1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkMatrix_DEFINED
11 #define SkMatrix_DEFINED
12 
13 #include "SkRect.h"
14 
15 class SkString;
16 
17 /** \class SkMatrix
18 
19     The SkMatrix class holds a 3x3 matrix for transforming coordinates.
20     SkMatrix does not have a constructor, so it must be explicitly initialized
21     using either reset() - to construct an identity matrix, or one of the set
22     functions (e.g. setTranslate, setRotate, etc.).
23 */
24 class SK_API SkMatrix {
25 public:
MakeScale(SkScalar sx,SkScalar sy)26     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) {
27         SkMatrix m;
28         m.setScale(sx, sy);
29         return m;
30     }
31 
MakeScale(SkScalar scale)32     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) {
33         SkMatrix m;
34         m.setScale(scale, scale);
35         return m;
36     }
37 
MakeTrans(SkScalar dx,SkScalar dy)38     static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) {
39         SkMatrix m;
40         m.setTranslate(dx, dy);
41         return m;
42     }
43 
44     /** Enum of bit fields for the mask return by getType().
45         Use this to identify the complexity of the matrix.
46     */
47     enum TypeMask {
48         kIdentity_Mask      = 0,
49         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
50         kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
51         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
52         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
53     };
54 
55     /** Returns a bitfield describing the transformations the matrix may
56         perform. The bitfield is computed conservatively, so it may include
57         false positives. For example, when kPerspective_Mask is true, all
58         other bits may be set to true even in the case of a pure perspective
59         transform.
60    */
getType()61     TypeMask getType() const {
62         if (fTypeMask & kUnknown_Mask) {
63             fTypeMask = this->computeTypeMask();
64         }
65         // only return the public masks
66         return (TypeMask)(fTypeMask & 0xF);
67     }
68 
69     /** Returns true if the matrix is identity.
70     */
isIdentity()71     bool isIdentity() const {
72         return this->getType() == 0;
73     }
74 
isScaleTranslate()75     bool isScaleTranslate() const {
76         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
77     }
78 
79     /** Returns true if will map a rectangle to another rectangle. This can be
80         true if the matrix is identity, scale-only, or rotates a multiple of
81         90 degrees.
82     */
rectStaysRect()83     bool rectStaysRect() const {
84         if (fTypeMask & kUnknown_Mask) {
85             fTypeMask = this->computeTypeMask();
86         }
87         return (fTypeMask & kRectStaysRect_Mask) != 0;
88     }
89     // alias for rectStaysRect()
preservesAxisAlignment()90     bool preservesAxisAlignment() const { return this->rectStaysRect(); }
91 
92     /**
93      *  Returns true if the matrix contains perspective elements.
94      */
hasPerspective()95     bool hasPerspective() const {
96         return SkToBool(this->getPerspectiveTypeMaskOnly() &
97                         kPerspective_Mask);
98     }
99 
100     /** Returns true if the matrix contains only translation, rotation/reflection or uniform scale
101         Returns false if other transformation types are included or is degenerate
102      */
103     bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
104 
105     /** Returns true if the matrix contains only translation, rotation/reflection or scale
106         (non-uniform scale is allowed).
107         Returns false if other transformation types are included or is degenerate
108      */
109     bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
110 
111     enum {
112         kMScaleX,
113         kMSkewX,
114         kMTransX,
115         kMSkewY,
116         kMScaleY,
117         kMTransY,
118         kMPersp0,
119         kMPersp1,
120         kMPersp2
121     };
122 
123     /** Affine arrays are in column major order
124         because that's how PDF and XPS like it.
125      */
126     enum {
127         kAScaleX,
128         kASkewY,
129         kASkewX,
130         kAScaleY,
131         kATransX,
132         kATransY
133     };
134 
135     SkScalar operator[](int index) const {
136         SkASSERT((unsigned)index < 9);
137         return fMat[index];
138     }
139 
get(int index)140     SkScalar get(int index) const {
141         SkASSERT((unsigned)index < 9);
142         return fMat[index];
143     }
144 
getScaleX()145     SkScalar getScaleX() const { return fMat[kMScaleX]; }
getScaleY()146     SkScalar getScaleY() const { return fMat[kMScaleY]; }
getSkewY()147     SkScalar getSkewY() const { return fMat[kMSkewY]; }
getSkewX()148     SkScalar getSkewX() const { return fMat[kMSkewX]; }
getTranslateX()149     SkScalar getTranslateX() const { return fMat[kMTransX]; }
getTranslateY()150     SkScalar getTranslateY() const { return fMat[kMTransY]; }
getPerspX()151     SkScalar getPerspX() const { return fMat[kMPersp0]; }
getPerspY()152     SkScalar getPerspY() const { return fMat[kMPersp1]; }
153 
154     SkScalar& operator[](int index) {
155         SkASSERT((unsigned)index < 9);
156         this->setTypeMask(kUnknown_Mask);
157         return fMat[index];
158     }
159 
set(int index,SkScalar value)160     void set(int index, SkScalar value) {
161         SkASSERT((unsigned)index < 9);
162         fMat[index] = value;
163         this->setTypeMask(kUnknown_Mask);
164     }
165 
setScaleX(SkScalar v)166     void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
setScaleY(SkScalar v)167     void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
setSkewY(SkScalar v)168     void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
setSkewX(SkScalar v)169     void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
setTranslateX(SkScalar v)170     void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
setTranslateY(SkScalar v)171     void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
setPerspX(SkScalar v)172     void setPerspX(SkScalar v) { this->set(kMPersp0, v); }
setPerspY(SkScalar v)173     void setPerspY(SkScalar v) { this->set(kMPersp1, v); }
174 
setAll(SkScalar scaleX,SkScalar skewX,SkScalar transX,SkScalar skewY,SkScalar scaleY,SkScalar transY,SkScalar persp0,SkScalar persp1,SkScalar persp2)175     void setAll(SkScalar scaleX, SkScalar skewX,  SkScalar transX,
176                 SkScalar skewY,  SkScalar scaleY, SkScalar transY,
177                 SkScalar persp0, SkScalar persp1, SkScalar persp2) {
178         fMat[kMScaleX] = scaleX;
179         fMat[kMSkewX]  = skewX;
180         fMat[kMTransX] = transX;
181         fMat[kMSkewY]  = skewY;
182         fMat[kMScaleY] = scaleY;
183         fMat[kMTransY] = transY;
184         fMat[kMPersp0] = persp0;
185         fMat[kMPersp1] = persp1;
186         fMat[kMPersp2] = persp2;
187         this->setTypeMask(kUnknown_Mask);
188     }
189 
190     /**
191      *  Copy the 9 scalars for this matrix into buffer, in the same order as the kMScaleX
192      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
193      */
get9(SkScalar buffer[9])194     void get9(SkScalar buffer[9]) const {
195         memcpy(buffer, fMat, 9 * sizeof(SkScalar));
196     }
197 
198     /**
199      *  Set this matrix to the 9 scalars from the buffer, in the same order as the kMScaleX
200      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
201      *
202      *  Note: calling set9 followed by get9 may not return the exact same values. Since the matrix
203      *  is used to map non-homogeneous coordinates, it is free to rescale the 9 values as needed.
204      */
205     void set9(const SkScalar buffer[9]);
206 
207     /** Set the matrix to identity
208     */
209     void reset();
210     // alias for reset()
setIdentity()211     void setIdentity() { this->reset(); }
212 
213     /** Set the matrix to translate by (dx, dy).
214     */
215     void setTranslate(SkScalar dx, SkScalar dy);
setTranslate(const SkVector & v)216     void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); }
217 
218     /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
219         The pivot point is the coordinate that should remain unchanged by the
220         specified transformation.
221     */
222     void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
223     /** Set the matrix to scale by sx and sy.
224     */
225     void setScale(SkScalar sx, SkScalar sy);
226     /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
227         touch the matrix if either divx or divy is zero.
228     */
229     bool setIDiv(int divx, int divy);
230     /** Set the matrix to rotate by the specified number of degrees, with a
231         pivot point at (px, py). The pivot point is the coordinate that should
232         remain unchanged by the specified transformation.
233     */
234     void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
235     /** Set the matrix to rotate about (0,0) by the specified number of degrees.
236     */
237     void setRotate(SkScalar degrees);
238     /** Set the matrix to rotate by the specified sine and cosine values, with
239         a pivot point at (px, py). The pivot point is the coordinate that
240         should remain unchanged by the specified transformation.
241     */
242     void setSinCos(SkScalar sinValue, SkScalar cosValue,
243                    SkScalar px, SkScalar py);
244     /** Set the matrix to rotate by the specified sine and cosine values.
245     */
246     void setSinCos(SkScalar sinValue, SkScalar cosValue);
247     /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
248         The pivot point is the coordinate that should remain unchanged by the
249         specified transformation.
250     */
251     void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
252     /** Set the matrix to skew by sx and sy.
253     */
254     void setSkew(SkScalar kx, SkScalar ky);
255     /** Set the matrix to the concatenation of the two specified matrices.
256         Either of the two matrices may also be the target matrix.
257         *this = a * b;
258     */
259     void setConcat(const SkMatrix& a, const SkMatrix& b);
260 
261     /** Preconcats the matrix with the specified translation.
262         M' = M * T(dx, dy)
263     */
264     void preTranslate(SkScalar dx, SkScalar dy);
265     /** Preconcats the matrix with the specified scale.
266         M' = M * S(sx, sy, px, py)
267     */
268     void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
269     /** Preconcats the matrix with the specified scale.
270         M' = M * S(sx, sy)
271     */
272     void preScale(SkScalar sx, SkScalar sy);
273     /** Preconcats the matrix with the specified rotation.
274         M' = M * R(degrees, px, py)
275     */
276     void preRotate(SkScalar degrees, SkScalar px, SkScalar py);
277     /** Preconcats the matrix with the specified rotation.
278         M' = M * R(degrees)
279     */
280     void preRotate(SkScalar degrees);
281     /** Preconcats the matrix with the specified skew.
282         M' = M * K(kx, ky, px, py)
283     */
284     void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
285     /** Preconcats the matrix with the specified skew.
286         M' = M * K(kx, ky)
287     */
288     void preSkew(SkScalar kx, SkScalar ky);
289     /** Preconcats the matrix with the specified matrix.
290         M' = M * other
291     */
292     void preConcat(const SkMatrix& other);
293 
294     /** Postconcats the matrix with the specified translation.
295         M' = T(dx, dy) * M
296     */
297     void postTranslate(SkScalar dx, SkScalar dy);
298     /** Postconcats the matrix with the specified scale.
299         M' = S(sx, sy, px, py) * M
300     */
301     void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
302     /** Postconcats the matrix with the specified scale.
303         M' = S(sx, sy) * M
304     */
305     void postScale(SkScalar sx, SkScalar sy);
306     /** Postconcats the matrix by dividing it by the specified integers.
307         M' = S(1/divx, 1/divy, 0, 0) * M
308     */
309     bool postIDiv(int divx, int divy);
310     /** Postconcats the matrix with the specified rotation.
311         M' = R(degrees, px, py) * M
312     */
313     void postRotate(SkScalar degrees, SkScalar px, SkScalar py);
314     /** Postconcats the matrix with the specified rotation.
315         M' = R(degrees) * M
316     */
317     void postRotate(SkScalar degrees);
318     /** Postconcats the matrix with the specified skew.
319         M' = K(kx, ky, px, py) * M
320     */
321     void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
322     /** Postconcats the matrix with the specified skew.
323         M' = K(kx, ky) * M
324     */
325     void postSkew(SkScalar kx, SkScalar ky);
326     /** Postconcats the matrix with the specified matrix.
327         M' = other * M
328     */
329     void postConcat(const SkMatrix& other);
330 
331     enum ScaleToFit {
332         /**
333          * Scale in X and Y independently, so that src matches dst exactly.
334          * This may change the aspect ratio of the src.
335          */
336         kFill_ScaleToFit,
337         /**
338          * Compute a scale that will maintain the original src aspect ratio,
339          * but will also ensure that src fits entirely inside dst. At least one
340          * axis (X or Y) will fit exactly. kStart aligns the result to the
341          * left and top edges of dst.
342          */
343         kStart_ScaleToFit,
344         /**
345          * Compute a scale that will maintain the original src aspect ratio,
346          * but will also ensure that src fits entirely inside dst. At least one
347          * axis (X or Y) will fit exactly. The result is centered inside dst.
348          */
349         kCenter_ScaleToFit,
350         /**
351          * Compute a scale that will maintain the original src aspect ratio,
352          * but will also ensure that src fits entirely inside dst. At least one
353          * axis (X or Y) will fit exactly. kEnd aligns the result to the
354          * right and bottom edges of dst.
355          */
356         kEnd_ScaleToFit
357     };
358 
359     /** Set the matrix to the scale and translate values that map the source
360         rectangle to the destination rectangle, returning true if the the result
361         can be represented.
362         @param src the source rectangle to map from.
363         @param dst the destination rectangle to map to.
364         @param stf the ScaleToFit option
365         @return true if the matrix can be represented by the rectangle mapping.
366     */
367     bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
368 
369     /** Set the matrix such that the specified src points would map to the
370         specified dst points. count must be within [0..4].
371         @param src  The array of src points
372         @param dst  The array of dst points
373         @param count The number of points to use for the transformation
374         @return true if the matrix was set to the specified transformation
375     */
376     bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
377 
378     /** If this matrix can be inverted, return true and if inverse is not null,
379         set inverse to be the inverse of this matrix. If this matrix cannot be
380         inverted, ignore inverse and return false
381     */
invert(SkMatrix * inverse)382     bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
383         // Allow the trivial case to be inlined.
384         if (this->isIdentity()) {
385             if (inverse) {
386                 inverse->reset();
387             }
388             return true;
389         }
390         return this->invertNonIdentity(inverse);
391     }
392 
393     /** Fills the passed array with affine identity values
394         in column major order.
395         @param affine  The array to fill with affine identity values.
396         Must not be NULL.
397     */
398     static void SetAffineIdentity(SkScalar affine[6]);
399 
400     /** Fills the passed array with the affine values in column major order.
401         If the matrix is a perspective transform, returns false
402         and does not change the passed array.
403         @param affine  The array to fill with affine values. Ignored if NULL.
404     */
405     bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
406 
407     /** Set the matrix to the specified affine values.
408      *  Note: these are passed in column major order.
409      */
410     void setAffine(const SkScalar affine[6]);
411 
412     /** Apply this matrix to the array of points specified by src, and write
413         the transformed points into the array of points specified by dst.
414         dst[] = M * src[]
415         @param dst  Where the transformed coordinates are written. It must
416                     contain at least count entries
417         @param src  The original coordinates that are to be transformed. It
418                     must contain at least count entries
419         @param count The number of points in src to read, and then transform
420                      into dst.
421     */
mapPoints(SkPoint dst[],const SkPoint src[],int count)422     void mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
423         SkASSERT((dst && src && count > 0) || 0 == count);
424         // no partial overlap
425         SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
426         this->getMapPtsProc()(*this, dst, src, count);
427     }
428 
429     /** Apply this matrix to the array of points, overwriting it with the
430         transformed values.
431         dst[] = M * pts[]
432         @param pts  The points to be transformed. It must contain at least
433                     count entries
434         @param count The number of points in pts.
435     */
mapPoints(SkPoint pts[],int count)436     void mapPoints(SkPoint pts[], int count) const {
437         this->mapPoints(pts, pts, count);
438     }
439 
440     /** Like mapPoints but with custom byte stride between the points. Stride
441      *  should be a multiple of sizeof(SkScalar).
442      */
mapPointsWithStride(SkPoint pts[],size_t stride,int count)443     void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
444         SkASSERT(stride >= sizeof(SkPoint));
445         SkASSERT(0 == stride % sizeof(SkScalar));
446         for (int i = 0; i < count; ++i) {
447             this->mapPoints(pts, pts, 1);
448             pts = (SkPoint*)((intptr_t)pts + stride);
449         }
450     }
451 
452     /** Like mapPoints but with custom byte stride between the points.
453     */
mapPointsWithStride(SkPoint dst[],SkPoint src[],size_t stride,int count)454     void mapPointsWithStride(SkPoint dst[], SkPoint src[],
455                              size_t stride, int count) const {
456         SkASSERT(stride >= sizeof(SkPoint));
457         SkASSERT(0 == stride % sizeof(SkScalar));
458         for (int i = 0; i < count; ++i) {
459             this->mapPoints(dst, src, 1);
460             src = (SkPoint*)((intptr_t)src + stride);
461             dst = (SkPoint*)((intptr_t)dst + stride);
462         }
463     }
464 
465     /** Apply this matrix to the array of homogeneous points, specified by src,
466         where a homogeneous point is defined by 3 contiguous scalar values,
467         and write the transformed points into the array of scalars specified by dst.
468         dst[] = M * src[]
469         @param dst  Where the transformed coordinates are written. It must
470                     contain at least 3 * count entries
471         @param src  The original coordinates that are to be transformed. It
472                     must contain at least 3 * count entries
473         @param count The number of triples (homogeneous points) in src to read,
474                      and then transform into dst.
475     */
476     void mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int count) const;
477 
mapXY(SkScalar x,SkScalar y,SkPoint * result)478     void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
479         SkASSERT(result);
480         this->getMapXYProc()(*this, x, y, result);
481     }
482 
mapXY(SkScalar x,SkScalar y)483     SkPoint mapXY(SkScalar x, SkScalar y) const {
484         SkPoint result;
485         this->getMapXYProc()(*this, x, y, &result);
486         return result;
487     }
488 
489     /** Apply this matrix to the array of vectors specified by src, and write
490         the transformed vectors into the array of vectors specified by dst.
491         This is similar to mapPoints, but ignores any translation in the matrix.
492         @param dst  Where the transformed coordinates are written. It must
493                     contain at least count entries
494         @param src  The original coordinates that are to be transformed. It
495                     must contain at least count entries
496         @param count The number of vectors in src to read, and then transform
497                      into dst.
498     */
499     void mapVectors(SkVector dst[], const SkVector src[], int count) const;
500 
501     /** Apply this matrix to the array of vectors specified by src, and write
502         the transformed vectors into the array of vectors specified by dst.
503         This is similar to mapPoints, but ignores any translation in the matrix.
504         @param vecs The vectors to be transformed. It must contain at least
505                     count entries
506         @param count The number of vectors in vecs.
507     */
mapVectors(SkVector vecs[],int count)508     void mapVectors(SkVector vecs[], int count) const {
509         this->mapVectors(vecs, vecs, count);
510     }
511 
mapVector(SkScalar dx,SkScalar dy,SkVector * result)512     void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
513         SkVector vec = { dx, dy };
514         this->mapVectors(result, &vec, 1);
515     }
516 
mapVector(SkScalar dx,SkScalar dy)517     SkVector mapVector(SkScalar dx, SkScalar dy) const {
518         SkVector vec = { dx, dy };
519         this->mapVectors(&vec, &vec, 1);
520         return vec;
521     }
522 
523     /** Apply this matrix to the src rectangle, and write the transformed
524         rectangle into dst. This is accomplished by transforming the 4 corners
525         of src, and then setting dst to the bounds of those points.
526         @param dst  Where the transformed rectangle is written.
527         @param src  The original rectangle to be transformed.
528         @return the result of calling rectStaysRect()
529     */
530     bool mapRect(SkRect* dst, const SkRect& src) const;
531 
532     /** Apply this matrix to the rectangle, and write the transformed rectangle
533         back into it. This is accomplished by transforming the 4 corners of
534         rect, and then setting it to the bounds of those points
535         @param rect The rectangle to transform.
536         @return the result of calling rectStaysRect()
537     */
mapRect(SkRect * rect)538     bool mapRect(SkRect* rect) const {
539         return this->mapRect(rect, *rect);
540     }
541 
542     /** Apply this matrix to the src rectangle, and write the four transformed
543         points into dst. The points written to dst will be the original top-left, top-right,
544         bottom-right, and bottom-left points transformed by the matrix.
545         @param dst  Where the transformed quad is written.
546         @param rect The original rectangle to be transformed.
547     */
mapRectToQuad(SkPoint dst[4],const SkRect & rect)548     void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
549         // This could potentially be faster if we only transformed each x and y of the rect once.
550         rect.toQuad(dst);
551         this->mapPoints(dst, 4);
552     }
553 
554     /** Return the mean radius of a circle after it has been mapped by
555         this matrix. NOTE: in perspective this value assumes the circle
556         has its center at the origin.
557     */
558     SkScalar mapRadius(SkScalar radius) const;
559 
560     typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
561                                  SkPoint* result);
562 
GetMapXYProc(TypeMask mask)563     static MapXYProc GetMapXYProc(TypeMask mask) {
564         SkASSERT((mask & ~kAllMasks) == 0);
565         return gMapXYProcs[mask & kAllMasks];
566     }
567 
getMapXYProc()568     MapXYProc getMapXYProc() const {
569         return GetMapXYProc(this->getType());
570     }
571 
572     typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
573                                   const SkPoint src[], int count);
574 
GetMapPtsProc(TypeMask mask)575     static MapPtsProc GetMapPtsProc(TypeMask mask) {
576         SkASSERT((mask & ~kAllMasks) == 0);
577         return gMapPtsProcs[mask & kAllMasks];
578     }
579 
getMapPtsProc()580     MapPtsProc getMapPtsProc() const {
581         return GetMapPtsProc(this->getType());
582     }
583 
584     /** If the matrix can be stepped in X (not complex perspective)
585         then return true and if step[XY] is not null, return the step[XY] value.
586         If it cannot, return false and ignore step.
587     */
588     bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const;
589 
590     /** Efficient comparison of two matrices. It distinguishes between zero and
591      *  negative zero. It will return false when the sign of zero values is the
592      *  only difference between the two matrices. It considers NaN values to be
593      *  equal to themselves. So a matrix full of NaNs is "cheap equal" to
594      *  another matrix full of NaNs iff the NaN values are bitwise identical
595      *  while according to strict the strict == test a matrix with a NaN value
596      *  is equal to nothing, including itself.
597      */
cheapEqualTo(const SkMatrix & m)598     bool cheapEqualTo(const SkMatrix& m) const {
599         return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
600     }
601 
602     friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
603     friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
604         return !(a == b);
605     }
606 
607     enum {
608         // writeTo/readFromMemory will never return a value larger than this
609         kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
610     };
611     // return the number of bytes written, whether or not buffer is null
612     size_t writeToMemory(void* buffer) const;
613     /**
614      * Reads data from the buffer parameter
615      *
616      * @param buffer Memory to read from
617      * @param length Amount of memory available in the buffer
618      * @return number of bytes read (must be a multiple of 4) or
619      *         0 if there was not enough memory available
620      */
621     size_t readFromMemory(const void* buffer, size_t length);
622 
623     void dump() const;
624     void toString(SkString*) const;
625 
626     /**
627      * Calculates the minimum scaling factor of the matrix as computed from the SVD of the upper
628      * left 2x2. If the matrix has perspective -1 is returned.
629      *
630      * @return minumum scale factor
631      */
632     SkScalar getMinScale() const;
633 
634     /**
635      * Calculates the maximum scaling factor of the matrix as computed from the SVD of the upper
636      * left 2x2. If the matrix has perspective -1 is returned.
637      *
638      * @return maximum scale factor
639      */
640     SkScalar getMaxScale() const;
641 
642     /**
643      * Gets both the min and max scale factors. The min scale factor is scaleFactors[0] and the max
644      * is scaleFactors[1]. If the matrix has perspective false will be returned and scaleFactors
645      * will be unchanged.
646      */
647     bool getMinMaxScales(SkScalar scaleFactors[2]) const;
648 
649     /**
650      *  Attempt to decompose this matrix into a scale-only component and whatever remains, where
651      *  the scale component is to be applied first.
652      *
653      *  M -> Remaining * Scale
654      *
655      *  On success, return true and assign the scale and remaining components (assuming their
656      *  respective parameters are not null). On failure return false and ignore the parameters.
657      *
658      *  Possible reasons to fail: perspective, one or more scale factors are zero.
659      */
660     bool decomposeScale(SkSize* scale, SkMatrix* remaining = NULL) const;
661 
662     /**
663      *  Return a reference to a const identity matrix
664      */
665     static const SkMatrix& I();
666 
667     /**
668      *  Return a reference to a const matrix that is "invalid", one that could
669      *  never be used.
670      */
671     static const SkMatrix& InvalidMatrix();
672 
673     /**
674      * Return the concatenation of two matrices, a * b.
675      */
Concat(const SkMatrix & a,const SkMatrix & b)676     static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
677         SkMatrix result;
678         result.setConcat(a, b);
679         return result;
680     }
681 
682     /**
683      * Testing routine; the matrix's type cache should never need to be
684      * manually invalidated during normal use.
685      */
dirtyMatrixTypeCache()686     void dirtyMatrixTypeCache() {
687         this->setTypeMask(kUnknown_Mask);
688     }
689 
690 private:
691     enum {
692         /** Set if the matrix will map a rectangle to another rectangle. This
693             can be true if the matrix is scale-only, or rotates a multiple of
694             90 degrees.
695 
696             This bit will be set on identity matrices
697         */
698         kRectStaysRect_Mask = 0x10,
699 
700         /** Set if the perspective bit is valid even though the rest of
701             the matrix is Unknown.
702         */
703         kOnlyPerspectiveValid_Mask = 0x40,
704 
705         kUnknown_Mask = 0x80,
706 
707         kORableMasks =  kTranslate_Mask |
708                         kScale_Mask |
709                         kAffine_Mask |
710                         kPerspective_Mask,
711 
712         kAllMasks = kTranslate_Mask |
713                     kScale_Mask |
714                     kAffine_Mask |
715                     kPerspective_Mask |
716                     kRectStaysRect_Mask
717     };
718 
719     SkScalar         fMat[9];
720     mutable uint32_t fTypeMask;
721 
setScaleTranslate(SkScalar sx,SkScalar sy,SkScalar tx,SkScalar ty)722     void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
723         fMat[kMScaleX] = sx;
724         fMat[kMSkewX]  = 0;
725         fMat[kMTransX] = tx;
726 
727         fMat[kMSkewY]  = 0;
728         fMat[kMScaleY] = sy;
729         fMat[kMTransY] = ty;
730 
731         fMat[kMPersp0] = 0;
732         fMat[kMPersp1] = 0;
733         fMat[kMPersp2] = 1;
734 
735         unsigned mask = 0;
736         if (sx != 1 || sy != 1) {
737             mask |= kScale_Mask;
738         }
739         if (tx || ty) {
740             mask |= kTranslate_Mask;
741         }
742         this->setTypeMask(mask | kRectStaysRect_Mask);
743     }
744 
745     uint8_t computeTypeMask() const;
746     uint8_t computePerspectiveTypeMask() const;
747 
setTypeMask(int mask)748     void setTypeMask(int mask) {
749         // allow kUnknown or a valid mask
750         SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
751                  ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
752                  == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
753         fTypeMask = SkToU8(mask);
754     }
755 
orTypeMask(int mask)756     void orTypeMask(int mask) {
757         SkASSERT((mask & kORableMasks) == mask);
758         fTypeMask = SkToU8(fTypeMask | mask);
759     }
760 
clearTypeMask(int mask)761     void clearTypeMask(int mask) {
762         // only allow a valid mask
763         SkASSERT((mask & kAllMasks) == mask);
764         fTypeMask = fTypeMask & ~mask;
765     }
766 
getPerspectiveTypeMaskOnly()767     TypeMask getPerspectiveTypeMaskOnly() const {
768         if ((fTypeMask & kUnknown_Mask) &&
769             !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
770             fTypeMask = this->computePerspectiveTypeMask();
771         }
772         return (TypeMask)(fTypeMask & 0xF);
773     }
774 
775     /** Returns true if we already know that the matrix is identity;
776         false otherwise.
777     */
isTriviallyIdentity()778     bool isTriviallyIdentity() const {
779         if (fTypeMask & kUnknown_Mask) {
780             return false;
781         }
782         return ((fTypeMask & 0xF) == 0);
783     }
784 
785     bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
786 
787     static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
788     static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
789     static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
790 
791     static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
792     static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
793     static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
794     static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
795     static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
796     static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
797     static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
798 
799     static const MapXYProc gMapXYProcs[];
800 
801     static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
802     static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
803     static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
804     static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
805                                int count);
806     static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
807 
808     static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
809 
810     static const MapPtsProc gMapPtsProcs[];
811 
812     friend class SkPerspIter;
813 };
814 
815 #endif
816