1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/Passes.h"
22 #include "AggressiveAntiDepBreaker.h"
23 #include "AntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/RegisterClassInfo.h"
35 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37 #include "llvm/CodeGen/SchedulerRegistry.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "post-RA-sched"
49 
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53 
54 // Post-RA scheduling is enabled with
55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59                        cl::desc("Enable scheduling after register allocation"),
60                        cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63                       cl::desc("Break post-RA scheduling anti-dependencies: "
64                                "\"critical\", \"all\", or \"none\""),
65                       cl::init("none"), cl::Hidden);
66 
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74                       cl::desc("Debug control MBBs that are scheduled"),
75                       cl::init(0), cl::Hidden);
76 
~AntiDepBreaker()77 AntiDepBreaker::~AntiDepBreaker() { }
78 
79 namespace {
80   class PostRAScheduler : public MachineFunctionPass {
81     const TargetInstrInfo *TII;
82     RegisterClassInfo RegClassInfo;
83 
84   public:
85     static char ID;
PostRAScheduler()86     PostRAScheduler() : MachineFunctionPass(ID) {}
87 
getAnalysisUsage(AnalysisUsage & AU) const88     void getAnalysisUsage(AnalysisUsage &AU) const override {
89       AU.setPreservesCFG();
90       AU.addRequired<AliasAnalysis>();
91       AU.addRequired<TargetPassConfig>();
92       AU.addRequired<MachineDominatorTree>();
93       AU.addPreserved<MachineDominatorTree>();
94       AU.addRequired<MachineLoopInfo>();
95       AU.addPreserved<MachineLoopInfo>();
96       MachineFunctionPass::getAnalysisUsage(AU);
97     }
98 
99     bool runOnMachineFunction(MachineFunction &Fn) override;
100 
101     bool enablePostRAScheduler(
102         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
103         TargetSubtargetInfo::AntiDepBreakMode &Mode,
104         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
105   };
106   char PostRAScheduler::ID = 0;
107 
108   class SchedulePostRATDList : public ScheduleDAGInstrs {
109     /// AvailableQueue - The priority queue to use for the available SUnits.
110     ///
111     LatencyPriorityQueue AvailableQueue;
112 
113     /// PendingQueue - This contains all of the instructions whose operands have
114     /// been issued, but their results are not ready yet (due to the latency of
115     /// the operation).  Once the operands becomes available, the instruction is
116     /// added to the AvailableQueue.
117     std::vector<SUnit*> PendingQueue;
118 
119     /// HazardRec - The hazard recognizer to use.
120     ScheduleHazardRecognizer *HazardRec;
121 
122     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
123     AntiDepBreaker *AntiDepBreak;
124 
125     /// AA - AliasAnalysis for making memory reference queries.
126     AliasAnalysis *AA;
127 
128     /// The schedule. Null SUnit*'s represent noop instructions.
129     std::vector<SUnit*> Sequence;
130 
131     /// The index in BB of RegionEnd.
132     ///
133     /// This is the instruction number from the top of the current block, not
134     /// the SlotIndex. It is only used by the AntiDepBreaker.
135     unsigned EndIndex;
136 
137   public:
138     SchedulePostRATDList(
139         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
140         const RegisterClassInfo &,
141         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
142         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
143 
144     ~SchedulePostRATDList() override;
145 
146     /// startBlock - Initialize register live-range state for scheduling in
147     /// this block.
148     ///
149     void startBlock(MachineBasicBlock *BB) override;
150 
151     // Set the index of RegionEnd within the current BB.
setEndIndex(unsigned EndIdx)152     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
153 
154     /// Initialize the scheduler state for the next scheduling region.
155     void enterRegion(MachineBasicBlock *bb,
156                      MachineBasicBlock::iterator begin,
157                      MachineBasicBlock::iterator end,
158                      unsigned regioninstrs) override;
159 
160     /// Notify that the scheduler has finished scheduling the current region.
161     void exitRegion() override;
162 
163     /// Schedule - Schedule the instruction range using list scheduling.
164     ///
165     void schedule() override;
166 
167     void EmitSchedule();
168 
169     /// Observe - Update liveness information to account for the current
170     /// instruction, which will not be scheduled.
171     ///
172     void Observe(MachineInstr *MI, unsigned Count);
173 
174     /// finishBlock - Clean up register live-range state.
175     ///
176     void finishBlock() override;
177 
178   private:
179     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
180     void ReleaseSuccessors(SUnit *SU);
181     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
182     void ListScheduleTopDown();
183 
184     void dumpSchedule() const;
185     void emitNoop(unsigned CurCycle);
186   };
187 }
188 
189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
190 
191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
192                 "Post RA top-down list latency scheduler", false, false)
193 
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<const TargetRegisterClass * > & CriticalPathRCs)194 SchedulePostRATDList::SchedulePostRATDList(
195     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
196     const RegisterClassInfo &RCI,
197     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
198     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
199     : ScheduleDAGInstrs(MF, &MLI, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
200 
201   const InstrItineraryData *InstrItins =
202       MF.getSubtarget().getInstrItineraryData();
203   HazardRec =
204       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
205           InstrItins, this);
206 
207   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
208           MRI.tracksLiveness()) &&
209          "Live-ins must be accurate for anti-dependency breaking");
210   AntiDepBreak =
211     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
212      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
213      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
214       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
215 }
216 
~SchedulePostRATDList()217 SchedulePostRATDList::~SchedulePostRATDList() {
218   delete HazardRec;
219   delete AntiDepBreak;
220 }
221 
222 /// Initialize state associated with the next scheduling region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
224                  MachineBasicBlock::iterator begin,
225                  MachineBasicBlock::iterator end,
226                  unsigned regioninstrs) {
227   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
228   Sequence.clear();
229 }
230 
231 /// Print the schedule before exiting the region.
exitRegion()232 void SchedulePostRATDList::exitRegion() {
233   DEBUG({
234       dbgs() << "*** Final schedule ***\n";
235       dumpSchedule();
236       dbgs() << '\n';
237     });
238   ScheduleDAGInstrs::exitRegion();
239 }
240 
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242 /// dumpSchedule - dump the scheduled Sequence.
dumpSchedule() const243 void SchedulePostRATDList::dumpSchedule() const {
244   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
245     if (SUnit *SU = Sequence[i])
246       SU->dump(this);
247     else
248       dbgs() << "**** NOOP ****\n";
249   }
250 }
251 #endif
252 
enablePostRAScheduler(const TargetSubtargetInfo & ST,CodeGenOpt::Level OptLevel,TargetSubtargetInfo::AntiDepBreakMode & Mode,TargetSubtargetInfo::RegClassVector & CriticalPathRCs) const253 bool PostRAScheduler::enablePostRAScheduler(
254     const TargetSubtargetInfo &ST,
255     CodeGenOpt::Level OptLevel,
256     TargetSubtargetInfo::AntiDepBreakMode &Mode,
257     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
258   Mode = ST.getAntiDepBreakMode();
259   ST.getCriticalPathRCs(CriticalPathRCs);
260   return ST.enablePostMachineScheduler() &&
261          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
262 }
263 
runOnMachineFunction(MachineFunction & Fn)264 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
265   if (skipOptnoneFunction(*Fn.getFunction()))
266     return false;
267 
268   TII = Fn.getSubtarget().getInstrInfo();
269   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
270   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
271   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
272 
273   RegClassInfo.runOnMachineFunction(Fn);
274 
275   // Check for explicit enable/disable of post-ra scheduling.
276   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
277     TargetSubtargetInfo::ANTIDEP_NONE;
278   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
279   if (EnablePostRAScheduler.getPosition() > 0) {
280     if (!EnablePostRAScheduler)
281       return false;
282   } else {
283     // Check that post-RA scheduling is enabled for this target.
284     // This may upgrade the AntiDepMode.
285     if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
286                                AntiDepMode, CriticalPathRCs))
287       return false;
288   }
289 
290   // Check for antidep breaking override...
291   if (EnableAntiDepBreaking.getPosition() > 0) {
292     AntiDepMode = (EnableAntiDepBreaking == "all")
293       ? TargetSubtargetInfo::ANTIDEP_ALL
294       : ((EnableAntiDepBreaking == "critical")
295          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
296          : TargetSubtargetInfo::ANTIDEP_NONE);
297   }
298 
299   DEBUG(dbgs() << "PostRAScheduler\n");
300 
301   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
302                                  CriticalPathRCs);
303 
304   // Loop over all of the basic blocks
305   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
306        MBB != MBBe; ++MBB) {
307 #ifndef NDEBUG
308     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
309     if (DebugDiv > 0) {
310       static int bbcnt = 0;
311       if (bbcnt++ % DebugDiv != DebugMod)
312         continue;
313       dbgs() << "*** DEBUG scheduling " << Fn.getName()
314              << ":BB#" << MBB->getNumber() << " ***\n";
315     }
316 #endif
317 
318     // Initialize register live-range state for scheduling in this block.
319     Scheduler.startBlock(MBB);
320 
321     // Schedule each sequence of instructions not interrupted by a label
322     // or anything else that effectively needs to shut down scheduling.
323     MachineBasicBlock::iterator Current = MBB->end();
324     unsigned Count = MBB->size(), CurrentCount = Count;
325     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
326       MachineInstr *MI = std::prev(I);
327       --Count;
328       // Calls are not scheduling boundaries before register allocation, but
329       // post-ra we don't gain anything by scheduling across calls since we
330       // don't need to worry about register pressure.
331       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
332         Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
333         Scheduler.setEndIndex(CurrentCount);
334         Scheduler.schedule();
335         Scheduler.exitRegion();
336         Scheduler.EmitSchedule();
337         Current = MI;
338         CurrentCount = Count;
339         Scheduler.Observe(MI, CurrentCount);
340       }
341       I = MI;
342       if (MI->isBundle())
343         Count -= MI->getBundleSize();
344     }
345     assert(Count == 0 && "Instruction count mismatch!");
346     assert((MBB->begin() == Current || CurrentCount != 0) &&
347            "Instruction count mismatch!");
348     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
349     Scheduler.setEndIndex(CurrentCount);
350     Scheduler.schedule();
351     Scheduler.exitRegion();
352     Scheduler.EmitSchedule();
353 
354     // Clean up register live-range state.
355     Scheduler.finishBlock();
356 
357     // Update register kills
358     Scheduler.fixupKills(MBB);
359   }
360 
361   return true;
362 }
363 
364 /// StartBlock - Initialize register live-range state for scheduling in
365 /// this block.
366 ///
startBlock(MachineBasicBlock * BB)367 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
368   // Call the superclass.
369   ScheduleDAGInstrs::startBlock(BB);
370 
371   // Reset the hazard recognizer and anti-dep breaker.
372   HazardRec->Reset();
373   if (AntiDepBreak)
374     AntiDepBreak->StartBlock(BB);
375 }
376 
377 /// Schedule - Schedule the instruction range using list scheduling.
378 ///
schedule()379 void SchedulePostRATDList::schedule() {
380   // Build the scheduling graph.
381   buildSchedGraph(AA);
382 
383   if (AntiDepBreak) {
384     unsigned Broken =
385       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
386                                           EndIndex, DbgValues);
387 
388     if (Broken != 0) {
389       // We made changes. Update the dependency graph.
390       // Theoretically we could update the graph in place:
391       // When a live range is changed to use a different register, remove
392       // the def's anti-dependence *and* output-dependence edges due to
393       // that register, and add new anti-dependence and output-dependence
394       // edges based on the next live range of the register.
395       ScheduleDAG::clearDAG();
396       buildSchedGraph(AA);
397 
398       NumFixedAnti += Broken;
399     }
400   }
401 
402   DEBUG(dbgs() << "********** List Scheduling **********\n");
403   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
404           SUnits[su].dumpAll(this));
405 
406   AvailableQueue.initNodes(SUnits);
407   ListScheduleTopDown();
408   AvailableQueue.releaseState();
409 }
410 
411 /// Observe - Update liveness information to account for the current
412 /// instruction, which will not be scheduled.
413 ///
Observe(MachineInstr * MI,unsigned Count)414 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
415   if (AntiDepBreak)
416     AntiDepBreak->Observe(MI, Count, EndIndex);
417 }
418 
419 /// FinishBlock - Clean up register live-range state.
420 ///
finishBlock()421 void SchedulePostRATDList::finishBlock() {
422   if (AntiDepBreak)
423     AntiDepBreak->FinishBlock();
424 
425   // Call the superclass.
426   ScheduleDAGInstrs::finishBlock();
427 }
428 
429 //===----------------------------------------------------------------------===//
430 //  Top-Down Scheduling
431 //===----------------------------------------------------------------------===//
432 
433 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
434 /// the PendingQueue if the count reaches zero.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)435 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
436   SUnit *SuccSU = SuccEdge->getSUnit();
437 
438   if (SuccEdge->isWeak()) {
439     --SuccSU->WeakPredsLeft;
440     return;
441   }
442 #ifndef NDEBUG
443   if (SuccSU->NumPredsLeft == 0) {
444     dbgs() << "*** Scheduling failed! ***\n";
445     SuccSU->dump(this);
446     dbgs() << " has been released too many times!\n";
447     llvm_unreachable(nullptr);
448   }
449 #endif
450   --SuccSU->NumPredsLeft;
451 
452   // Standard scheduler algorithms will recompute the depth of the successor
453   // here as such:
454   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
455   //
456   // However, we lazily compute node depth instead. Note that
457   // ScheduleNodeTopDown has already updated the depth of this node which causes
458   // all descendents to be marked dirty. Setting the successor depth explicitly
459   // here would cause depth to be recomputed for all its ancestors. If the
460   // successor is not yet ready (because of a transitively redundant edge) then
461   // this causes depth computation to be quadratic in the size of the DAG.
462 
463   // If all the node's predecessors are scheduled, this node is ready
464   // to be scheduled. Ignore the special ExitSU node.
465   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
466     PendingQueue.push_back(SuccSU);
467 }
468 
469 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)470 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
471   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
472        I != E; ++I) {
473     ReleaseSucc(SU, &*I);
474   }
475 }
476 
477 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
478 /// count of its successors. If a successor pending count is zero, add it to
479 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)480 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
481   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
482   DEBUG(SU->dump(this));
483 
484   Sequence.push_back(SU);
485   assert(CurCycle >= SU->getDepth() &&
486          "Node scheduled above its depth!");
487   SU->setDepthToAtLeast(CurCycle);
488 
489   ReleaseSuccessors(SU);
490   SU->isScheduled = true;
491   AvailableQueue.scheduledNode(SU);
492 }
493 
494 /// emitNoop - Add a noop to the current instruction sequence.
emitNoop(unsigned CurCycle)495 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
496   DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
497   HazardRec->EmitNoop();
498   Sequence.push_back(nullptr);   // NULL here means noop
499   ++NumNoops;
500 }
501 
502 /// ListScheduleTopDown - The main loop of list scheduling for top-down
503 /// schedulers.
ListScheduleTopDown()504 void SchedulePostRATDList::ListScheduleTopDown() {
505   unsigned CurCycle = 0;
506 
507   // We're scheduling top-down but we're visiting the regions in
508   // bottom-up order, so we don't know the hazards at the start of a
509   // region. So assume no hazards (this should usually be ok as most
510   // blocks are a single region).
511   HazardRec->Reset();
512 
513   // Release any successors of the special Entry node.
514   ReleaseSuccessors(&EntrySU);
515 
516   // Add all leaves to Available queue.
517   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
518     // It is available if it has no predecessors.
519     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
520       AvailableQueue.push(&SUnits[i]);
521       SUnits[i].isAvailable = true;
522     }
523   }
524 
525   // In any cycle where we can't schedule any instructions, we must
526   // stall or emit a noop, depending on the target.
527   bool CycleHasInsts = false;
528 
529   // While Available queue is not empty, grab the node with the highest
530   // priority. If it is not ready put it back.  Schedule the node.
531   std::vector<SUnit*> NotReady;
532   Sequence.reserve(SUnits.size());
533   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
534     // Check to see if any of the pending instructions are ready to issue.  If
535     // so, add them to the available queue.
536     unsigned MinDepth = ~0u;
537     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
538       if (PendingQueue[i]->getDepth() <= CurCycle) {
539         AvailableQueue.push(PendingQueue[i]);
540         PendingQueue[i]->isAvailable = true;
541         PendingQueue[i] = PendingQueue.back();
542         PendingQueue.pop_back();
543         --i; --e;
544       } else if (PendingQueue[i]->getDepth() < MinDepth)
545         MinDepth = PendingQueue[i]->getDepth();
546     }
547 
548     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
549 
550     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
551     bool HasNoopHazards = false;
552     while (!AvailableQueue.empty()) {
553       SUnit *CurSUnit = AvailableQueue.pop();
554 
555       ScheduleHazardRecognizer::HazardType HT =
556         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
557       if (HT == ScheduleHazardRecognizer::NoHazard) {
558         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
559           if (!NotPreferredSUnit) {
560             // If this is the first non-preferred node for this cycle, then
561             // record it and continue searching for a preferred node. If this
562             // is not the first non-preferred node, then treat it as though
563             // there had been a hazard.
564             NotPreferredSUnit = CurSUnit;
565             continue;
566           }
567         } else {
568           FoundSUnit = CurSUnit;
569           break;
570         }
571       }
572 
573       // Remember if this is a noop hazard.
574       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
575 
576       NotReady.push_back(CurSUnit);
577     }
578 
579     // If we have a non-preferred node, push it back onto the available list.
580     // If we did not find a preferred node, then schedule this first
581     // non-preferred node.
582     if (NotPreferredSUnit) {
583       if (!FoundSUnit) {
584         DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
585         FoundSUnit = NotPreferredSUnit;
586       } else {
587         AvailableQueue.push(NotPreferredSUnit);
588       }
589 
590       NotPreferredSUnit = nullptr;
591     }
592 
593     // Add the nodes that aren't ready back onto the available list.
594     if (!NotReady.empty()) {
595       AvailableQueue.push_all(NotReady);
596       NotReady.clear();
597     }
598 
599     // If we found a node to schedule...
600     if (FoundSUnit) {
601       // If we need to emit noops prior to this instruction, then do so.
602       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
603       for (unsigned i = 0; i != NumPreNoops; ++i)
604         emitNoop(CurCycle);
605 
606       // ... schedule the node...
607       ScheduleNodeTopDown(FoundSUnit, CurCycle);
608       HazardRec->EmitInstruction(FoundSUnit);
609       CycleHasInsts = true;
610       if (HazardRec->atIssueLimit()) {
611         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
612         HazardRec->AdvanceCycle();
613         ++CurCycle;
614         CycleHasInsts = false;
615       }
616     } else {
617       if (CycleHasInsts) {
618         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
619         HazardRec->AdvanceCycle();
620       } else if (!HasNoopHazards) {
621         // Otherwise, we have a pipeline stall, but no other problem,
622         // just advance the current cycle and try again.
623         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
624         HazardRec->AdvanceCycle();
625         ++NumStalls;
626       } else {
627         // Otherwise, we have no instructions to issue and we have instructions
628         // that will fault if we don't do this right.  This is the case for
629         // processors without pipeline interlocks and other cases.
630         emitNoop(CurCycle);
631       }
632 
633       ++CurCycle;
634       CycleHasInsts = false;
635     }
636   }
637 
638 #ifndef NDEBUG
639   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
640   unsigned Noops = 0;
641   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
642     if (!Sequence[i])
643       ++Noops;
644   assert(Sequence.size() - Noops == ScheduledNodes &&
645          "The number of nodes scheduled doesn't match the expected number!");
646 #endif // NDEBUG
647 }
648 
649 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()650 void SchedulePostRATDList::EmitSchedule() {
651   RegionBegin = RegionEnd;
652 
653   // If first instruction was a DBG_VALUE then put it back.
654   if (FirstDbgValue)
655     BB->splice(RegionEnd, BB, FirstDbgValue);
656 
657   // Then re-insert them according to the given schedule.
658   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
659     if (SUnit *SU = Sequence[i])
660       BB->splice(RegionEnd, BB, SU->getInstr());
661     else
662       // Null SUnit* is a noop.
663       TII->insertNoop(*BB, RegionEnd);
664 
665     // Update the Begin iterator, as the first instruction in the block
666     // may have been scheduled later.
667     if (i == 0)
668       RegionBegin = std::prev(RegionEnd);
669   }
670 
671   // Reinsert any remaining debug_values.
672   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
673          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
674     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
675     MachineInstr *DbgValue = P.first;
676     MachineBasicBlock::iterator OrigPrivMI = P.second;
677     BB->splice(++OrigPrivMI, BB, DbgValue);
678   }
679   DbgValues.clear();
680   FirstDbgValue = nullptr;
681 }
682