1 2 /* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #ifndef SkMatrix_DEFINED 11 #define SkMatrix_DEFINED 12 13 #include "SkRect.h" 14 15 class SkString; 16 17 /** \class SkMatrix 18 19 The SkMatrix class holds a 3x3 matrix for transforming coordinates. 20 SkMatrix does not have a constructor, so it must be explicitly initialized 21 using either reset() - to construct an identity matrix, or one of the set 22 functions (e.g. setTranslate, setRotate, etc.). 23 */ 24 class SK_API SkMatrix { 25 public: MakeScale(SkScalar sx,SkScalar sy)26 static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) { 27 SkMatrix m; 28 m.setScale(sx, sy); 29 return m; 30 } 31 MakeScale(SkScalar scale)32 static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) { 33 SkMatrix m; 34 m.setScale(scale, scale); 35 return m; 36 } 37 MakeTrans(SkScalar dx,SkScalar dy)38 static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) { 39 SkMatrix m; 40 m.setTranslate(dx, dy); 41 return m; 42 } 43 44 /** Enum of bit fields for the mask return by getType(). 45 Use this to identify the complexity of the matrix. 46 */ 47 enum TypeMask { 48 kIdentity_Mask = 0, 49 kTranslate_Mask = 0x01, //!< set if the matrix has translation 50 kScale_Mask = 0x02, //!< set if the matrix has X or Y scale 51 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates 52 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective 53 }; 54 55 /** Returns a bitfield describing the transformations the matrix may 56 perform. The bitfield is computed conservatively, so it may include 57 false positives. For example, when kPerspective_Mask is true, all 58 other bits may be set to true even in the case of a pure perspective 59 transform. 60 */ getType()61 TypeMask getType() const { 62 if (fTypeMask & kUnknown_Mask) { 63 fTypeMask = this->computeTypeMask(); 64 } 65 // only return the public masks 66 return (TypeMask)(fTypeMask & 0xF); 67 } 68 69 /** Returns true if the matrix is identity. 70 */ isIdentity()71 bool isIdentity() const { 72 return this->getType() == 0; 73 } 74 isScaleTranslate()75 bool isScaleTranslate() const { 76 return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); 77 } 78 79 /** Returns true if will map a rectangle to another rectangle. This can be 80 true if the matrix is identity, scale-only, or rotates a multiple of 81 90 degrees. 82 */ rectStaysRect()83 bool rectStaysRect() const { 84 if (fTypeMask & kUnknown_Mask) { 85 fTypeMask = this->computeTypeMask(); 86 } 87 return (fTypeMask & kRectStaysRect_Mask) != 0; 88 } 89 // alias for rectStaysRect() preservesAxisAlignment()90 bool preservesAxisAlignment() const { return this->rectStaysRect(); } 91 92 /** 93 * Returns true if the matrix contains perspective elements. 94 */ hasPerspective()95 bool hasPerspective() const { 96 return SkToBool(this->getPerspectiveTypeMaskOnly() & 97 kPerspective_Mask); 98 } 99 100 /** Returns true if the matrix contains only translation, rotation/reflection or uniform scale 101 Returns false if other transformation types are included or is degenerate 102 */ 103 bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; 104 105 /** Returns true if the matrix contains only translation, rotation/reflection or scale 106 (non-uniform scale is allowed). 107 Returns false if other transformation types are included or is degenerate 108 */ 109 bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; 110 111 enum { 112 kMScaleX, 113 kMSkewX, 114 kMTransX, 115 kMSkewY, 116 kMScaleY, 117 kMTransY, 118 kMPersp0, 119 kMPersp1, 120 kMPersp2 121 }; 122 123 /** Affine arrays are in column major order 124 because that's how PDF and XPS like it. 125 */ 126 enum { 127 kAScaleX, 128 kASkewY, 129 kASkewX, 130 kAScaleY, 131 kATransX, 132 kATransY 133 }; 134 135 SkScalar operator[](int index) const { 136 SkASSERT((unsigned)index < 9); 137 return fMat[index]; 138 } 139 get(int index)140 SkScalar get(int index) const { 141 SkASSERT((unsigned)index < 9); 142 return fMat[index]; 143 } 144 getScaleX()145 SkScalar getScaleX() const { return fMat[kMScaleX]; } getScaleY()146 SkScalar getScaleY() const { return fMat[kMScaleY]; } getSkewY()147 SkScalar getSkewY() const { return fMat[kMSkewY]; } getSkewX()148 SkScalar getSkewX() const { return fMat[kMSkewX]; } getTranslateX()149 SkScalar getTranslateX() const { return fMat[kMTransX]; } getTranslateY()150 SkScalar getTranslateY() const { return fMat[kMTransY]; } getPerspX()151 SkScalar getPerspX() const { return fMat[kMPersp0]; } getPerspY()152 SkScalar getPerspY() const { return fMat[kMPersp1]; } 153 154 SkScalar& operator[](int index) { 155 SkASSERT((unsigned)index < 9); 156 this->setTypeMask(kUnknown_Mask); 157 return fMat[index]; 158 } 159 set(int index,SkScalar value)160 void set(int index, SkScalar value) { 161 SkASSERT((unsigned)index < 9); 162 fMat[index] = value; 163 this->setTypeMask(kUnknown_Mask); 164 } 165 setScaleX(SkScalar v)166 void setScaleX(SkScalar v) { this->set(kMScaleX, v); } setScaleY(SkScalar v)167 void setScaleY(SkScalar v) { this->set(kMScaleY, v); } setSkewY(SkScalar v)168 void setSkewY(SkScalar v) { this->set(kMSkewY, v); } setSkewX(SkScalar v)169 void setSkewX(SkScalar v) { this->set(kMSkewX, v); } setTranslateX(SkScalar v)170 void setTranslateX(SkScalar v) { this->set(kMTransX, v); } setTranslateY(SkScalar v)171 void setTranslateY(SkScalar v) { this->set(kMTransY, v); } setPerspX(SkScalar v)172 void setPerspX(SkScalar v) { this->set(kMPersp0, v); } setPerspY(SkScalar v)173 void setPerspY(SkScalar v) { this->set(kMPersp1, v); } 174 setAll(SkScalar scaleX,SkScalar skewX,SkScalar transX,SkScalar skewY,SkScalar scaleY,SkScalar transY,SkScalar persp0,SkScalar persp1,SkScalar persp2)175 void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, 176 SkScalar skewY, SkScalar scaleY, SkScalar transY, 177 SkScalar persp0, SkScalar persp1, SkScalar persp2) { 178 fMat[kMScaleX] = scaleX; 179 fMat[kMSkewX] = skewX; 180 fMat[kMTransX] = transX; 181 fMat[kMSkewY] = skewY; 182 fMat[kMScaleY] = scaleY; 183 fMat[kMTransY] = transY; 184 fMat[kMPersp0] = persp0; 185 fMat[kMPersp1] = persp1; 186 fMat[kMPersp2] = persp2; 187 this->setTypeMask(kUnknown_Mask); 188 } 189 190 /** 191 * Copy the 9 scalars for this matrix into buffer, in the same order as the kMScaleX 192 * enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2 193 */ get9(SkScalar buffer[9])194 void get9(SkScalar buffer[9]) const { 195 memcpy(buffer, fMat, 9 * sizeof(SkScalar)); 196 } 197 198 /** 199 * Set this matrix to the 9 scalars from the buffer, in the same order as the kMScaleX 200 * enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2 201 * 202 * Note: calling set9 followed by get9 may not return the exact same values. Since the matrix 203 * is used to map non-homogeneous coordinates, it is free to rescale the 9 values as needed. 204 */ 205 void set9(const SkScalar buffer[9]); 206 207 /** Set the matrix to identity 208 */ 209 void reset(); 210 // alias for reset() setIdentity()211 void setIdentity() { this->reset(); } 212 213 /** Set the matrix to translate by (dx, dy). 214 */ 215 void setTranslate(SkScalar dx, SkScalar dy); setTranslate(const SkVector & v)216 void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); } 217 218 /** Set the matrix to scale by sx and sy, with a pivot point at (px, py). 219 The pivot point is the coordinate that should remain unchanged by the 220 specified transformation. 221 */ 222 void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); 223 /** Set the matrix to scale by sx and sy. 224 */ 225 void setScale(SkScalar sx, SkScalar sy); 226 /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't 227 touch the matrix if either divx or divy is zero. 228 */ 229 bool setIDiv(int divx, int divy); 230 /** Set the matrix to rotate by the specified number of degrees, with a 231 pivot point at (px, py). The pivot point is the coordinate that should 232 remain unchanged by the specified transformation. 233 */ 234 void setRotate(SkScalar degrees, SkScalar px, SkScalar py); 235 /** Set the matrix to rotate about (0,0) by the specified number of degrees. 236 */ 237 void setRotate(SkScalar degrees); 238 /** Set the matrix to rotate by the specified sine and cosine values, with 239 a pivot point at (px, py). The pivot point is the coordinate that 240 should remain unchanged by the specified transformation. 241 */ 242 void setSinCos(SkScalar sinValue, SkScalar cosValue, 243 SkScalar px, SkScalar py); 244 /** Set the matrix to rotate by the specified sine and cosine values. 245 */ 246 void setSinCos(SkScalar sinValue, SkScalar cosValue); 247 /** Set the matrix to skew by sx and sy, with a pivot point at (px, py). 248 The pivot point is the coordinate that should remain unchanged by the 249 specified transformation. 250 */ 251 void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); 252 /** Set the matrix to skew by sx and sy. 253 */ 254 void setSkew(SkScalar kx, SkScalar ky); 255 /** Set the matrix to the concatenation of the two specified matrices. 256 Either of the two matrices may also be the target matrix. 257 *this = a * b; 258 */ 259 void setConcat(const SkMatrix& a, const SkMatrix& b); 260 261 /** Preconcats the matrix with the specified translation. 262 M' = M * T(dx, dy) 263 */ 264 void preTranslate(SkScalar dx, SkScalar dy); 265 /** Preconcats the matrix with the specified scale. 266 M' = M * S(sx, sy, px, py) 267 */ 268 void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); 269 /** Preconcats the matrix with the specified scale. 270 M' = M * S(sx, sy) 271 */ 272 void preScale(SkScalar sx, SkScalar sy); 273 /** Preconcats the matrix with the specified rotation. 274 M' = M * R(degrees, px, py) 275 */ 276 void preRotate(SkScalar degrees, SkScalar px, SkScalar py); 277 /** Preconcats the matrix with the specified rotation. 278 M' = M * R(degrees) 279 */ 280 void preRotate(SkScalar degrees); 281 /** Preconcats the matrix with the specified skew. 282 M' = M * K(kx, ky, px, py) 283 */ 284 void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); 285 /** Preconcats the matrix with the specified skew. 286 M' = M * K(kx, ky) 287 */ 288 void preSkew(SkScalar kx, SkScalar ky); 289 /** Preconcats the matrix with the specified matrix. 290 M' = M * other 291 */ 292 void preConcat(const SkMatrix& other); 293 294 /** Postconcats the matrix with the specified translation. 295 M' = T(dx, dy) * M 296 */ 297 void postTranslate(SkScalar dx, SkScalar dy); 298 /** Postconcats the matrix with the specified scale. 299 M' = S(sx, sy, px, py) * M 300 */ 301 void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); 302 /** Postconcats the matrix with the specified scale. 303 M' = S(sx, sy) * M 304 */ 305 void postScale(SkScalar sx, SkScalar sy); 306 /** Postconcats the matrix by dividing it by the specified integers. 307 M' = S(1/divx, 1/divy, 0, 0) * M 308 */ 309 bool postIDiv(int divx, int divy); 310 /** Postconcats the matrix with the specified rotation. 311 M' = R(degrees, px, py) * M 312 */ 313 void postRotate(SkScalar degrees, SkScalar px, SkScalar py); 314 /** Postconcats the matrix with the specified rotation. 315 M' = R(degrees) * M 316 */ 317 void postRotate(SkScalar degrees); 318 /** Postconcats the matrix with the specified skew. 319 M' = K(kx, ky, px, py) * M 320 */ 321 void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); 322 /** Postconcats the matrix with the specified skew. 323 M' = K(kx, ky) * M 324 */ 325 void postSkew(SkScalar kx, SkScalar ky); 326 /** Postconcats the matrix with the specified matrix. 327 M' = other * M 328 */ 329 void postConcat(const SkMatrix& other); 330 331 enum ScaleToFit { 332 /** 333 * Scale in X and Y independently, so that src matches dst exactly. 334 * This may change the aspect ratio of the src. 335 */ 336 kFill_ScaleToFit, 337 /** 338 * Compute a scale that will maintain the original src aspect ratio, 339 * but will also ensure that src fits entirely inside dst. At least one 340 * axis (X or Y) will fit exactly. kStart aligns the result to the 341 * left and top edges of dst. 342 */ 343 kStart_ScaleToFit, 344 /** 345 * Compute a scale that will maintain the original src aspect ratio, 346 * but will also ensure that src fits entirely inside dst. At least one 347 * axis (X or Y) will fit exactly. The result is centered inside dst. 348 */ 349 kCenter_ScaleToFit, 350 /** 351 * Compute a scale that will maintain the original src aspect ratio, 352 * but will also ensure that src fits entirely inside dst. At least one 353 * axis (X or Y) will fit exactly. kEnd aligns the result to the 354 * right and bottom edges of dst. 355 */ 356 kEnd_ScaleToFit 357 }; 358 359 /** Set the matrix to the scale and translate values that map the source 360 rectangle to the destination rectangle, returning true if the the result 361 can be represented. 362 @param src the source rectangle to map from. 363 @param dst the destination rectangle to map to. 364 @param stf the ScaleToFit option 365 @return true if the matrix can be represented by the rectangle mapping. 366 */ 367 bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); 368 369 /** Set the matrix such that the specified src points would map to the 370 specified dst points. count must be within [0..4]. 371 @param src The array of src points 372 @param dst The array of dst points 373 @param count The number of points to use for the transformation 374 @return true if the matrix was set to the specified transformation 375 */ 376 bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); 377 378 /** If this matrix can be inverted, return true and if inverse is not null, 379 set inverse to be the inverse of this matrix. If this matrix cannot be 380 inverted, ignore inverse and return false 381 */ invert(SkMatrix * inverse)382 bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const { 383 // Allow the trivial case to be inlined. 384 if (this->isIdentity()) { 385 if (inverse) { 386 inverse->reset(); 387 } 388 return true; 389 } 390 return this->invertNonIdentity(inverse); 391 } 392 393 /** Fills the passed array with affine identity values 394 in column major order. 395 @param affine The array to fill with affine identity values. 396 Must not be NULL. 397 */ 398 static void SetAffineIdentity(SkScalar affine[6]); 399 400 /** Fills the passed array with the affine values in column major order. 401 If the matrix is a perspective transform, returns false 402 and does not change the passed array. 403 @param affine The array to fill with affine values. Ignored if NULL. 404 */ 405 bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const; 406 407 /** Set the matrix to the specified affine values. 408 * Note: these are passed in column major order. 409 */ 410 void setAffine(const SkScalar affine[6]); 411 412 /** Apply this matrix to the array of points specified by src, and write 413 the transformed points into the array of points specified by dst. 414 dst[] = M * src[] 415 @param dst Where the transformed coordinates are written. It must 416 contain at least count entries 417 @param src The original coordinates that are to be transformed. It 418 must contain at least count entries 419 @param count The number of points in src to read, and then transform 420 into dst. 421 */ mapPoints(SkPoint dst[],const SkPoint src[],int count)422 void mapPoints(SkPoint dst[], const SkPoint src[], int count) const { 423 SkASSERT((dst && src && count > 0) || 0 == count); 424 // no partial overlap 425 SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]); 426 this->getMapPtsProc()(*this, dst, src, count); 427 } 428 429 /** Apply this matrix to the array of points, overwriting it with the 430 transformed values. 431 dst[] = M * pts[] 432 @param pts The points to be transformed. It must contain at least 433 count entries 434 @param count The number of points in pts. 435 */ mapPoints(SkPoint pts[],int count)436 void mapPoints(SkPoint pts[], int count) const { 437 this->mapPoints(pts, pts, count); 438 } 439 440 /** Like mapPoints but with custom byte stride between the points. Stride 441 * should be a multiple of sizeof(SkScalar). 442 */ mapPointsWithStride(SkPoint pts[],size_t stride,int count)443 void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const { 444 SkASSERT(stride >= sizeof(SkPoint)); 445 SkASSERT(0 == stride % sizeof(SkScalar)); 446 for (int i = 0; i < count; ++i) { 447 this->mapPoints(pts, pts, 1); 448 pts = (SkPoint*)((intptr_t)pts + stride); 449 } 450 } 451 452 /** Like mapPoints but with custom byte stride between the points. 453 */ mapPointsWithStride(SkPoint dst[],SkPoint src[],size_t stride,int count)454 void mapPointsWithStride(SkPoint dst[], SkPoint src[], 455 size_t stride, int count) const { 456 SkASSERT(stride >= sizeof(SkPoint)); 457 SkASSERT(0 == stride % sizeof(SkScalar)); 458 for (int i = 0; i < count; ++i) { 459 this->mapPoints(dst, src, 1); 460 src = (SkPoint*)((intptr_t)src + stride); 461 dst = (SkPoint*)((intptr_t)dst + stride); 462 } 463 } 464 465 /** Apply this matrix to the array of homogeneous points, specified by src, 466 where a homogeneous point is defined by 3 contiguous scalar values, 467 and write the transformed points into the array of scalars specified by dst. 468 dst[] = M * src[] 469 @param dst Where the transformed coordinates are written. It must 470 contain at least 3 * count entries 471 @param src The original coordinates that are to be transformed. It 472 must contain at least 3 * count entries 473 @param count The number of triples (homogeneous points) in src to read, 474 and then transform into dst. 475 */ 476 void mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int count) const; 477 mapXY(SkScalar x,SkScalar y,SkPoint * result)478 void mapXY(SkScalar x, SkScalar y, SkPoint* result) const { 479 SkASSERT(result); 480 this->getMapXYProc()(*this, x, y, result); 481 } 482 mapXY(SkScalar x,SkScalar y)483 SkPoint mapXY(SkScalar x, SkScalar y) const { 484 SkPoint result; 485 this->getMapXYProc()(*this, x, y, &result); 486 return result; 487 } 488 489 /** Apply this matrix to the array of vectors specified by src, and write 490 the transformed vectors into the array of vectors specified by dst. 491 This is similar to mapPoints, but ignores any translation in the matrix. 492 @param dst Where the transformed coordinates are written. It must 493 contain at least count entries 494 @param src The original coordinates that are to be transformed. It 495 must contain at least count entries 496 @param count The number of vectors in src to read, and then transform 497 into dst. 498 */ 499 void mapVectors(SkVector dst[], const SkVector src[], int count) const; 500 501 /** Apply this matrix to the array of vectors specified by src, and write 502 the transformed vectors into the array of vectors specified by dst. 503 This is similar to mapPoints, but ignores any translation in the matrix. 504 @param vecs The vectors to be transformed. It must contain at least 505 count entries 506 @param count The number of vectors in vecs. 507 */ mapVectors(SkVector vecs[],int count)508 void mapVectors(SkVector vecs[], int count) const { 509 this->mapVectors(vecs, vecs, count); 510 } 511 mapVector(SkScalar dx,SkScalar dy,SkVector * result)512 void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { 513 SkVector vec = { dx, dy }; 514 this->mapVectors(result, &vec, 1); 515 } 516 mapVector(SkScalar dx,SkScalar dy)517 SkVector mapVector(SkScalar dx, SkScalar dy) const { 518 SkVector vec = { dx, dy }; 519 this->mapVectors(&vec, &vec, 1); 520 return vec; 521 } 522 523 /** Apply this matrix to the src rectangle, and write the transformed 524 rectangle into dst. This is accomplished by transforming the 4 corners 525 of src, and then setting dst to the bounds of those points. 526 @param dst Where the transformed rectangle is written. 527 @param src The original rectangle to be transformed. 528 @return the result of calling rectStaysRect() 529 */ 530 bool mapRect(SkRect* dst, const SkRect& src) const; 531 532 /** Apply this matrix to the rectangle, and write the transformed rectangle 533 back into it. This is accomplished by transforming the 4 corners of 534 rect, and then setting it to the bounds of those points 535 @param rect The rectangle to transform. 536 @return the result of calling rectStaysRect() 537 */ mapRect(SkRect * rect)538 bool mapRect(SkRect* rect) const { 539 return this->mapRect(rect, *rect); 540 } 541 542 /** Apply this matrix to the src rectangle, and write the four transformed 543 points into dst. The points written to dst will be the original top-left, top-right, 544 bottom-right, and bottom-left points transformed by the matrix. 545 @param dst Where the transformed quad is written. 546 @param rect The original rectangle to be transformed. 547 */ mapRectToQuad(SkPoint dst[4],const SkRect & rect)548 void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { 549 // This could potentially be faster if we only transformed each x and y of the rect once. 550 rect.toQuad(dst); 551 this->mapPoints(dst, 4); 552 } 553 554 /** Return the mean radius of a circle after it has been mapped by 555 this matrix. NOTE: in perspective this value assumes the circle 556 has its center at the origin. 557 */ 558 SkScalar mapRadius(SkScalar radius) const; 559 560 typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, 561 SkPoint* result); 562 GetMapXYProc(TypeMask mask)563 static MapXYProc GetMapXYProc(TypeMask mask) { 564 SkASSERT((mask & ~kAllMasks) == 0); 565 return gMapXYProcs[mask & kAllMasks]; 566 } 567 getMapXYProc()568 MapXYProc getMapXYProc() const { 569 return GetMapXYProc(this->getType()); 570 } 571 572 typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], 573 const SkPoint src[], int count); 574 GetMapPtsProc(TypeMask mask)575 static MapPtsProc GetMapPtsProc(TypeMask mask) { 576 SkASSERT((mask & ~kAllMasks) == 0); 577 return gMapPtsProcs[mask & kAllMasks]; 578 } 579 getMapPtsProc()580 MapPtsProc getMapPtsProc() const { 581 return GetMapPtsProc(this->getType()); 582 } 583 584 /** If the matrix can be stepped in X (not complex perspective) 585 then return true and if step[XY] is not null, return the step[XY] value. 586 If it cannot, return false and ignore step. 587 */ 588 bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const; 589 590 /** Efficient comparison of two matrices. It distinguishes between zero and 591 * negative zero. It will return false when the sign of zero values is the 592 * only difference between the two matrices. It considers NaN values to be 593 * equal to themselves. So a matrix full of NaNs is "cheap equal" to 594 * another matrix full of NaNs iff the NaN values are bitwise identical 595 * while according to strict the strict == test a matrix with a NaN value 596 * is equal to nothing, including itself. 597 */ cheapEqualTo(const SkMatrix & m)598 bool cheapEqualTo(const SkMatrix& m) const { 599 return 0 == memcmp(fMat, m.fMat, sizeof(fMat)); 600 } 601 602 friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); 603 friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { 604 return !(a == b); 605 } 606 607 enum { 608 // writeTo/readFromMemory will never return a value larger than this 609 kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t) 610 }; 611 // return the number of bytes written, whether or not buffer is null 612 size_t writeToMemory(void* buffer) const; 613 /** 614 * Reads data from the buffer parameter 615 * 616 * @param buffer Memory to read from 617 * @param length Amount of memory available in the buffer 618 * @return number of bytes read (must be a multiple of 4) or 619 * 0 if there was not enough memory available 620 */ 621 size_t readFromMemory(const void* buffer, size_t length); 622 623 void dump() const; 624 void toString(SkString*) const; 625 626 /** 627 * Calculates the minimum scaling factor of the matrix as computed from the SVD of the upper 628 * left 2x2. If the matrix has perspective -1 is returned. 629 * 630 * @return minumum scale factor 631 */ 632 SkScalar getMinScale() const; 633 634 /** 635 * Calculates the maximum scaling factor of the matrix as computed from the SVD of the upper 636 * left 2x2. If the matrix has perspective -1 is returned. 637 * 638 * @return maximum scale factor 639 */ 640 SkScalar getMaxScale() const; 641 642 /** 643 * Gets both the min and max scale factors. The min scale factor is scaleFactors[0] and the max 644 * is scaleFactors[1]. If the matrix has perspective false will be returned and scaleFactors 645 * will be unchanged. 646 */ 647 bool getMinMaxScales(SkScalar scaleFactors[2]) const; 648 649 /** 650 * Attempt to decompose this matrix into a scale-only component and whatever remains, where 651 * the scale component is to be applied first. 652 * 653 * M -> Remaining * Scale 654 * 655 * On success, return true and assign the scale and remaining components (assuming their 656 * respective parameters are not null). On failure return false and ignore the parameters. 657 * 658 * Possible reasons to fail: perspective, one or more scale factors are zero. 659 */ 660 bool decomposeScale(SkSize* scale, SkMatrix* remaining = NULL) const; 661 662 /** 663 * Return a reference to a const identity matrix 664 */ 665 static const SkMatrix& I(); 666 667 /** 668 * Return a reference to a const matrix that is "invalid", one that could 669 * never be used. 670 */ 671 static const SkMatrix& InvalidMatrix(); 672 673 /** 674 * Return the concatenation of two matrices, a * b. 675 */ Concat(const SkMatrix & a,const SkMatrix & b)676 static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { 677 SkMatrix result; 678 result.setConcat(a, b); 679 return result; 680 } 681 682 /** 683 * Testing routine; the matrix's type cache should never need to be 684 * manually invalidated during normal use. 685 */ dirtyMatrixTypeCache()686 void dirtyMatrixTypeCache() { 687 this->setTypeMask(kUnknown_Mask); 688 } 689 690 private: 691 enum { 692 /** Set if the matrix will map a rectangle to another rectangle. This 693 can be true if the matrix is scale-only, or rotates a multiple of 694 90 degrees. 695 696 This bit will be set on identity matrices 697 */ 698 kRectStaysRect_Mask = 0x10, 699 700 /** Set if the perspective bit is valid even though the rest of 701 the matrix is Unknown. 702 */ 703 kOnlyPerspectiveValid_Mask = 0x40, 704 705 kUnknown_Mask = 0x80, 706 707 kORableMasks = kTranslate_Mask | 708 kScale_Mask | 709 kAffine_Mask | 710 kPerspective_Mask, 711 712 kAllMasks = kTranslate_Mask | 713 kScale_Mask | 714 kAffine_Mask | 715 kPerspective_Mask | 716 kRectStaysRect_Mask 717 }; 718 719 SkScalar fMat[9]; 720 mutable uint32_t fTypeMask; 721 setScaleTranslate(SkScalar sx,SkScalar sy,SkScalar tx,SkScalar ty)722 void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { 723 fMat[kMScaleX] = sx; 724 fMat[kMSkewX] = 0; 725 fMat[kMTransX] = tx; 726 727 fMat[kMSkewY] = 0; 728 fMat[kMScaleY] = sy; 729 fMat[kMTransY] = ty; 730 731 fMat[kMPersp0] = 0; 732 fMat[kMPersp1] = 0; 733 fMat[kMPersp2] = 1; 734 735 unsigned mask = 0; 736 if (sx != 1 || sy != 1) { 737 mask |= kScale_Mask; 738 } 739 if (tx || ty) { 740 mask |= kTranslate_Mask; 741 } 742 this->setTypeMask(mask | kRectStaysRect_Mask); 743 } 744 745 uint8_t computeTypeMask() const; 746 uint8_t computePerspectiveTypeMask() const; 747 setTypeMask(int mask)748 void setTypeMask(int mask) { 749 // allow kUnknown or a valid mask 750 SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || 751 ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) 752 == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); 753 fTypeMask = SkToU8(mask); 754 } 755 orTypeMask(int mask)756 void orTypeMask(int mask) { 757 SkASSERT((mask & kORableMasks) == mask); 758 fTypeMask = SkToU8(fTypeMask | mask); 759 } 760 clearTypeMask(int mask)761 void clearTypeMask(int mask) { 762 // only allow a valid mask 763 SkASSERT((mask & kAllMasks) == mask); 764 fTypeMask = fTypeMask & ~mask; 765 } 766 getPerspectiveTypeMaskOnly()767 TypeMask getPerspectiveTypeMaskOnly() const { 768 if ((fTypeMask & kUnknown_Mask) && 769 !(fTypeMask & kOnlyPerspectiveValid_Mask)) { 770 fTypeMask = this->computePerspectiveTypeMask(); 771 } 772 return (TypeMask)(fTypeMask & 0xF); 773 } 774 775 /** Returns true if we already know that the matrix is identity; 776 false otherwise. 777 */ isTriviallyIdentity()778 bool isTriviallyIdentity() const { 779 if (fTypeMask & kUnknown_Mask) { 780 return false; 781 } 782 return ((fTypeMask & 0xF) == 0); 783 } 784 785 bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const; 786 787 static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); 788 static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); 789 static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); 790 791 static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 792 static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 793 static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 794 static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 795 static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 796 static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 797 static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); 798 799 static const MapXYProc gMapXYProcs[]; 800 801 static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); 802 static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); 803 static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); 804 static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], 805 int count); 806 static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); 807 808 static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); 809 810 static const MapPtsProc gMapPtsProcs[]; 811 812 friend class SkPerspIter; 813 }; 814 815 #endif 816