1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstVisitor.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 namespace llvm {
34 class CallSite;
35 class DataLayout;
36 class DominatorTree;
37 class TargetLibraryInfo;
38 class DbgDeclareInst;
39 class MemIntrinsic;
40 class MemSetInst;
41 
42 /// \brief Specific patterns of select instructions we can match.
43 enum SelectPatternFlavor {
44   SPF_UNKNOWN = 0,
45   SPF_SMIN,
46   SPF_UMIN,
47   SPF_SMAX,
48   SPF_UMAX,
49   SPF_ABS,
50   SPF_NABS
51 };
52 
53 /// \brief Assign a complexity or rank value to LLVM Values.
54 ///
55 /// This routine maps IR values to various complexity ranks:
56 ///   0 -> undef
57 ///   1 -> Constants
58 ///   2 -> Other non-instructions
59 ///   3 -> Arguments
60 ///   3 -> Unary operations
61 ///   4 -> Other instructions
getComplexity(Value * V)62 static inline unsigned getComplexity(Value *V) {
63   if (isa<Instruction>(V)) {
64     if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
65         BinaryOperator::isNot(V))
66       return 3;
67     return 4;
68   }
69   if (isa<Argument>(V))
70     return 3;
71   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
72 }
73 
74 /// \brief Add one to a Constant
AddOne(Constant * C)75 static inline Constant *AddOne(Constant *C) {
76   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
77 }
78 /// \brief Subtract one from a Constant
SubOne(Constant * C)79 static inline Constant *SubOne(Constant *C) {
80   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
81 }
82 
83 /// \brief Return true if the specified value is free to invert (apply ~ to).
84 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
85 /// is true, work under the assumption that the caller intends to remove all
86 /// uses of V and only keep uses of ~V.
87 ///
IsFreeToInvert(Value * V,bool WillInvertAllUses)88 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
89   // ~(~(X)) -> X.
90   if (BinaryOperator::isNot(V))
91     return true;
92 
93   // Constants can be considered to be not'ed values.
94   if (isa<ConstantInt>(V))
95     return true;
96 
97   // Compares can be inverted if all of their uses are being modified to use the
98   // ~V.
99   if (isa<CmpInst>(V))
100     return WillInvertAllUses;
101 
102   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
103   // - Constant) - A` if we are willing to invert all of the uses.
104   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
105     if (BO->getOpcode() == Instruction::Add ||
106         BO->getOpcode() == Instruction::Sub)
107       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
108         return WillInvertAllUses;
109 
110   return false;
111 }
112 
113 
114 /// \brief Specific patterns of overflow check idioms that we match.
115 enum OverflowCheckFlavor {
116   OCF_UNSIGNED_ADD,
117   OCF_SIGNED_ADD,
118   OCF_UNSIGNED_SUB,
119   OCF_SIGNED_SUB,
120   OCF_UNSIGNED_MUL,
121   OCF_SIGNED_MUL,
122 
123   OCF_INVALID
124 };
125 
126 /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
127 /// intrinsic.
128 static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID)129 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
130   switch (ID) {
131   default:
132     return OCF_INVALID;
133   case Intrinsic::uadd_with_overflow:
134     return OCF_UNSIGNED_ADD;
135   case Intrinsic::sadd_with_overflow:
136     return OCF_SIGNED_ADD;
137   case Intrinsic::usub_with_overflow:
138     return OCF_UNSIGNED_SUB;
139   case Intrinsic::ssub_with_overflow:
140     return OCF_SIGNED_SUB;
141   case Intrinsic::umul_with_overflow:
142     return OCF_UNSIGNED_MUL;
143   case Intrinsic::smul_with_overflow:
144     return OCF_SIGNED_MUL;
145   }
146 }
147 
148 /// \brief An IRBuilder inserter that adds new instructions to the instcombine
149 /// worklist.
150 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
151     : public IRBuilderDefaultInserter<true> {
152   InstCombineWorklist &Worklist;
153   AssumptionCache *AC;
154 
155 public:
InstCombineIRInserter(InstCombineWorklist & WL,AssumptionCache * AC)156   InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
157       : Worklist(WL), AC(AC) {}
158 
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)159   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
160                     BasicBlock::iterator InsertPt) const {
161     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
162     Worklist.Add(I);
163 
164     using namespace llvm::PatternMatch;
165     if (match(I, m_Intrinsic<Intrinsic::assume>()))
166       AC->registerAssumption(cast<CallInst>(I));
167   }
168 };
169 
170 /// \brief The core instruction combiner logic.
171 ///
172 /// This class provides both the logic to recursively visit instructions and
173 /// combine them, as well as the pass infrastructure for running this as part
174 /// of the LLVM pass pipeline.
175 class LLVM_LIBRARY_VISIBILITY InstCombiner
176     : public InstVisitor<InstCombiner, Instruction *> {
177   // FIXME: These members shouldn't be public.
178 public:
179   /// \brief A worklist of the instructions that need to be simplified.
180   InstCombineWorklist &Worklist;
181 
182   /// \brief An IRBuilder that automatically inserts new instructions into the
183   /// worklist.
184   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
185   BuilderTy *Builder;
186 
187 private:
188   // Mode in which we are running the combiner.
189   const bool MinimizeSize;
190 
191   // Required analyses.
192   // FIXME: These can never be null and should be references.
193   AssumptionCache *AC;
194   TargetLibraryInfo *TLI;
195   DominatorTree *DT;
196   const DataLayout &DL;
197 
198   // Optional analyses. When non-null, these can both be used to do better
199   // combining and will be updated to reflect any changes.
200   LoopInfo *LI;
201 
202   bool MadeIRChange;
203 
204 public:
InstCombiner(InstCombineWorklist & Worklist,BuilderTy * Builder,bool MinimizeSize,AssumptionCache * AC,TargetLibraryInfo * TLI,DominatorTree * DT,const DataLayout & DL,LoopInfo * LI)205   InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
206                bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI,
207                DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
208       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
209         AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
210 
211   /// \brief Run the combiner over the entire worklist until it is empty.
212   ///
213   /// \returns true if the IR is changed.
214   bool run();
215 
getAssumptionCache()216   AssumptionCache *getAssumptionCache() const { return AC; }
217 
getDataLayout()218   const DataLayout &getDataLayout() const { return DL; }
219 
getDominatorTree()220   DominatorTree *getDominatorTree() const { return DT; }
221 
getLoopInfo()222   LoopInfo *getLoopInfo() const { return LI; }
223 
getTargetLibraryInfo()224   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
225 
226   // Visitation implementation - Implement instruction combining for different
227   // instruction types.  The semantics are as follows:
228   // Return Value:
229   //    null        - No change was made
230   //     I          - Change was made, I is still valid, I may be dead though
231   //   otherwise    - Change was made, replace I with returned instruction
232   //
233   Instruction *visitAdd(BinaryOperator &I);
234   Instruction *visitFAdd(BinaryOperator &I);
235   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
236   Instruction *visitSub(BinaryOperator &I);
237   Instruction *visitFSub(BinaryOperator &I);
238   Instruction *visitMul(BinaryOperator &I);
239   Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
240                        Instruction *InsertBefore);
241   Instruction *visitFMul(BinaryOperator &I);
242   Instruction *visitURem(BinaryOperator &I);
243   Instruction *visitSRem(BinaryOperator &I);
244   Instruction *visitFRem(BinaryOperator &I);
245   bool SimplifyDivRemOfSelect(BinaryOperator &I);
246   Instruction *commonRemTransforms(BinaryOperator &I);
247   Instruction *commonIRemTransforms(BinaryOperator &I);
248   Instruction *commonDivTransforms(BinaryOperator &I);
249   Instruction *commonIDivTransforms(BinaryOperator &I);
250   Instruction *visitUDiv(BinaryOperator &I);
251   Instruction *visitSDiv(BinaryOperator &I);
252   Instruction *visitFDiv(BinaryOperator &I);
253   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
254   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
255   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
256   Instruction *visitAnd(BinaryOperator &I);
257   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
258   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
259   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
260                                    Value *B, Value *C);
261   Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
262                                     Value *B, Value *C);
263   Instruction *visitOr(BinaryOperator &I);
264   Instruction *visitXor(BinaryOperator &I);
265   Instruction *visitShl(BinaryOperator &I);
266   Instruction *visitAShr(BinaryOperator &I);
267   Instruction *visitLShr(BinaryOperator &I);
268   Instruction *commonShiftTransforms(BinaryOperator &I);
269   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
270                                     Constant *RHSC);
271   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
272                                             GlobalVariable *GV, CmpInst &ICI,
273                                             ConstantInt *AndCst = nullptr);
274   Instruction *visitFCmpInst(FCmpInst &I);
275   Instruction *visitICmpInst(ICmpInst &I);
276   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
277   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
278                                               ConstantInt *RHS);
279   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
280                               ConstantInt *DivRHS);
281   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
282                               ConstantInt *DivRHS);
283   Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
284                                  ConstantInt *CI1, ConstantInt *CI2);
285   Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
286                                  ConstantInt *CI1, ConstantInt *CI2);
287   Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
288                                 ICmpInst::Predicate Pred);
289   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
290                            ICmpInst::Predicate Cond, Instruction &I);
291   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
292                                    BinaryOperator &I);
293   Instruction *commonCastTransforms(CastInst &CI);
294   Instruction *commonPointerCastTransforms(CastInst &CI);
295   Instruction *visitTrunc(TruncInst &CI);
296   Instruction *visitZExt(ZExtInst &CI);
297   Instruction *visitSExt(SExtInst &CI);
298   Instruction *visitFPTrunc(FPTruncInst &CI);
299   Instruction *visitFPExt(CastInst &CI);
300   Instruction *visitFPToUI(FPToUIInst &FI);
301   Instruction *visitFPToSI(FPToSIInst &FI);
302   Instruction *visitUIToFP(CastInst &CI);
303   Instruction *visitSIToFP(CastInst &CI);
304   Instruction *visitPtrToInt(PtrToIntInst &CI);
305   Instruction *visitIntToPtr(IntToPtrInst &CI);
306   Instruction *visitBitCast(BitCastInst &CI);
307   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
308   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
309   Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
310   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
311                             Value *A, Value *B, Instruction &Outer,
312                             SelectPatternFlavor SPF2, Value *C);
313   Instruction *FoldItoFPtoI(Instruction &FI);
314   Instruction *visitSelectInst(SelectInst &SI);
315   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
316   Instruction *visitCallInst(CallInst &CI);
317   Instruction *visitInvokeInst(InvokeInst &II);
318 
319   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
320   Instruction *visitPHINode(PHINode &PN);
321   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
322   Instruction *visitAllocaInst(AllocaInst &AI);
323   Instruction *visitAllocSite(Instruction &FI);
324   Instruction *visitFree(CallInst &FI);
325   Instruction *visitLoadInst(LoadInst &LI);
326   Instruction *visitStoreInst(StoreInst &SI);
327   Instruction *visitBranchInst(BranchInst &BI);
328   Instruction *visitSwitchInst(SwitchInst &SI);
329   Instruction *visitReturnInst(ReturnInst &RI);
330   Instruction *visitInsertValueInst(InsertValueInst &IV);
331   Instruction *visitInsertElementInst(InsertElementInst &IE);
332   Instruction *visitExtractElementInst(ExtractElementInst &EI);
333   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
334   Instruction *visitExtractValueInst(ExtractValueInst &EV);
335   Instruction *visitLandingPadInst(LandingPadInst &LI);
336 
337   // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)338   Instruction *visitInstruction(Instruction &I) { return nullptr; }
339 
340   // True when DB dominates all uses of DI execpt UI.
341   // UI must be in the same block as DI.
342   // The routine checks that the DI parent and DB are different.
343   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
344                         const BasicBlock *DB) const;
345 
346   // Replace select with select operand SIOpd in SI-ICmp sequence when possible
347   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
348                                  const unsigned SIOpd);
349 
350 private:
351   bool ShouldChangeType(Type *From, Type *To) const;
352   Value *dyn_castNegVal(Value *V) const;
353   Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
354   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
355                             SmallVectorImpl<Value *> &NewIndices);
356   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
357 
358   /// \brief Classify whether a cast is worth optimizing.
359   ///
360   /// Returns true if the cast from "V to Ty" actually results in any code
361   /// being generated and is interesting to optimize out. If the cast can be
362   /// eliminated by some other simple transformation, we prefer to do the
363   /// simplification first.
364   bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
365                           Type *Ty);
366 
367   /// \brief Try to optimize a sequence of instructions checking if an operation
368   /// on LHS and RHS overflows.
369   ///
370   /// If a simplification is possible, stores the simplified result of the
371   /// operation in OperationResult and result of the overflow check in
372   /// OverflowResult, and return true.  If no simplification is possible,
373   /// returns false.
374   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
375                              Instruction &CtxI, Value *&OperationResult,
376                              Constant *&OverflowResult);
377 
378   Instruction *visitCallSite(CallSite CS);
379   Instruction *tryOptimizeCall(CallInst *CI);
380   bool transformConstExprCastCall(CallSite CS);
381   Instruction *transformCallThroughTrampoline(CallSite CS,
382                                               IntrinsicInst *Tramp);
383   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
384                                  bool DoXform = true);
385   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
386   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
387   bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
388   bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
389   bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
390   Value *EmitGEPOffset(User *GEP);
391   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
392   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
393 
394 public:
395   /// \brief Inserts an instruction \p New before instruction \p Old
396   ///
397   /// Also adds the new instruction to the worklist and returns \p New so that
398   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)399   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
400     assert(New && !New->getParent() &&
401            "New instruction already inserted into a basic block!");
402     BasicBlock *BB = Old.getParent();
403     BB->getInstList().insert(&Old, New); // Insert inst
404     Worklist.Add(New);
405     return New;
406   }
407 
408   /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)409   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
410     New->setDebugLoc(Old.getDebugLoc());
411     return InsertNewInstBefore(New, Old);
412   }
413 
414   /// \brief A combiner-aware RAUW-like routine.
415   ///
416   /// This method is to be used when an instruction is found to be dead,
417   /// replacable with another preexisting expression. Here we add all uses of
418   /// I to the worklist, replace all uses of I with the new value, then return
419   /// I, so that the inst combiner will know that I was modified.
ReplaceInstUsesWith(Instruction & I,Value * V)420   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
421     // If there are no uses to replace, then we return nullptr to indicate that
422     // no changes were made to the program.
423     if (I.use_empty()) return nullptr;
424 
425     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
426 
427     // If we are replacing the instruction with itself, this must be in a
428     // segment of unreachable code, so just clobber the instruction.
429     if (&I == V)
430       V = UndefValue::get(I.getType());
431 
432     DEBUG(dbgs() << "IC: Replacing " << I << "\n"
433                  << "    with " << *V << '\n');
434 
435     I.replaceAllUsesWith(V);
436     return &I;
437   }
438 
439   /// Creates a result tuple for an overflow intrinsic \p II with a given
440   /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)441   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
442                                    Constant *Overflow) {
443     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
444     StructType *ST = cast<StructType>(II->getType());
445     Constant *Struct = ConstantStruct::get(ST, V);
446     return InsertValueInst::Create(Struct, Result, 0);
447   }
448 
449   /// \brief Combiner aware instruction erasure.
450   ///
451   /// When dealing with an instruction that has side effects or produces a void
452   /// value, we can't rely on DCE to delete the instruction. Instead, visit
453   /// methods should return the value returned by this function.
EraseInstFromFunction(Instruction & I)454   Instruction *EraseInstFromFunction(Instruction &I) {
455     DEBUG(dbgs() << "IC: ERASE " << I << '\n');
456 
457     assert(I.use_empty() && "Cannot erase instruction that is used!");
458     // Make sure that we reprocess all operands now that we reduced their
459     // use counts.
460     if (I.getNumOperands() < 8) {
461       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
462         if (Instruction *Op = dyn_cast<Instruction>(*i))
463           Worklist.Add(Op);
464     }
465     Worklist.Remove(&I);
466     I.eraseFromParent();
467     MadeIRChange = true;
468     return nullptr; // Don't do anything with FI
469   }
470 
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)471   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
472                         unsigned Depth, Instruction *CxtI) const {
473     return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
474                                   DT);
475   }
476 
477   bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
478                          Instruction *CxtI = nullptr) const {
479     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
480   }
481   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
482                               Instruction *CxtI = nullptr) const {
483     return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
484   }
485   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
486                       unsigned Depth = 0, Instruction *CxtI = nullptr) const {
487     return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
488                                 DT);
489   }
computeOverflowForUnsignedMul(Value * LHS,Value * RHS,const Instruction * CxtI)490   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
491                                                const Instruction *CxtI) {
492     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
493   }
computeOverflowForUnsignedAdd(Value * LHS,Value * RHS,const Instruction * CxtI)494   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
495                                                const Instruction *CxtI) {
496     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
497   }
498 
499 private:
500   /// \brief Performs a few simplifications for operators which are associative
501   /// or commutative.
502   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
503 
504   /// \brief Tries to simplify binary operations which some other binary
505   /// operation distributes over.
506   ///
507   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
508   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
509   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
510   /// value, or null if it didn't simplify.
511   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
512 
513   /// \brief Attempts to replace V with a simpler value based on the demanded
514   /// bits.
515   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
516                                  APInt &KnownOne, unsigned Depth,
517                                  Instruction *CxtI);
518   bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
519                             APInt &KnownOne, unsigned Depth = 0);
520   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
521   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
522   Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
523                                     APInt DemandedMask, APInt &KnownZero,
524                                     APInt &KnownOne);
525 
526   /// \brief Tries to simplify operands to an integer instruction based on its
527   /// demanded bits.
528   bool SimplifyDemandedInstructionBits(Instruction &Inst);
529 
530   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
531                                     APInt &UndefElts, unsigned Depth = 0);
532 
533   Value *SimplifyVectorOp(BinaryOperator &Inst);
534   Value *SimplifyBSwap(BinaryOperator &Inst);
535 
536   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
537   // which has a PHI node as operand #0, see if we can fold the instruction
538   // into the PHI (which is only possible if all operands to the PHI are
539   // constants).
540   //
541   Instruction *FoldOpIntoPhi(Instruction &I);
542 
543   /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
544   /// its operands.
545   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
546   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
547   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
548   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
549 
550   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
551                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
552 
553   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
554                             bool isSub, Instruction &I);
555   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
556                          bool Inside);
557   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
558   Instruction *MatchBSwap(BinaryOperator &I);
559   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
560   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
561   Instruction *SimplifyMemSet(MemSetInst *MI);
562 
563   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
564 
565   /// \brief Returns a value X such that Val = X * Scale, or null if none.
566   ///
567   /// If the multiplication is known not to overflow then NoSignedWrap is set.
568   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
569 };
570 
571 } // end namespace llvm.
572 
573 #undef DEBUG_TYPE
574 
575 #endif
576