoots) {
762 NextClusterSucc = nullptr;
763 NextClusterPred = nullptr;
764
765 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
766 //
767 // Nodes with unreleased weak edges can still be roots.
768 // Release top roots in forward order.
769 for (SmallVectorImpl<SUnit*>::const_iterator
770 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
771 SchedImpl->releaseTopNode(*I);
772 }
773 // Release bottom roots in reverse order so the higher priority nodes appear
774 // first. This is more natural and slightly more efficient.
775 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
776 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
777 SchedImpl->releaseBottomNode(*I);
778 }
779
780 releaseSuccessors(&EntrySU);
781 releasePredecessors(&ExitSU);
782
783 SchedImpl->registerRoots();
784
785 // Advance past initial DebugValues.
786 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
787 CurrentBottom = RegionEnd;
788 }
789
790 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)791 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
792 // Release dependent instructions for scheduling.
793 if (IsTopNode)
794 releaseSuccessors(SU);
795 else
796 releasePredecessors(SU);
797
798 SU->isScheduled = true;
799 }
800
801 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()802 void ScheduleDAGMI::placeDebugValues() {
803 // If first instruction was a DBG_VALUE then put it back.
804 if (FirstDbgValue) {
805 BB->splice(RegionBegin, BB, FirstDbgValue);
806 RegionBegin = FirstDbgValue;
807 }
808
809 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
810 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
811 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
812 MachineInstr *DbgValue = P.first;
813 MachineBasicBlock::iterator OrigPrevMI = P.second;
814 if (&*RegionBegin == DbgValue)
815 ++RegionBegin;
816 BB->splice(++OrigPrevMI, BB, DbgValue);
817 if (OrigPrevMI == std::prev(RegionEnd))
818 RegionEnd = DbgValue;
819 }
820 DbgValues.clear();
821 FirstDbgValue = nullptr;
822 }
823
824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const825 void ScheduleDAGMI::dumpSchedule() const {
826 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
827 if (SUnit *SU = getSUnit(&(*MI)))
828 SU->dump(this);
829 else
830 dbgs() << "Missing SUnit\n";
831 }
832 }
833 #endif
834
835 //===----------------------------------------------------------------------===//
836 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
837 // preservation.
838 //===----------------------------------------------------------------------===//
839
~ScheduleDAGMILive()840 ScheduleDAGMILive::~ScheduleDAGMILive() {
841 delete DFSResult;
842 }
843
844 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
845 /// crossing a scheduling boundary. [begin, end) includes all instructions in
846 /// the region, including the boundary itself and single-instruction regions
847 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)848 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
849 MachineBasicBlock::iterator begin,
850 MachineBasicBlock::iterator end,
851 unsigned regioninstrs)
852 {
853 // ScheduleDAGMI initializes SchedImpl's per-region policy.
854 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
855
856 // For convenience remember the end of the liveness region.
857 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
858
859 SUPressureDiffs.clear();
860
861 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
862 }
863
864 // Setup the register pressure trackers for the top scheduled top and bottom
865 // scheduled regions.
initRegPressure()866 void ScheduleDAGMILive::initRegPressure() {
867 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
868 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
869
870 // Close the RPTracker to finalize live ins.
871 RPTracker.closeRegion();
872
873 DEBUG(RPTracker.dump());
874
875 // Initialize the live ins and live outs.
876 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
877 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
878
879 // Close one end of the tracker so we can call
880 // getMaxUpward/DownwardPressureDelta before advancing across any
881 // instructions. This converts currently live regs into live ins/outs.
882 TopRPTracker.closeTop();
883 BotRPTracker.closeBottom();
884
885 BotRPTracker.initLiveThru(RPTracker);
886 if (!BotRPTracker.getLiveThru().empty()) {
887 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
888 DEBUG(dbgs() << "Live Thru: ";
889 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
890 };
891
892 // For each live out vreg reduce the pressure change associated with other
893 // uses of the same vreg below the live-out reaching def.
894 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
895
896 // Account for liveness generated by the region boundary.
897 if (LiveRegionEnd != RegionEnd) {
898 SmallVector<unsigned, 8> LiveUses;
899 BotRPTracker.recede(&LiveUses);
900 updatePressureDiffs(LiveUses);
901 }
902
903 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
904
905 // Cache the list of excess pressure sets in this region. This will also track
906 // the max pressure in the scheduled code for these sets.
907 RegionCriticalPSets.clear();
908 const std::vector<unsigned> &RegionPressure =
909 RPTracker.getPressure().MaxSetPressure;
910 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
911 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
912 if (RegionPressure[i] > Limit) {
913 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
914 << " Limit " << Limit
915 << " Actual " << RegionPressure[i] << "\n");
916 RegionCriticalPSets.push_back(PressureChange(i));
917 }
918 }
919 DEBUG(dbgs() << "Excess PSets: ";
920 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
921 dbgs() << TRI->getRegPressureSetName(
922 RegionCriticalPSets[i].getPSet()) << " ";
923 dbgs() << "\n");
924 }
925
926 void ScheduleDAGMILive::
updateScheduledPressure(const SUnit * SU,const std::vector<unsigned> & NewMaxPressure)927 updateScheduledPressure(const SUnit *SU,
928 const std::vector<unsigned> &NewMaxPressure) {
929 const PressureDiff &PDiff = getPressureDiff(SU);
930 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
931 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
932 I != E; ++I) {
933 if (!I->isValid())
934 break;
935 unsigned ID = I->getPSet();
936 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
937 ++CritIdx;
938 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
939 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
940 && NewMaxPressure[ID] <= INT16_MAX)
941 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
942 }
943 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
944 if (NewMaxPressure[ID] >= Limit - 2) {
945 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
946 << NewMaxPressure[ID] << " > " << Limit << "(+ "
947 << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
948 }
949 }
950 }
951
952 /// Update the PressureDiff array for liveness after scheduling this
953 /// instruction.
updatePressureDiffs(ArrayRef<unsigned> LiveUses)954 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
955 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
956 /// FIXME: Currently assuming single-use physregs.
957 unsigned Reg = LiveUses[LUIdx];
958 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
959 if (!TRI->isVirtualRegister(Reg))
960 continue;
961
962 // This may be called before CurrentBottom has been initialized. However,
963 // BotRPTracker must have a valid position. We want the value live into the
964 // instruction or live out of the block, so ask for the previous
965 // instruction's live-out.
966 const LiveInterval &LI = LIS->getInterval(Reg);
967 VNInfo *VNI;
968 MachineBasicBlock::const_iterator I =
969 nextIfDebug(BotRPTracker.getPos(), BB->end());
970 if (I == BB->end())
971 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
972 else {
973 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
974 VNI = LRQ.valueIn();
975 }
976 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
977 assert(VNI && "No live value at use.");
978 for (VReg2UseMap::iterator
979 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
980 SUnit *SU = UI->SU;
981 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
982 << *SU->getInstr());
983 // If this use comes before the reaching def, it cannot be a last use, so
984 // descrease its pressure change.
985 if (!SU->isScheduled && SU != &ExitSU) {
986 LiveQueryResult LRQ
987 = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
988 if (LRQ.valueIn() == VNI)
989 getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
990 }
991 }
992 }
993 }
994
995 /// schedule - Called back from MachineScheduler::runOnMachineFunction
996 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
997 /// only includes instructions that have DAG nodes, not scheduling boundaries.
998 ///
999 /// This is a skeletal driver, with all the functionality pushed into helpers,
1000 /// so that it can be easilly extended by experimental schedulers. Generally,
1001 /// implementing MachineSchedStrategy should be sufficient to implement a new
1002 /// scheduling algorithm. However, if a scheduler further subclasses
1003 /// ScheduleDAGMILive then it will want to override this virtual method in order
1004 /// to update any specialized state.
schedule()1005 void ScheduleDAGMILive::schedule() {
1006 buildDAGWithRegPressure();
1007
1008 Topo.InitDAGTopologicalSorting();
1009
1010 postprocessDAG();
1011
1012 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1013 findRootsAndBiasEdges(TopRoots, BotRoots);
1014
1015 // Initialize the strategy before modifying the DAG.
1016 // This may initialize a DFSResult to be used for queue priority.
1017 SchedImpl->initialize(this);
1018
1019 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1020 SUnits[su].dumpAll(this));
1021 if (ViewMISchedDAGs) viewGraph();
1022
1023 // Initialize ready queues now that the DAG and priority data are finalized.
1024 initQueues(TopRoots, BotRoots);
1025
1026 if (ShouldTrackPressure) {
1027 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1028 TopRPTracker.setPos(CurrentTop);
1029 }
1030
1031 bool IsTopNode = false;
1032 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
1033 assert(!SU->isScheduled && "Node already scheduled");
1034 if (!checkSchedLimit())
1035 break;
1036
1037 scheduleMI(SU, IsTopNode);
1038
1039 if (DFSResult) {
1040 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1041 if (!ScheduledTrees.test(SubtreeID)) {
1042 ScheduledTrees.set(SubtreeID);
1043 DFSResult->scheduleTree(SubtreeID);
1044 SchedImpl->scheduleTree(SubtreeID);
1045 }
1046 }
1047
1048 // Notify the scheduling strategy after updating the DAG.
1049 SchedImpl->schedNode(SU, IsTopNode);
1050
1051 updateQueues(SU, IsTopNode);
1052 }
1053 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1054
1055 placeDebugValues();
1056
1057 DEBUG({
1058 unsigned BBNum = begin()->getParent()->getNumber();
1059 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1060 dumpSchedule();
1061 dbgs() << '\n';
1062 });
1063 }
1064
1065 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()1066 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1067 if (!ShouldTrackPressure) {
1068 RPTracker.reset();
1069 RegionCriticalPSets.clear();
1070 buildSchedGraph(AA);
1071 return;
1072 }
1073
1074 // Initialize the register pressure tracker used by buildSchedGraph.
1075 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1076 /*TrackUntiedDefs=*/true);
1077
1078 // Account for liveness generate by the region boundary.
1079 if (LiveRegionEnd != RegionEnd)
1080 RPTracker.recede();
1081
1082 // Build the DAG, and compute current register pressure.
1083 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1084
1085 // Initialize top/bottom trackers after computing region pressure.
1086 initRegPressure();
1087 }
1088
computeDFSResult()1089 void ScheduleDAGMILive::computeDFSResult() {
1090 if (!DFSResult)
1091 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1092 DFSResult->clear();
1093 ScheduledTrees.clear();
1094 DFSResult->resize(SUnits.size());
1095 DFSResult->compute(SUnits);
1096 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1097 }
1098
1099 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1100 /// only provides the critical path for single block loops. To handle loops that
1101 /// span blocks, we could use the vreg path latencies provided by
1102 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1103 /// available for use in the scheduler.
1104 ///
1105 /// The cyclic path estimation identifies a def-use pair that crosses the back
1106 /// edge and considers the depth and height of the nodes. For example, consider
1107 /// the following instruction sequence where each instruction has unit latency
1108 /// and defines an epomymous virtual register:
1109 ///
1110 /// a->b(a,c)->c(b)->d(c)->exit
1111 ///
1112 /// The cyclic critical path is a two cycles: b->c->b
1113 /// The acyclic critical path is four cycles: a->b->c->d->exit
1114 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1115 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1116 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1117 /// LiveInDepth = depth(b) = len(a->b) = 1
1118 ///
1119 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1120 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1121 /// CyclicCriticalPath = min(2, 2) = 2
1122 ///
1123 /// This could be relevant to PostRA scheduling, but is currently implemented
1124 /// assuming LiveIntervals.
computeCyclicCriticalPath()1125 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1126 // This only applies to single block loop.
1127 if (!BB->isSuccessor(BB))
1128 return 0;
1129
1130 unsigned MaxCyclicLatency = 0;
1131 // Visit each live out vreg def to find def/use pairs that cross iterations.
1132 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1133 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1134 RI != RE; ++RI) {
1135 unsigned Reg = *RI;
1136 if (!TRI->isVirtualRegister(Reg))
1137 continue;
1138 const LiveInterval &LI = LIS->getInterval(Reg);
1139 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1140 if (!DefVNI)
1141 continue;
1142
1143 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1144 const SUnit *DefSU = getSUnit(DefMI);
1145 if (!DefSU)
1146 continue;
1147
1148 unsigned LiveOutHeight = DefSU->getHeight();
1149 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1150 // Visit all local users of the vreg def.
1151 for (VReg2UseMap::iterator
1152 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1153 if (UI->SU == &ExitSU)
1154 continue;
1155
1156 // Only consider uses of the phi.
1157 LiveQueryResult LRQ =
1158 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1159 if (!LRQ.valueIn()->isPHIDef())
1160 continue;
1161
1162 // Assume that a path spanning two iterations is a cycle, which could
1163 // overestimate in strange cases. This allows cyclic latency to be
1164 // estimated as the minimum slack of the vreg's depth or height.
1165 unsigned CyclicLatency = 0;
1166 if (LiveOutDepth > UI->SU->getDepth())
1167 CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1168
1169 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1170 if (LiveInHeight > LiveOutHeight) {
1171 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1172 CyclicLatency = LiveInHeight - LiveOutHeight;
1173 }
1174 else
1175 CyclicLatency = 0;
1176
1177 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1178 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1179 if (CyclicLatency > MaxCyclicLatency)
1180 MaxCyclicLatency = CyclicLatency;
1181 }
1182 }
1183 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1184 return MaxCyclicLatency;
1185 }
1186
1187 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)1188 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1189 // Move the instruction to its new location in the instruction stream.
1190 MachineInstr *MI = SU->getInstr();
1191
1192 if (IsTopNode) {
1193 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1194 if (&*CurrentTop == MI)
1195 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1196 else {
1197 moveInstruction(MI, CurrentTop);
1198 TopRPTracker.setPos(MI);
1199 }
1200
1201 if (ShouldTrackPressure) {
1202 // Update top scheduled pressure.
1203 TopRPTracker.advance();
1204 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1205 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1206 }
1207 }
1208 else {
1209 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1210 MachineBasicBlock::iterator priorII =
1211 priorNonDebug(CurrentBottom, CurrentTop);
1212 if (&*priorII == MI)
1213 CurrentBottom = priorII;
1214 else {
1215 if (&*CurrentTop == MI) {
1216 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1217 TopRPTracker.setPos(CurrentTop);
1218 }
1219 moveInstruction(MI, CurrentBottom);
1220 CurrentBottom = MI;
1221 }
1222 if (ShouldTrackPressure) {
1223 // Update bottom scheduled pressure.
1224 SmallVector<unsigned, 8> LiveUses;
1225 BotRPTracker.recede(&LiveUses);
1226 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1227 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1228 updatePressureDiffs(LiveUses);
1229 }
1230 }
1231 }
1232
1233 //===----------------------------------------------------------------------===//
1234 // LoadClusterMutation - DAG post-processing to cluster loads.
1235 //===----------------------------------------------------------------------===//
1236
1237 namespace {
1238 /// \brief Post-process the DAG to create cluster edges between neighboring
1239 /// loads.
1240 class LoadClusterMutation : public ScheduleDAGMutation {
1241 struct LoadInfo {
1242 SUnit *SU;
1243 unsigned BaseReg;
1244 unsigned Offset;
LoadInfo__anond1ea022a0211::LoadClusterMutation::LoadInfo1245 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1246 : SU(su), BaseReg(reg), Offset(ofs) {}
1247
operator <__anond1ea022a0211::LoadClusterMutation::LoadInfo1248 bool operator<(const LoadInfo &RHS) const {
1249 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1250 }
1251 };
1252
1253 const TargetInstrInfo *TII;
1254 const TargetRegisterInfo *TRI;
1255 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)1256 LoadClusterMutation(const TargetInstrInfo *tii,
1257 const TargetRegisterInfo *tri)
1258 : TII(tii), TRI(tri) {}
1259
1260 void apply(ScheduleDAGMI *DAG) override;
1261 protected:
1262 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1263 };
1264 } // anonymous
1265
clusterNeighboringLoads(ArrayRef<SUnit * > Loads,ScheduleDAGMI * DAG)1266 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1267 ScheduleDAGMI *DAG) {
1268 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1269 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1270 SUnit *SU = Loads[Idx];
1271 unsigned BaseReg;
1272 unsigned Offset;
1273 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1274 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1275 }
1276 if (LoadRecords.size() < 2)
1277 return;
1278 std::sort(LoadRecords.begin(), LoadRecords.end());
1279 unsigned ClusterLength = 1;
1280 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1281 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1282 ClusterLength = 1;
1283 continue;
1284 }
1285
1286 SUnit *SUa = LoadRecords[Idx].SU;
1287 SUnit *SUb = LoadRecords[Idx+1].SU;
1288 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1289 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1290
1291 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1292 << SUb->NodeNum << ")\n");
1293 // Copy successor edges from SUa to SUb. Interleaving computation
1294 // dependent on SUa can prevent load combining due to register reuse.
1295 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1296 // loads should have effectively the same inputs.
1297 for (SUnit::const_succ_iterator
1298 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1299 if (SI->getSUnit() == SUb)
1300 continue;
1301 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1302 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1303 }
1304 ++ClusterLength;
1305 }
1306 else
1307 ClusterLength = 1;
1308 }
1309 }
1310
1311 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGMI * DAG)1312 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1313 // Map DAG NodeNum to store chain ID.
1314 DenseMap<unsigned, unsigned> StoreChainIDs;
1315 // Map each store chain to a set of dependent loads.
1316 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1317 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1318 SUnit *SU = &DAG->SUnits[Idx];
1319 if (!SU->getInstr()->mayLoad())
1320 continue;
1321 unsigned ChainPredID = DAG->SUnits.size();
1322 for (SUnit::const_pred_iterator
1323 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1324 if (PI->isCtrl()) {
1325 ChainPredID = PI->getSUnit()->NodeNum;
1326 break;
1327 }
1328 }
1329 // Check if this chain-like pred has been seen
1330 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1331 unsigned NumChains = StoreChainDependents.size();
1332 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1333 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1334 if (Result.second)
1335 StoreChainDependents.resize(NumChains + 1);
1336 StoreChainDependents[Result.first->second].push_back(SU);
1337 }
1338 // Iterate over the store chains.
1339 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1340 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1341 }
1342
1343 //===----------------------------------------------------------------------===//
1344 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1345 //===----------------------------------------------------------------------===//
1346
1347 namespace {
1348 /// \brief Post-process the DAG to create cluster edges between instructions
1349 /// that may be fused by the processor into a single operation.
1350 class MacroFusion : public ScheduleDAGMutation {
1351 const TargetInstrInfo *TII;
1352 public:
MacroFusion(const TargetInstrInfo * tii)1353 MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1354
1355 void apply(ScheduleDAGMI *DAG) override;
1356 };
1357 } // anonymous
1358
1359 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1360 /// fused operations.
apply(ScheduleDAGMI * DAG)1361 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1362 // For now, assume targets can only fuse with the branch.
1363 MachineInstr *Branch = DAG->ExitSU.getInstr();
1364 if (!Branch)
1365 return;
1366
1367 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1368 SUnit *SU = &DAG->SUnits[--Idx];
1369 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1370 continue;
1371
1372 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1373 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1374 // need to copy predecessor edges from ExitSU to SU, since top-down
1375 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1376 // of SU, we could create an artificial edge from the deepest root, but it
1377 // hasn't been needed yet.
1378 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1379 (void)Success;
1380 assert(Success && "No DAG nodes should be reachable from ExitSU");
1381
1382 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1383 break;
1384 }
1385 }
1386
1387 //===----------------------------------------------------------------------===//
1388 // CopyConstrain - DAG post-processing to encourage copy elimination.
1389 //===----------------------------------------------------------------------===//
1390
1391 namespace {
1392 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1393 /// the one use that defines the copy's source vreg, most likely an induction
1394 /// variable increment.
1395 class CopyConstrain : public ScheduleDAGMutation {
1396 // Transient state.
1397 SlotIndex RegionBeginIdx;
1398 // RegionEndIdx is the slot index of the last non-debug instruction in the
1399 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1400 SlotIndex RegionEndIdx;
1401 public:
CopyConstrain(const TargetInstrInfo *,const TargetRegisterInfo *)1402 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1403
1404 void apply(ScheduleDAGMI *DAG) override;
1405
1406 protected:
1407 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1408 };
1409 } // anonymous
1410
1411 /// constrainLocalCopy handles two possibilities:
1412 /// 1) Local src:
1413 /// I0: = dst
1414 /// I1: src = ...
1415 /// I2: = dst
1416 /// I3: dst = src (copy)
1417 /// (create pred->succ edges I0->I1, I2->I1)
1418 ///
1419 /// 2) Local copy:
1420 /// I0: dst = src (copy)
1421 /// I1: = dst
1422 /// I2: src = ...
1423 /// I3: = dst
1424 /// (create pred->succ edges I1->I2, I3->I2)
1425 ///
1426 /// Although the MachineScheduler is currently constrained to single blocks,
1427 /// this algorithm should handle extended blocks. An EBB is a set of
1428 /// contiguously numbered blocks such that the previous block in the EBB is
1429 /// always the single predecessor.
constrainLocalCopy(SUnit * CopySU,ScheduleDAGMILive * DAG)1430 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1431 LiveIntervals *LIS = DAG->getLIS();
1432 MachineInstr *Copy = CopySU->getInstr();
1433
1434 // Check for pure vreg copies.
1435 unsigned SrcReg = Copy->getOperand(1).getReg();
1436 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1437 return;
1438
1439 unsigned DstReg = Copy->getOperand(0).getReg();
1440 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1441 return;
1442
1443 // Check if either the dest or source is local. If it's live across a back
1444 // edge, it's not local. Note that if both vregs are live across the back
1445 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1446 // If both the copy's source and dest are local live intervals, then we
1447 // should treat the dest as the global for the purpose of adding
1448 // constraints. This adds edges from source's other uses to the copy.
1449 unsigned LocalReg = SrcReg;
1450 unsigned GlobalReg = DstReg;
1451 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1452 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1453 LocalReg = DstReg;
1454 GlobalReg = SrcReg;
1455 LocalLI = &LIS->getInterval(LocalReg);
1456 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1457 return;
1458 }
1459 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1460
1461 // Find the global segment after the start of the local LI.
1462 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1463 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1464 // local live range. We could create edges from other global uses to the local
1465 // start, but the coalescer should have already eliminated these cases, so
1466 // don't bother dealing with it.
1467 if (GlobalSegment == GlobalLI->end())
1468 return;
1469
1470 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1471 // returned the next global segment. But if GlobalSegment overlaps with
1472 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1473 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1474 if (GlobalSegment->contains(LocalLI->beginIndex()))
1475 ++GlobalSegment;
1476
1477 if (GlobalSegment == GlobalLI->end())
1478 return;
1479
1480 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1481 if (GlobalSegment != GlobalLI->begin()) {
1482 // Two address defs have no hole.
1483 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1484 GlobalSegment->start)) {
1485 return;
1486 }
1487 // If the prior global segment may be defined by the same two-address
1488 // instruction that also defines LocalLI, then can't make a hole here.
1489 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1490 LocalLI->beginIndex())) {
1491 return;
1492 }
1493 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1494 // it would be a disconnected component in the live range.
1495 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1496 "Disconnected LRG within the scheduling region.");
1497 }
1498 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1499 if (!GlobalDef)
1500 return;
1501
1502 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1503 if (!GlobalSU)
1504 return;
1505
1506 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1507 // constraining the uses of the last local def to precede GlobalDef.
1508 SmallVector<SUnit*,8> LocalUses;
1509 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1510 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1511 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1512 for (SUnit::const_succ_iterator
1513 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1514 I != E; ++I) {
1515 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1516 continue;
1517 if (I->getSUnit() == GlobalSU)
1518 continue;
1519 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1520 return;
1521 LocalUses.push_back(I->getSUnit());
1522 }
1523 // Open the top of the GlobalLI hole by constraining any earlier global uses
1524 // to precede the start of LocalLI.
1525 SmallVector<SUnit*,8> GlobalUses;
1526 MachineInstr *FirstLocalDef =
1527 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1528 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1529 for (SUnit::const_pred_iterator
1530 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1531 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1532 continue;
1533 if (I->getSUnit() == FirstLocalSU)
1534 continue;
1535 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1536 return;
1537 GlobalUses.push_back(I->getSUnit());
1538 }
1539 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1540 // Add the weak edges.
1541 for (SmallVectorImpl<SUnit*>::const_iterator
1542 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1543 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1544 << GlobalSU->NodeNum << ")\n");
1545 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1546 }
1547 for (SmallVectorImpl<SUnit*>::const_iterator
1548 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1549 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1550 << FirstLocalSU->NodeNum << ")\n");
1551 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1552 }
1553 }
1554
1555 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1556 /// copy elimination.
apply(ScheduleDAGMI * DAG)1557 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1558 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1559
1560 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1561 if (FirstPos == DAG->end())
1562 return;
1563 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1564 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1565 &*priorNonDebug(DAG->end(), DAG->begin()));
1566
1567 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1568 SUnit *SU = &DAG->SUnits[Idx];
1569 if (!SU->getInstr()->isCopy())
1570 continue;
1571
1572 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1573 }
1574 }
1575
1576 //===----------------------------------------------------------------------===//
1577 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1578 // and possibly other custom schedulers.
1579 //===----------------------------------------------------------------------===//
1580
1581 static const unsigned InvalidCycle = ~0U;
1582
~SchedBoundary()1583 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1584
reset()1585 void SchedBoundary::reset() {
1586 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1587 // Destroying and reconstructing it is very expensive though. So keep
1588 // invalid, placeholder HazardRecs.
1589 if (HazardRec && HazardRec->isEnabled()) {
1590 delete HazardRec;
1591 HazardRec = nullptr;
1592 }
1593 Available.clear();
1594 Pending.clear();
1595 CheckPending = false;
1596 NextSUs.clear();
1597 CurrCycle = 0;
1598 CurrMOps = 0;
1599 MinReadyCycle = UINT_MAX;
1600 ExpectedLatency = 0;
1601 DependentLatency = 0;
1602 RetiredMOps = 0;
1603 MaxExecutedResCount = 0;
1604 ZoneCritResIdx = 0;
1605 IsResourceLimited = false;
1606 ReservedCycles.clear();
1607 #ifndef NDEBUG
1608 // Track the maximum number of stall cycles that could arise either from the
1609 // latency of a DAG edge or the number of cycles that a processor resource is
1610 // reserved (SchedBoundary::ReservedCycles).
1611 MaxObservedStall = 0;
1612 #endif
1613 // Reserve a zero-count for invalid CritResIdx.
1614 ExecutedResCounts.resize(1);
1615 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1616 }
1617
1618 void SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1619 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1620 reset();
1621 if (!SchedModel->hasInstrSchedModel())
1622 return;
1623 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1624 for (std::vector<SUnit>::iterator
1625 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1626 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1627 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1628 * SchedModel->getMicroOpFactor();
1629 for (TargetSchedModel::ProcResIter
1630 PI = SchedModel->getWriteProcResBegin(SC),
1631 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1632 unsigned PIdx = PI->ProcResourceIdx;
1633 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1634 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1635 }
1636 }
1637 }
1638
1639 void SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1640 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1641 reset();
1642 DAG = dag;
1643 SchedModel = smodel;
1644 Rem = rem;
1645 if (SchedModel->hasInstrSchedModel()) {
1646 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1647 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1648 }
1649 }
1650
1651 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1652 /// these "soft stalls" differently than the hard stall cycles based on CPU
1653 /// resources and computed by checkHazard(). A fully in-order model
1654 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1655 /// available for scheduling until they are ready. However, a weaker in-order
1656 /// model may use this for heuristics. For example, if a processor has in-order
1657 /// behavior when reading certain resources, this may come into play.
getLatencyStallCycles(SUnit * SU)1658 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1659 if (!SU->isUnbuffered)
1660 return 0;
1661
1662 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1663 if (ReadyCycle > CurrCycle)
1664 return ReadyCycle - CurrCycle;
1665 return 0;
1666 }
1667
1668 /// Compute the next cycle at which the given processor resource can be
1669 /// scheduled.
1670 unsigned SchedBoundary::
getNextResourceCycle(unsigned PIdx,unsigned Cycles)1671 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1672 unsigned NextUnreserved = ReservedCycles[PIdx];
1673 // If this resource has never been used, always return cycle zero.
1674 if (NextUnreserved == InvalidCycle)
1675 return 0;
1676 // For bottom-up scheduling add the cycles needed for the current operation.
1677 if (!isTop())
1678 NextUnreserved += Cycles;
1679 return NextUnreserved;
1680 }
1681
1682 /// Does this SU have a hazard within the current instruction group.
1683 ///
1684 /// The scheduler supports two modes of hazard recognition. The first is the
1685 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1686 /// supports highly complicated in-order reservation tables
1687 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1688 ///
1689 /// The second is a streamlined mechanism that checks for hazards based on
1690 /// simple counters that the scheduler itself maintains. It explicitly checks
1691 /// for instruction dispatch limitations, including the number of micro-ops that
1692 /// can dispatch per cycle.
1693 ///
1694 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1695 bool SchedBoundary::checkHazard(SUnit *SU) {
1696 if (HazardRec->isEnabled()
1697 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1698 return true;
1699 }
1700 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1701 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1702 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1703 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1704 return true;
1705 }
1706 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1707 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1708 for (TargetSchedModel::ProcResIter
1709 PI = SchedModel->getWriteProcResBegin(SC),
1710 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1711 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1712 if (NRCycle > CurrCycle) {
1713 #ifndef NDEBUG
1714 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1715 #endif
1716 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1717 << SchedModel->getResourceName(PI->ProcResourceIdx)
1718 << "=" << NRCycle << "c\n");
1719 return true;
1720 }
1721 }
1722 }
1723 return false;
1724 }
1725
1726 // Find the unscheduled node in ReadySUs with the highest latency.
1727 unsigned SchedBoundary::
findMaxLatency(ArrayRef<SUnit * > ReadySUs)1728 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1729 SUnit *LateSU = nullptr;
1730 unsigned RemLatency = 0;
1731 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1732 I != E; ++I) {
1733 unsigned L = getUnscheduledLatency(*I);
1734 if (L > RemLatency) {
1735 RemLatency = L;
1736 LateSU = *I;
1737 }
1738 }
1739 if (LateSU) {
1740 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1741 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1742 }
1743 return RemLatency;
1744 }
1745
1746 // Count resources in this zone and the remaining unscheduled
1747 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1748 // resource index, or zero if the zone is issue limited.
1749 unsigned SchedBoundary::
getOtherResourceCount(unsigned & OtherCritIdx)1750 getOtherResourceCount(unsigned &OtherCritIdx) {
1751 OtherCritIdx = 0;
1752 if (!SchedModel->hasInstrSchedModel())
1753 return 0;
1754
1755 unsigned OtherCritCount = Rem->RemIssueCount
1756 + (RetiredMOps * SchedModel->getMicroOpFactor());
1757 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1758 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1759 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1760 PIdx != PEnd; ++PIdx) {
1761 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1762 if (OtherCount > OtherCritCount) {
1763 OtherCritCount = OtherCount;
1764 OtherCritIdx = PIdx;
1765 }
1766 }
1767 if (OtherCritIdx) {
1768 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1769 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1770 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1771 }
1772 return OtherCritCount;
1773 }
1774
releaseNode(SUnit * SU,unsigned ReadyCycle)1775 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1776 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1777
1778 #ifndef NDEBUG
1779 // ReadyCycle was been bumped up to the CurrCycle when this node was
1780 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1781 // scheduling, so may now be greater than ReadyCycle.
1782 if (ReadyCycle > CurrCycle)
1783 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1784 #endif
1785
1786 if (ReadyCycle < MinReadyCycle)
1787 MinReadyCycle = ReadyCycle;
1788
1789 // Check for interlocks first. For the purpose of other heuristics, an
1790 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1791 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1792 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1793 Pending.push(SU);
1794 else
1795 Available.push(SU);
1796
1797 // Record this node as an immediate dependent of the scheduled node.
1798 NextSUs.insert(SU);
1799 }
1800
releaseTopNode(SUnit * SU)1801 void SchedBoundary::releaseTopNode(SUnit *SU) {
1802 if (SU->isScheduled)
1803 return;
1804
1805 releaseNode(SU, SU->TopReadyCycle);
1806 }
1807
releaseBottomNode(SUnit * SU)1808 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1809 if (SU->isScheduled)
1810 return;
1811
1812 releaseNode(SU, SU->BotReadyCycle);
1813 }
1814
1815 /// Move the boundary of scheduled code by one cycle.
bumpCycle(unsigned NextCycle)1816 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1817 if (SchedModel->getMicroOpBufferSize() == 0) {
1818 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1819 if (MinReadyCycle > NextCycle)
1820 NextCycle = MinReadyCycle;
1821 }
1822 // Update the current micro-ops, which will issue in the next cycle.
1823 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1824 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1825
1826 // Decrement DependentLatency based on the next cycle.
1827 if ((NextCycle - CurrCycle) > DependentLatency)
1828 DependentLatency = 0;
1829 else
1830 DependentLatency -= (NextCycle - CurrCycle);
1831
1832 if (!HazardRec->isEnabled()) {
1833 // Bypass HazardRec virtual calls.
1834 CurrCycle = NextCycle;
1835 }
1836 else {
1837 // Bypass getHazardType calls in case of long latency.
1838 for (; CurrCycle != NextCycle; ++CurrCycle) {
1839 if (isTop())
1840 HazardRec->AdvanceCycle();
1841 else
1842 HazardRec->RecedeCycle();
1843 }
1844 }
1845 CheckPending = true;
1846 unsigned LFactor = SchedModel->getLatencyFactor();
1847 IsResourceLimited =
1848 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1849 > (int)LFactor;
1850
1851 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1852 }
1853
incExecutedResources(unsigned PIdx,unsigned Count)1854 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1855 ExecutedResCounts[PIdx] += Count;
1856 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1857 MaxExecutedResCount = ExecutedResCounts[PIdx];
1858 }
1859
1860 /// Add the given processor resource to this scheduled zone.
1861 ///
1862 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1863 /// during which this resource is consumed.
1864 ///
1865 /// \return the next cycle at which the instruction may execute without
1866 /// oversubscribing resources.
1867 unsigned SchedBoundary::
countResource(unsigned PIdx,unsigned Cycles,unsigned NextCycle)1868 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1869 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1870 unsigned Count = Factor * Cycles;
1871 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
1872 << " +" << Cycles << "x" << Factor << "u\n");
1873
1874 // Update Executed resources counts.
1875 incExecutedResources(PIdx, Count);
1876 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1877 Rem->RemainingCounts[PIdx] -= Count;
1878
1879 // Check if this resource exceeds the current critical resource. If so, it
1880 // becomes the critical resource.
1881 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1882 ZoneCritResIdx = PIdx;
1883 DEBUG(dbgs() << " *** Critical resource "
1884 << SchedModel->getResourceName(PIdx) << ": "
1885 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1886 }
1887 // For reserved resources, record the highest cycle using the resource.
1888 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1889 if (NextAvailable > CurrCycle) {
1890 DEBUG(dbgs() << " Resource conflict: "
1891 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1892 << NextAvailable << "\n");
1893 }
1894 return NextAvailable;
1895 }
1896
1897 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)1898 void SchedBoundary::bumpNode(SUnit *SU) {
1899 // Update the reservation table.
1900 if (HazardRec->isEnabled()) {
1901 if (!isTop() && SU->isCall) {
1902 // Calls are scheduled with their preceding instructions. For bottom-up
1903 // scheduling, clear the pipeline state before emitting.
1904 HazardRec->Reset();
1905 }
1906 HazardRec->EmitInstruction(SU);
1907 }
1908 // checkHazard should prevent scheduling multiple instructions per cycle that
1909 // exceed the issue width.
1910 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1911 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1912 assert(
1913 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1914 "Cannot schedule this instruction's MicroOps in the current cycle.");
1915
1916 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1917 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1918
1919 unsigned NextCycle = CurrCycle;
1920 switch (SchedModel->getMicroOpBufferSize()) {
1921 case 0:
1922 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1923 break;
1924 case 1:
1925 if (ReadyCycle > NextCycle) {
1926 NextCycle = ReadyCycle;
1927 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
1928 }
1929 break;
1930 default:
1931 // We don't currently model the OOO reorder buffer, so consider all
1932 // scheduled MOps to be "retired". We do loosely model in-order resource
1933 // latency. If this instruction uses an in-order resource, account for any
1934 // likely stall cycles.
1935 if (SU->isUnbuffered && ReadyCycle > NextCycle)
1936 NextCycle = ReadyCycle;
1937 break;
1938 }
1939 RetiredMOps += IncMOps;
1940
1941 // Update resource counts and critical resource.
1942 if (SchedModel->hasInstrSchedModel()) {
1943 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1944 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1945 Rem->RemIssueCount -= DecRemIssue;
1946 if (ZoneCritResIdx) {
1947 // Scale scheduled micro-ops for comparing with the critical resource.
1948 unsigned ScaledMOps =
1949 RetiredMOps * SchedModel->getMicroOpFactor();
1950
1951 // If scaled micro-ops are now more than the previous critical resource by
1952 // a full cycle, then micro-ops issue becomes critical.
1953 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1954 >= (int)SchedModel->getLatencyFactor()) {
1955 ZoneCritResIdx = 0;
1956 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
1957 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1958 }
1959 }
1960 for (TargetSchedModel::ProcResIter
1961 PI = SchedModel->getWriteProcResBegin(SC),
1962 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1963 unsigned RCycle =
1964 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1965 if (RCycle > NextCycle)
1966 NextCycle = RCycle;
1967 }
1968 if (SU->hasReservedResource) {
1969 // For reserved resources, record the highest cycle using the resource.
1970 // For top-down scheduling, this is the cycle in which we schedule this
1971 // instruction plus the number of cycles the operations reserves the
1972 // resource. For bottom-up is it simply the instruction's cycle.
1973 for (TargetSchedModel::ProcResIter
1974 PI = SchedModel->getWriteProcResBegin(SC),
1975 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1976 unsigned PIdx = PI->ProcResourceIdx;
1977 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
1978 if (isTop()) {
1979 ReservedCycles[PIdx] =
1980 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
1981 }
1982 else
1983 ReservedCycles[PIdx] = NextCycle;
1984 }
1985 }
1986 }
1987 }
1988 // Update ExpectedLatency and DependentLatency.
1989 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1990 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1991 if (SU->getDepth() > TopLatency) {
1992 TopLatency = SU->getDepth();
1993 DEBUG(dbgs() << " " << Available.getName()
1994 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1995 }
1996 if (SU->getHeight() > BotLatency) {
1997 BotLatency = SU->getHeight();
1998 DEBUG(dbgs() << " " << Available.getName()
1999 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2000 }
2001 // If we stall for any reason, bump the cycle.
2002 if (NextCycle > CurrCycle) {
2003 bumpCycle(NextCycle);
2004 }
2005 else {
2006 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2007 // resource limited. If a stall occurred, bumpCycle does this.
2008 unsigned LFactor = SchedModel->getLatencyFactor();
2009 IsResourceLimited =
2010 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2011 > (int)LFactor;
2012 }
2013 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2014 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2015 // one cycle. Since we commonly reach the max MOps here, opportunistically
2016 // bump the cycle to avoid uselessly checking everything in the readyQ.
2017 CurrMOps += IncMOps;
2018 while (CurrMOps >= SchedModel->getIssueWidth()) {
2019 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2020 << " at cycle " << CurrCycle << '\n');
2021 bumpCycle(++NextCycle);
2022 }
2023 DEBUG(dumpScheduledState());
2024 }
2025
2026 /// Release pending ready nodes in to the available queue. This makes them
2027 /// visible to heuristics.
releasePending()2028 void SchedBoundary::releasePending() {
2029 // If the available queue is empty, it is safe to reset MinReadyCycle.
2030 if (Available.empty())
2031 MinReadyCycle = UINT_MAX;
2032
2033 // Check to see if any of the pending instructions are ready to issue. If
2034 // so, add them to the available queue.
2035 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2036 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2037 SUnit *SU = *(Pending.begin()+i);
2038 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2039
2040 if (ReadyCycle < MinReadyCycle)
2041 MinReadyCycle = ReadyCycle;
2042
2043 if (!IsBuffered && ReadyCycle > CurrCycle)
2044 continue;
2045
2046 if (checkHazard(SU))
2047 continue;
2048
2049 Available.push(SU);
2050 Pending.remove(Pending.begin()+i);
2051 --i; --e;
2052 }
2053 DEBUG(if (!Pending.empty()) Pending.dump());
2054 CheckPending = false;
2055 }
2056
2057 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)2058 void SchedBoundary::removeReady(SUnit *SU) {
2059 if (Available.isInQueue(SU))
2060 Available.remove(Available.find(SU));
2061 else {
2062 assert(Pending.isInQueue(SU) && "bad ready count");
2063 Pending.remove(Pending.find(SU));
2064 }
2065 }
2066
2067 /// If this queue only has one ready candidate, return it. As a side effect,
2068 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2069 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()2070 SUnit *SchedBoundary::pickOnlyChoice() {
2071 if (CheckPending)
2072 releasePending();
2073
2074 if (CurrMOps > 0) {
2075 // Defer any ready instrs that now have a hazard.
2076 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2077 if (checkHazard(*I)) {
2078 Pending.push(*I);
2079 I = Available.remove(I);
2080 continue;
2081 }
2082 ++I;
2083 }
2084 }
2085 for (unsigned i = 0; Available.empty(); ++i) {
2086 // FIXME: Re-enable assert once PR20057 is resolved.
2087 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2088 // "permanent hazard");
2089 (void)i;
2090 bumpCycle(CurrCycle + 1);
2091 releasePending();
2092 }
2093 if (Available.size() == 1)
2094 return *Available.begin();
2095 return nullptr;
2096 }
2097
2098 #ifndef NDEBUG
2099 // This is useful information to dump after bumpNode.
2100 // Note that the Queue contents are more useful before pickNodeFromQueue.
dumpScheduledState()2101 void SchedBoundary::dumpScheduledState() {
2102 unsigned ResFactor;
2103 unsigned ResCount;
2104 if (ZoneCritResIdx) {
2105 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2106 ResCount = getResourceCount(ZoneCritResIdx);
2107 }
2108 else {
2109 ResFactor = SchedModel->getMicroOpFactor();
2110 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2111 }
2112 unsigned LFactor = SchedModel->getLatencyFactor();
2113 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2114 << " Retired: " << RetiredMOps;
2115 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2116 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2117 << ResCount / ResFactor << " "
2118 << SchedModel->getResourceName(ZoneCritResIdx)
2119 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2120 << (IsResourceLimited ? " - Resource" : " - Latency")
2121 << " limited.\n";
2122 }
2123 #endif
2124
2125 //===----------------------------------------------------------------------===//
2126 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2127 //===----------------------------------------------------------------------===//
2128
2129 void GenericSchedulerBase::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)2130 initResourceDelta(const ScheduleDAGMI *DAG,
2131 const TargetSchedModel *SchedModel) {
2132 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2133 return;
2134
2135 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2136 for (TargetSchedModel::ProcResIter
2137 PI = SchedModel->getWriteProcResBegin(SC),
2138 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2139 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2140 ResDelta.CritResources += PI->Cycles;
2141 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2142 ResDelta.DemandedResources += PI->Cycles;
2143 }
2144 }
2145
2146 /// Set the CandPolicy given a scheduling zone given the current resources and
2147 /// latencies inside and outside the zone.
setPolicy(CandPolicy & Policy,bool IsPostRA,SchedBoundary & CurrZone,SchedBoundary * OtherZone)2148 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2149 bool IsPostRA,
2150 SchedBoundary &CurrZone,
2151 SchedBoundary *OtherZone) {
2152 // Apply preemptive heuristics based on the the total latency and resources
2153 // inside and outside this zone. Potential stalls should be considered before
2154 // following this policy.
2155
2156 // Compute remaining latency. We need this both to determine whether the
2157 // overall schedule has become latency-limited and whether the instructions
2158 // outside this zone are resource or latency limited.
2159 //
2160 // The "dependent" latency is updated incrementally during scheduling as the
2161 // max height/depth of scheduled nodes minus the cycles since it was
2162 // scheduled:
2163 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2164 //
2165 // The "independent" latency is the max ready queue depth:
2166 // ILat = max N.depth for N in Available|Pending
2167 //
2168 // RemainingLatency is the greater of independent and dependent latency.
2169 unsigned RemLatency = CurrZone.getDependentLatency();
2170 RemLatency = std::max(RemLatency,
2171 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2172 RemLatency = std::max(RemLatency,
2173 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2174
2175 // Compute the critical resource outside the zone.
2176 unsigned OtherCritIdx = 0;
2177 unsigned OtherCount =
2178 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2179
2180 bool OtherResLimited = false;
2181 if (SchedModel->hasInstrSchedModel()) {
2182 unsigned LFactor = SchedModel->getLatencyFactor();
2183 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2184 }
2185 // Schedule aggressively for latency in PostRA mode. We don't check for
2186 // acyclic latency during PostRA, and highly out-of-order processors will
2187 // skip PostRA scheduling.
2188 if (!OtherResLimited) {
2189 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2190 Policy.ReduceLatency |= true;
2191 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2192 << " RemainingLatency " << RemLatency << " + "
2193 << CurrZone.getCurrCycle() << "c > CritPath "
2194 << Rem.CriticalPath << "\n");
2195 }
2196 }
2197 // If the same resource is limiting inside and outside the zone, do nothing.
2198 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2199 return;
2200
2201 DEBUG(
2202 if (CurrZone.isResourceLimited()) {
2203 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2204 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2205 << "\n";
2206 }
2207 if (OtherResLimited)
2208 dbgs() << " RemainingLimit: "
2209 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2210 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2211 dbgs() << " Latency limited both directions.\n");
2212
2213 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2214 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2215
2216 if (OtherResLimited)
2217 Policy.DemandResIdx = OtherCritIdx;
2218 }
2219
2220 #ifndef NDEBUG
getReasonStr(GenericSchedulerBase::CandReason Reason)2221 const char *GenericSchedulerBase::getReasonStr(
2222 GenericSchedulerBase::CandReason Reason) {
2223 switch (Reason) {
2224 case NoCand: return "NOCAND ";
2225 case PhysRegCopy: return "PREG-COPY";
2226 case RegExcess: return "REG-EXCESS";
2227 case RegCritical: return "REG-CRIT ";
2228 case Stall: return "STALL ";
2229 case Cluster: return "CLUSTER ";
2230 case Weak: return "WEAK ";
2231 case RegMax: return "REG-MAX ";
2232 case ResourceReduce: return "RES-REDUCE";
2233 case ResourceDemand: return "RES-DEMAND";
2234 case TopDepthReduce: return "TOP-DEPTH ";
2235 case TopPathReduce: return "TOP-PATH ";
2236 case BotHeightReduce:return "BOT-HEIGHT";
2237 case BotPathReduce: return "BOT-PATH ";
2238 case NextDefUse: return "DEF-USE ";
2239 case NodeOrder: return "ORDER ";
2240 };
2241 llvm_unreachable("Unknown reason!");
2242 }
2243
traceCandidate(const SchedCandidate & Cand)2244 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2245 PressureChange P;
2246 unsigned ResIdx = 0;
2247 unsigned Latency = 0;
2248 switch (Cand.Reason) {
2249 default:
2250 break;
2251 case RegExcess:
2252 P = Cand.RPDelta.Excess;
2253 break;
2254 case RegCritical:
2255 P = Cand.RPDelta.CriticalMax;
2256 break;
2257 case RegMax:
2258 P = Cand.RPDelta.CurrentMax;
2259 break;
2260 case ResourceReduce:
2261 ResIdx = Cand.Policy.ReduceResIdx;
2262 break;
2263 case ResourceDemand:
2264 ResIdx = Cand.Policy.DemandResIdx;
2265 break;
2266 case TopDepthReduce:
2267 Latency = Cand.SU->getDepth();
2268 break;
2269 case TopPathReduce:
2270 Latency = Cand.SU->getHeight();
2271 break;
2272 case BotHeightReduce:
2273 Latency = Cand.SU->getHeight();
2274 break;
2275 case BotPathReduce:
2276 Latency = Cand.SU->getDepth();
2277 break;
2278 }
2279 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2280 if (P.isValid())
2281 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2282 << ":" << P.getUnitInc() << " ";
2283 else
2284 dbgs() << " ";
2285 if (ResIdx)
2286 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2287 else
2288 dbgs() << " ";
2289 if (Latency)
2290 dbgs() << " " << Latency << " cycles ";
2291 else
2292 dbgs() << " ";
2293 dbgs() << '\n';
2294 }
2295 #endif
2296
2297 /// Return true if this heuristic determines order.
tryLess(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2298 static bool tryLess(int TryVal, int CandVal,
2299 GenericSchedulerBase::SchedCandidate &TryCand,
2300 GenericSchedulerBase::SchedCandidate &Cand,
2301 GenericSchedulerBase::CandReason Reason) {
2302 if (TryVal < CandVal) {
2303 TryCand.Reason = Reason;
2304 return true;
2305 }
2306 if (TryVal > CandVal) {
2307 if (Cand.Reason > Reason)
2308 Cand.Reason = Reason;
2309 return true;
2310 }
2311 Cand.setRepeat(Reason);
2312 return false;
2313 }
2314
tryGreater(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2315 static bool tryGreater(int TryVal, int CandVal,
2316 GenericSchedulerBase::SchedCandidate &TryCand,
2317 GenericSchedulerBase::SchedCandidate &Cand,
2318 GenericSchedulerBase::CandReason Reason) {
2319 if (TryVal > CandVal) {
2320 TryCand.Reason = Reason;
2321 return true;
2322 }
2323 if (TryVal < CandVal) {
2324 if (Cand.Reason > Reason)
2325 Cand.Reason = Reason;
2326 return true;
2327 }
2328 Cand.setRepeat(Reason);
2329 return false;
2330 }
2331
tryLatency(GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,SchedBoundary & Zone)2332 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2333 GenericSchedulerBase::SchedCandidate &Cand,
2334 SchedBoundary &Zone) {
2335 if (Zone.isTop()) {
2336 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2337 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2338 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2339 return true;
2340 }
2341 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2342 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2343 return true;
2344 }
2345 else {
2346 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2347 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2348 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2349 return true;
2350 }
2351 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2352 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2353 return true;
2354 }
2355 return false;
2356 }
2357
tracePick(const GenericSchedulerBase::SchedCandidate & Cand,bool IsTop)2358 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2359 bool IsTop) {
2360 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2361 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2362 }
2363
initialize(ScheduleDAGMI * dag)2364 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2365 assert(dag->hasVRegLiveness() &&
2366 "(PreRA)GenericScheduler needs vreg liveness");
2367 DAG = static_cast<ScheduleDAGMILive*>(dag);
2368 SchedModel = DAG->getSchedModel();
2369 TRI = DAG->TRI;
2370
2371 Rem.init(DAG, SchedModel);
2372 Top.init(DAG, SchedModel, &Rem);
2373 Bot.init(DAG, SchedModel, &Rem);
2374
2375 // Initialize resource counts.
2376
2377 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2378 // are disabled, then these HazardRecs will be disabled.
2379 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2380 if (!Top.HazardRec) {
2381 Top.HazardRec =
2382 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2383 Itin, DAG);
2384 }
2385 if (!Bot.HazardRec) {
2386 Bot.HazardRec =
2387 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2388 Itin, DAG);
2389 }
2390 }
2391
2392 /// Initialize the per-region scheduling policy.
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)2393 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2394 MachineBasicBlock::iterator End,
2395 unsigned NumRegionInstrs) {
2396 const MachineFunction &MF = *Begin->getParent()->getParent();
2397 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2398
2399 // Avoid setting up the register pressure tracker for small regions to save
2400 // compile time. As a rough heuristic, only track pressure when the number of
2401 // schedulable instructions exceeds half the integer register file.
2402 RegionPolicy.ShouldTrackPressure = true;
2403 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2404 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2405 if (TLI->isTypeLegal(LegalIntVT)) {
2406 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2407 TLI->getRegClassFor(LegalIntVT));
2408 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2409 }
2410 }
2411
2412 // For generic targets, we default to bottom-up, because it's simpler and more
2413 // compile-time optimizations have been implemented in that direction.
2414 RegionPolicy.OnlyBottomUp = true;
2415
2416 // Allow the subtarget to override default policy.
2417 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2418 NumRegionInstrs);
2419
2420 // After subtarget overrides, apply command line options.
2421 if (!EnableRegPressure)
2422 RegionPolicy.ShouldTrackPressure = false;
2423
2424 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2425 // e.g. -misched-bottomup=false allows scheduling in both directions.
2426 assert((!ForceTopDown || !ForceBottomUp) &&
2427 "-misched-topdown incompatible with -misched-bottomup");
2428 if (ForceBottomUp.getNumOccurrences() > 0) {
2429 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2430 if (RegionPolicy.OnlyBottomUp)
2431 RegionPolicy.OnlyTopDown = false;
2432 }
2433 if (ForceTopDown.getNumOccurrences() > 0) {
2434 RegionPolicy.OnlyTopDown = ForceTopDown;
2435 if (RegionPolicy.OnlyTopDown)
2436 RegionPolicy.OnlyBottomUp = false;
2437 }
2438 }
2439
2440 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2441 /// critical path by more cycles than it takes to drain the instruction buffer.
2442 /// We estimate an upper bounds on in-flight instructions as:
2443 ///
2444 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2445 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2446 /// InFlightResources = InFlightIterations * LoopResources
2447 ///
2448 /// TODO: Check execution resources in addition to IssueCount.
checkAcyclicLatency()2449 void GenericScheduler::checkAcyclicLatency() {
2450 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2451 return;
2452
2453 // Scaled number of cycles per loop iteration.
2454 unsigned IterCount =
2455 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2456 Rem.RemIssueCount);
2457 // Scaled acyclic critical path.
2458 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2459 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2460 unsigned InFlightCount =
2461 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2462 unsigned BufferLimit =
2463 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2464
2465 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2466
2467 DEBUG(dbgs() << "IssueCycles="
2468 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2469 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2470 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2471 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2472 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2473 if (Rem.IsAcyclicLatencyLimited)
2474 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2475 }
2476
registerRoots()2477 void GenericScheduler::registerRoots() {
2478 Rem.CriticalPath = DAG->ExitSU.getDepth();
2479
2480 // Some roots may not feed into ExitSU. Check all of them in case.
2481 for (std::vector<SUnit*>::const_iterator
2482 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2483 if ((*I)->getDepth() > Rem.CriticalPath)
2484 Rem.CriticalPath = (*I)->getDepth();
2485 }
2486 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2487 if (DumpCriticalPathLength) {
2488 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2489 }
2490
2491 if (EnableCyclicPath) {
2492 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2493 checkAcyclicLatency();
2494 }
2495 }
2496
tryPressure(const PressureChange & TryP,const PressureChange & CandP,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2497 static bool tryPressure(const PressureChange &TryP,
2498 const PressureChange &CandP,
2499 GenericSchedulerBase::SchedCandidate &TryCand,
2500 GenericSchedulerBase::SchedCandidate &Cand,
2501 GenericSchedulerBase::CandReason Reason) {
2502 int TryRank = TryP.getPSetOrMax();
2503 int CandRank = CandP.getPSetOrMax();
2504 // If both candidates affect the same set, go with the smallest increase.
2505 if (TryRank == CandRank) {
2506 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2507 Reason);
2508 }
2509 // If one candidate decreases and the other increases, go with it.
2510 // Invalid candidates have UnitInc==0.
2511 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2512 Reason)) {
2513 return true;
2514 }
2515 // If the candidates are decreasing pressure, reverse priority.
2516 if (TryP.getUnitInc() < 0)
2517 std::swap(TryRank, CandRank);
2518 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2519 }
2520
getWeakLeft(const SUnit * SU,bool isTop)2521 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2522 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2523 }
2524
2525 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2526 /// their physreg def/use.
2527 ///
2528 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2529 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2530 /// with the operation that produces or consumes the physreg. We'll do this when
2531 /// regalloc has support for parallel copies.
biasPhysRegCopy(const SUnit * SU,bool isTop)2532 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2533 const MachineInstr *MI = SU->getInstr();
2534 if (!MI->isCopy())
2535 return 0;
2536
2537 unsigned ScheduledOper = isTop ? 1 : 0;
2538 unsigned UnscheduledOper = isTop ? 0 : 1;
2539 // If we have already scheduled the physreg produce/consumer, immediately
2540 // schedule the copy.
2541 if (TargetRegisterInfo::isPhysicalRegister(
2542 MI->getOperand(ScheduledOper).getReg()))
2543 return 1;
2544 // If the physreg is at the boundary, defer it. Otherwise schedule it
2545 // immediately to free the dependent. We can hoist the copy later.
2546 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2547 if (TargetRegisterInfo::isPhysicalRegister(
2548 MI->getOperand(UnscheduledOper).getReg()))
2549 return AtBoundary ? -1 : 1;
2550 return 0;
2551 }
2552
2553 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2554 /// hierarchical. This may be more efficient than a graduated cost model because
2555 /// we don't need to evaluate all aspects of the model for each node in the
2556 /// queue. But it's really done to make the heuristics easier to debug and
2557 /// statistically analyze.
2558 ///
2559 /// \param Cand provides the policy and current best candidate.
2560 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2561 /// \param Zone describes the scheduled zone that we are extending.
2562 /// \param RPTracker describes reg pressure within the scheduled zone.
2563 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary & Zone,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)2564 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2565 SchedCandidate &TryCand,
2566 SchedBoundary &Zone,
2567 const RegPressureTracker &RPTracker,
2568 RegPressureTracker &TempTracker) {
2569
2570 if (DAG->isTrackingPressure()) {
2571 // Always initialize TryCand's RPDelta.
2572 if (Zone.isTop()) {
2573 TempTracker.getMaxDownwardPressureDelta(
2574 TryCand.SU->getInstr(),
2575 TryCand.RPDelta,
2576 DAG->getRegionCriticalPSets(),
2577 DAG->getRegPressure().MaxSetPressure);
2578 }
2579 else {
2580 if (VerifyScheduling) {
2581 TempTracker.getMaxUpwardPressureDelta(
2582 TryCand.SU->getInstr(),
2583 &DAG->getPressureDiff(TryCand.SU),
2584 TryCand.RPDelta,
2585 DAG->getRegionCriticalPSets(),
2586 DAG->getRegPressure().MaxSetPressure);
2587 }
2588 else {
2589 RPTracker.getUpwardPressureDelta(
2590 TryCand.SU->getInstr(),
2591 DAG->getPressureDiff(TryCand.SU),
2592 TryCand.RPDelta,
2593 DAG->getRegionCriticalPSets(),
2594 DAG->getRegPressure().MaxSetPressure);
2595 }
2596 }
2597 }
2598 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2599 dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
2600 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2601 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2602
2603 // Initialize the candidate if needed.
2604 if (!Cand.isValid()) {
2605 TryCand.Reason = NodeOrder;
2606 return;
2607 }
2608
2609 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2610 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2611 TryCand, Cand, PhysRegCopy))
2612 return;
2613
2614 // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2615 // invalid; convert it to INT_MAX to give it lowest priority.
2616 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2617 Cand.RPDelta.Excess,
2618 TryCand, Cand, RegExcess))
2619 return;
2620
2621 // Avoid increasing the max critical pressure in the scheduled region.
2622 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2623 Cand.RPDelta.CriticalMax,
2624 TryCand, Cand, RegCritical))
2625 return;
2626
2627 // For loops that are acyclic path limited, aggressively schedule for latency.
2628 // This can result in very long dependence chains scheduled in sequence, so
2629 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2630 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2631 && tryLatency(TryCand, Cand, Zone))
2632 return;
2633
2634 // Prioritize instructions that read unbuffered resources by stall cycles.
2635 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2636 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2637 return;
2638
2639 // Keep clustered nodes together to encourage downstream peephole
2640 // optimizations which may reduce resource requirements.
2641 //
2642 // This is a best effort to set things up for a post-RA pass. Optimizations
2643 // like generating loads of multiple registers should ideally be done within
2644 // the scheduler pass by combining the loads during DAG postprocessing.
2645 const SUnit *NextClusterSU =
2646 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2647 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2648 TryCand, Cand, Cluster))
2649 return;
2650
2651 // Weak edges are for clustering and other constraints.
2652 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2653 getWeakLeft(Cand.SU, Zone.isTop()),
2654 TryCand, Cand, Weak)) {
2655 return;
2656 }
2657 // Avoid increasing the max pressure of the entire region.
2658 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2659 Cand.RPDelta.CurrentMax,
2660 TryCand, Cand, RegMax))
2661 return;
2662
2663 // Avoid critical resource consumption and balance the schedule.
2664 TryCand.initResourceDelta(DAG, SchedModel);
2665 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2666 TryCand, Cand, ResourceReduce))
2667 return;
2668 if (tryGreater(TryCand.ResDelta.DemandedResources,
2669 Cand.ResDelta.DemandedResources,
2670 TryCand, Cand, ResourceDemand))
2671 return;
2672
2673 // Avoid serializing long latency dependence chains.
2674 // For acyclic path limited loops, latency was already checked above.
2675 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2676 && tryLatency(TryCand, Cand, Zone)) {
2677 return;
2678 }
2679
2680 // Prefer immediate defs/users of the last scheduled instruction. This is a
2681 // local pressure avoidance strategy that also makes the machine code
2682 // readable.
2683 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2684 TryCand, Cand, NextDefUse))
2685 return;
2686
2687 // Fall through to original instruction order.
2688 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2689 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2690 TryCand.Reason = NodeOrder;
2691 }
2692 }
2693
2694 /// Pick the best candidate from the queue.
2695 ///
2696 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2697 /// DAG building. To adjust for the current scheduling location we need to
2698 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const RegPressureTracker & RPTracker,SchedCandidate & Cand)2699 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2700 const RegPressureTracker &RPTracker,
2701 SchedCandidate &Cand) {
2702 ReadyQueue &Q = Zone.Available;
2703
2704 DEBUG(Q.dump());
2705
2706 // getMaxPressureDelta temporarily modifies the tracker.
2707 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2708
2709 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2710
2711 SchedCandidate TryCand(Cand.Policy);
2712 TryCand.SU = *I;
2713 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2714 if (TryCand.Reason != NoCand) {
2715 // Initialize resource delta if needed in case future heuristics query it.
2716 if (TryCand.ResDelta == SchedResourceDelta())
2717 TryCand.initResourceDelta(DAG, SchedModel);
2718 Cand.setBest(TryCand);
2719 DEBUG(traceCandidate(Cand));
2720 }
2721 }
2722 }
2723
2724 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)2725 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2726 // Schedule as far as possible in the direction of no choice. This is most
2727 // efficient, but also provides the best heuristics for CriticalPSets.
2728 if (SUnit *SU = Bot.pickOnlyChoice()) {
2729 IsTopNode = false;
2730 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2731 return SU;
2732 }
2733 if (SUnit *SU = Top.pickOnlyChoice()) {
2734 IsTopNode = true;
2735 DEBUG(dbgs() << "Pick Top NOCAND\n");
2736 return SU;
2737 }
2738 CandPolicy NoPolicy;
2739 SchedCandidate BotCand(NoPolicy);
2740 SchedCandidate TopCand(NoPolicy);
2741 // Set the bottom-up policy based on the state of the current bottom zone and
2742 // the instructions outside the zone, including the top zone.
2743 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2744 // Set the top-down policy based on the state of the current top zone and
2745 // the instructions outside the zone, including the bottom zone.
2746 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2747
2748 // Prefer bottom scheduling when heuristics are silent.
2749 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2750 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2751
2752 // If either Q has a single candidate that provides the least increase in
2753 // Excess pressure, we can immediately schedule from that Q.
2754 //
2755 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2756 // affects picking from either Q. If scheduling in one direction must
2757 // increase pressure for one of the excess PSets, then schedule in that
2758 // direction first to provide more freedom in the other direction.
2759 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2760 || (BotCand.Reason == RegCritical
2761 && !BotCand.isRepeat(RegCritical)))
2762 {
2763 IsTopNode = false;
2764 tracePick(BotCand, IsTopNode);
2765 return BotCand.SU;
2766 }
2767 // Check if the top Q has a better candidate.
2768 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2769 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2770
2771 // Choose the queue with the most important (lowest enum) reason.
2772 if (TopCand.Reason < BotCand.Reason) {
2773 IsTopNode = true;
2774 tracePick(TopCand, IsTopNode);
2775 return TopCand.SU;
2776 }
2777 // Otherwise prefer the bottom candidate, in node order if all else failed.
2778 IsTopNode = false;
2779 tracePick(BotCand, IsTopNode);
2780 return BotCand.SU;
2781 }
2782
2783 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)2784 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2785 if (DAG->top() == DAG->bottom()) {
2786 assert(Top.Available.empty() && Top.Pending.empty() &&
2787 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2788 return nullptr;
2789 }
2790 SUnit *SU;
2791 do {
2792 if (RegionPolicy.OnlyTopDown) {
2793 SU = Top.pickOnlyChoice();
2794 if (!SU) {
2795 CandPolicy NoPolicy;
2796 SchedCandidate TopCand(NoPolicy);
2797 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2798 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2799 tracePick(TopCand, true);
2800 SU = TopCand.SU;
2801 }
2802 IsTopNode = true;
2803 }
2804 else if (RegionPolicy.OnlyBottomUp) {
2805 SU = Bot.pickOnlyChoice();
2806 if (!SU) {
2807 CandPolicy NoPolicy;
2808 SchedCandidate BotCand(NoPolicy);
2809 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2810 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2811 tracePick(BotCand, false);
2812 SU = BotCand.SU;
2813 }
2814 IsTopNode = false;
2815 }
2816 else {
2817 SU = pickNodeBidirectional(IsTopNode);
2818 }
2819 } while (SU->isScheduled);
2820
2821 if (SU->isTopReady())
2822 Top.removeReady(SU);
2823 if (SU->isBottomReady())
2824 Bot.removeReady(SU);
2825
2826 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2827 return SU;
2828 }
2829
reschedulePhysRegCopies(SUnit * SU,bool isTop)2830 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2831
2832 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2833 if (!isTop)
2834 ++InsertPos;
2835 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2836
2837 // Find already scheduled copies with a single physreg dependence and move
2838 // them just above the scheduled instruction.
2839 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2840 I != E; ++I) {
2841 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2842 continue;
2843 SUnit *DepSU = I->getSUnit();
2844 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2845 continue;
2846 MachineInstr *Copy = DepSU->getInstr();
2847 if (!Copy->isCopy())
2848 continue;
2849 DEBUG(dbgs() << " Rescheduling physreg copy ";
2850 I->getSUnit()->dump(DAG));
2851 DAG->moveInstruction(Copy, InsertPos);
2852 }
2853 }
2854
2855 /// Update the scheduler's state after scheduling a node. This is the same node
2856 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2857 /// update it's state based on the current cycle before MachineSchedStrategy
2858 /// does.
2859 ///
2860 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2861 /// them here. See comments in biasPhysRegCopy.
schedNode(SUnit * SU,bool IsTopNode)2862 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2863 if (IsTopNode) {
2864 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2865 Top.bumpNode(SU);
2866 if (SU->hasPhysRegUses)
2867 reschedulePhysRegCopies(SU, true);
2868 }
2869 else {
2870 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2871 Bot.bumpNode(SU);
2872 if (SU->hasPhysRegDefs)
2873 reschedulePhysRegCopies(SU, false);
2874 }
2875 }
2876
2877 /// Create the standard converging machine scheduler. This will be used as the
2878 /// default scheduler if the target does not set a default.
createGenericSchedLive(MachineSchedContext * C)2879 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2880 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2881 // Register DAG post-processors.
2882 //
2883 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2884 // data and pass it to later mutations. Have a single mutation that gathers
2885 // the interesting nodes in one pass.
2886 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2887 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2888 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2889 if (EnableMacroFusion)
2890 DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
2891 return DAG;
2892 }
2893
2894 static MachineSchedRegistry
2895 GenericSchedRegistry("converge", "Standard converging scheduler.",
2896 createGenericSchedLive);
2897
2898 //===----------------------------------------------------------------------===//
2899 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2900 //===----------------------------------------------------------------------===//
2901
initialize(ScheduleDAGMI * Dag)2902 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2903 DAG = Dag;
2904 SchedModel = DAG->getSchedModel();
2905 TRI = DAG->TRI;
2906
2907 Rem.init(DAG, SchedModel);
2908 Top.init(DAG, SchedModel, &Rem);
2909 BotRoots.clear();
2910
2911 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2912 // or are disabled, then these HazardRecs will be disabled.
2913 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2914 if (!Top.HazardRec) {
2915 Top.HazardRec =
2916 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2917 Itin, DAG);
2918 }
2919 }
2920
2921
registerRoots()2922 void PostGenericScheduler::registerRoots() {
2923 Rem.CriticalPath = DAG->ExitSU.getDepth();
2924
2925 // Some roots may not feed into ExitSU. Check all of them in case.
2926 for (SmallVectorImpl<SUnit*>::const_iterator
2927 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2928 if ((*I)->getDepth() > Rem.CriticalPath)
2929 Rem.CriticalPath = (*I)->getDepth();
2930 }
2931 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
2932 if (DumpCriticalPathLength) {
2933 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
2934 }
2935 }
2936
2937 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
2938 ///
2939 /// \param Cand provides the policy and current best candidate.
2940 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand)2941 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2942 SchedCandidate &TryCand) {
2943
2944 // Initialize the candidate if needed.
2945 if (!Cand.isValid()) {
2946 TryCand.Reason = NodeOrder;
2947 return;
2948 }
2949
2950 // Prioritize instructions that read unbuffered resources by stall cycles.
2951 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
2952 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2953 return;
2954
2955 // Avoid critical resource consumption and balance the schedule.
2956 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2957 TryCand, Cand, ResourceReduce))
2958 return;
2959 if (tryGreater(TryCand.ResDelta.DemandedResources,
2960 Cand.ResDelta.DemandedResources,
2961 TryCand, Cand, ResourceDemand))
2962 return;
2963
2964 // Avoid serializing long latency dependence chains.
2965 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
2966 return;
2967 }
2968
2969 // Fall through to original instruction order.
2970 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
2971 TryCand.Reason = NodeOrder;
2972 }
2973
pickNodeFromQueue(SchedCandidate & Cand)2974 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
2975 ReadyQueue &Q = Top.Available;
2976
2977 DEBUG(Q.dump());
2978
2979 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2980 SchedCandidate TryCand(Cand.Policy);
2981 TryCand.SU = *I;
2982 TryCand.initResourceDelta(DAG, SchedModel);
2983 tryCandidate(Cand, TryCand);
2984 if (TryCand.Reason != NoCand) {
2985 Cand.setBest(TryCand);
2986 DEBUG(traceCandidate(Cand));
2987 }
2988 }
2989 }
2990
2991 /// Pick the next node to schedule.
pickNode(bool & IsTopNode)2992 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
2993 if (DAG->top() == DAG->bottom()) {
2994 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
2995 return nullptr;
2996 }
2997 SUnit *SU;
2998 do {
2999 SU = Top.pickOnlyChoice();
3000 if (!SU) {
3001 CandPolicy NoPolicy;
3002 SchedCandidate TopCand(NoPolicy);
3003 // Set the top-down policy based on the state of the current top zone and
3004 // the instructions outside the zone, including the bottom zone.
3005 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3006 pickNodeFromQueue(TopCand);
3007 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3008 tracePick(TopCand, true);
3009 SU = TopCand.SU;
3010 }
3011 } while (SU->isScheduled);
3012
3013 IsTopNode = true;
3014 Top.removeReady(SU);
3015
3016 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3017 return SU;
3018 }
3019
3020 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3021 /// scheduled/remaining flags in the DAG nodes.
schedNode(SUnit * SU,bool IsTopNode)3022 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3023 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3024 Top.bumpNode(SU);
3025 }
3026
3027 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
createGenericSchedPostRA(MachineSchedContext * C)3028 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3029 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3030 }
3031
3032 //===----------------------------------------------------------------------===//
3033 // ILP Scheduler. Currently for experimental analysis of heuristics.
3034 //===----------------------------------------------------------------------===//
3035
3036 namespace {
3037 /// \brief Order nodes by the ILP metric.
3038 struct ILPOrder {
3039 const SchedDFSResult *DFSResult;
3040 const BitVector *ScheduledTrees;
3041 bool MaximizeILP;
3042
ILPOrder__anond1ea022a0511::ILPOrder3043 ILPOrder(bool MaxILP)
3044 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3045
3046 /// \brief Apply a less-than relation on node priority.
3047 ///
3048 /// (Return true if A comes after B in the Q.)
operator ()__anond1ea022a0511::ILPOrder3049 bool operator()(const SUnit *A, const SUnit *B) const {
3050 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3051 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3052 if (SchedTreeA != SchedTreeB) {
3053 // Unscheduled trees have lower priority.
3054 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3055 return ScheduledTrees->test(SchedTreeB);
3056
3057 // Trees with shallower connections have have lower priority.
3058 if (DFSResult->getSubtreeLevel(SchedTreeA)
3059 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3060 return DFSResult->getSubtreeLevel(SchedTreeA)
3061 < DFSResult->getSubtreeLevel(SchedTreeB);
3062 }
3063 }
3064 if (MaximizeILP)
3065 return DFSResult->getILP(A) < DFSResult->getILP(B);
3066 else
3067 return DFSResult->getILP(A) > DFSResult->getILP(B);
3068 }
3069 };
3070
3071 /// \brief Schedule based on the ILP metric.
3072 class ILPScheduler : public MachineSchedStrategy {
3073 ScheduleDAGMILive *DAG;
3074 ILPOrder Cmp;
3075
3076 std::vector<SUnit*> ReadyQ;
3077 public:
ILPScheduler(bool MaximizeILP)3078 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3079
initialize(ScheduleDAGMI * dag)3080 void initialize(ScheduleDAGMI *dag) override {
3081 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3082 DAG = static_cast<ScheduleDAGMILive*>(dag);
3083 DAG->computeDFSResult();
3084 Cmp.DFSResult = DAG->getDFSResult();
3085 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3086 ReadyQ.clear();
3087 }
3088
registerRoots()3089 void registerRoots() override {
3090 // Restore the heap in ReadyQ with the updated DFS results.
3091 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3092 }
3093
3094 /// Implement MachineSchedStrategy interface.
3095 /// -----------------------------------------
3096
3097 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)3098 SUnit *pickNode(bool &IsTopNode) override {
3099 if (ReadyQ.empty()) return nullptr;
3100 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3101 SUnit *SU = ReadyQ.back();
3102 ReadyQ.pop_back();
3103 IsTopNode = false;
3104 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3105 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3106 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3107 << DAG->getDFSResult()->getSubtreeLevel(
3108 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3109 << "Scheduling " << *SU->getInstr());
3110 return SU;
3111 }
3112
3113 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)3114 void scheduleTree(unsigned SubtreeID) override {
3115 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3116 }
3117
3118 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3119 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)3120 void schedNode(SUnit *SU, bool IsTopNode) override {
3121 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3122 }
3123
releaseTopNode(SUnit *)3124 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3125
releaseBottomNode(SUnit * SU)3126 void releaseBottomNode(SUnit *SU) override {
3127 ReadyQ.push_back(SU);
3128 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3129 }
3130 };
3131 } // namespace
3132
createILPMaxScheduler(MachineSchedContext * C)3133 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3134 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3135 }
createILPMinScheduler(MachineSchedContext * C)3136 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3137 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3138 }
3139 static MachineSchedRegistry ILPMaxRegistry(
3140 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3141 static MachineSchedRegistry ILPMinRegistry(
3142 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3143
3144 //===----------------------------------------------------------------------===//
3145 // Machine Instruction Shuffler for Correctness Testing
3146 //===----------------------------------------------------------------------===//
3147
3148 #ifndef NDEBUG
3149 namespace {
3150 /// Apply a less-than relation on the node order, which corresponds to the
3151 /// instruction order prior to scheduling. IsReverse implements greater-than.
3152 template<bool IsReverse>
3153 struct SUnitOrder {
operator ()__anond1ea022a0611::SUnitOrder3154 bool operator()(SUnit *A, SUnit *B) const {
3155 if (IsReverse)
3156 return A->NodeNum > B->NodeNum;
3157 else
3158 return A->NodeNum < B->NodeNum;
3159 }
3160 };
3161
3162 /// Reorder instructions as much as possible.
3163 class InstructionShuffler : public MachineSchedStrategy {
3164 bool IsAlternating;
3165 bool IsTopDown;
3166
3167 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3168 // gives nodes with a higher number higher priority causing the latest
3169 // instructions to be scheduled first.
3170 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3171 TopQ;
3172 // When scheduling bottom-up, use greater-than as the queue priority.
3173 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3174 BottomQ;
3175 public:
InstructionShuffler(bool alternate,bool topdown)3176 InstructionShuffler(bool alternate, bool topdown)
3177 : IsAlternating(alternate), IsTopDown(topdown) {}
3178
initialize(ScheduleDAGMI *)3179 void initialize(ScheduleDAGMI*) override {
3180 TopQ.clear();
3181 BottomQ.clear();
3182 }
3183
3184 /// Implement MachineSchedStrategy interface.
3185 /// -----------------------------------------
3186
pickNode(bool & IsTopNode)3187 SUnit *pickNode(bool &IsTopNode) override {
3188 SUnit *SU;
3189 if (IsTopDown) {
3190 do {
3191 if (TopQ.empty()) return nullptr;
3192 SU = TopQ.top();
3193 TopQ.pop();
3194 } while (SU->isScheduled);
3195 IsTopNode = true;
3196 }
3197 else {
3198 do {
3199 if (BottomQ.empty()) return nullptr;
3200 SU = BottomQ.top();
3201 BottomQ.pop();
3202 } while (SU->isScheduled);
3203 IsTopNode = false;
3204 }
3205 if (IsAlternating)
3206 IsTopDown = !IsTopDown;
3207 return SU;
3208 }
3209
schedNode(SUnit * SU,bool IsTopNode)3210 void schedNode(SUnit *SU, bool IsTopNode) override {}
3211
releaseTopNode(SUnit * SU)3212 void releaseTopNode(SUnit *SU) override {
3213 TopQ.push(SU);
3214 }
releaseBottomNode(SUnit * SU)3215 void releaseBottomNode(SUnit *SU) override {
3216 BottomQ.push(SU);
3217 }
3218 };
3219 } // namespace
3220
createInstructionShuffler(MachineSchedContext * C)3221 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3222 bool Alternate = !ForceTopDown && !ForceBottomUp;
3223 bool TopDown = !ForceBottomUp;
3224 assert((TopDown || !ForceTopDown) &&
3225 "-misched-topdown incompatible with -misched-bottomup");
3226 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3227 }
3228 static MachineSchedRegistry ShufflerRegistry(
3229 "shuffle", "Shuffle machine instructions alternating directions",
3230 createInstructionShuffler);
3231 #endif // !NDEBUG
3232
3233 //===----------------------------------------------------------------------===//
3234 // GraphWriter support for ScheduleDAGMILive.
3235 //===----------------------------------------------------------------------===//
3236
3237 #ifndef NDEBUG
3238 namespace llvm {
3239
3240 template<> struct GraphTraits<
3241 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3242
3243 template<>
3244 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3245
DOTGraphTraitsllvm::DOTGraphTraits3246 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3247
getGraphNamellvm::DOTGraphTraits3248 static std::string getGraphName(const ScheduleDAG *G) {
3249 return G->MF.getName();
3250 }
3251
renderGraphFromBottomUpllvm::DOTGraphTraits3252 static bool renderGraphFromBottomUp() {
3253 return true;
3254 }
3255
isNodeHiddenllvm::DOTGraphTraits3256 static bool isNodeHidden(const SUnit *Node) {
3257 return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3258 }
3259
hasNodeAddressLabelllvm::DOTGraphTraits3260 static bool hasNodeAddressLabel(const SUnit *Node,
3261 const ScheduleDAG *Graph) {
3262 return false;
3263 }
3264
3265 /// If you want to override the dot attributes printed for a particular
3266 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits3267 static std::string getEdgeAttributes(const SUnit *Node,
3268 SUnitIterator EI,
3269 const ScheduleDAG *Graph) {
3270 if (EI.isArtificialDep())
3271 return "color=cyan,style=dashed";
3272 if (EI.isCtrlDep())
3273 return "color=blue,style=dashed";
3274 return "";
3275 }
3276
getNodeLabelllvm::DOTGraphTraits3277 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3278 std::string Str;
3279 raw_string_ostream SS(Str);
3280 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3281 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3282 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3283 SS << "SU:" << SU->NodeNum;
3284 if (DFS)
3285 SS << " I:" << DFS->getNumInstrs(SU);
3286 return SS.str();
3287 }
getNodeDescriptionllvm::DOTGraphTraits3288 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3289 return G->getGraphNodeLabel(SU);
3290 }
3291
getNodeAttributesllvm::DOTGraphTraits3292 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3293 std::string Str("shape=Mrecord");
3294 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3295 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3296 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3297 if (DFS) {
3298 Str += ",style=filled,fillcolor=\"#";
3299 Str += DOT::getColorString(DFS->getSubtreeID(N));
3300 Str += '"';
3301 }
3302 return Str;
3303 }
3304 };
3305 } // namespace llvm
3306 #endif // NDEBUG
3307
3308 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3309 /// rendered using 'dot'.
3310 ///
viewGraph(const Twine & Name,const Twine & Title)3311 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3312 #ifndef NDEBUG
3313 ViewGraph(this, Name, false, Title);
3314 #else
3315 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3316 << "systems with Graphviz or gv!\n";
3317 #endif // NDEBUG
3318 }
3319
3320 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()3321 void ScheduleDAGMI::viewGraph() {
3322 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3323 }
3324