1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
16 #define LLVM_ANALYSIS_VALUETRACKING_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/DataTypes.h"
20 
21 namespace llvm {
22   class Value;
23   class Instruction;
24   class APInt;
25   class DataLayout;
26   class StringRef;
27   class MDNode;
28   class AssumptionCache;
29   class DominatorTree;
30   class TargetLibraryInfo;
31 
32   /// Determine which bits of V are known to be either zero or one and return
33   /// them in the KnownZero/KnownOne bit sets.
34   ///
35   /// This function is defined on values with integer type, values with pointer
36   /// type, and vectors of integers.  In the case
37   /// where V is a vector, the known zero and known one values are the
38   /// same width as the vector element, and the bit is set only if it is true
39   /// for all of the elements in the vector.
40   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
41                         const DataLayout &DL, unsigned Depth = 0,
42                         AssumptionCache *AC = nullptr,
43                         const Instruction *CxtI = nullptr,
44                         const DominatorTree *DT = nullptr);
45   /// Compute known bits from the range metadata.
46   /// \p KnownZero the set of bits that are known to be zero
47   void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
48                                          APInt &KnownZero);
49 
50   /// ComputeSignBit - Determine whether the sign bit is known to be zero or
51   /// one.  Convenience wrapper around computeKnownBits.
52   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
53                       const DataLayout &DL, unsigned Depth = 0,
54                       AssumptionCache *AC = nullptr,
55                       const Instruction *CxtI = nullptr,
56                       const DominatorTree *DT = nullptr);
57 
58   /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have
59   /// exactly one bit set when defined. For vectors return true if every
60   /// element is known to be a power of two when defined.  Supports values with
61   /// integer or pointer type and vectors of integers.  If 'OrZero' is set then
62   /// returns true if the given value is either a power of two or zero.
63   bool isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL,
64                               bool OrZero = false, unsigned Depth = 0,
65                               AssumptionCache *AC = nullptr,
66                               const Instruction *CxtI = nullptr,
67                               const DominatorTree *DT = nullptr);
68 
69   /// isKnownNonZero - Return true if the given value is known to be non-zero
70   /// when defined.  For vectors return true if every element is known to be
71   /// non-zero when defined.  Supports values with integer or pointer type and
72   /// vectors of integers.
73   bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth = 0,
74                       AssumptionCache *AC = nullptr,
75                       const Instruction *CxtI = nullptr,
76                       const DominatorTree *DT = nullptr);
77 
78   /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
79   /// this predicate to simplify operations downstream.  Mask is known to be
80   /// zero for bits that V cannot have.
81   ///
82   /// This function is defined on values with integer type, values with pointer
83   /// type, and vectors of integers.  In the case
84   /// where V is a vector, the mask, known zero, and known one values are the
85   /// same width as the vector element, and the bit is set only if it is true
86   /// for all of the elements in the vector.
87   bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
88                          unsigned Depth = 0, AssumptionCache *AC = nullptr,
89                          const Instruction *CxtI = nullptr,
90                          const DominatorTree *DT = nullptr);
91 
92   /// ComputeNumSignBits - Return the number of times the sign bit of the
93   /// register is replicated into the other bits.  We know that at least 1 bit
94   /// is always equal to the sign bit (itself), but other cases can give us
95   /// information.  For example, immediately after an "ashr X, 2", we know that
96   /// the top 3 bits are all equal to each other, so we return 3.
97   ///
98   /// 'Op' must have a scalar integer type.
99   ///
100   unsigned ComputeNumSignBits(Value *Op, const DataLayout &DL,
101                               unsigned Depth = 0, AssumptionCache *AC = nullptr,
102                               const Instruction *CxtI = nullptr,
103                               const DominatorTree *DT = nullptr);
104 
105   /// ComputeMultiple - This function computes the integer multiple of Base that
106   /// equals V.  If successful, it returns true and returns the multiple in
107   /// Multiple.  If unsuccessful, it returns false.  Also, if V can be
108   /// simplified to an integer, then the simplified V is returned in Val.  Look
109   /// through sext only if LookThroughSExt=true.
110   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
111                        bool LookThroughSExt = false,
112                        unsigned Depth = 0);
113 
114   /// CannotBeNegativeZero - Return true if we can prove that the specified FP
115   /// value is never equal to -0.0.
116   ///
117   bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
118 
119   /// CannotBeOrderedLessThanZero - Return true if we can prove that the
120   /// specified FP value is either a NaN or never less than 0.0.
121   ///
122   bool CannotBeOrderedLessThanZero(const Value *V, unsigned Depth = 0);
123 
124   /// isBytewiseValue - If the specified value can be set by repeating the same
125   /// byte in memory, return the i8 value that it is represented with.  This is
126   /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
127   /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
128   /// byte store (e.g. i16 0x1234), return null.
129   Value *isBytewiseValue(Value *V);
130 
131   /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
132   /// the scalar value indexed is already around as a register, for example if
133   /// it were inserted directly into the aggregrate.
134   ///
135   /// If InsertBefore is not null, this function will duplicate (modified)
136   /// insertvalues when a part of a nested struct is extracted.
137   Value *FindInsertedValue(Value *V,
138                            ArrayRef<unsigned> idx_range,
139                            Instruction *InsertBefore = nullptr);
140 
141   /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
142   /// it can be expressed as a base pointer plus a constant offset.  Return the
143   /// base and offset to the caller.
144   Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
145                                           const DataLayout &DL);
146   static inline const Value *
GetPointerBaseWithConstantOffset(const Value * Ptr,int64_t & Offset,const DataLayout & DL)147   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
148                                    const DataLayout &DL) {
149     return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
150                                             DL);
151   }
152 
153   /// getConstantStringInfo - This function computes the length of a
154   /// null-terminated C string pointed to by V.  If successful, it returns true
155   /// and returns the string in Str.  If unsuccessful, it returns false.  This
156   /// does not include the trailing nul character by default.  If TrimAtNul is
157   /// set to false, then this returns any trailing nul characters as well as any
158   /// other characters that come after it.
159   bool getConstantStringInfo(const Value *V, StringRef &Str,
160                              uint64_t Offset = 0, bool TrimAtNul = true);
161 
162   /// GetStringLength - If we can compute the length of the string pointed to by
163   /// the specified pointer, return 'len+1'.  If we can't, return 0.
164   uint64_t GetStringLength(Value *V);
165 
166   /// GetUnderlyingObject - This method strips off any GEP address adjustments
167   /// and pointer casts from the specified value, returning the original object
168   /// being addressed.  Note that the returned value has pointer type if the
169   /// specified value does.  If the MaxLookup value is non-zero, it limits the
170   /// number of instructions to be stripped off.
171   Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
172                              unsigned MaxLookup = 6);
173   static inline const Value *GetUnderlyingObject(const Value *V,
174                                                  const DataLayout &DL,
175                                                  unsigned MaxLookup = 6) {
176     return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
177   }
178 
179   /// GetUnderlyingObjects - This method is similar to GetUnderlyingObject
180   /// except that it can look through phi and select instructions and return
181   /// multiple objects.
182   void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
183                             const DataLayout &DL, unsigned MaxLookup = 6);
184 
185   /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
186   /// are lifetime markers.
187   bool onlyUsedByLifetimeMarkers(const Value *V);
188 
189   /// isSafeToSpeculativelyExecute - Return true if the instruction does not
190   /// have any effects besides calculating the result and does not have
191   /// undefined behavior.
192   ///
193   /// This method never returns true for an instruction that returns true for
194   /// mayHaveSideEffects; however, this method also does some other checks in
195   /// addition. It checks for undefined behavior, like dividing by zero or
196   /// loading from an invalid pointer (but not for undefined results, like a
197   /// shift with a shift amount larger than the width of the result). It checks
198   /// for malloc and alloca because speculatively executing them might cause a
199   /// memory leak. It also returns false for instructions related to control
200   /// flow, specifically terminators and PHI nodes.
201   ///
202   /// This method only looks at the instruction itself and its operands, so if
203   /// this method returns true, it is safe to move the instruction as long as
204   /// the correct dominance relationships for the operands and users hold.
205   /// However, this method can return true for instructions that read memory;
206   /// for such instructions, moving them may change the resulting value.
207   bool isSafeToSpeculativelyExecute(const Value *V);
208 
209   /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
210   /// its definition.  This returns true for allocas, non-extern-weak globals
211   /// and byval arguments.
212   bool isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI = nullptr);
213 
214   /// Return true if it is valid to use the assumptions provided by an
215   /// assume intrinsic, I, at the point in the control-flow identified by the
216   /// context instruction, CxtI.
217   bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
218                                const DominatorTree *DT = nullptr);
219 
220   enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
221   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
222                                                const DataLayout &DL,
223                                                AssumptionCache *AC,
224                                                const Instruction *CxtI,
225                                                const DominatorTree *DT);
226   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
227                                                const DataLayout &DL,
228                                                AssumptionCache *AC,
229                                                const Instruction *CxtI,
230                                                const DominatorTree *DT);
231 } // end namespace llvm
232 
233 #endif
234