1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/CodeGen/Passes.h"
22 #include "AggressiveAntiDepBreaker.h"
23 #include "AntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/RegisterClassInfo.h"
35 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37 #include "llvm/CodeGen/SchedulerRegistry.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47
48 #define DEBUG_TYPE "post-RA-sched"
49
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54 // Post-RA scheduling is enabled with
55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59 cl::desc("Enable scheduling after register allocation"),
60 cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63 cl::desc("Break post-RA scheduling anti-dependencies: "
64 "\"critical\", \"all\", or \"none\""),
65 cl::init("none"), cl::Hidden);
66
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70 cl::desc("Debug control MBBs that are scheduled"),
71 cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74 cl::desc("Debug control MBBs that are scheduled"),
75 cl::init(0), cl::Hidden);
76
~AntiDepBreaker()77 AntiDepBreaker::~AntiDepBreaker() { }
78
79 namespace {
80 class PostRAScheduler : public MachineFunctionPass {
81 const TargetInstrInfo *TII;
82 RegisterClassInfo RegClassInfo;
83
84 public:
85 static char ID;
PostRAScheduler()86 PostRAScheduler() : MachineFunctionPass(ID) {}
87
getAnalysisUsage(AnalysisUsage & AU) const88 void getAnalysisUsage(AnalysisUsage &AU) const override {
89 AU.setPreservesCFG();
90 AU.addRequired<AliasAnalysis>();
91 AU.addRequired<TargetPassConfig>();
92 AU.addRequired<MachineDominatorTree>();
93 AU.addPreserved<MachineDominatorTree>();
94 AU.addRequired<MachineLoopInfo>();
95 AU.addPreserved<MachineLoopInfo>();
96 MachineFunctionPass::getAnalysisUsage(AU);
97 }
98
99 bool runOnMachineFunction(MachineFunction &Fn) override;
100
101 bool enablePostRAScheduler(
102 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
103 TargetSubtargetInfo::AntiDepBreakMode &Mode,
104 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
105 };
106 char PostRAScheduler::ID = 0;
107
108 class SchedulePostRATDList : public ScheduleDAGInstrs {
109 /// AvailableQueue - The priority queue to use for the available SUnits.
110 ///
111 LatencyPriorityQueue AvailableQueue;
112
113 /// PendingQueue - This contains all of the instructions whose operands have
114 /// been issued, but their results are not ready yet (due to the latency of
115 /// the operation). Once the operands becomes available, the instruction is
116 /// added to the AvailableQueue.
117 std::vector<SUnit*> PendingQueue;
118
119 /// HazardRec - The hazard recognizer to use.
120 ScheduleHazardRecognizer *HazardRec;
121
122 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
123 AntiDepBreaker *AntiDepBreak;
124
125 /// AA - AliasAnalysis for making memory reference queries.
126 AliasAnalysis *AA;
127
128 /// The schedule. Null SUnit*'s represent noop instructions.
129 std::vector<SUnit*> Sequence;
130
131 /// The index in BB of RegionEnd.
132 ///
133 /// This is the instruction number from the top of the current block, not
134 /// the SlotIndex. It is only used by the AntiDepBreaker.
135 unsigned EndIndex;
136
137 public:
138 SchedulePostRATDList(
139 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
140 const RegisterClassInfo &,
141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
142 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
143
144 ~SchedulePostRATDList() override;
145
146 /// startBlock - Initialize register live-range state for scheduling in
147 /// this block.
148 ///
149 void startBlock(MachineBasicBlock *BB) override;
150
151 // Set the index of RegionEnd within the current BB.
setEndIndex(unsigned EndIdx)152 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
153
154 /// Initialize the scheduler state for the next scheduling region.
155 void enterRegion(MachineBasicBlock *bb,
156 MachineBasicBlock::iterator begin,
157 MachineBasicBlock::iterator end,
158 unsigned regioninstrs) override;
159
160 /// Notify that the scheduler has finished scheduling the current region.
161 void exitRegion() override;
162
163 /// Schedule - Schedule the instruction range using list scheduling.
164 ///
165 void schedule() override;
166
167 void EmitSchedule();
168
169 /// Observe - Update liveness information to account for the current
170 /// instruction, which will not be scheduled.
171 ///
172 void Observe(MachineInstr *MI, unsigned Count);
173
174 /// finishBlock - Clean up register live-range state.
175 ///
176 void finishBlock() override;
177
178 private:
179 void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
180 void ReleaseSuccessors(SUnit *SU);
181 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
182 void ListScheduleTopDown();
183
184 void dumpSchedule() const;
185 void emitNoop(unsigned CurCycle);
186 };
187 }
188
189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
190
191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
192 "Post RA top-down list latency scheduler", false, false)
193
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<const TargetRegisterClass * > & CriticalPathRCs)194 SchedulePostRATDList::SchedulePostRATDList(
195 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
196 const RegisterClassInfo &RCI,
197 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
198 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
199 : ScheduleDAGInstrs(MF, &MLI, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
200
201 const InstrItineraryData *InstrItins =
202 MF.getSubtarget().getInstrItineraryData();
203 HazardRec =
204 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
205 InstrItins, this);
206
207 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
208 MRI.tracksLiveness()) &&
209 "Live-ins must be accurate for anti-dependency breaking");
210 AntiDepBreak =
211 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
212 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
213 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
214 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
215 }
216
~SchedulePostRATDList()217 SchedulePostRATDList::~SchedulePostRATDList() {
218 delete HazardRec;
219 delete AntiDepBreak;
220 }
221
222 /// Initialize state associated with the next scheduling region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
224 MachineBasicBlock::iterator begin,
225 MachineBasicBlock::iterator end,
226 unsigned regioninstrs) {
227 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
228 Sequence.clear();
229 }
230
231 /// Print the schedule before exiting the region.
exitRegion()232 void SchedulePostRATDList::exitRegion() {
233 DEBUG({
234 dbgs() << "*** Final schedule ***\n";
235 dumpSchedule();
236 dbgs() << '\n';
237 });
238 ScheduleDAGInstrs::exitRegion();
239 }
240
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242 /// dumpSchedule - dump the scheduled Sequence.
dumpSchedule() const243 void SchedulePostRATDList::dumpSchedule() const {
244 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
245 if (SUnit *SU = Sequence[i])
246 SU->dump(this);
247 else
248 dbgs() << "**** NOOP ****\n";
249 }
250 }
251 #endif
252
enablePostRAScheduler(const TargetSubtargetInfo & ST,CodeGenOpt::Level OptLevel,TargetSubtargetInfo::AntiDepBreakMode & Mode,TargetSubtargetInfo::RegClassVector & CriticalPathRCs) const253 bool PostRAScheduler::enablePostRAScheduler(
254 const TargetSubtargetInfo &ST,
255 CodeGenOpt::Level OptLevel,
256 TargetSubtargetInfo::AntiDepBreakMode &Mode,
257 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
258 Mode = ST.getAntiDepBreakMode();
259 ST.getCriticalPathRCs(CriticalPathRCs);
260 return ST.enablePostMachineScheduler() &&
261 OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
262 }
263
runOnMachineFunction(MachineFunction & Fn)264 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
265 if (skipOptnoneFunction(*Fn.getFunction()))
266 return false;
267
268 TII = Fn.getSubtarget().getInstrInfo();
269 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
270 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
271 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
272
273 RegClassInfo.runOnMachineFunction(Fn);
274
275 // Check for explicit enable/disable of post-ra scheduling.
276 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
277 TargetSubtargetInfo::ANTIDEP_NONE;
278 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
279 if (EnablePostRAScheduler.getPosition() > 0) {
280 if (!EnablePostRAScheduler)
281 return false;
282 } else {
283 // Check that post-RA scheduling is enabled for this target.
284 // This may upgrade the AntiDepMode.
285 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
286 AntiDepMode, CriticalPathRCs))
287 return false;
288 }
289
290 // Check for antidep breaking override...
291 if (EnableAntiDepBreaking.getPosition() > 0) {
292 AntiDepMode = (EnableAntiDepBreaking == "all")
293 ? TargetSubtargetInfo::ANTIDEP_ALL
294 : ((EnableAntiDepBreaking == "critical")
295 ? TargetSubtargetInfo::ANTIDEP_CRITICAL
296 : TargetSubtargetInfo::ANTIDEP_NONE);
297 }
298
299 DEBUG(dbgs() << "PostRAScheduler\n");
300
301 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
302 CriticalPathRCs);
303
304 // Loop over all of the basic blocks
305 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
306 MBB != MBBe; ++MBB) {
307 #ifndef NDEBUG
308 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
309 if (DebugDiv > 0) {
310 static int bbcnt = 0;
311 if (bbcnt++ % DebugDiv != DebugMod)
312 continue;
313 dbgs() << "*** DEBUG scheduling " << Fn.getName()
314 << ":BB#" << MBB->getNumber() << " ***\n";
315 }
316 #endif
317
318 // Initialize register live-range state for scheduling in this block.
319 Scheduler.startBlock(MBB);
320
321 // Schedule each sequence of instructions not interrupted by a label
322 // or anything else that effectively needs to shut down scheduling.
323 MachineBasicBlock::iterator Current = MBB->end();
324 unsigned Count = MBB->size(), CurrentCount = Count;
325 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
326 MachineInstr *MI = std::prev(I);
327 --Count;
328 // Calls are not scheduling boundaries before register allocation, but
329 // post-ra we don't gain anything by scheduling across calls since we
330 // don't need to worry about register pressure.
331 if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
332 Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
333 Scheduler.setEndIndex(CurrentCount);
334 Scheduler.schedule();
335 Scheduler.exitRegion();
336 Scheduler.EmitSchedule();
337 Current = MI;
338 CurrentCount = Count;
339 Scheduler.Observe(MI, CurrentCount);
340 }
341 I = MI;
342 if (MI->isBundle())
343 Count -= MI->getBundleSize();
344 }
345 assert(Count == 0 && "Instruction count mismatch!");
346 assert((MBB->begin() == Current || CurrentCount != 0) &&
347 "Instruction count mismatch!");
348 Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
349 Scheduler.setEndIndex(CurrentCount);
350 Scheduler.schedule();
351 Scheduler.exitRegion();
352 Scheduler.EmitSchedule();
353
354 // Clean up register live-range state.
355 Scheduler.finishBlock();
356
357 // Update register kills
358 Scheduler.fixupKills(MBB);
359 }
360
361 return true;
362 }
363
364 /// StartBlock - Initialize register live-range state for scheduling in
365 /// this block.
366 ///
startBlock(MachineBasicBlock * BB)367 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
368 // Call the superclass.
369 ScheduleDAGInstrs::startBlock(BB);
370
371 // Reset the hazard recognizer and anti-dep breaker.
372 HazardRec->Reset();
373 if (AntiDepBreak)
374 AntiDepBreak->StartBlock(BB);
375 }
376
377 /// Schedule - Schedule the instruction range using list scheduling.
378 ///
schedule()379 void SchedulePostRATDList::schedule() {
380 // Build the scheduling graph.
381 buildSchedGraph(AA);
382
383 if (AntiDepBreak) {
384 unsigned Broken =
385 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
386 EndIndex, DbgValues);
387
388 if (Broken != 0) {
389 // We made changes. Update the dependency graph.
390 // Theoretically we could update the graph in place:
391 // When a live range is changed to use a different register, remove
392 // the def's anti-dependence *and* output-dependence edges due to
393 // that register, and add new anti-dependence and output-dependence
394 // edges based on the next live range of the register.
395 ScheduleDAG::clearDAG();
396 buildSchedGraph(AA);
397
398 NumFixedAnti += Broken;
399 }
400 }
401
402 DEBUG(dbgs() << "********** List Scheduling **********\n");
403 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
404 SUnits[su].dumpAll(this));
405
406 AvailableQueue.initNodes(SUnits);
407 ListScheduleTopDown();
408 AvailableQueue.releaseState();
409 }
410
411 /// Observe - Update liveness information to account for the current
412 /// instruction, which will not be scheduled.
413 ///
Observe(MachineInstr * MI,unsigned Count)414 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
415 if (AntiDepBreak)
416 AntiDepBreak->Observe(MI, Count, EndIndex);
417 }
418
419 /// FinishBlock - Clean up register live-range state.
420 ///
finishBlock()421 void SchedulePostRATDList::finishBlock() {
422 if (AntiDepBreak)
423 AntiDepBreak->FinishBlock();
424
425 // Call the superclass.
426 ScheduleDAGInstrs::finishBlock();
427 }
428
429 //===----------------------------------------------------------------------===//
430 // Top-Down Scheduling
431 //===----------------------------------------------------------------------===//
432
433 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
434 /// the PendingQueue if the count reaches zero.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)435 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
436 SUnit *SuccSU = SuccEdge->getSUnit();
437
438 if (SuccEdge->isWeak()) {
439 --SuccSU->WeakPredsLeft;
440 return;
441 }
442 #ifndef NDEBUG
443 if (SuccSU->NumPredsLeft == 0) {
444 dbgs() << "*** Scheduling failed! ***\n";
445 SuccSU->dump(this);
446 dbgs() << " has been released too many times!\n";
447 llvm_unreachable(nullptr);
448 }
449 #endif
450 --SuccSU->NumPredsLeft;
451
452 // Standard scheduler algorithms will recompute the depth of the successor
453 // here as such:
454 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
455 //
456 // However, we lazily compute node depth instead. Note that
457 // ScheduleNodeTopDown has already updated the depth of this node which causes
458 // all descendents to be marked dirty. Setting the successor depth explicitly
459 // here would cause depth to be recomputed for all its ancestors. If the
460 // successor is not yet ready (because of a transitively redundant edge) then
461 // this causes depth computation to be quadratic in the size of the DAG.
462
463 // If all the node's predecessors are scheduled, this node is ready
464 // to be scheduled. Ignore the special ExitSU node.
465 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
466 PendingQueue.push_back(SuccSU);
467 }
468
469 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)470 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
471 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
472 I != E; ++I) {
473 ReleaseSucc(SU, &*I);
474 }
475 }
476
477 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
478 /// count of its successors. If a successor pending count is zero, add it to
479 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)480 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
481 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
482 DEBUG(SU->dump(this));
483
484 Sequence.push_back(SU);
485 assert(CurCycle >= SU->getDepth() &&
486 "Node scheduled above its depth!");
487 SU->setDepthToAtLeast(CurCycle);
488
489 ReleaseSuccessors(SU);
490 SU->isScheduled = true;
491 AvailableQueue.scheduledNode(SU);
492 }
493
494 /// emitNoop - Add a noop to the current instruction sequence.
emitNoop(unsigned CurCycle)495 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
496 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
497 HazardRec->EmitNoop();
498 Sequence.push_back(nullptr); // NULL here means noop
499 ++NumNoops;
500 }
501
502 /// ListScheduleTopDown - The main loop of list scheduling for top-down
503 /// schedulers.
ListScheduleTopDown()504 void SchedulePostRATDList::ListScheduleTopDown() {
505 unsigned CurCycle = 0;
506
507 // We're scheduling top-down but we're visiting the regions in
508 // bottom-up order, so we don't know the hazards at the start of a
509 // region. So assume no hazards (this should usually be ok as most
510 // blocks are a single region).
511 HazardRec->Reset();
512
513 // Release any successors of the special Entry node.
514 ReleaseSuccessors(&EntrySU);
515
516 // Add all leaves to Available queue.
517 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
518 // It is available if it has no predecessors.
519 if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
520 AvailableQueue.push(&SUnits[i]);
521 SUnits[i].isAvailable = true;
522 }
523 }
524
525 // In any cycle where we can't schedule any instructions, we must
526 // stall or emit a noop, depending on the target.
527 bool CycleHasInsts = false;
528
529 // While Available queue is not empty, grab the node with the highest
530 // priority. If it is not ready put it back. Schedule the node.
531 std::vector<SUnit*> NotReady;
532 Sequence.reserve(SUnits.size());
533 while (!AvailableQueue.empty() || !PendingQueue.empty()) {
534 // Check to see if any of the pending instructions are ready to issue. If
535 // so, add them to the available queue.
536 unsigned MinDepth = ~0u;
537 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
538 if (PendingQueue[i]->getDepth() <= CurCycle) {
539 AvailableQueue.push(PendingQueue[i]);
540 PendingQueue[i]->isAvailable = true;
541 PendingQueue[i] = PendingQueue.back();
542 PendingQueue.pop_back();
543 --i; --e;
544 } else if (PendingQueue[i]->getDepth() < MinDepth)
545 MinDepth = PendingQueue[i]->getDepth();
546 }
547
548 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
549
550 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
551 bool HasNoopHazards = false;
552 while (!AvailableQueue.empty()) {
553 SUnit *CurSUnit = AvailableQueue.pop();
554
555 ScheduleHazardRecognizer::HazardType HT =
556 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
557 if (HT == ScheduleHazardRecognizer::NoHazard) {
558 if (HazardRec->ShouldPreferAnother(CurSUnit)) {
559 if (!NotPreferredSUnit) {
560 // If this is the first non-preferred node for this cycle, then
561 // record it and continue searching for a preferred node. If this
562 // is not the first non-preferred node, then treat it as though
563 // there had been a hazard.
564 NotPreferredSUnit = CurSUnit;
565 continue;
566 }
567 } else {
568 FoundSUnit = CurSUnit;
569 break;
570 }
571 }
572
573 // Remember if this is a noop hazard.
574 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
575
576 NotReady.push_back(CurSUnit);
577 }
578
579 // If we have a non-preferred node, push it back onto the available list.
580 // If we did not find a preferred node, then schedule this first
581 // non-preferred node.
582 if (NotPreferredSUnit) {
583 if (!FoundSUnit) {
584 DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
585 FoundSUnit = NotPreferredSUnit;
586 } else {
587 AvailableQueue.push(NotPreferredSUnit);
588 }
589
590 NotPreferredSUnit = nullptr;
591 }
592
593 // Add the nodes that aren't ready back onto the available list.
594 if (!NotReady.empty()) {
595 AvailableQueue.push_all(NotReady);
596 NotReady.clear();
597 }
598
599 // If we found a node to schedule...
600 if (FoundSUnit) {
601 // If we need to emit noops prior to this instruction, then do so.
602 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
603 for (unsigned i = 0; i != NumPreNoops; ++i)
604 emitNoop(CurCycle);
605
606 // ... schedule the node...
607 ScheduleNodeTopDown(FoundSUnit, CurCycle);
608 HazardRec->EmitInstruction(FoundSUnit);
609 CycleHasInsts = true;
610 if (HazardRec->atIssueLimit()) {
611 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
612 HazardRec->AdvanceCycle();
613 ++CurCycle;
614 CycleHasInsts = false;
615 }
616 } else {
617 if (CycleHasInsts) {
618 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
619 HazardRec->AdvanceCycle();
620 } else if (!HasNoopHazards) {
621 // Otherwise, we have a pipeline stall, but no other problem,
622 // just advance the current cycle and try again.
623 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
624 HazardRec->AdvanceCycle();
625 ++NumStalls;
626 } else {
627 // Otherwise, we have no instructions to issue and we have instructions
628 // that will fault if we don't do this right. This is the case for
629 // processors without pipeline interlocks and other cases.
630 emitNoop(CurCycle);
631 }
632
633 ++CurCycle;
634 CycleHasInsts = false;
635 }
636 }
637
638 #ifndef NDEBUG
639 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
640 unsigned Noops = 0;
641 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
642 if (!Sequence[i])
643 ++Noops;
644 assert(Sequence.size() - Noops == ScheduledNodes &&
645 "The number of nodes scheduled doesn't match the expected number!");
646 #endif // NDEBUG
647 }
648
649 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()650 void SchedulePostRATDList::EmitSchedule() {
651 RegionBegin = RegionEnd;
652
653 // If first instruction was a DBG_VALUE then put it back.
654 if (FirstDbgValue)
655 BB->splice(RegionEnd, BB, FirstDbgValue);
656
657 // Then re-insert them according to the given schedule.
658 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
659 if (SUnit *SU = Sequence[i])
660 BB->splice(RegionEnd, BB, SU->getInstr());
661 else
662 // Null SUnit* is a noop.
663 TII->insertNoop(*BB, RegionEnd);
664
665 // Update the Begin iterator, as the first instruction in the block
666 // may have been scheduled later.
667 if (i == 0)
668 RegionBegin = std::prev(RegionEnd);
669 }
670
671 // Reinsert any remaining debug_values.
672 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
673 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
674 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
675 MachineInstr *DbgValue = P.first;
676 MachineBasicBlock::iterator OrigPrivMI = P.second;
677 BB->splice(++OrigPrivMI, BB, DbgValue);
678 }
679 DbgValues.clear();
680 FirstDbgValue = nullptr;
681 }
682