1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIX_LOGARITHM
12 #define EIGEN_MATRIX_LOGARITHM
13 
14 #ifndef M_PI
15 #define M_PI 3.141592653589793238462643383279503L
16 #endif
17 
18 namespace Eigen {
19 
20 /** \ingroup MatrixFunctions_Module
21   * \class MatrixLogarithmAtomic
22   * \brief Helper class for computing matrix logarithm of atomic matrices.
23   *
24   * \internal
25   * Here, an atomic matrix is a triangular matrix whose diagonal
26   * entries are close to each other.
27   *
28   * \sa class MatrixFunctionAtomic, MatrixBase::log()
29   */
30 template <typename MatrixType>
31 class MatrixLogarithmAtomic
32 {
33 public:
34 
35   typedef typename MatrixType::Scalar Scalar;
36   // typedef typename MatrixType::Index Index;
37   typedef typename NumTraits<Scalar>::Real RealScalar;
38   // typedef typename internal::stem_function<Scalar>::type StemFunction;
39   // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
40 
41   /** \brief Constructor. */
MatrixLogarithmAtomic()42   MatrixLogarithmAtomic() { }
43 
44   /** \brief Compute matrix logarithm of atomic matrix
45     * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
46     * \returns  The logarithm of \p A.
47     */
48   MatrixType compute(const MatrixType& A);
49 
50 private:
51 
52   void compute2x2(const MatrixType& A, MatrixType& result);
53   void computeBig(const MatrixType& A, MatrixType& result);
54   int getPadeDegree(float normTminusI);
55   int getPadeDegree(double normTminusI);
56   int getPadeDegree(long double normTminusI);
57   void computePade(MatrixType& result, const MatrixType& T, int degree);
58   void computePade3(MatrixType& result, const MatrixType& T);
59   void computePade4(MatrixType& result, const MatrixType& T);
60   void computePade5(MatrixType& result, const MatrixType& T);
61   void computePade6(MatrixType& result, const MatrixType& T);
62   void computePade7(MatrixType& result, const MatrixType& T);
63   void computePade8(MatrixType& result, const MatrixType& T);
64   void computePade9(MatrixType& result, const MatrixType& T);
65   void computePade10(MatrixType& result, const MatrixType& T);
66   void computePade11(MatrixType& result, const MatrixType& T);
67 
68   static const int minPadeDegree = 3;
69   static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
70                                    std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
71                                    std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
72                                    std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
73                                                                                  11;  // quadruple precision
74 
75   // Prevent copying
76   MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
77   MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
78 };
79 
80 /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
81 template <typename MatrixType>
compute(const MatrixType & A)82 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
83 {
84   using std::log;
85   MatrixType result(A.rows(), A.rows());
86   if (A.rows() == 1)
87     result(0,0) = log(A(0,0));
88   else if (A.rows() == 2)
89     compute2x2(A, result);
90   else
91     computeBig(A, result);
92   return result;
93 }
94 
95 /** \brief Compute logarithm of 2x2 triangular matrix. */
96 template <typename MatrixType>
compute2x2(const MatrixType & A,MatrixType & result)97 void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
98 {
99   using std::abs;
100   using std::ceil;
101   using std::imag;
102   using std::log;
103 
104   Scalar logA00 = log(A(0,0));
105   Scalar logA11 = log(A(1,1));
106 
107   result(0,0) = logA00;
108   result(1,0) = Scalar(0);
109   result(1,1) = logA11;
110 
111   if (A(0,0) == A(1,1)) {
112     result(0,1) = A(0,1) / A(0,0);
113   } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
114     result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
115   } else {
116     // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
117     int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
118     Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
119     result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
120   }
121 }
122 
123 /** \brief Compute logarithm of triangular matrices with size > 2.
124   * \details This uses a inverse scale-and-square algorithm. */
125 template <typename MatrixType>
computeBig(const MatrixType & A,MatrixType & result)126 void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
127 {
128   using std::pow;
129   int numberOfSquareRoots = 0;
130   int numberOfExtraSquareRoots = 0;
131   int degree;
132   MatrixType T = A, sqrtT;
133   const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
134                                     maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
135                                     maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
136                                     maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
137                                                        1.1880960220216759245467951592883642e-1L;  // quadruple precision
138 
139   while (true) {
140     RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
141     if (normTminusI < maxNormForPade) {
142       degree = getPadeDegree(normTminusI);
143       int degree2 = getPadeDegree(normTminusI / RealScalar(2));
144       if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
145         break;
146       ++numberOfExtraSquareRoots;
147     }
148     MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
149     T = sqrtT.template triangularView<Upper>();
150     ++numberOfSquareRoots;
151   }
152 
153   computePade(result, T, degree);
154   result *= pow(RealScalar(2), numberOfSquareRoots);
155 }
156 
157 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
158 template <typename MatrixType>
getPadeDegree(float normTminusI)159 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
160 {
161   const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
162             5.3149729967117310e-1 };
163   int degree = 3;
164   for (; degree <= maxPadeDegree; ++degree)
165     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
166       break;
167   return degree;
168 }
169 
170 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
171 template <typename MatrixType>
getPadeDegree(double normTminusI)172 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
173 {
174   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
175             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
176   int degree = 3;
177   for (; degree <= maxPadeDegree; ++degree)
178     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
179       break;
180   return degree;
181 }
182 
183 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
184 template <typename MatrixType>
getPadeDegree(long double normTminusI)185 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
186 {
187 #if   LDBL_MANT_DIG == 53         // double precision
188   const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
189             1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
190 #elif LDBL_MANT_DIG <= 64         // extended precision
191   const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
192             5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
193             2.32777776523703892094e-1L };
194 #elif LDBL_MANT_DIG <= 106        // double-double
195   const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
196             9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
197             1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
198             4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
199             1.05026503471351080481093652651105e-1L };
200 #else                             // quadruple precision
201   const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
202             5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
203             8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
204             3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
205             8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
206 #endif
207   int degree = 3;
208   for (; degree <= maxPadeDegree; ++degree)
209     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
210       break;
211   return degree;
212 }
213 
214 /* \brief Compute Pade approximation to matrix logarithm */
215 template <typename MatrixType>
computePade(MatrixType & result,const MatrixType & T,int degree)216 void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
217 {
218   switch (degree) {
219     case 3:  computePade3(result, T);  break;
220     case 4:  computePade4(result, T);  break;
221     case 5:  computePade5(result, T);  break;
222     case 6:  computePade6(result, T);  break;
223     case 7:  computePade7(result, T);  break;
224     case 8:  computePade8(result, T);  break;
225     case 9:  computePade9(result, T);  break;
226     case 10: computePade10(result, T); break;
227     case 11: computePade11(result, T); break;
228     default: assert(false); // should never happen
229   }
230 }
231 
232 template <typename MatrixType>
computePade3(MatrixType & result,const MatrixType & T)233 void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
234 {
235   const int degree = 3;
236   const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
237             0.8872983346207416885179265399782400L };
238   const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
239             0.2777777777777777777777777777777778L };
240   eigen_assert(degree <= maxPadeDegree);
241   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
242   result.setZero(T.rows(), T.rows());
243   for (int k = 0; k < degree; ++k)
244     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
245                            .template triangularView<Upper>().solve(TminusI);
246 }
247 
248 template <typename MatrixType>
computePade4(MatrixType & result,const MatrixType & T)249 void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
250 {
251   const int degree = 4;
252   const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
253             0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
254   const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
255             0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
256   eigen_assert(degree <= maxPadeDegree);
257   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
258   result.setZero(T.rows(), T.rows());
259   for (int k = 0; k < degree; ++k)
260     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
261                            .template triangularView<Upper>().solve(TminusI);
262 }
263 
264 template <typename MatrixType>
computePade5(MatrixType & result,const MatrixType & T)265 void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
266 {
267   const int degree = 5;
268   const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
269             0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
270             0.9530899229693319963988134391496965L };
271   const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
272             0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
273             0.1184634425280945437571320203599587L };
274   eigen_assert(degree <= maxPadeDegree);
275   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
276   result.setZero(T.rows(), T.rows());
277   for (int k = 0; k < degree; ++k)
278     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
279                            .template triangularView<Upper>().solve(TminusI);
280 }
281 
282 template <typename MatrixType>
computePade6(MatrixType & result,const MatrixType & T)283 void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
284 {
285   const int degree = 6;
286   const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
287             0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
288             0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
289   const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
290             0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
291             0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
292   eigen_assert(degree <= maxPadeDegree);
293   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
294   result.setZero(T.rows(), T.rows());
295   for (int k = 0; k < degree; ++k)
296     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
297                            .template triangularView<Upper>().solve(TminusI);
298 }
299 
300 template <typename MatrixType>
computePade7(MatrixType & result,const MatrixType & T)301 void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
302 {
303   const int degree = 7;
304   const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
305             0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
306             0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
307             0.9745539561713792622630948420239256L };
308   const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
309             0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
310             0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
311             0.0647424830844348466353057163395410L };
312   eigen_assert(degree <= maxPadeDegree);
313   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
314   result.setZero(T.rows(), T.rows());
315   for (int k = 0; k < degree; ++k)
316     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
317                            .template triangularView<Upper>().solve(TminusI);
318 }
319 
320 template <typename MatrixType>
computePade8(MatrixType & result,const MatrixType & T)321 void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
322 {
323   const int degree = 8;
324   const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
325             0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
326             0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
327             0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
328   const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
329             0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
330             0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
331             0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
332   eigen_assert(degree <= maxPadeDegree);
333   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
334   result.setZero(T.rows(), T.rows());
335   for (int k = 0; k < degree; ++k)
336     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
337                            .template triangularView<Upper>().solve(TminusI);
338 }
339 
340 template <typename MatrixType>
computePade9(MatrixType & result,const MatrixType & T)341 void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
342 {
343   const int degree = 9;
344   const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
345             0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
346             0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
347             0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
348             0.9840801197538130449177881014518364L };
349   const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
350             0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
351             0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
352             0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
353             0.0406371941807872059859460790552618L };
354   eigen_assert(degree <= maxPadeDegree);
355   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
356   result.setZero(T.rows(), T.rows());
357   for (int k = 0; k < degree; ++k)
358     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
359                            .template triangularView<Upper>().solve(TminusI);
360 }
361 
362 template <typename MatrixType>
computePade10(MatrixType & result,const MatrixType & T)363 void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
364 {
365   const int degree = 10;
366   const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
367             0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
368             0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
369             0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
370             0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
371   const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
372             0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
373             0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
374             0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
375             0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
376   eigen_assert(degree <= maxPadeDegree);
377   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
378   result.setZero(T.rows(), T.rows());
379   for (int k = 0; k < degree; ++k)
380     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
381                            .template triangularView<Upper>().solve(TminusI);
382 }
383 
384 template <typename MatrixType>
computePade11(MatrixType & result,const MatrixType & T)385 void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
386 {
387   const int degree = 11;
388   const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
389             0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
390             0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
391             0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
392             0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
393             0.9891143290730284964019690005614287L };
394   const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
395             0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
396             0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
397             0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
398             0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
399             0.0278342835580868332413768602212743L };
400   eigen_assert(degree <= maxPadeDegree);
401   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
402   result.setZero(T.rows(), T.rows());
403   for (int k = 0; k < degree; ++k)
404     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
405                            .template triangularView<Upper>().solve(TminusI);
406 }
407 
408 /** \ingroup MatrixFunctions_Module
409   *
410   * \brief Proxy for the matrix logarithm of some matrix (expression).
411   *
412   * \tparam Derived  Type of the argument to the matrix function.
413   *
414   * This class holds the argument to the matrix function until it is
415   * assigned or evaluated for some other reason (so the argument
416   * should not be changed in the meantime). It is the return type of
417   * MatrixBase::log() and most of the time this is the only way it
418   * is used.
419   */
420 template<typename Derived> class MatrixLogarithmReturnValue
421 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
422 {
423 public:
424 
425   typedef typename Derived::Scalar Scalar;
426   typedef typename Derived::Index Index;
427 
428   /** \brief Constructor.
429     *
430     * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
431     */
MatrixLogarithmReturnValue(const Derived & A)432   MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
433 
434   /** \brief Compute the matrix logarithm.
435     *
436     * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
437     */
438   template <typename ResultType>
evalTo(ResultType & result)439   inline void evalTo(ResultType& result) const
440   {
441     typedef typename Derived::PlainObject PlainObject;
442     typedef internal::traits<PlainObject> Traits;
443     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
444     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
445     static const int Options = PlainObject::Options;
446     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
447     typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
448     typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
449     AtomicType atomic;
450 
451     const PlainObject Aevaluated = m_A.eval();
452     MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
453     mf.compute(result);
454   }
455 
rows()456   Index rows() const { return m_A.rows(); }
cols()457   Index cols() const { return m_A.cols(); }
458 
459 private:
460   typename internal::nested<Derived>::type m_A;
461 
462   MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
463 };
464 
465 namespace internal {
466   template<typename Derived>
467   struct traits<MatrixLogarithmReturnValue<Derived> >
468   {
469     typedef typename Derived::PlainObject ReturnType;
470   };
471 }
472 
473 
474 /********** MatrixBase method **********/
475 
476 
477 template <typename Derived>
478 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
479 {
480   eigen_assert(rows() == cols());
481   return MatrixLogarithmReturnValue<Derived>(derived());
482 }
483 
484 } // end namespace Eigen
485 
486 #endif // EIGEN_MATRIX_LOGARITHM
487