1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55
56 using namespace clang;
57 using namespace CodeGen;
58
59 static const char AnnotationSection[] = "llvm.metadata";
60
createCXXABI(CodeGenModule & CGM)61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62 switch (CGM.getTarget().getCXXABI().getKind()) {
63 case TargetCXXABI::GenericAArch64:
64 case TargetCXXABI::GenericARM:
65 case TargetCXXABI::iOS:
66 case TargetCXXABI::iOS64:
67 case TargetCXXABI::GenericMIPS:
68 case TargetCXXABI::GenericItanium:
69 return CreateItaniumCXXABI(CGM);
70 case TargetCXXABI::Microsoft:
71 return CreateMicrosoftCXXABI(CGM);
72 }
73
74 llvm_unreachable("invalid C++ ABI kind");
75 }
76
CodeGenModule(ASTContext & C,const CodeGenOptions & CGO,llvm::Module & M,const llvm::DataLayout & TD,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
78 llvm::Module &M, const llvm::DataLayout &TD,
79 DiagnosticsEngine &diags,
80 CoverageSourceInfo *CoverageInfo)
81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
94
95 // Initialize the type cache.
96 llvm::LLVMContext &LLVMContext = M.getContext();
97 VoidTy = llvm::Type::getVoidTy(LLVMContext);
98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102 FloatTy = llvm::Type::getFloatTy(LLVMContext);
103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105 PointerAlignInBytes =
106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109 Int8PtrTy = Int8Ty->getPointerTo(0);
110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111
112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114
115 if (LangOpts.ObjC1)
116 createObjCRuntime();
117 if (LangOpts.OpenCL)
118 createOpenCLRuntime();
119 if (LangOpts.OpenMP)
120 createOpenMPRuntime();
121 if (LangOpts.CUDA)
122 createCUDARuntime();
123
124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128 getCXXABI().getMangleContext());
129
130 // If debug info or coverage generation is enabled, create the CGDebugInfo
131 // object.
132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133 CodeGenOpts.EmitGcovArcs ||
134 CodeGenOpts.EmitGcovNotes)
135 DebugInfo = new CGDebugInfo(*this);
136
137 Block.GlobalUniqueCount = 0;
138
139 if (C.getLangOpts().ObjCAutoRefCount)
140 ARCData = new ARCEntrypoints();
141 RRData = new RREntrypoints();
142
143 if (!CodeGenOpts.InstrProfileInput.empty()) {
144 auto ReaderOrErr =
145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
146 if (std::error_code EC = ReaderOrErr.getError()) {
147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148 "Could not read profile: %0");
149 getDiags().Report(DiagID) << EC.message();
150 } else
151 PGOReader = std::move(ReaderOrErr.get());
152 }
153
154 // If coverage mapping generation is enabled, create the
155 // CoverageMappingModuleGen object.
156 if (CodeGenOpts.CoverageMapping)
157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159
~CodeGenModule()160 CodeGenModule::~CodeGenModule() {
161 delete ObjCRuntime;
162 delete OpenCLRuntime;
163 delete OpenMPRuntime;
164 delete CUDARuntime;
165 delete TheTargetCodeGenInfo;
166 delete TBAA;
167 delete DebugInfo;
168 delete ARCData;
169 delete RRData;
170 }
171
createObjCRuntime()172 void CodeGenModule::createObjCRuntime() {
173 // This is just isGNUFamily(), but we want to force implementors of
174 // new ABIs to decide how best to do this.
175 switch (LangOpts.ObjCRuntime.getKind()) {
176 case ObjCRuntime::GNUstep:
177 case ObjCRuntime::GCC:
178 case ObjCRuntime::ObjFW:
179 ObjCRuntime = CreateGNUObjCRuntime(*this);
180 return;
181
182 case ObjCRuntime::FragileMacOSX:
183 case ObjCRuntime::MacOSX:
184 case ObjCRuntime::iOS:
185 ObjCRuntime = CreateMacObjCRuntime(*this);
186 return;
187 }
188 llvm_unreachable("bad runtime kind");
189 }
190
createOpenCLRuntime()191 void CodeGenModule::createOpenCLRuntime() {
192 OpenCLRuntime = new CGOpenCLRuntime(*this);
193 }
194
createOpenMPRuntime()195 void CodeGenModule::createOpenMPRuntime() {
196 OpenMPRuntime = new CGOpenMPRuntime(*this);
197 }
198
createCUDARuntime()199 void CodeGenModule::createCUDARuntime() {
200 CUDARuntime = CreateNVCUDARuntime(*this);
201 }
202
addReplacement(StringRef Name,llvm::Constant * C)203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
204 Replacements[Name] = C;
205 }
206
applyReplacements()207 void CodeGenModule::applyReplacements() {
208 for (ReplacementsTy::iterator I = Replacements.begin(),
209 E = Replacements.end();
210 I != E; ++I) {
211 StringRef MangledName = I->first();
212 llvm::Constant *Replacement = I->second;
213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
214 if (!Entry)
215 continue;
216 auto *OldF = cast<llvm::Function>(Entry);
217 auto *NewF = dyn_cast<llvm::Function>(Replacement);
218 if (!NewF) {
219 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
220 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
221 } else {
222 auto *CE = cast<llvm::ConstantExpr>(Replacement);
223 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
224 CE->getOpcode() == llvm::Instruction::GetElementPtr);
225 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
226 }
227 }
228
229 // Replace old with new, but keep the old order.
230 OldF->replaceAllUsesWith(Replacement);
231 if (NewF) {
232 NewF->removeFromParent();
233 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
234 }
235 OldF->eraseFromParent();
236 }
237 }
238
239 // This is only used in aliases that we created and we know they have a
240 // linear structure.
getAliasedGlobal(const llvm::GlobalAlias & GA)241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
242 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
243 const llvm::Constant *C = &GA;
244 for (;;) {
245 C = C->stripPointerCasts();
246 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
247 return GO;
248 // stripPointerCasts will not walk over weak aliases.
249 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
250 if (!GA2)
251 return nullptr;
252 if (!Visited.insert(GA2).second)
253 return nullptr;
254 C = GA2->getAliasee();
255 }
256 }
257
checkAliases()258 void CodeGenModule::checkAliases() {
259 // Check if the constructed aliases are well formed. It is really unfortunate
260 // that we have to do this in CodeGen, but we only construct mangled names
261 // and aliases during codegen.
262 bool Error = false;
263 DiagnosticsEngine &Diags = getDiags();
264 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
265 E = Aliases.end(); I != E; ++I) {
266 const GlobalDecl &GD = *I;
267 const auto *D = cast<ValueDecl>(GD.getDecl());
268 const AliasAttr *AA = D->getAttr<AliasAttr>();
269 StringRef MangledName = getMangledName(GD);
270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
271 auto *Alias = cast<llvm::GlobalAlias>(Entry);
272 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
273 if (!GV) {
274 Error = true;
275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
276 } else if (GV->isDeclaration()) {
277 Error = true;
278 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
279 }
280
281 llvm::Constant *Aliasee = Alias->getAliasee();
282 llvm::GlobalValue *AliaseeGV;
283 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
284 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
285 else
286 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
287
288 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
289 StringRef AliasSection = SA->getName();
290 if (AliasSection != AliaseeGV->getSection())
291 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
292 << AliasSection;
293 }
294
295 // We have to handle alias to weak aliases in here. LLVM itself disallows
296 // this since the object semantics would not match the IL one. For
297 // compatibility with gcc we implement it by just pointing the alias
298 // to its aliasee's aliasee. We also warn, since the user is probably
299 // expecting the link to be weak.
300 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
301 if (GA->mayBeOverridden()) {
302 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
303 << GV->getName() << GA->getName();
304 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
305 GA->getAliasee(), Alias->getType());
306 Alias->setAliasee(Aliasee);
307 }
308 }
309 }
310 if (!Error)
311 return;
312
313 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
314 E = Aliases.end(); I != E; ++I) {
315 const GlobalDecl &GD = *I;
316 StringRef MangledName = getMangledName(GD);
317 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
318 auto *Alias = cast<llvm::GlobalAlias>(Entry);
319 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
320 Alias->eraseFromParent();
321 }
322 }
323
clear()324 void CodeGenModule::clear() {
325 DeferredDeclsToEmit.clear();
326 if (OpenMPRuntime)
327 OpenMPRuntime->clear();
328 }
329
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
331 StringRef MainFile) {
332 if (!hasDiagnostics())
333 return;
334 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
335 if (MainFile.empty())
336 MainFile = "<stdin>";
337 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
338 } else
339 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
340 << Mismatched;
341 }
342
Release()343 void CodeGenModule::Release() {
344 EmitDeferred();
345 applyReplacements();
346 checkAliases();
347 EmitCXXGlobalInitFunc();
348 EmitCXXGlobalDtorFunc();
349 EmitCXXThreadLocalInitFunc();
350 if (ObjCRuntime)
351 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
352 AddGlobalCtor(ObjCInitFunction);
353 if (PGOReader && PGOStats.hasDiagnostics())
354 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
355 EmitCtorList(GlobalCtors, "llvm.global_ctors");
356 EmitCtorList(GlobalDtors, "llvm.global_dtors");
357 EmitGlobalAnnotations();
358 EmitStaticExternCAliases();
359 EmitDeferredUnusedCoverageMappings();
360 if (CoverageMapping)
361 CoverageMapping->emit();
362 emitLLVMUsed();
363
364 if (CodeGenOpts.Autolink &&
365 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
366 EmitModuleLinkOptions();
367 }
368 if (CodeGenOpts.DwarfVersion)
369 // We actually want the latest version when there are conflicts.
370 // We can change from Warning to Latest if such mode is supported.
371 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
372 CodeGenOpts.DwarfVersion);
373 if (DebugInfo)
374 // We support a single version in the linked module. The LLVM
375 // parser will drop debug info with a different version number
376 // (and warn about it, too).
377 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
378 llvm::DEBUG_METADATA_VERSION);
379
380 // We need to record the widths of enums and wchar_t, so that we can generate
381 // the correct build attributes in the ARM backend.
382 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
383 if ( Arch == llvm::Triple::arm
384 || Arch == llvm::Triple::armeb
385 || Arch == llvm::Triple::thumb
386 || Arch == llvm::Triple::thumbeb) {
387 // Width of wchar_t in bytes
388 uint64_t WCharWidth =
389 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
390 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
391
392 // The minimum width of an enum in bytes
393 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
394 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
395 }
396
397 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
398 llvm::PICLevel::Level PL = llvm::PICLevel::Default;
399 switch (PLevel) {
400 case 0: break;
401 case 1: PL = llvm::PICLevel::Small; break;
402 case 2: PL = llvm::PICLevel::Large; break;
403 default: llvm_unreachable("Invalid PIC Level");
404 }
405
406 getModule().setPICLevel(PL);
407 }
408
409 SimplifyPersonality();
410
411 if (getCodeGenOpts().EmitDeclMetadata)
412 EmitDeclMetadata();
413
414 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
415 EmitCoverageFile();
416
417 if (DebugInfo)
418 DebugInfo->finalize();
419
420 EmitVersionIdentMetadata();
421
422 EmitTargetMetadata();
423 }
424
UpdateCompletedType(const TagDecl * TD)425 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
426 // Make sure that this type is translated.
427 Types.UpdateCompletedType(TD);
428 }
429
getTBAAInfo(QualType QTy)430 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
431 if (!TBAA)
432 return nullptr;
433 return TBAA->getTBAAInfo(QTy);
434 }
435
getTBAAInfoForVTablePtr()436 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
437 if (!TBAA)
438 return nullptr;
439 return TBAA->getTBAAInfoForVTablePtr();
440 }
441
getTBAAStructInfo(QualType QTy)442 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
443 if (!TBAA)
444 return nullptr;
445 return TBAA->getTBAAStructInfo(QTy);
446 }
447
getTBAAStructTypeInfo(QualType QTy)448 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
449 if (!TBAA)
450 return nullptr;
451 return TBAA->getTBAAStructTypeInfo(QTy);
452 }
453
getTBAAStructTagInfo(QualType BaseTy,llvm::MDNode * AccessN,uint64_t O)454 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
455 llvm::MDNode *AccessN,
456 uint64_t O) {
457 if (!TBAA)
458 return nullptr;
459 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
460 }
461
462 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
463 /// and struct-path aware TBAA, the tag has the same format:
464 /// base type, access type and offset.
465 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
DecorateInstruction(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo,bool ConvertTypeToTag)466 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
467 llvm::MDNode *TBAAInfo,
468 bool ConvertTypeToTag) {
469 if (ConvertTypeToTag && TBAA)
470 Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
471 TBAA->getTBAAScalarTagInfo(TBAAInfo));
472 else
473 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
474 }
475
Error(SourceLocation loc,StringRef message)476 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
477 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
478 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
479 }
480
481 /// ErrorUnsupported - Print out an error that codegen doesn't support the
482 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)483 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
484 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
485 "cannot compile this %0 yet");
486 std::string Msg = Type;
487 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
488 << Msg << S->getSourceRange();
489 }
490
491 /// ErrorUnsupported - Print out an error that codegen doesn't support the
492 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)493 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
494 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
495 "cannot compile this %0 yet");
496 std::string Msg = Type;
497 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
498 }
499
getSize(CharUnits size)500 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
501 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
502 }
503
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const504 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
505 const NamedDecl *D) const {
506 // Internal definitions always have default visibility.
507 if (GV->hasLocalLinkage()) {
508 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
509 return;
510 }
511
512 // Set visibility for definitions.
513 LinkageInfo LV = D->getLinkageAndVisibility();
514 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
515 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
516 }
517
GetLLVMTLSModel(StringRef S)518 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
519 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
520 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
521 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
522 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
523 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
524 }
525
GetLLVMTLSModel(CodeGenOptions::TLSModel M)526 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
527 CodeGenOptions::TLSModel M) {
528 switch (M) {
529 case CodeGenOptions::GeneralDynamicTLSModel:
530 return llvm::GlobalVariable::GeneralDynamicTLSModel;
531 case CodeGenOptions::LocalDynamicTLSModel:
532 return llvm::GlobalVariable::LocalDynamicTLSModel;
533 case CodeGenOptions::InitialExecTLSModel:
534 return llvm::GlobalVariable::InitialExecTLSModel;
535 case CodeGenOptions::LocalExecTLSModel:
536 return llvm::GlobalVariable::LocalExecTLSModel;
537 }
538 llvm_unreachable("Invalid TLS model!");
539 }
540
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const541 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
542 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
543
544 llvm::GlobalValue::ThreadLocalMode TLM;
545 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
546
547 // Override the TLS model if it is explicitly specified.
548 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
549 TLM = GetLLVMTLSModel(Attr->getModel());
550 }
551
552 GV->setThreadLocalMode(TLM);
553 }
554
getMangledName(GlobalDecl GD)555 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
556 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
557 if (!FoundStr.empty())
558 return FoundStr;
559
560 const auto *ND = cast<NamedDecl>(GD.getDecl());
561 SmallString<256> Buffer;
562 StringRef Str;
563 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
564 llvm::raw_svector_ostream Out(Buffer);
565 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
566 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
567 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
568 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
569 else
570 getCXXABI().getMangleContext().mangleName(ND, Out);
571 Str = Out.str();
572 } else {
573 IdentifierInfo *II = ND->getIdentifier();
574 assert(II && "Attempt to mangle unnamed decl.");
575 Str = II->getName();
576 }
577
578 // Keep the first result in the case of a mangling collision.
579 auto Result = Manglings.insert(std::make_pair(Str, GD));
580 return FoundStr = Result.first->first();
581 }
582
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)583 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
584 const BlockDecl *BD) {
585 MangleContext &MangleCtx = getCXXABI().getMangleContext();
586 const Decl *D = GD.getDecl();
587
588 SmallString<256> Buffer;
589 llvm::raw_svector_ostream Out(Buffer);
590 if (!D)
591 MangleCtx.mangleGlobalBlock(BD,
592 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
593 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
594 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
595 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
596 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
597 else
598 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
599
600 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
601 return Result.first->first();
602 }
603
GetGlobalValue(StringRef Name)604 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
605 return getModule().getNamedValue(Name);
606 }
607
608 /// AddGlobalCtor - Add a function to the list that will be called before
609 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)610 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
611 llvm::Constant *AssociatedData) {
612 // FIXME: Type coercion of void()* types.
613 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
614 }
615
616 /// AddGlobalDtor - Add a function to the list that will be called
617 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)618 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
619 // FIXME: Type coercion of void()* types.
620 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
621 }
622
EmitCtorList(const CtorList & Fns,const char * GlobalName)623 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
624 // Ctor function type is void()*.
625 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
626 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
627
628 // Get the type of a ctor entry, { i32, void ()*, i8* }.
629 llvm::StructType *CtorStructTy = llvm::StructType::get(
630 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
631
632 // Construct the constructor and destructor arrays.
633 SmallVector<llvm::Constant*, 8> Ctors;
634 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
635 llvm::Constant *S[] = {
636 llvm::ConstantInt::get(Int32Ty, I->Priority, false),
637 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
638 (I->AssociatedData
639 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
640 : llvm::Constant::getNullValue(VoidPtrTy))
641 };
642 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
643 }
644
645 if (!Ctors.empty()) {
646 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
647 new llvm::GlobalVariable(TheModule, AT, false,
648 llvm::GlobalValue::AppendingLinkage,
649 llvm::ConstantArray::get(AT, Ctors),
650 GlobalName);
651 }
652 }
653
654 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
656 const auto *D = cast<FunctionDecl>(GD.getDecl());
657
658 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
659
660 if (isa<CXXDestructorDecl>(D) &&
661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
662 GD.getDtorType())) {
663 // Destructor variants in the Microsoft C++ ABI are always internal or
664 // linkonce_odr thunks emitted on an as-needed basis.
665 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
666 : llvm::GlobalValue::LinkOnceODRLinkage;
667 }
668
669 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
670 }
671
setFunctionDefinitionAttributes(const FunctionDecl * D,llvm::Function * F)672 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
673 llvm::Function *F) {
674 setNonAliasAttributes(D, F);
675 }
676
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)677 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
678 const CGFunctionInfo &Info,
679 llvm::Function *F) {
680 unsigned CallingConv;
681 AttributeListType AttributeList;
682 ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
683 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
684 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
685 }
686
687 /// Determines whether the language options require us to model
688 /// unwind exceptions. We treat -fexceptions as mandating this
689 /// except under the fragile ObjC ABI with only ObjC exceptions
690 /// enabled. This means, for example, that C with -fexceptions
691 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)692 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
693 // If exceptions are completely disabled, obviously this is false.
694 if (!LangOpts.Exceptions) return false;
695
696 // If C++ exceptions are enabled, this is true.
697 if (LangOpts.CXXExceptions) return true;
698
699 // If ObjC exceptions are enabled, this depends on the ABI.
700 if (LangOpts.ObjCExceptions) {
701 return LangOpts.ObjCRuntime.hasUnwindExceptions();
702 }
703
704 return true;
705 }
706
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
708 llvm::Function *F) {
709 llvm::AttrBuilder B;
710
711 if (CodeGenOpts.UnwindTables)
712 B.addAttribute(llvm::Attribute::UWTable);
713
714 if (!hasUnwindExceptions(LangOpts))
715 B.addAttribute(llvm::Attribute::NoUnwind);
716
717 if (D->hasAttr<NakedAttr>()) {
718 // Naked implies noinline: we should not be inlining such functions.
719 B.addAttribute(llvm::Attribute::Naked);
720 B.addAttribute(llvm::Attribute::NoInline);
721 } else if (D->hasAttr<NoDuplicateAttr>()) {
722 B.addAttribute(llvm::Attribute::NoDuplicate);
723 } else if (D->hasAttr<NoInlineAttr>()) {
724 B.addAttribute(llvm::Attribute::NoInline);
725 } else if (D->hasAttr<AlwaysInlineAttr>() &&
726 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
727 llvm::Attribute::NoInline)) {
728 // (noinline wins over always_inline, and we can't specify both in IR)
729 B.addAttribute(llvm::Attribute::AlwaysInline);
730 }
731
732 if (D->hasAttr<ColdAttr>()) {
733 if (!D->hasAttr<OptimizeNoneAttr>())
734 B.addAttribute(llvm::Attribute::OptimizeForSize);
735 B.addAttribute(llvm::Attribute::Cold);
736 }
737
738 if (D->hasAttr<MinSizeAttr>())
739 B.addAttribute(llvm::Attribute::MinSize);
740
741 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
742 B.addAttribute(llvm::Attribute::StackProtect);
743 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
744 B.addAttribute(llvm::Attribute::StackProtectStrong);
745 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
746 B.addAttribute(llvm::Attribute::StackProtectReq);
747
748 // Add sanitizer attributes if function is not blacklisted.
749 if (!isInSanitizerBlacklist(F, D->getLocation())) {
750 // When AddressSanitizer is enabled, set SanitizeAddress attribute
751 // unless __attribute__((no_sanitize_address)) is used.
752 if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
753 !D->hasAttr<NoSanitizeAddressAttr>())
754 B.addAttribute(llvm::Attribute::SanitizeAddress);
755 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
756 if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
757 !D->hasAttr<NoSanitizeThreadAttr>())
758 B.addAttribute(llvm::Attribute::SanitizeThread);
759 // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
760 if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
761 !D->hasAttr<NoSanitizeMemoryAttr>())
762 B.addAttribute(llvm::Attribute::SanitizeMemory);
763 }
764
765 F->addAttributes(llvm::AttributeSet::FunctionIndex,
766 llvm::AttributeSet::get(
767 F->getContext(), llvm::AttributeSet::FunctionIndex, B));
768
769 if (D->hasAttr<OptimizeNoneAttr>()) {
770 // OptimizeNone implies noinline; we should not be inlining such functions.
771 F->addFnAttr(llvm::Attribute::OptimizeNone);
772 F->addFnAttr(llvm::Attribute::NoInline);
773
774 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
775 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
776 "OptimizeNone and OptimizeForSize on same function!");
777 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
778 "OptimizeNone and MinSize on same function!");
779 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
780 "OptimizeNone and AlwaysInline on same function!");
781
782 // Attribute 'inlinehint' has no effect on 'optnone' functions.
783 // Explicitly remove it from the set of function attributes.
784 F->removeFnAttr(llvm::Attribute::InlineHint);
785 }
786
787 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
788 F->setUnnamedAddr(true);
789 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
790 if (MD->isVirtual())
791 F->setUnnamedAddr(true);
792
793 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
794 if (alignment)
795 F->setAlignment(alignment);
796
797 // C++ ABI requires 2-byte alignment for member functions.
798 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
799 F->setAlignment(2);
800 }
801
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)802 void CodeGenModule::SetCommonAttributes(const Decl *D,
803 llvm::GlobalValue *GV) {
804 if (const auto *ND = dyn_cast<NamedDecl>(D))
805 setGlobalVisibility(GV, ND);
806 else
807 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
808
809 if (D->hasAttr<UsedAttr>())
810 addUsedGlobal(GV);
811 }
812
setAliasAttributes(const Decl * D,llvm::GlobalValue * GV)813 void CodeGenModule::setAliasAttributes(const Decl *D,
814 llvm::GlobalValue *GV) {
815 SetCommonAttributes(D, GV);
816
817 // Process the dllexport attribute based on whether the original definition
818 // (not necessarily the aliasee) was exported.
819 if (D->hasAttr<DLLExportAttr>())
820 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
821 }
822
setNonAliasAttributes(const Decl * D,llvm::GlobalObject * GO)823 void CodeGenModule::setNonAliasAttributes(const Decl *D,
824 llvm::GlobalObject *GO) {
825 SetCommonAttributes(D, GO);
826
827 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
828 GO->setSection(SA->getName());
829
830 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
831 }
832
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)833 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
834 llvm::Function *F,
835 const CGFunctionInfo &FI) {
836 SetLLVMFunctionAttributes(D, FI, F);
837 SetLLVMFunctionAttributesForDefinition(D, F);
838
839 F->setLinkage(llvm::Function::InternalLinkage);
840
841 setNonAliasAttributes(D, F);
842 }
843
setLinkageAndVisibilityForGV(llvm::GlobalValue * GV,const NamedDecl * ND)844 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
845 const NamedDecl *ND) {
846 // Set linkage and visibility in case we never see a definition.
847 LinkageInfo LV = ND->getLinkageAndVisibility();
848 if (LV.getLinkage() != ExternalLinkage) {
849 // Don't set internal linkage on declarations.
850 } else {
851 if (ND->hasAttr<DLLImportAttr>()) {
852 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
853 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
854 } else if (ND->hasAttr<DLLExportAttr>()) {
855 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
856 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
857 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
858 // "extern_weak" is overloaded in LLVM; we probably should have
859 // separate linkage types for this.
860 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
861 }
862
863 // Set visibility on a declaration only if it's explicit.
864 if (LV.isVisibilityExplicit())
865 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
866 }
867 }
868
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)869 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
870 bool IsIncompleteFunction,
871 bool IsThunk) {
872 if (unsigned IID = F->getIntrinsicID()) {
873 // If this is an intrinsic function, set the function's attributes
874 // to the intrinsic's attributes.
875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
876 (llvm::Intrinsic::ID)IID));
877 return;
878 }
879
880 const auto *FD = cast<FunctionDecl>(GD.getDecl());
881
882 if (!IsIncompleteFunction)
883 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
884
885 // Add the Returned attribute for "this", except for iOS 5 and earlier
886 // where substantial code, including the libstdc++ dylib, was compiled with
887 // GCC and does not actually return "this".
888 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
889 !(getTarget().getTriple().isiOS() &&
890 getTarget().getTriple().isOSVersionLT(6))) {
891 assert(!F->arg_empty() &&
892 F->arg_begin()->getType()
893 ->canLosslesslyBitCastTo(F->getReturnType()) &&
894 "unexpected this return");
895 F->addAttribute(1, llvm::Attribute::Returned);
896 }
897
898 // Only a few attributes are set on declarations; these may later be
899 // overridden by a definition.
900
901 setLinkageAndVisibilityForGV(F, FD);
902
903 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
904 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
905 // Don't dllexport/import destructor thunks.
906 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
907 }
908 }
909
910 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
911 F->setSection(SA->getName());
912
913 // A replaceable global allocation function does not act like a builtin by
914 // default, only if it is invoked by a new-expression or delete-expression.
915 if (FD->isReplaceableGlobalAllocationFunction())
916 F->addAttribute(llvm::AttributeSet::FunctionIndex,
917 llvm::Attribute::NoBuiltin);
918 }
919
addUsedGlobal(llvm::GlobalValue * GV)920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
921 assert(!GV->isDeclaration() &&
922 "Only globals with definition can force usage.");
923 LLVMUsed.push_back(GV);
924 }
925
addCompilerUsedGlobal(llvm::GlobalValue * GV)926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
927 assert(!GV->isDeclaration() &&
928 "Only globals with definition can force usage.");
929 LLVMCompilerUsed.push_back(GV);
930 }
931
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakVH> & List)932 static void emitUsed(CodeGenModule &CGM, StringRef Name,
933 std::vector<llvm::WeakVH> &List) {
934 // Don't create llvm.used if there is no need.
935 if (List.empty())
936 return;
937
938 // Convert List to what ConstantArray needs.
939 SmallVector<llvm::Constant*, 8> UsedArray;
940 UsedArray.resize(List.size());
941 for (unsigned i = 0, e = List.size(); i != e; ++i) {
942 UsedArray[i] =
943 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
944 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
945 }
946
947 if (UsedArray.empty())
948 return;
949 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
950
951 auto *GV = new llvm::GlobalVariable(
952 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
953 llvm::ConstantArray::get(ATy, UsedArray), Name);
954
955 GV->setSection("llvm.metadata");
956 }
957
emitLLVMUsed()958 void CodeGenModule::emitLLVMUsed() {
959 emitUsed(*this, "llvm.used", LLVMUsed);
960 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
961 }
962
AppendLinkerOptions(StringRef Opts)963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
964 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
966 }
967
AddDetectMismatch(StringRef Name,StringRef Value)968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
969 llvm::SmallString<32> Opt;
970 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
971 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
972 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
973 }
974
AddDependentLib(StringRef Lib)975 void CodeGenModule::AddDependentLib(StringRef Lib) {
976 llvm::SmallString<24> Opt;
977 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
978 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
979 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
980 }
981
982 /// \brief Add link options implied by the given module, including modules
983 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::Metadata * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)984 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
985 SmallVectorImpl<llvm::Metadata *> &Metadata,
986 llvm::SmallPtrSet<Module *, 16> &Visited) {
987 // Import this module's parent.
988 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
989 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
990 }
991
992 // Import this module's dependencies.
993 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
994 if (Visited.insert(Mod->Imports[I - 1]).second)
995 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
996 }
997
998 // Add linker options to link against the libraries/frameworks
999 // described by this module.
1000 llvm::LLVMContext &Context = CGM.getLLVMContext();
1001 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1002 // Link against a framework. Frameworks are currently Darwin only, so we
1003 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1004 if (Mod->LinkLibraries[I-1].IsFramework) {
1005 llvm::Metadata *Args[2] = {
1006 llvm::MDString::get(Context, "-framework"),
1007 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1008
1009 Metadata.push_back(llvm::MDNode::get(Context, Args));
1010 continue;
1011 }
1012
1013 // Link against a library.
1014 llvm::SmallString<24> Opt;
1015 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1016 Mod->LinkLibraries[I-1].Library, Opt);
1017 auto *OptString = llvm::MDString::get(Context, Opt);
1018 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1019 }
1020 }
1021
EmitModuleLinkOptions()1022 void CodeGenModule::EmitModuleLinkOptions() {
1023 // Collect the set of all of the modules we want to visit to emit link
1024 // options, which is essentially the imported modules and all of their
1025 // non-explicit child modules.
1026 llvm::SetVector<clang::Module *> LinkModules;
1027 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1028 SmallVector<clang::Module *, 16> Stack;
1029
1030 // Seed the stack with imported modules.
1031 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1032 MEnd = ImportedModules.end();
1033 M != MEnd; ++M) {
1034 if (Visited.insert(*M).second)
1035 Stack.push_back(*M);
1036 }
1037
1038 // Find all of the modules to import, making a little effort to prune
1039 // non-leaf modules.
1040 while (!Stack.empty()) {
1041 clang::Module *Mod = Stack.pop_back_val();
1042
1043 bool AnyChildren = false;
1044
1045 // Visit the submodules of this module.
1046 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1047 SubEnd = Mod->submodule_end();
1048 Sub != SubEnd; ++Sub) {
1049 // Skip explicit children; they need to be explicitly imported to be
1050 // linked against.
1051 if ((*Sub)->IsExplicit)
1052 continue;
1053
1054 if (Visited.insert(*Sub).second) {
1055 Stack.push_back(*Sub);
1056 AnyChildren = true;
1057 }
1058 }
1059
1060 // We didn't find any children, so add this module to the list of
1061 // modules to link against.
1062 if (!AnyChildren) {
1063 LinkModules.insert(Mod);
1064 }
1065 }
1066
1067 // Add link options for all of the imported modules in reverse topological
1068 // order. We don't do anything to try to order import link flags with respect
1069 // to linker options inserted by things like #pragma comment().
1070 SmallVector<llvm::Metadata *, 16> MetadataArgs;
1071 Visited.clear();
1072 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1073 MEnd = LinkModules.end();
1074 M != MEnd; ++M) {
1075 if (Visited.insert(*M).second)
1076 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1077 }
1078 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1079 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1080
1081 // Add the linker options metadata flag.
1082 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1083 llvm::MDNode::get(getLLVMContext(),
1084 LinkerOptionsMetadata));
1085 }
1086
EmitDeferred()1087 void CodeGenModule::EmitDeferred() {
1088 // Emit code for any potentially referenced deferred decls. Since a
1089 // previously unused static decl may become used during the generation of code
1090 // for a static function, iterate until no changes are made.
1091
1092 if (!DeferredVTables.empty()) {
1093 EmitDeferredVTables();
1094
1095 // Emitting a v-table doesn't directly cause more v-tables to
1096 // become deferred, although it can cause functions to be
1097 // emitted that then need those v-tables.
1098 assert(DeferredVTables.empty());
1099 }
1100
1101 // Stop if we're out of both deferred v-tables and deferred declarations.
1102 if (DeferredDeclsToEmit.empty())
1103 return;
1104
1105 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1106 // work, it will not interfere with this.
1107 std::vector<DeferredGlobal> CurDeclsToEmit;
1108 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1109
1110 for (DeferredGlobal &G : CurDeclsToEmit) {
1111 GlobalDecl D = G.GD;
1112 llvm::GlobalValue *GV = G.GV;
1113 G.GV = nullptr;
1114
1115 assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1116 if (!GV)
1117 GV = GetGlobalValue(getMangledName(D));
1118
1119 // Check to see if we've already emitted this. This is necessary
1120 // for a couple of reasons: first, decls can end up in the
1121 // deferred-decls queue multiple times, and second, decls can end
1122 // up with definitions in unusual ways (e.g. by an extern inline
1123 // function acquiring a strong function redefinition). Just
1124 // ignore these cases.
1125 if (GV && !GV->isDeclaration())
1126 continue;
1127
1128 // Otherwise, emit the definition and move on to the next one.
1129 EmitGlobalDefinition(D, GV);
1130
1131 // If we found out that we need to emit more decls, do that recursively.
1132 // This has the advantage that the decls are emitted in a DFS and related
1133 // ones are close together, which is convenient for testing.
1134 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1135 EmitDeferred();
1136 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1137 }
1138 }
1139 }
1140
EmitGlobalAnnotations()1141 void CodeGenModule::EmitGlobalAnnotations() {
1142 if (Annotations.empty())
1143 return;
1144
1145 // Create a new global variable for the ConstantStruct in the Module.
1146 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1147 Annotations[0]->getType(), Annotations.size()), Annotations);
1148 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1149 llvm::GlobalValue::AppendingLinkage,
1150 Array, "llvm.global.annotations");
1151 gv->setSection(AnnotationSection);
1152 }
1153
EmitAnnotationString(StringRef Str)1154 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1155 llvm::Constant *&AStr = AnnotationStrings[Str];
1156 if (AStr)
1157 return AStr;
1158
1159 // Not found yet, create a new global.
1160 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1161 auto *gv =
1162 new llvm::GlobalVariable(getModule(), s->getType(), true,
1163 llvm::GlobalValue::PrivateLinkage, s, ".str");
1164 gv->setSection(AnnotationSection);
1165 gv->setUnnamedAddr(true);
1166 AStr = gv;
1167 return gv;
1168 }
1169
EmitAnnotationUnit(SourceLocation Loc)1170 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1171 SourceManager &SM = getContext().getSourceManager();
1172 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1173 if (PLoc.isValid())
1174 return EmitAnnotationString(PLoc.getFilename());
1175 return EmitAnnotationString(SM.getBufferName(Loc));
1176 }
1177
EmitAnnotationLineNo(SourceLocation L)1178 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1179 SourceManager &SM = getContext().getSourceManager();
1180 PresumedLoc PLoc = SM.getPresumedLoc(L);
1181 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1182 SM.getExpansionLineNumber(L);
1183 return llvm::ConstantInt::get(Int32Ty, LineNo);
1184 }
1185
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)1186 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1187 const AnnotateAttr *AA,
1188 SourceLocation L) {
1189 // Get the globals for file name, annotation, and the line number.
1190 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1191 *UnitGV = EmitAnnotationUnit(L),
1192 *LineNoCst = EmitAnnotationLineNo(L);
1193
1194 // Create the ConstantStruct for the global annotation.
1195 llvm::Constant *Fields[4] = {
1196 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1197 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1198 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1199 LineNoCst
1200 };
1201 return llvm::ConstantStruct::getAnon(Fields);
1202 }
1203
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)1204 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1205 llvm::GlobalValue *GV) {
1206 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1207 // Get the struct elements for these annotations.
1208 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1209 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1210 }
1211
isInSanitizerBlacklist(llvm::Function * Fn,SourceLocation Loc) const1212 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1213 SourceLocation Loc) const {
1214 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1215 // Blacklist by function name.
1216 if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1217 return true;
1218 // Blacklist by location.
1219 if (!Loc.isInvalid())
1220 return SanitizerBL.isBlacklistedLocation(Loc);
1221 // If location is unknown, this may be a compiler-generated function. Assume
1222 // it's located in the main file.
1223 auto &SM = Context.getSourceManager();
1224 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1225 return SanitizerBL.isBlacklistedFile(MainFile->getName());
1226 }
1227 return false;
1228 }
1229
isInSanitizerBlacklist(llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1231 SourceLocation Loc, QualType Ty,
1232 StringRef Category) const {
1233 // For now globals can be blacklisted only in ASan.
1234 if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1235 return false;
1236 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1237 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1238 return true;
1239 if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1240 return true;
1241 // Check global type.
1242 if (!Ty.isNull()) {
1243 // Drill down the array types: if global variable of a fixed type is
1244 // blacklisted, we also don't instrument arrays of them.
1245 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1246 Ty = AT->getElementType();
1247 Ty = Ty.getCanonicalType().getUnqualifiedType();
1248 // We allow to blacklist only record types (classes, structs etc.)
1249 if (Ty->isRecordType()) {
1250 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1251 if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1252 return true;
1253 }
1254 }
1255 return false;
1256 }
1257
MustBeEmitted(const ValueDecl * Global)1258 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1259 // Never defer when EmitAllDecls is specified.
1260 if (LangOpts.EmitAllDecls)
1261 return true;
1262
1263 return getContext().DeclMustBeEmitted(Global);
1264 }
1265
MayBeEmittedEagerly(const ValueDecl * Global)1266 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1267 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1268 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1269 // Implicit template instantiations may change linkage if they are later
1270 // explicitly instantiated, so they should not be emitted eagerly.
1271 return false;
1272
1273 return true;
1274 }
1275
GetAddrOfUuidDescriptor(const CXXUuidofExpr * E)1276 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1277 const CXXUuidofExpr* E) {
1278 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1279 // well-formed.
1280 StringRef Uuid = E->getUuidAsStringRef(Context);
1281 std::string Name = "_GUID_" + Uuid.lower();
1282 std::replace(Name.begin(), Name.end(), '-', '_');
1283
1284 // Look for an existing global.
1285 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1286 return GV;
1287
1288 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1289 assert(Init && "failed to initialize as constant");
1290
1291 auto *GV = new llvm::GlobalVariable(
1292 getModule(), Init->getType(),
1293 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1294 if (supportsCOMDAT())
1295 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1296 return GV;
1297 }
1298
GetWeakRefReference(const ValueDecl * VD)1299 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1300 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1301 assert(AA && "No alias?");
1302
1303 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1304
1305 // See if there is already something with the target's name in the module.
1306 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1307 if (Entry) {
1308 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1309 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1310 }
1311
1312 llvm::Constant *Aliasee;
1313 if (isa<llvm::FunctionType>(DeclTy))
1314 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1315 GlobalDecl(cast<FunctionDecl>(VD)),
1316 /*ForVTable=*/false);
1317 else
1318 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1319 llvm::PointerType::getUnqual(DeclTy),
1320 nullptr);
1321
1322 auto *F = cast<llvm::GlobalValue>(Aliasee);
1323 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1324 WeakRefReferences.insert(F);
1325
1326 return Aliasee;
1327 }
1328
EmitGlobal(GlobalDecl GD)1329 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1330 const auto *Global = cast<ValueDecl>(GD.getDecl());
1331
1332 // Weak references don't produce any output by themselves.
1333 if (Global->hasAttr<WeakRefAttr>())
1334 return;
1335
1336 // If this is an alias definition (which otherwise looks like a declaration)
1337 // emit it now.
1338 if (Global->hasAttr<AliasAttr>())
1339 return EmitAliasDefinition(GD);
1340
1341 // If this is CUDA, be selective about which declarations we emit.
1342 if (LangOpts.CUDA) {
1343 if (LangOpts.CUDAIsDevice) {
1344 if (!Global->hasAttr<CUDADeviceAttr>() &&
1345 !Global->hasAttr<CUDAGlobalAttr>() &&
1346 !Global->hasAttr<CUDAConstantAttr>() &&
1347 !Global->hasAttr<CUDASharedAttr>())
1348 return;
1349 } else {
1350 if (!Global->hasAttr<CUDAHostAttr>() && (
1351 Global->hasAttr<CUDADeviceAttr>() ||
1352 Global->hasAttr<CUDAConstantAttr>() ||
1353 Global->hasAttr<CUDASharedAttr>()))
1354 return;
1355 }
1356 }
1357
1358 // Ignore declarations, they will be emitted on their first use.
1359 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1360 // Forward declarations are emitted lazily on first use.
1361 if (!FD->doesThisDeclarationHaveABody()) {
1362 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1363 return;
1364
1365 StringRef MangledName = getMangledName(GD);
1366
1367 // Compute the function info and LLVM type.
1368 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1369 llvm::Type *Ty = getTypes().GetFunctionType(FI);
1370
1371 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1372 /*DontDefer=*/false);
1373 return;
1374 }
1375 } else {
1376 const auto *VD = cast<VarDecl>(Global);
1377 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1378
1379 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1380 !Context.isMSStaticDataMemberInlineDefinition(VD))
1381 return;
1382 }
1383
1384 // Defer code generation to first use when possible, e.g. if this is an inline
1385 // function. If the global must always be emitted, do it eagerly if possible
1386 // to benefit from cache locality.
1387 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1388 // Emit the definition if it can't be deferred.
1389 EmitGlobalDefinition(GD);
1390 return;
1391 }
1392
1393 // If we're deferring emission of a C++ variable with an
1394 // initializer, remember the order in which it appeared in the file.
1395 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1396 cast<VarDecl>(Global)->hasInit()) {
1397 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1398 CXXGlobalInits.push_back(nullptr);
1399 }
1400
1401 StringRef MangledName = getMangledName(GD);
1402 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1403 // The value has already been used and should therefore be emitted.
1404 addDeferredDeclToEmit(GV, GD);
1405 } else if (MustBeEmitted(Global)) {
1406 // The value must be emitted, but cannot be emitted eagerly.
1407 assert(!MayBeEmittedEagerly(Global));
1408 addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1409 } else {
1410 // Otherwise, remember that we saw a deferred decl with this name. The
1411 // first use of the mangled name will cause it to move into
1412 // DeferredDeclsToEmit.
1413 DeferredDecls[MangledName] = GD;
1414 }
1415 }
1416
1417 namespace {
1418 struct FunctionIsDirectlyRecursive :
1419 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1420 const StringRef Name;
1421 const Builtin::Context &BI;
1422 bool Result;
FunctionIsDirectlyRecursive__anon732a16db0111::FunctionIsDirectlyRecursive1423 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1424 Name(N), BI(C), Result(false) {
1425 }
1426 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1427
TraverseCallExpr__anon732a16db0111::FunctionIsDirectlyRecursive1428 bool TraverseCallExpr(CallExpr *E) {
1429 const FunctionDecl *FD = E->getDirectCallee();
1430 if (!FD)
1431 return true;
1432 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1433 if (Attr && Name == Attr->getLabel()) {
1434 Result = true;
1435 return false;
1436 }
1437 unsigned BuiltinID = FD->getBuiltinID();
1438 if (!BuiltinID)
1439 return true;
1440 StringRef BuiltinName = BI.GetName(BuiltinID);
1441 if (BuiltinName.startswith("__builtin_") &&
1442 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1443 Result = true;
1444 return false;
1445 }
1446 return true;
1447 }
1448 };
1449 }
1450
1451 // isTriviallyRecursive - Check if this function calls another
1452 // decl that, because of the asm attribute or the other decl being a builtin,
1453 // ends up pointing to itself.
1454 bool
isTriviallyRecursive(const FunctionDecl * FD)1455 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1456 StringRef Name;
1457 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1458 // asm labels are a special kind of mangling we have to support.
1459 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1460 if (!Attr)
1461 return false;
1462 Name = Attr->getLabel();
1463 } else {
1464 Name = FD->getName();
1465 }
1466
1467 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1468 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1469 return Walker.Result;
1470 }
1471
1472 bool
shouldEmitFunction(GlobalDecl GD)1473 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1474 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1475 return true;
1476 const auto *F = cast<FunctionDecl>(GD.getDecl());
1477 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1478 return false;
1479 // PR9614. Avoid cases where the source code is lying to us. An available
1480 // externally function should have an equivalent function somewhere else,
1481 // but a function that calls itself is clearly not equivalent to the real
1482 // implementation.
1483 // This happens in glibc's btowc and in some configure checks.
1484 return !isTriviallyRecursive(F);
1485 }
1486
1487 /// If the type for the method's class was generated by
1488 /// CGDebugInfo::createContextChain(), the cache contains only a
1489 /// limited DIType without any declarations. Since EmitFunctionStart()
1490 /// needs to find the canonical declaration for each method, we need
1491 /// to construct the complete type prior to emitting the method.
CompleteDIClassType(const CXXMethodDecl * D)1492 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1493 if (!D->isInstance())
1494 return;
1495
1496 if (CGDebugInfo *DI = getModuleDebugInfo())
1497 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1498 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1499 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1500 }
1501 }
1502
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)1503 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1504 const auto *D = cast<ValueDecl>(GD.getDecl());
1505
1506 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1507 Context.getSourceManager(),
1508 "Generating code for declaration");
1509
1510 if (isa<FunctionDecl>(D)) {
1511 // At -O0, don't generate IR for functions with available_externally
1512 // linkage.
1513 if (!shouldEmitFunction(GD))
1514 return;
1515
1516 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1517 CompleteDIClassType(Method);
1518 // Make sure to emit the definition(s) before we emit the thunks.
1519 // This is necessary for the generation of certain thunks.
1520 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1521 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1522 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1523 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1524 else
1525 EmitGlobalFunctionDefinition(GD, GV);
1526
1527 if (Method->isVirtual())
1528 getVTables().EmitThunks(GD);
1529
1530 return;
1531 }
1532
1533 return EmitGlobalFunctionDefinition(GD, GV);
1534 }
1535
1536 if (const auto *VD = dyn_cast<VarDecl>(D))
1537 return EmitGlobalVarDefinition(VD);
1538
1539 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1540 }
1541
1542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1543 /// module, create and return an llvm Function with the specified type. If there
1544 /// is something in the module with the specified name, return it potentially
1545 /// bitcasted to the right type.
1546 ///
1547 /// If D is non-null, it specifies a decl that correspond to this. This is used
1548 /// to set the attributes on the function when it is first created.
1549 llvm::Constant *
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeSet ExtraAttrs)1550 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1551 llvm::Type *Ty,
1552 GlobalDecl GD, bool ForVTable,
1553 bool DontDefer, bool IsThunk,
1554 llvm::AttributeSet ExtraAttrs) {
1555 const Decl *D = GD.getDecl();
1556
1557 // Lookup the entry, lazily creating it if necessary.
1558 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1559 if (Entry) {
1560 if (WeakRefReferences.erase(Entry)) {
1561 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1562 if (FD && !FD->hasAttr<WeakAttr>())
1563 Entry->setLinkage(llvm::Function::ExternalLinkage);
1564 }
1565
1566 // Handle dropped DLL attributes.
1567 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1568 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1569
1570 if (Entry->getType()->getElementType() == Ty)
1571 return Entry;
1572
1573 // Make sure the result is of the correct type.
1574 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1575 }
1576
1577 // This function doesn't have a complete type (for example, the return
1578 // type is an incomplete struct). Use a fake type instead, and make
1579 // sure not to try to set attributes.
1580 bool IsIncompleteFunction = false;
1581
1582 llvm::FunctionType *FTy;
1583 if (isa<llvm::FunctionType>(Ty)) {
1584 FTy = cast<llvm::FunctionType>(Ty);
1585 } else {
1586 FTy = llvm::FunctionType::get(VoidTy, false);
1587 IsIncompleteFunction = true;
1588 }
1589
1590 llvm::Function *F = llvm::Function::Create(FTy,
1591 llvm::Function::ExternalLinkage,
1592 MangledName, &getModule());
1593 assert(F->getName() == MangledName && "name was uniqued!");
1594 if (D)
1595 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1596 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1597 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1598 F->addAttributes(llvm::AttributeSet::FunctionIndex,
1599 llvm::AttributeSet::get(VMContext,
1600 llvm::AttributeSet::FunctionIndex,
1601 B));
1602 }
1603
1604 if (!DontDefer) {
1605 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1606 // each other bottoming out with the base dtor. Therefore we emit non-base
1607 // dtors on usage, even if there is no dtor definition in the TU.
1608 if (D && isa<CXXDestructorDecl>(D) &&
1609 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1610 GD.getDtorType()))
1611 addDeferredDeclToEmit(F, GD);
1612
1613 // This is the first use or definition of a mangled name. If there is a
1614 // deferred decl with this name, remember that we need to emit it at the end
1615 // of the file.
1616 auto DDI = DeferredDecls.find(MangledName);
1617 if (DDI != DeferredDecls.end()) {
1618 // Move the potentially referenced deferred decl to the
1619 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1620 // don't need it anymore).
1621 addDeferredDeclToEmit(F, DDI->second);
1622 DeferredDecls.erase(DDI);
1623
1624 // Otherwise, there are cases we have to worry about where we're
1625 // using a declaration for which we must emit a definition but where
1626 // we might not find a top-level definition:
1627 // - member functions defined inline in their classes
1628 // - friend functions defined inline in some class
1629 // - special member functions with implicit definitions
1630 // If we ever change our AST traversal to walk into class methods,
1631 // this will be unnecessary.
1632 //
1633 // We also don't emit a definition for a function if it's going to be an
1634 // entry in a vtable, unless it's already marked as used.
1635 } else if (getLangOpts().CPlusPlus && D) {
1636 // Look for a declaration that's lexically in a record.
1637 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1638 FD = FD->getPreviousDecl()) {
1639 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1640 if (FD->doesThisDeclarationHaveABody()) {
1641 addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1642 break;
1643 }
1644 }
1645 }
1646 }
1647 }
1648
1649 // Make sure the result is of the requested type.
1650 if (!IsIncompleteFunction) {
1651 assert(F->getType()->getElementType() == Ty);
1652 return F;
1653 }
1654
1655 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1656 return llvm::ConstantExpr::getBitCast(F, PTy);
1657 }
1658
1659 /// GetAddrOfFunction - Return the address of the given function. If Ty is
1660 /// non-null, then this function will use the specified type if it has to
1661 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer)1662 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1663 llvm::Type *Ty,
1664 bool ForVTable,
1665 bool DontDefer) {
1666 // If there was no specific requested type, just convert it now.
1667 if (!Ty)
1668 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1669
1670 StringRef MangledName = getMangledName(GD);
1671 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1672 }
1673
1674 /// CreateRuntimeFunction - Create a new runtime function with the specified
1675 /// type and name.
1676 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)1677 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1678 StringRef Name,
1679 llvm::AttributeSet ExtraAttrs) {
1680 llvm::Constant *C =
1681 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1682 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1683 if (auto *F = dyn_cast<llvm::Function>(C))
1684 if (F->empty())
1685 F->setCallingConv(getRuntimeCC());
1686 return C;
1687 }
1688
1689 /// CreateBuiltinFunction - Create a new builtin function with the specified
1690 /// type and name.
1691 llvm::Constant *
CreateBuiltinFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)1692 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1693 StringRef Name,
1694 llvm::AttributeSet ExtraAttrs) {
1695 llvm::Constant *C =
1696 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1697 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1698 if (auto *F = dyn_cast<llvm::Function>(C))
1699 if (F->empty())
1700 F->setCallingConv(getBuiltinCC());
1701 return C;
1702 }
1703
1704 /// isTypeConstant - Determine whether an object of this type can be emitted
1705 /// as a constant.
1706 ///
1707 /// If ExcludeCtor is true, the duration when the object's constructor runs
1708 /// will not be considered. The caller will need to verify that the object is
1709 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)1710 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1711 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1712 return false;
1713
1714 if (Context.getLangOpts().CPlusPlus) {
1715 if (const CXXRecordDecl *Record
1716 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1717 return ExcludeCtor && !Record->hasMutableFields() &&
1718 Record->hasTrivialDestructor();
1719 }
1720
1721 return true;
1722 }
1723
1724 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1725 /// create and return an llvm GlobalVariable with the specified type. If there
1726 /// is something in the module with the specified name, return it potentially
1727 /// bitcasted to the right type.
1728 ///
1729 /// If D is non-null, it specifies a decl that correspond to this. This is used
1730 /// to set the attributes on the global when it is first created.
1731 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D)1732 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1733 llvm::PointerType *Ty,
1734 const VarDecl *D) {
1735 // Lookup the entry, lazily creating it if necessary.
1736 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1737 if (Entry) {
1738 if (WeakRefReferences.erase(Entry)) {
1739 if (D && !D->hasAttr<WeakAttr>())
1740 Entry->setLinkage(llvm::Function::ExternalLinkage);
1741 }
1742
1743 // Handle dropped DLL attributes.
1744 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1745 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1746
1747 if (Entry->getType() == Ty)
1748 return Entry;
1749
1750 // Make sure the result is of the correct type.
1751 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1752 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1753
1754 return llvm::ConstantExpr::getBitCast(Entry, Ty);
1755 }
1756
1757 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1758 auto *GV = new llvm::GlobalVariable(
1759 getModule(), Ty->getElementType(), false,
1760 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1761 llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1762
1763 // This is the first use or definition of a mangled name. If there is a
1764 // deferred decl with this name, remember that we need to emit it at the end
1765 // of the file.
1766 auto DDI = DeferredDecls.find(MangledName);
1767 if (DDI != DeferredDecls.end()) {
1768 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1769 // list, and remove it from DeferredDecls (since we don't need it anymore).
1770 addDeferredDeclToEmit(GV, DDI->second);
1771 DeferredDecls.erase(DDI);
1772 }
1773
1774 // Handle things which are present even on external declarations.
1775 if (D) {
1776 // FIXME: This code is overly simple and should be merged with other global
1777 // handling.
1778 GV->setConstant(isTypeConstant(D->getType(), false));
1779
1780 setLinkageAndVisibilityForGV(GV, D);
1781
1782 if (D->getTLSKind()) {
1783 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1784 CXXThreadLocals.push_back(std::make_pair(D, GV));
1785 setTLSMode(GV, *D);
1786 }
1787
1788 // If required by the ABI, treat declarations of static data members with
1789 // inline initializers as definitions.
1790 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1791 EmitGlobalVarDefinition(D);
1792 }
1793
1794 // Handle XCore specific ABI requirements.
1795 if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1796 D->getLanguageLinkage() == CLanguageLinkage &&
1797 D->getType().isConstant(Context) &&
1798 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1799 GV->setSection(".cp.rodata");
1800 }
1801
1802 if (AddrSpace != Ty->getAddressSpace())
1803 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1804
1805 return GV;
1806 }
1807
1808
1809 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)1810 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1811 llvm::Type *Ty,
1812 llvm::GlobalValue::LinkageTypes Linkage) {
1813 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1814 llvm::GlobalVariable *OldGV = nullptr;
1815
1816 if (GV) {
1817 // Check if the variable has the right type.
1818 if (GV->getType()->getElementType() == Ty)
1819 return GV;
1820
1821 // Because C++ name mangling, the only way we can end up with an already
1822 // existing global with the same name is if it has been declared extern "C".
1823 assert(GV->isDeclaration() && "Declaration has wrong type!");
1824 OldGV = GV;
1825 }
1826
1827 // Create a new variable.
1828 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1829 Linkage, nullptr, Name);
1830
1831 if (OldGV) {
1832 // Replace occurrences of the old variable if needed.
1833 GV->takeName(OldGV);
1834
1835 if (!OldGV->use_empty()) {
1836 llvm::Constant *NewPtrForOldDecl =
1837 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1838 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1839 }
1840
1841 OldGV->eraseFromParent();
1842 }
1843
1844 if (supportsCOMDAT() && GV->isWeakForLinker() &&
1845 !GV->hasAvailableExternallyLinkage())
1846 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1847
1848 return GV;
1849 }
1850
1851 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1852 /// given global variable. If Ty is non-null and if the global doesn't exist,
1853 /// then it will be created with the specified type instead of whatever the
1854 /// normal requested type would be.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty)1855 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1856 llvm::Type *Ty) {
1857 assert(D->hasGlobalStorage() && "Not a global variable");
1858 QualType ASTTy = D->getType();
1859 if (!Ty)
1860 Ty = getTypes().ConvertTypeForMem(ASTTy);
1861
1862 llvm::PointerType *PTy =
1863 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1864
1865 StringRef MangledName = getMangledName(D);
1866 return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1867 }
1868
1869 /// CreateRuntimeVariable - Create a new runtime global variable with the
1870 /// specified type and name.
1871 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)1872 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1873 StringRef Name) {
1874 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1875 }
1876
EmitTentativeDefinition(const VarDecl * D)1877 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1878 assert(!D->getInit() && "Cannot emit definite definitions here!");
1879
1880 if (!MustBeEmitted(D)) {
1881 // If we have not seen a reference to this variable yet, place it
1882 // into the deferred declarations table to be emitted if needed
1883 // later.
1884 StringRef MangledName = getMangledName(D);
1885 if (!GetGlobalValue(MangledName)) {
1886 DeferredDecls[MangledName] = D;
1887 return;
1888 }
1889 }
1890
1891 // The tentative definition is the only definition.
1892 EmitGlobalVarDefinition(D);
1893 }
1894
GetTargetTypeStoreSize(llvm::Type * Ty) const1895 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1896 return Context.toCharUnitsFromBits(
1897 TheDataLayout.getTypeStoreSizeInBits(Ty));
1898 }
1899
GetGlobalVarAddressSpace(const VarDecl * D,unsigned AddrSpace)1900 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1901 unsigned AddrSpace) {
1902 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
1903 if (D->hasAttr<CUDAConstantAttr>())
1904 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1905 else if (D->hasAttr<CUDASharedAttr>())
1906 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1907 else
1908 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1909 }
1910
1911 return AddrSpace;
1912 }
1913
1914 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)1915 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1916 llvm::GlobalValue *GV) {
1917 if (!getLangOpts().CPlusPlus)
1918 return;
1919
1920 // Must have 'used' attribute, or else inline assembly can't rely on
1921 // the name existing.
1922 if (!D->template hasAttr<UsedAttr>())
1923 return;
1924
1925 // Must have internal linkage and an ordinary name.
1926 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1927 return;
1928
1929 // Must be in an extern "C" context. Entities declared directly within
1930 // a record are not extern "C" even if the record is in such a context.
1931 const SomeDecl *First = D->getFirstDecl();
1932 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1933 return;
1934
1935 // OK, this is an internal linkage entity inside an extern "C" linkage
1936 // specification. Make a note of that so we can give it the "expected"
1937 // mangled name if nothing else is using that name.
1938 std::pair<StaticExternCMap::iterator, bool> R =
1939 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1940
1941 // If we have multiple internal linkage entities with the same name
1942 // in extern "C" regions, none of them gets that name.
1943 if (!R.second)
1944 R.first->second = nullptr;
1945 }
1946
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)1947 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1948 if (!CGM.supportsCOMDAT())
1949 return false;
1950
1951 if (D.hasAttr<SelectAnyAttr>())
1952 return true;
1953
1954 GVALinkage Linkage;
1955 if (auto *VD = dyn_cast<VarDecl>(&D))
1956 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1957 else
1958 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1959
1960 switch (Linkage) {
1961 case GVA_Internal:
1962 case GVA_AvailableExternally:
1963 case GVA_StrongExternal:
1964 return false;
1965 case GVA_DiscardableODR:
1966 case GVA_StrongODR:
1967 return true;
1968 }
1969 llvm_unreachable("No such linkage");
1970 }
1971
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)1972 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1973 llvm::GlobalObject &GO) {
1974 if (!shouldBeInCOMDAT(*this, D))
1975 return;
1976 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1977 }
1978
EmitGlobalVarDefinition(const VarDecl * D)1979 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1980 llvm::Constant *Init = nullptr;
1981 QualType ASTTy = D->getType();
1982 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1983 bool NeedsGlobalCtor = false;
1984 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1985
1986 const VarDecl *InitDecl;
1987 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1988
1989 if (!InitExpr) {
1990 // This is a tentative definition; tentative definitions are
1991 // implicitly initialized with { 0 }.
1992 //
1993 // Note that tentative definitions are only emitted at the end of
1994 // a translation unit, so they should never have incomplete
1995 // type. In addition, EmitTentativeDefinition makes sure that we
1996 // never attempt to emit a tentative definition if a real one
1997 // exists. A use may still exists, however, so we still may need
1998 // to do a RAUW.
1999 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2000 Init = EmitNullConstant(D->getType());
2001 } else {
2002 initializedGlobalDecl = GlobalDecl(D);
2003 Init = EmitConstantInit(*InitDecl);
2004
2005 if (!Init) {
2006 QualType T = InitExpr->getType();
2007 if (D->getType()->isReferenceType())
2008 T = D->getType();
2009
2010 if (getLangOpts().CPlusPlus) {
2011 Init = EmitNullConstant(T);
2012 NeedsGlobalCtor = true;
2013 } else {
2014 ErrorUnsupported(D, "static initializer");
2015 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2016 }
2017 } else {
2018 // We don't need an initializer, so remove the entry for the delayed
2019 // initializer position (just in case this entry was delayed) if we
2020 // also don't need to register a destructor.
2021 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2022 DelayedCXXInitPosition.erase(D);
2023 }
2024 }
2025
2026 llvm::Type* InitType = Init->getType();
2027 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2028
2029 // Strip off a bitcast if we got one back.
2030 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2031 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2032 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2033 // All zero index gep.
2034 CE->getOpcode() == llvm::Instruction::GetElementPtr);
2035 Entry = CE->getOperand(0);
2036 }
2037
2038 // Entry is now either a Function or GlobalVariable.
2039 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2040
2041 // We have a definition after a declaration with the wrong type.
2042 // We must make a new GlobalVariable* and update everything that used OldGV
2043 // (a declaration or tentative definition) with the new GlobalVariable*
2044 // (which will be a definition).
2045 //
2046 // This happens if there is a prototype for a global (e.g.
2047 // "extern int x[];") and then a definition of a different type (e.g.
2048 // "int x[10];"). This also happens when an initializer has a different type
2049 // from the type of the global (this happens with unions).
2050 if (!GV ||
2051 GV->getType()->getElementType() != InitType ||
2052 GV->getType()->getAddressSpace() !=
2053 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2054
2055 // Move the old entry aside so that we'll create a new one.
2056 Entry->setName(StringRef());
2057
2058 // Make a new global with the correct type, this is now guaranteed to work.
2059 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2060
2061 // Replace all uses of the old global with the new global
2062 llvm::Constant *NewPtrForOldDecl =
2063 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2064 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2065
2066 // Erase the old global, since it is no longer used.
2067 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2068 }
2069
2070 MaybeHandleStaticInExternC(D, GV);
2071
2072 if (D->hasAttr<AnnotateAttr>())
2073 AddGlobalAnnotations(D, GV);
2074
2075 GV->setInitializer(Init);
2076
2077 // If it is safe to mark the global 'constant', do so now.
2078 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2079 isTypeConstant(D->getType(), true));
2080
2081 // If it is in a read-only section, mark it 'constant'.
2082 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2083 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2084 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2085 GV->setConstant(true);
2086 }
2087
2088 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2089
2090 // Set the llvm linkage type as appropriate.
2091 llvm::GlobalValue::LinkageTypes Linkage =
2092 getLLVMLinkageVarDefinition(D, GV->isConstant());
2093
2094 // On Darwin, the backing variable for a C++11 thread_local variable always
2095 // has internal linkage; all accesses should just be calls to the
2096 // Itanium-specified entry point, which has the normal linkage of the
2097 // variable.
2098 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2099 Context.getTargetInfo().getTriple().isMacOSX())
2100 Linkage = llvm::GlobalValue::InternalLinkage;
2101
2102 GV->setLinkage(Linkage);
2103 if (D->hasAttr<DLLImportAttr>())
2104 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2105 else if (D->hasAttr<DLLExportAttr>())
2106 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2107 else
2108 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2109
2110 if (Linkage == llvm::GlobalVariable::CommonLinkage)
2111 // common vars aren't constant even if declared const.
2112 GV->setConstant(false);
2113
2114 setNonAliasAttributes(D, GV);
2115
2116 if (D->getTLSKind() && !GV->isThreadLocal()) {
2117 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2118 CXXThreadLocals.push_back(std::make_pair(D, GV));
2119 setTLSMode(GV, *D);
2120 }
2121
2122 maybeSetTrivialComdat(*D, *GV);
2123
2124 // Emit the initializer function if necessary.
2125 if (NeedsGlobalCtor || NeedsGlobalDtor)
2126 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2127
2128 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2129
2130 // Emit global variable debug information.
2131 if (CGDebugInfo *DI = getModuleDebugInfo())
2132 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2133 DI->EmitGlobalVariable(GV, D);
2134 }
2135
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)2136 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2137 CodeGenModule &CGM, const VarDecl *D,
2138 bool NoCommon) {
2139 // Don't give variables common linkage if -fno-common was specified unless it
2140 // was overridden by a NoCommon attribute.
2141 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2142 return true;
2143
2144 // C11 6.9.2/2:
2145 // A declaration of an identifier for an object that has file scope without
2146 // an initializer, and without a storage-class specifier or with the
2147 // storage-class specifier static, constitutes a tentative definition.
2148 if (D->getInit() || D->hasExternalStorage())
2149 return true;
2150
2151 // A variable cannot be both common and exist in a section.
2152 if (D->hasAttr<SectionAttr>())
2153 return true;
2154
2155 // Thread local vars aren't considered common linkage.
2156 if (D->getTLSKind())
2157 return true;
2158
2159 // Tentative definitions marked with WeakImportAttr are true definitions.
2160 if (D->hasAttr<WeakImportAttr>())
2161 return true;
2162
2163 // A variable cannot be both common and exist in a comdat.
2164 if (shouldBeInCOMDAT(CGM, *D))
2165 return true;
2166
2167 // Declarations with a required alignment do not have common linakge in MSVC
2168 // mode.
2169 if (Context.getLangOpts().MSVCCompat) {
2170 if (D->hasAttr<AlignedAttr>())
2171 return true;
2172 QualType VarType = D->getType();
2173 if (Context.isAlignmentRequired(VarType))
2174 return true;
2175
2176 if (const auto *RT = VarType->getAs<RecordType>()) {
2177 const RecordDecl *RD = RT->getDecl();
2178 for (const FieldDecl *FD : RD->fields()) {
2179 if (FD->isBitField())
2180 continue;
2181 if (FD->hasAttr<AlignedAttr>())
2182 return true;
2183 if (Context.isAlignmentRequired(FD->getType()))
2184 return true;
2185 }
2186 }
2187 }
2188
2189 return false;
2190 }
2191
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)2192 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2193 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2194 if (Linkage == GVA_Internal)
2195 return llvm::Function::InternalLinkage;
2196
2197 if (D->hasAttr<WeakAttr>()) {
2198 if (IsConstantVariable)
2199 return llvm::GlobalVariable::WeakODRLinkage;
2200 else
2201 return llvm::GlobalVariable::WeakAnyLinkage;
2202 }
2203
2204 // We are guaranteed to have a strong definition somewhere else,
2205 // so we can use available_externally linkage.
2206 if (Linkage == GVA_AvailableExternally)
2207 return llvm::Function::AvailableExternallyLinkage;
2208
2209 // Note that Apple's kernel linker doesn't support symbol
2210 // coalescing, so we need to avoid linkonce and weak linkages there.
2211 // Normally, this means we just map to internal, but for explicit
2212 // instantiations we'll map to external.
2213
2214 // In C++, the compiler has to emit a definition in every translation unit
2215 // that references the function. We should use linkonce_odr because
2216 // a) if all references in this translation unit are optimized away, we
2217 // don't need to codegen it. b) if the function persists, it needs to be
2218 // merged with other definitions. c) C++ has the ODR, so we know the
2219 // definition is dependable.
2220 if (Linkage == GVA_DiscardableODR)
2221 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2222 : llvm::Function::InternalLinkage;
2223
2224 // An explicit instantiation of a template has weak linkage, since
2225 // explicit instantiations can occur in multiple translation units
2226 // and must all be equivalent. However, we are not allowed to
2227 // throw away these explicit instantiations.
2228 if (Linkage == GVA_StrongODR)
2229 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2230 : llvm::Function::ExternalLinkage;
2231
2232 // C++ doesn't have tentative definitions and thus cannot have common
2233 // linkage.
2234 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2235 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2236 CodeGenOpts.NoCommon))
2237 return llvm::GlobalVariable::CommonLinkage;
2238
2239 // selectany symbols are externally visible, so use weak instead of
2240 // linkonce. MSVC optimizes away references to const selectany globals, so
2241 // all definitions should be the same and ODR linkage should be used.
2242 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2243 if (D->hasAttr<SelectAnyAttr>())
2244 return llvm::GlobalVariable::WeakODRLinkage;
2245
2246 // Otherwise, we have strong external linkage.
2247 assert(Linkage == GVA_StrongExternal);
2248 return llvm::GlobalVariable::ExternalLinkage;
2249 }
2250
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)2251 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2252 const VarDecl *VD, bool IsConstant) {
2253 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2254 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2255 }
2256
2257 /// Replace the uses of a function that was declared with a non-proto type.
2258 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)2259 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2260 llvm::Function *newFn) {
2261 // Fast path.
2262 if (old->use_empty()) return;
2263
2264 llvm::Type *newRetTy = newFn->getReturnType();
2265 SmallVector<llvm::Value*, 4> newArgs;
2266
2267 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2268 ui != ue; ) {
2269 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2270 llvm::User *user = use->getUser();
2271
2272 // Recognize and replace uses of bitcasts. Most calls to
2273 // unprototyped functions will use bitcasts.
2274 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2275 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2276 replaceUsesOfNonProtoConstant(bitcast, newFn);
2277 continue;
2278 }
2279
2280 // Recognize calls to the function.
2281 llvm::CallSite callSite(user);
2282 if (!callSite) continue;
2283 if (!callSite.isCallee(&*use)) continue;
2284
2285 // If the return types don't match exactly, then we can't
2286 // transform this call unless it's dead.
2287 if (callSite->getType() != newRetTy && !callSite->use_empty())
2288 continue;
2289
2290 // Get the call site's attribute list.
2291 SmallVector<llvm::AttributeSet, 8> newAttrs;
2292 llvm::AttributeSet oldAttrs = callSite.getAttributes();
2293
2294 // Collect any return attributes from the call.
2295 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2296 newAttrs.push_back(
2297 llvm::AttributeSet::get(newFn->getContext(),
2298 oldAttrs.getRetAttributes()));
2299
2300 // If the function was passed too few arguments, don't transform.
2301 unsigned newNumArgs = newFn->arg_size();
2302 if (callSite.arg_size() < newNumArgs) continue;
2303
2304 // If extra arguments were passed, we silently drop them.
2305 // If any of the types mismatch, we don't transform.
2306 unsigned argNo = 0;
2307 bool dontTransform = false;
2308 for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2309 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2310 if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2311 dontTransform = true;
2312 break;
2313 }
2314
2315 // Add any parameter attributes.
2316 if (oldAttrs.hasAttributes(argNo + 1))
2317 newAttrs.
2318 push_back(llvm::
2319 AttributeSet::get(newFn->getContext(),
2320 oldAttrs.getParamAttributes(argNo + 1)));
2321 }
2322 if (dontTransform)
2323 continue;
2324
2325 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2326 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2327 oldAttrs.getFnAttributes()));
2328
2329 // Okay, we can transform this. Create the new call instruction and copy
2330 // over the required information.
2331 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2332
2333 llvm::CallSite newCall;
2334 if (callSite.isCall()) {
2335 newCall = llvm::CallInst::Create(newFn, newArgs, "",
2336 callSite.getInstruction());
2337 } else {
2338 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2339 newCall = llvm::InvokeInst::Create(newFn,
2340 oldInvoke->getNormalDest(),
2341 oldInvoke->getUnwindDest(),
2342 newArgs, "",
2343 callSite.getInstruction());
2344 }
2345 newArgs.clear(); // for the next iteration
2346
2347 if (!newCall->getType()->isVoidTy())
2348 newCall->takeName(callSite.getInstruction());
2349 newCall.setAttributes(
2350 llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2351 newCall.setCallingConv(callSite.getCallingConv());
2352
2353 // Finally, remove the old call, replacing any uses with the new one.
2354 if (!callSite->use_empty())
2355 callSite->replaceAllUsesWith(newCall.getInstruction());
2356
2357 // Copy debug location attached to CI.
2358 if (callSite->getDebugLoc())
2359 newCall->setDebugLoc(callSite->getDebugLoc());
2360 callSite->eraseFromParent();
2361 }
2362 }
2363
2364 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2365 /// implement a function with no prototype, e.g. "int foo() {}". If there are
2366 /// existing call uses of the old function in the module, this adjusts them to
2367 /// call the new function directly.
2368 ///
2369 /// This is not just a cleanup: the always_inline pass requires direct calls to
2370 /// functions to be able to inline them. If there is a bitcast in the way, it
2371 /// won't inline them. Instcombine normally deletes these calls, but it isn't
2372 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)2373 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2374 llvm::Function *NewFn) {
2375 // If we're redefining a global as a function, don't transform it.
2376 if (!isa<llvm::Function>(Old)) return;
2377
2378 replaceUsesOfNonProtoConstant(Old, NewFn);
2379 }
2380
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)2381 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2382 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2383 // If we have a definition, this might be a deferred decl. If the
2384 // instantiation is explicit, make sure we emit it at the end.
2385 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2386 GetAddrOfGlobalVar(VD);
2387
2388 EmitTopLevelDecl(VD);
2389 }
2390
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)2391 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2392 llvm::GlobalValue *GV) {
2393 const auto *D = cast<FunctionDecl>(GD.getDecl());
2394
2395 // Compute the function info and LLVM type.
2396 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2397 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2398
2399 // Get or create the prototype for the function.
2400 if (!GV) {
2401 llvm::Constant *C =
2402 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2403
2404 // Strip off a bitcast if we got one back.
2405 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2406 assert(CE->getOpcode() == llvm::Instruction::BitCast);
2407 GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2408 } else {
2409 GV = cast<llvm::GlobalValue>(C);
2410 }
2411 }
2412
2413 if (!GV->isDeclaration()) {
2414 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2415 GlobalDecl OldGD = Manglings.lookup(GV->getName());
2416 if (auto *Prev = OldGD.getDecl())
2417 getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2418 return;
2419 }
2420
2421 if (GV->getType()->getElementType() != Ty) {
2422 // If the types mismatch then we have to rewrite the definition.
2423 assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2424
2425 // F is the Function* for the one with the wrong type, we must make a new
2426 // Function* and update everything that used F (a declaration) with the new
2427 // Function* (which will be a definition).
2428 //
2429 // This happens if there is a prototype for a function
2430 // (e.g. "int f()") and then a definition of a different type
2431 // (e.g. "int f(int x)"). Move the old function aside so that it
2432 // doesn't interfere with GetAddrOfFunction.
2433 GV->setName(StringRef());
2434 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2435
2436 // This might be an implementation of a function without a
2437 // prototype, in which case, try to do special replacement of
2438 // calls which match the new prototype. The really key thing here
2439 // is that we also potentially drop arguments from the call site
2440 // so as to make a direct call, which makes the inliner happier
2441 // and suppresses a number of optimizer warnings (!) about
2442 // dropping arguments.
2443 if (!GV->use_empty()) {
2444 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2445 GV->removeDeadConstantUsers();
2446 }
2447
2448 // Replace uses of F with the Function we will endow with a body.
2449 if (!GV->use_empty()) {
2450 llvm::Constant *NewPtrForOldDecl =
2451 llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2452 GV->replaceAllUsesWith(NewPtrForOldDecl);
2453 }
2454
2455 // Ok, delete the old function now, which is dead.
2456 GV->eraseFromParent();
2457
2458 GV = NewFn;
2459 }
2460
2461 // We need to set linkage and visibility on the function before
2462 // generating code for it because various parts of IR generation
2463 // want to propagate this information down (e.g. to local static
2464 // declarations).
2465 auto *Fn = cast<llvm::Function>(GV);
2466 setFunctionLinkage(GD, Fn);
2467 if (D->hasAttr<DLLImportAttr>())
2468 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2469 else if (D->hasAttr<DLLExportAttr>())
2470 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2471 else
2472 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2473
2474 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2475 setGlobalVisibility(Fn, D);
2476
2477 MaybeHandleStaticInExternC(D, Fn);
2478
2479 maybeSetTrivialComdat(*D, *Fn);
2480
2481 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2482
2483 setFunctionDefinitionAttributes(D, Fn);
2484 SetLLVMFunctionAttributesForDefinition(D, Fn);
2485
2486 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2487 AddGlobalCtor(Fn, CA->getPriority());
2488 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2489 AddGlobalDtor(Fn, DA->getPriority());
2490 if (D->hasAttr<AnnotateAttr>())
2491 AddGlobalAnnotations(D, Fn);
2492 }
2493
EmitAliasDefinition(GlobalDecl GD)2494 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2495 const auto *D = cast<ValueDecl>(GD.getDecl());
2496 const AliasAttr *AA = D->getAttr<AliasAttr>();
2497 assert(AA && "Not an alias?");
2498
2499 StringRef MangledName = getMangledName(GD);
2500
2501 // If there is a definition in the module, then it wins over the alias.
2502 // This is dubious, but allow it to be safe. Just ignore the alias.
2503 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2504 if (Entry && !Entry->isDeclaration())
2505 return;
2506
2507 Aliases.push_back(GD);
2508
2509 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2510
2511 // Create a reference to the named value. This ensures that it is emitted
2512 // if a deferred decl.
2513 llvm::Constant *Aliasee;
2514 if (isa<llvm::FunctionType>(DeclTy))
2515 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2516 /*ForVTable=*/false);
2517 else
2518 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2519 llvm::PointerType::getUnqual(DeclTy),
2520 /*D=*/nullptr);
2521
2522 // Create the new alias itself, but don't set a name yet.
2523 auto *GA = llvm::GlobalAlias::create(
2524 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2525 llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2526
2527 if (Entry) {
2528 if (GA->getAliasee() == Entry) {
2529 Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2530 return;
2531 }
2532
2533 assert(Entry->isDeclaration());
2534
2535 // If there is a declaration in the module, then we had an extern followed
2536 // by the alias, as in:
2537 // extern int test6();
2538 // ...
2539 // int test6() __attribute__((alias("test7")));
2540 //
2541 // Remove it and replace uses of it with the alias.
2542 GA->takeName(Entry);
2543
2544 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2545 Entry->getType()));
2546 Entry->eraseFromParent();
2547 } else {
2548 GA->setName(MangledName);
2549 }
2550
2551 // Set attributes which are particular to an alias; this is a
2552 // specialization of the attributes which may be set on a global
2553 // variable/function.
2554 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2555 D->isWeakImported()) {
2556 GA->setLinkage(llvm::Function::WeakAnyLinkage);
2557 }
2558
2559 if (const auto *VD = dyn_cast<VarDecl>(D))
2560 if (VD->getTLSKind())
2561 setTLSMode(GA, *VD);
2562
2563 setAliasAttributes(D, GA);
2564 }
2565
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)2566 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2567 ArrayRef<llvm::Type*> Tys) {
2568 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2569 Tys);
2570 }
2571
2572 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)2573 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2574 const StringLiteral *Literal, bool TargetIsLSB,
2575 bool &IsUTF16, unsigned &StringLength) {
2576 StringRef String = Literal->getString();
2577 unsigned NumBytes = String.size();
2578
2579 // Check for simple case.
2580 if (!Literal->containsNonAsciiOrNull()) {
2581 StringLength = NumBytes;
2582 return *Map.insert(std::make_pair(String, nullptr)).first;
2583 }
2584
2585 // Otherwise, convert the UTF8 literals into a string of shorts.
2586 IsUTF16 = true;
2587
2588 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2589 const UTF8 *FromPtr = (const UTF8 *)String.data();
2590 UTF16 *ToPtr = &ToBuf[0];
2591
2592 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2593 &ToPtr, ToPtr + NumBytes,
2594 strictConversion);
2595
2596 // ConvertUTF8toUTF16 returns the length in ToPtr.
2597 StringLength = ToPtr - &ToBuf[0];
2598
2599 // Add an explicit null.
2600 *ToPtr = 0;
2601 return *Map.insert(std::make_pair(
2602 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2603 (StringLength + 1) * 2),
2604 nullptr)).first;
2605 }
2606
2607 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,unsigned & StringLength)2608 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2609 const StringLiteral *Literal, unsigned &StringLength) {
2610 StringRef String = Literal->getString();
2611 StringLength = String.size();
2612 return *Map.insert(std::make_pair(String, nullptr)).first;
2613 }
2614
2615 llvm::Constant *
GetAddrOfConstantCFString(const StringLiteral * Literal)2616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2617 unsigned StringLength = 0;
2618 bool isUTF16 = false;
2619 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2620 GetConstantCFStringEntry(CFConstantStringMap, Literal,
2621 getDataLayout().isLittleEndian(), isUTF16,
2622 StringLength);
2623
2624 if (auto *C = Entry.second)
2625 return C;
2626
2627 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2628 llvm::Constant *Zeros[] = { Zero, Zero };
2629 llvm::Value *V;
2630
2631 // If we don't already have it, get __CFConstantStringClassReference.
2632 if (!CFConstantStringClassRef) {
2633 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2634 Ty = llvm::ArrayType::get(Ty, 0);
2635 llvm::Constant *GV = CreateRuntimeVariable(Ty,
2636 "__CFConstantStringClassReference");
2637 // Decay array -> ptr
2638 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2639 CFConstantStringClassRef = V;
2640 }
2641 else
2642 V = CFConstantStringClassRef;
2643
2644 QualType CFTy = getContext().getCFConstantStringType();
2645
2646 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2647
2648 llvm::Constant *Fields[4];
2649
2650 // Class pointer.
2651 Fields[0] = cast<llvm::ConstantExpr>(V);
2652
2653 // Flags.
2654 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2655 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2656 llvm::ConstantInt::get(Ty, 0x07C8);
2657
2658 // String pointer.
2659 llvm::Constant *C = nullptr;
2660 if (isUTF16) {
2661 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2662 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2663 Entry.first().size() / 2);
2664 C = llvm::ConstantDataArray::get(VMContext, Arr);
2665 } else {
2666 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2667 }
2668
2669 // Note: -fwritable-strings doesn't make the backing store strings of
2670 // CFStrings writable. (See <rdar://problem/10657500>)
2671 auto *GV =
2672 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2673 llvm::GlobalValue::PrivateLinkage, C, ".str");
2674 GV->setUnnamedAddr(true);
2675 // Don't enforce the target's minimum global alignment, since the only use
2676 // of the string is via this class initializer.
2677 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2678 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2679 // that changes the section it ends in, which surprises ld64.
2680 if (isUTF16) {
2681 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2682 GV->setAlignment(Align.getQuantity());
2683 GV->setSection("__TEXT,__ustring");
2684 } else {
2685 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2686 GV->setAlignment(Align.getQuantity());
2687 GV->setSection("__TEXT,__cstring,cstring_literals");
2688 }
2689
2690 // String.
2691 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV->getType(), GV, Zeros);
2692
2693 if (isUTF16)
2694 // Cast the UTF16 string to the correct type.
2695 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2696
2697 // String length.
2698 Ty = getTypes().ConvertType(getContext().LongTy);
2699 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2700
2701 // The struct.
2702 C = llvm::ConstantStruct::get(STy, Fields);
2703 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2704 llvm::GlobalVariable::PrivateLinkage, C,
2705 "_unnamed_cfstring_");
2706 GV->setSection("__DATA,__cfstring");
2707 Entry.second = GV;
2708
2709 return GV;
2710 }
2711
2712 llvm::GlobalVariable *
GetAddrOfConstantString(const StringLiteral * Literal)2713 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2714 unsigned StringLength = 0;
2715 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2716 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2717
2718 if (auto *C = Entry.second)
2719 return C;
2720
2721 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2722 llvm::Constant *Zeros[] = { Zero, Zero };
2723 llvm::Value *V;
2724 // If we don't already have it, get _NSConstantStringClassReference.
2725 if (!ConstantStringClassRef) {
2726 std::string StringClass(getLangOpts().ObjCConstantStringClass);
2727 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2728 llvm::Constant *GV;
2729 if (LangOpts.ObjCRuntime.isNonFragile()) {
2730 std::string str =
2731 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2732 : "OBJC_CLASS_$_" + StringClass;
2733 GV = getObjCRuntime().GetClassGlobal(str);
2734 // Make sure the result is of the correct type.
2735 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2736 V = llvm::ConstantExpr::getBitCast(GV, PTy);
2737 ConstantStringClassRef = V;
2738 } else {
2739 std::string str =
2740 StringClass.empty() ? "_NSConstantStringClassReference"
2741 : "_" + StringClass + "ClassReference";
2742 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2743 GV = CreateRuntimeVariable(PTy, str);
2744 // Decay array -> ptr
2745 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2746 ConstantStringClassRef = V;
2747 }
2748 } else
2749 V = ConstantStringClassRef;
2750
2751 if (!NSConstantStringType) {
2752 // Construct the type for a constant NSString.
2753 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2754 D->startDefinition();
2755
2756 QualType FieldTypes[3];
2757
2758 // const int *isa;
2759 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2760 // const char *str;
2761 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2762 // unsigned int length;
2763 FieldTypes[2] = Context.UnsignedIntTy;
2764
2765 // Create fields
2766 for (unsigned i = 0; i < 3; ++i) {
2767 FieldDecl *Field = FieldDecl::Create(Context, D,
2768 SourceLocation(),
2769 SourceLocation(), nullptr,
2770 FieldTypes[i], /*TInfo=*/nullptr,
2771 /*BitWidth=*/nullptr,
2772 /*Mutable=*/false,
2773 ICIS_NoInit);
2774 Field->setAccess(AS_public);
2775 D->addDecl(Field);
2776 }
2777
2778 D->completeDefinition();
2779 QualType NSTy = Context.getTagDeclType(D);
2780 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2781 }
2782
2783 llvm::Constant *Fields[3];
2784
2785 // Class pointer.
2786 Fields[0] = cast<llvm::ConstantExpr>(V);
2787
2788 // String pointer.
2789 llvm::Constant *C =
2790 llvm::ConstantDataArray::getString(VMContext, Entry.first());
2791
2792 llvm::GlobalValue::LinkageTypes Linkage;
2793 bool isConstant;
2794 Linkage = llvm::GlobalValue::PrivateLinkage;
2795 isConstant = !LangOpts.WritableStrings;
2796
2797 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2798 Linkage, C, ".str");
2799 GV->setUnnamedAddr(true);
2800 // Don't enforce the target's minimum global alignment, since the only use
2801 // of the string is via this class initializer.
2802 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2803 GV->setAlignment(Align.getQuantity());
2804 Fields[1] =
2805 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2806
2807 // String length.
2808 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2809 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2810
2811 // The struct.
2812 C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2813 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2814 llvm::GlobalVariable::PrivateLinkage, C,
2815 "_unnamed_nsstring_");
2816 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2817 const char *NSStringNonFragileABISection =
2818 "__DATA,__objc_stringobj,regular,no_dead_strip";
2819 // FIXME. Fix section.
2820 GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2821 ? NSStringNonFragileABISection
2822 : NSStringSection);
2823 Entry.second = GV;
2824
2825 return GV;
2826 }
2827
getObjCFastEnumerationStateType()2828 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2829 if (ObjCFastEnumerationStateType.isNull()) {
2830 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2831 D->startDefinition();
2832
2833 QualType FieldTypes[] = {
2834 Context.UnsignedLongTy,
2835 Context.getPointerType(Context.getObjCIdType()),
2836 Context.getPointerType(Context.UnsignedLongTy),
2837 Context.getConstantArrayType(Context.UnsignedLongTy,
2838 llvm::APInt(32, 5), ArrayType::Normal, 0)
2839 };
2840
2841 for (size_t i = 0; i < 4; ++i) {
2842 FieldDecl *Field = FieldDecl::Create(Context,
2843 D,
2844 SourceLocation(),
2845 SourceLocation(), nullptr,
2846 FieldTypes[i], /*TInfo=*/nullptr,
2847 /*BitWidth=*/nullptr,
2848 /*Mutable=*/false,
2849 ICIS_NoInit);
2850 Field->setAccess(AS_public);
2851 D->addDecl(Field);
2852 }
2853
2854 D->completeDefinition();
2855 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2856 }
2857
2858 return ObjCFastEnumerationStateType;
2859 }
2860
2861 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)2862 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2863 assert(!E->getType()->isPointerType() && "Strings are always arrays");
2864
2865 // Don't emit it as the address of the string, emit the string data itself
2866 // as an inline array.
2867 if (E->getCharByteWidth() == 1) {
2868 SmallString<64> Str(E->getString());
2869
2870 // Resize the string to the right size, which is indicated by its type.
2871 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2872 Str.resize(CAT->getSize().getZExtValue());
2873 return llvm::ConstantDataArray::getString(VMContext, Str, false);
2874 }
2875
2876 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2877 llvm::Type *ElemTy = AType->getElementType();
2878 unsigned NumElements = AType->getNumElements();
2879
2880 // Wide strings have either 2-byte or 4-byte elements.
2881 if (ElemTy->getPrimitiveSizeInBits() == 16) {
2882 SmallVector<uint16_t, 32> Elements;
2883 Elements.reserve(NumElements);
2884
2885 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2886 Elements.push_back(E->getCodeUnit(i));
2887 Elements.resize(NumElements);
2888 return llvm::ConstantDataArray::get(VMContext, Elements);
2889 }
2890
2891 assert(ElemTy->getPrimitiveSizeInBits() == 32);
2892 SmallVector<uint32_t, 32> Elements;
2893 Elements.reserve(NumElements);
2894
2895 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2896 Elements.push_back(E->getCodeUnit(i));
2897 Elements.resize(NumElements);
2898 return llvm::ConstantDataArray::get(VMContext, Elements);
2899 }
2900
2901 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,unsigned Alignment)2902 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2903 CodeGenModule &CGM, StringRef GlobalName,
2904 unsigned Alignment) {
2905 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2906 unsigned AddrSpace = 0;
2907 if (CGM.getLangOpts().OpenCL)
2908 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2909
2910 llvm::Module &M = CGM.getModule();
2911 // Create a global variable for this string
2912 auto *GV = new llvm::GlobalVariable(
2913 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2914 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2915 GV->setAlignment(Alignment);
2916 GV->setUnnamedAddr(true);
2917 if (GV->isWeakForLinker()) {
2918 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2919 GV->setComdat(M.getOrInsertComdat(GV->getName()));
2920 }
2921
2922 return GV;
2923 }
2924
2925 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2926 /// constant array for the given string literal.
2927 llvm::GlobalVariable *
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)2928 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2929 StringRef Name) {
2930 auto Alignment =
2931 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2932
2933 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2934 llvm::GlobalVariable **Entry = nullptr;
2935 if (!LangOpts.WritableStrings) {
2936 Entry = &ConstantStringMap[C];
2937 if (auto GV = *Entry) {
2938 if (Alignment > GV->getAlignment())
2939 GV->setAlignment(Alignment);
2940 return GV;
2941 }
2942 }
2943
2944 SmallString<256> MangledNameBuffer;
2945 StringRef GlobalVariableName;
2946 llvm::GlobalValue::LinkageTypes LT;
2947
2948 // Mangle the string literal if the ABI allows for it. However, we cannot
2949 // do this if we are compiling with ASan or -fwritable-strings because they
2950 // rely on strings having normal linkage.
2951 if (!LangOpts.WritableStrings &&
2952 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2953 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2954 llvm::raw_svector_ostream Out(MangledNameBuffer);
2955 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2956 Out.flush();
2957
2958 LT = llvm::GlobalValue::LinkOnceODRLinkage;
2959 GlobalVariableName = MangledNameBuffer;
2960 } else {
2961 LT = llvm::GlobalValue::PrivateLinkage;
2962 GlobalVariableName = Name;
2963 }
2964
2965 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2966 if (Entry)
2967 *Entry = GV;
2968
2969 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2970 QualType());
2971 return GV;
2972 }
2973
2974 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2975 /// array for the given ObjCEncodeExpr node.
2976 llvm::GlobalVariable *
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)2977 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2978 std::string Str;
2979 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2980
2981 return GetAddrOfConstantCString(Str);
2982 }
2983
2984 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2985 /// the literal and a terminating '\0' character.
2986 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName,unsigned Alignment)2987 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2988 const std::string &Str, const char *GlobalName, unsigned Alignment) {
2989 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2990 if (Alignment == 0) {
2991 Alignment = getContext()
2992 .getAlignOfGlobalVarInChars(getContext().CharTy)
2993 .getQuantity();
2994 }
2995
2996 llvm::Constant *C =
2997 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2998
2999 // Don't share any string literals if strings aren't constant.
3000 llvm::GlobalVariable **Entry = nullptr;
3001 if (!LangOpts.WritableStrings) {
3002 Entry = &ConstantStringMap[C];
3003 if (auto GV = *Entry) {
3004 if (Alignment > GV->getAlignment())
3005 GV->setAlignment(Alignment);
3006 return GV;
3007 }
3008 }
3009
3010 // Get the default prefix if a name wasn't specified.
3011 if (!GlobalName)
3012 GlobalName = ".str";
3013 // Create a global variable for this.
3014 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3015 GlobalName, Alignment);
3016 if (Entry)
3017 *Entry = GV;
3018 return GV;
3019 }
3020
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)3021 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3022 const MaterializeTemporaryExpr *E, const Expr *Init) {
3023 assert((E->getStorageDuration() == SD_Static ||
3024 E->getStorageDuration() == SD_Thread) && "not a global temporary");
3025 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3026
3027 // If we're not materializing a subobject of the temporary, keep the
3028 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3029 QualType MaterializedType = Init->getType();
3030 if (Init == E->GetTemporaryExpr())
3031 MaterializedType = E->getType();
3032
3033 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3034 if (Slot)
3035 return Slot;
3036
3037 // FIXME: If an externally-visible declaration extends multiple temporaries,
3038 // we need to give each temporary the same name in every translation unit (and
3039 // we also need to make the temporaries externally-visible).
3040 SmallString<256> Name;
3041 llvm::raw_svector_ostream Out(Name);
3042 getCXXABI().getMangleContext().mangleReferenceTemporary(
3043 VD, E->getManglingNumber(), Out);
3044 Out.flush();
3045
3046 APValue *Value = nullptr;
3047 if (E->getStorageDuration() == SD_Static) {
3048 // We might have a cached constant initializer for this temporary. Note
3049 // that this might have a different value from the value computed by
3050 // evaluating the initializer if the surrounding constant expression
3051 // modifies the temporary.
3052 Value = getContext().getMaterializedTemporaryValue(E, false);
3053 if (Value && Value->isUninit())
3054 Value = nullptr;
3055 }
3056
3057 // Try evaluating it now, it might have a constant initializer.
3058 Expr::EvalResult EvalResult;
3059 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3060 !EvalResult.hasSideEffects())
3061 Value = &EvalResult.Val;
3062
3063 llvm::Constant *InitialValue = nullptr;
3064 bool Constant = false;
3065 llvm::Type *Type;
3066 if (Value) {
3067 // The temporary has a constant initializer, use it.
3068 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3069 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3070 Type = InitialValue->getType();
3071 } else {
3072 // No initializer, the initialization will be provided when we
3073 // initialize the declaration which performed lifetime extension.
3074 Type = getTypes().ConvertTypeForMem(MaterializedType);
3075 }
3076
3077 // Create a global variable for this lifetime-extended temporary.
3078 llvm::GlobalValue::LinkageTypes Linkage =
3079 getLLVMLinkageVarDefinition(VD, Constant);
3080 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3081 const VarDecl *InitVD;
3082 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3083 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3084 // Temporaries defined inside a class get linkonce_odr linkage because the
3085 // class can be defined in multipe translation units.
3086 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3087 } else {
3088 // There is no need for this temporary to have external linkage if the
3089 // VarDecl has external linkage.
3090 Linkage = llvm::GlobalVariable::InternalLinkage;
3091 }
3092 }
3093 unsigned AddrSpace = GetGlobalVarAddressSpace(
3094 VD, getContext().getTargetAddressSpace(MaterializedType));
3095 auto *GV = new llvm::GlobalVariable(
3096 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3097 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3098 AddrSpace);
3099 setGlobalVisibility(GV, VD);
3100 GV->setAlignment(
3101 getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3102 if (supportsCOMDAT() && GV->isWeakForLinker())
3103 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3104 if (VD->getTLSKind())
3105 setTLSMode(GV, *VD);
3106 Slot = GV;
3107 return GV;
3108 }
3109
3110 /// EmitObjCPropertyImplementations - Emit information for synthesized
3111 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)3112 void CodeGenModule::EmitObjCPropertyImplementations(const
3113 ObjCImplementationDecl *D) {
3114 for (const auto *PID : D->property_impls()) {
3115 // Dynamic is just for type-checking.
3116 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3117 ObjCPropertyDecl *PD = PID->getPropertyDecl();
3118
3119 // Determine which methods need to be implemented, some may have
3120 // been overridden. Note that ::isPropertyAccessor is not the method
3121 // we want, that just indicates if the decl came from a
3122 // property. What we want to know is if the method is defined in
3123 // this implementation.
3124 if (!D->getInstanceMethod(PD->getGetterName()))
3125 CodeGenFunction(*this).GenerateObjCGetter(
3126 const_cast<ObjCImplementationDecl *>(D), PID);
3127 if (!PD->isReadOnly() &&
3128 !D->getInstanceMethod(PD->getSetterName()))
3129 CodeGenFunction(*this).GenerateObjCSetter(
3130 const_cast<ObjCImplementationDecl *>(D), PID);
3131 }
3132 }
3133 }
3134
needsDestructMethod(ObjCImplementationDecl * impl)3135 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3136 const ObjCInterfaceDecl *iface = impl->getClassInterface();
3137 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3138 ivar; ivar = ivar->getNextIvar())
3139 if (ivar->getType().isDestructedType())
3140 return true;
3141
3142 return false;
3143 }
3144
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)3145 static bool AllTrivialInitializers(CodeGenModule &CGM,
3146 ObjCImplementationDecl *D) {
3147 CodeGenFunction CGF(CGM);
3148 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3149 E = D->init_end(); B != E; ++B) {
3150 CXXCtorInitializer *CtorInitExp = *B;
3151 Expr *Init = CtorInitExp->getInit();
3152 if (!CGF.isTrivialInitializer(Init))
3153 return false;
3154 }
3155 return true;
3156 }
3157
3158 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3159 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)3160 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3161 // We might need a .cxx_destruct even if we don't have any ivar initializers.
3162 if (needsDestructMethod(D)) {
3163 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3164 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3165 ObjCMethodDecl *DTORMethod =
3166 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3167 cxxSelector, getContext().VoidTy, nullptr, D,
3168 /*isInstance=*/true, /*isVariadic=*/false,
3169 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3170 /*isDefined=*/false, ObjCMethodDecl::Required);
3171 D->addInstanceMethod(DTORMethod);
3172 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3173 D->setHasDestructors(true);
3174 }
3175
3176 // If the implementation doesn't have any ivar initializers, we don't need
3177 // a .cxx_construct.
3178 if (D->getNumIvarInitializers() == 0 ||
3179 AllTrivialInitializers(*this, D))
3180 return;
3181
3182 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3183 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3184 // The constructor returns 'self'.
3185 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3186 D->getLocation(),
3187 D->getLocation(),
3188 cxxSelector,
3189 getContext().getObjCIdType(),
3190 nullptr, D, /*isInstance=*/true,
3191 /*isVariadic=*/false,
3192 /*isPropertyAccessor=*/true,
3193 /*isImplicitlyDeclared=*/true,
3194 /*isDefined=*/false,
3195 ObjCMethodDecl::Required);
3196 D->addInstanceMethod(CTORMethod);
3197 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3198 D->setHasNonZeroConstructors(true);
3199 }
3200
3201 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)3202 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3203 for (auto *I : ND->decls()) {
3204 if (const auto *VD = dyn_cast<VarDecl>(I))
3205 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3206 VD->getTemplateSpecializationKind() != TSK_Undeclared)
3207 continue;
3208 EmitTopLevelDecl(I);
3209 }
3210 }
3211
3212 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)3213 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3214 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3215 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3216 ErrorUnsupported(LSD, "linkage spec");
3217 return;
3218 }
3219
3220 for (auto *I : LSD->decls()) {
3221 // Meta-data for ObjC class includes references to implemented methods.
3222 // Generate class's method definitions first.
3223 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3224 for (auto *M : OID->methods())
3225 EmitTopLevelDecl(M);
3226 }
3227 EmitTopLevelDecl(I);
3228 }
3229 }
3230
3231 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)3232 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3233 // Ignore dependent declarations.
3234 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3235 return;
3236
3237 switch (D->getKind()) {
3238 case Decl::CXXConversion:
3239 case Decl::CXXMethod:
3240 case Decl::Function:
3241 // Skip function templates
3242 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3243 cast<FunctionDecl>(D)->isLateTemplateParsed())
3244 return;
3245
3246 EmitGlobal(cast<FunctionDecl>(D));
3247 // Always provide some coverage mapping
3248 // even for the functions that aren't emitted.
3249 AddDeferredUnusedCoverageMapping(D);
3250 break;
3251
3252 case Decl::Var:
3253 // Skip variable templates
3254 if (cast<VarDecl>(D)->getDescribedVarTemplate())
3255 return;
3256 case Decl::VarTemplateSpecialization:
3257 EmitGlobal(cast<VarDecl>(D));
3258 break;
3259
3260 // Indirect fields from global anonymous structs and unions can be
3261 // ignored; only the actual variable requires IR gen support.
3262 case Decl::IndirectField:
3263 break;
3264
3265 // C++ Decls
3266 case Decl::Namespace:
3267 EmitNamespace(cast<NamespaceDecl>(D));
3268 break;
3269 // No code generation needed.
3270 case Decl::UsingShadow:
3271 case Decl::ClassTemplate:
3272 case Decl::VarTemplate:
3273 case Decl::VarTemplatePartialSpecialization:
3274 case Decl::FunctionTemplate:
3275 case Decl::TypeAliasTemplate:
3276 case Decl::Block:
3277 case Decl::Empty:
3278 break;
3279 case Decl::Using: // using X; [C++]
3280 if (CGDebugInfo *DI = getModuleDebugInfo())
3281 DI->EmitUsingDecl(cast<UsingDecl>(*D));
3282 return;
3283 case Decl::NamespaceAlias:
3284 if (CGDebugInfo *DI = getModuleDebugInfo())
3285 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3286 return;
3287 case Decl::UsingDirective: // using namespace X; [C++]
3288 if (CGDebugInfo *DI = getModuleDebugInfo())
3289 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3290 return;
3291 case Decl::CXXConstructor:
3292 // Skip function templates
3293 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3294 cast<FunctionDecl>(D)->isLateTemplateParsed())
3295 return;
3296
3297 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3298 break;
3299 case Decl::CXXDestructor:
3300 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3301 return;
3302 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3303 break;
3304
3305 case Decl::StaticAssert:
3306 // Nothing to do.
3307 break;
3308
3309 // Objective-C Decls
3310
3311 // Forward declarations, no (immediate) code generation.
3312 case Decl::ObjCInterface:
3313 case Decl::ObjCCategory:
3314 break;
3315
3316 case Decl::ObjCProtocol: {
3317 auto *Proto = cast<ObjCProtocolDecl>(D);
3318 if (Proto->isThisDeclarationADefinition())
3319 ObjCRuntime->GenerateProtocol(Proto);
3320 break;
3321 }
3322
3323 case Decl::ObjCCategoryImpl:
3324 // Categories have properties but don't support synthesize so we
3325 // can ignore them here.
3326 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3327 break;
3328
3329 case Decl::ObjCImplementation: {
3330 auto *OMD = cast<ObjCImplementationDecl>(D);
3331 EmitObjCPropertyImplementations(OMD);
3332 EmitObjCIvarInitializations(OMD);
3333 ObjCRuntime->GenerateClass(OMD);
3334 // Emit global variable debug information.
3335 if (CGDebugInfo *DI = getModuleDebugInfo())
3336 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3337 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3338 OMD->getClassInterface()), OMD->getLocation());
3339 break;
3340 }
3341 case Decl::ObjCMethod: {
3342 auto *OMD = cast<ObjCMethodDecl>(D);
3343 // If this is not a prototype, emit the body.
3344 if (OMD->getBody())
3345 CodeGenFunction(*this).GenerateObjCMethod(OMD);
3346 break;
3347 }
3348 case Decl::ObjCCompatibleAlias:
3349 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3350 break;
3351
3352 case Decl::LinkageSpec:
3353 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3354 break;
3355
3356 case Decl::FileScopeAsm: {
3357 auto *AD = cast<FileScopeAsmDecl>(D);
3358 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3359 break;
3360 }
3361
3362 case Decl::Import: {
3363 auto *Import = cast<ImportDecl>(D);
3364
3365 // Ignore import declarations that come from imported modules.
3366 if (clang::Module *Owner = Import->getOwningModule()) {
3367 if (getLangOpts().CurrentModule.empty() ||
3368 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3369 break;
3370 }
3371
3372 ImportedModules.insert(Import->getImportedModule());
3373 break;
3374 }
3375
3376 case Decl::OMPThreadPrivate:
3377 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3378 break;
3379
3380 case Decl::ClassTemplateSpecialization: {
3381 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3382 if (DebugInfo &&
3383 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3384 Spec->hasDefinition())
3385 DebugInfo->completeTemplateDefinition(*Spec);
3386 break;
3387 }
3388
3389 default:
3390 // Make sure we handled everything we should, every other kind is a
3391 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
3392 // function. Need to recode Decl::Kind to do that easily.
3393 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3394 break;
3395 }
3396 }
3397
AddDeferredUnusedCoverageMapping(Decl * D)3398 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3399 // Do we need to generate coverage mapping?
3400 if (!CodeGenOpts.CoverageMapping)
3401 return;
3402 switch (D->getKind()) {
3403 case Decl::CXXConversion:
3404 case Decl::CXXMethod:
3405 case Decl::Function:
3406 case Decl::ObjCMethod:
3407 case Decl::CXXConstructor:
3408 case Decl::CXXDestructor: {
3409 if (!cast<FunctionDecl>(D)->hasBody())
3410 return;
3411 auto I = DeferredEmptyCoverageMappingDecls.find(D);
3412 if (I == DeferredEmptyCoverageMappingDecls.end())
3413 DeferredEmptyCoverageMappingDecls[D] = true;
3414 break;
3415 }
3416 default:
3417 break;
3418 };
3419 }
3420
ClearUnusedCoverageMapping(const Decl * D)3421 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3422 // Do we need to generate coverage mapping?
3423 if (!CodeGenOpts.CoverageMapping)
3424 return;
3425 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3426 if (Fn->isTemplateInstantiation())
3427 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3428 }
3429 auto I = DeferredEmptyCoverageMappingDecls.find(D);
3430 if (I == DeferredEmptyCoverageMappingDecls.end())
3431 DeferredEmptyCoverageMappingDecls[D] = false;
3432 else
3433 I->second = false;
3434 }
3435
EmitDeferredUnusedCoverageMappings()3436 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3437 std::vector<const Decl *> DeferredDecls;
3438 for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3439 if (!I.second)
3440 continue;
3441 DeferredDecls.push_back(I.first);
3442 }
3443 // Sort the declarations by their location to make sure that the tests get a
3444 // predictable order for the coverage mapping for the unused declarations.
3445 if (CodeGenOpts.DumpCoverageMapping)
3446 std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3447 [] (const Decl *LHS, const Decl *RHS) {
3448 return LHS->getLocStart() < RHS->getLocStart();
3449 });
3450 for (const auto *D : DeferredDecls) {
3451 switch (D->getKind()) {
3452 case Decl::CXXConversion:
3453 case Decl::CXXMethod:
3454 case Decl::Function:
3455 case Decl::ObjCMethod: {
3456 CodeGenPGO PGO(*this);
3457 GlobalDecl GD(cast<FunctionDecl>(D));
3458 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3459 getFunctionLinkage(GD));
3460 break;
3461 }
3462 case Decl::CXXConstructor: {
3463 CodeGenPGO PGO(*this);
3464 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3465 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3466 getFunctionLinkage(GD));
3467 break;
3468 }
3469 case Decl::CXXDestructor: {
3470 CodeGenPGO PGO(*this);
3471 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3472 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3473 getFunctionLinkage(GD));
3474 break;
3475 }
3476 default:
3477 break;
3478 };
3479 }
3480 }
3481
3482 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)3483 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3484 const void *Ptr) {
3485 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3486 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3487 return llvm::ConstantInt::get(i64, PtrInt);
3488 }
3489
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)3490 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3491 llvm::NamedMDNode *&GlobalMetadata,
3492 GlobalDecl D,
3493 llvm::GlobalValue *Addr) {
3494 if (!GlobalMetadata)
3495 GlobalMetadata =
3496 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3497
3498 // TODO: should we report variant information for ctors/dtors?
3499 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3500 llvm::ConstantAsMetadata::get(GetPointerConstant(
3501 CGM.getLLVMContext(), D.getDecl()))};
3502 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3503 }
3504
3505 /// For each function which is declared within an extern "C" region and marked
3506 /// as 'used', but has internal linkage, create an alias from the unmangled
3507 /// name to the mangled name if possible. People expect to be able to refer
3508 /// to such functions with an unmangled name from inline assembly within the
3509 /// same translation unit.
EmitStaticExternCAliases()3510 void CodeGenModule::EmitStaticExternCAliases() {
3511 for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3512 E = StaticExternCValues.end();
3513 I != E; ++I) {
3514 IdentifierInfo *Name = I->first;
3515 llvm::GlobalValue *Val = I->second;
3516 if (Val && !getModule().getNamedValue(Name->getName()))
3517 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3518 }
3519 }
3520
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const3521 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3522 GlobalDecl &Result) const {
3523 auto Res = Manglings.find(MangledName);
3524 if (Res == Manglings.end())
3525 return false;
3526 Result = Res->getValue();
3527 return true;
3528 }
3529
3530 /// Emits metadata nodes associating all the global values in the
3531 /// current module with the Decls they came from. This is useful for
3532 /// projects using IR gen as a subroutine.
3533 ///
3534 /// Since there's currently no way to associate an MDNode directly
3535 /// with an llvm::GlobalValue, we create a global named metadata
3536 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()3537 void CodeGenModule::EmitDeclMetadata() {
3538 llvm::NamedMDNode *GlobalMetadata = nullptr;
3539
3540 // StaticLocalDeclMap
3541 for (auto &I : MangledDeclNames) {
3542 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3543 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3544 }
3545 }
3546
3547 /// Emits metadata nodes for all the local variables in the current
3548 /// function.
EmitDeclMetadata()3549 void CodeGenFunction::EmitDeclMetadata() {
3550 if (LocalDeclMap.empty()) return;
3551
3552 llvm::LLVMContext &Context = getLLVMContext();
3553
3554 // Find the unique metadata ID for this name.
3555 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3556
3557 llvm::NamedMDNode *GlobalMetadata = nullptr;
3558
3559 for (auto &I : LocalDeclMap) {
3560 const Decl *D = I.first;
3561 llvm::Value *Addr = I.second;
3562 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3563 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3564 Alloca->setMetadata(
3565 DeclPtrKind, llvm::MDNode::get(
3566 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3567 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3568 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3569 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3570 }
3571 }
3572 }
3573
EmitVersionIdentMetadata()3574 void CodeGenModule::EmitVersionIdentMetadata() {
3575 llvm::NamedMDNode *IdentMetadata =
3576 TheModule.getOrInsertNamedMetadata("llvm.ident");
3577 std::string Version = getClangFullVersion();
3578 llvm::LLVMContext &Ctx = TheModule.getContext();
3579
3580 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3581 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3582 }
3583
EmitTargetMetadata()3584 void CodeGenModule::EmitTargetMetadata() {
3585 // Warning, new MangledDeclNames may be appended within this loop.
3586 // We rely on MapVector insertions adding new elements to the end
3587 // of the container.
3588 // FIXME: Move this loop into the one target that needs it, and only
3589 // loop over those declarations for which we couldn't emit the target
3590 // metadata when we emitted the declaration.
3591 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3592 auto Val = *(MangledDeclNames.begin() + I);
3593 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3594 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3595 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3596 }
3597 }
3598
EmitCoverageFile()3599 void CodeGenModule::EmitCoverageFile() {
3600 if (!getCodeGenOpts().CoverageFile.empty()) {
3601 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3602 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3603 llvm::LLVMContext &Ctx = TheModule.getContext();
3604 llvm::MDString *CoverageFile =
3605 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3606 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3607 llvm::MDNode *CU = CUNode->getOperand(i);
3608 llvm::Metadata *Elts[] = {CoverageFile, CU};
3609 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3610 }
3611 }
3612 }
3613 }
3614
EmitUuidofInitializer(StringRef Uuid)3615 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3616 // Sema has checked that all uuid strings are of the form
3617 // "12345678-1234-1234-1234-1234567890ab".
3618 assert(Uuid.size() == 36);
3619 for (unsigned i = 0; i < 36; ++i) {
3620 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3621 else assert(isHexDigit(Uuid[i]));
3622 }
3623
3624 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3625 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3626
3627 llvm::Constant *Field3[8];
3628 for (unsigned Idx = 0; Idx < 8; ++Idx)
3629 Field3[Idx] = llvm::ConstantInt::get(
3630 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3631
3632 llvm::Constant *Fields[4] = {
3633 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
3634 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
3635 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3636 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3637 };
3638
3639 return llvm::ConstantStruct::getAnon(Fields);
3640 }
3641
3642 llvm::Constant *
getAddrOfCXXCatchHandlerType(QualType Ty,QualType CatchHandlerType)3643 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
3644 QualType CatchHandlerType) {
3645 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
3646 }
3647
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)3648 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3649 bool ForEH) {
3650 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3651 // FIXME: should we even be calling this method if RTTI is disabled
3652 // and it's not for EH?
3653 if (!ForEH && !getLangOpts().RTTI)
3654 return llvm::Constant::getNullValue(Int8PtrTy);
3655
3656 if (ForEH && Ty->isObjCObjectPointerType() &&
3657 LangOpts.ObjCRuntime.isGNUFamily())
3658 return ObjCRuntime->GetEHType(Ty);
3659
3660 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3661 }
3662
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)3663 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3664 for (auto RefExpr : D->varlists()) {
3665 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3666 bool PerformInit =
3667 VD->getAnyInitializer() &&
3668 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3669 /*ForRef=*/false);
3670 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3671 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
3672 CXXGlobalInits.push_back(InitFunction);
3673 }
3674 }
3675
3676