1// Copyright 2008 the V8 project authors. All rights reserved.
2// Copyright 1996 John Maloney and Mario Wolczko.
3
4// This program is free software; you can redistribute it and/or modify
5// it under the terms of the GNU General Public License as published by
6// the Free Software Foundation; either version 2 of the License, or
7// (at your option) any later version.
8//
9// This program is distributed in the hope that it will be useful,
10// but WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12// GNU General Public License for more details.
13//
14// You should have received a copy of the GNU General Public License
15// along with this program; if not, write to the Free Software
16// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
18
19// This implementation of the DeltaBlue benchmark is derived
20// from the Smalltalk implementation by John Maloney and Mario
21// Wolczko. Some parts have been translated directly, whereas
22// others have been modified more aggresively to make it feel
23// more like a JavaScript program.
24
25
26var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [
27  new Benchmark('DeltaBlue', deltaBlue)
28]);
29
30
31/**
32 * A JavaScript implementation of the DeltaBlue constraint-solving
33 * algorithm, as described in:
34 *
35 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
36 *   Bjorn N. Freeman-Benson and John Maloney
37 *   January 1990 Communications of the ACM,
38 *   also available as University of Washington TR 89-08-06.
39 *
40 * Beware: this benchmark is written in a grotesque style where
41 * the constraint model is built by side-effects from constructors.
42 * I've kept it this way to avoid deviating too much from the original
43 * implementation.
44 */
45
46
47/* --- O b j e c t   M o d e l --- */
48
49Object.defineProperty(Object.prototype, "inheritsFrom", {
50
51  value: function (shuper) {
52    function Inheriter() { }
53    Inheriter.prototype = shuper.prototype;
54    this.prototype = new Inheriter();
55    this.superConstructor = shuper;
56  }
57});
58
59function OrderedCollection() {
60  this.elms = new Array();
61}
62
63OrderedCollection.prototype.add = function (elm) {
64  this.elms.push(elm);
65}
66
67OrderedCollection.prototype.at = function (index) {
68  return this.elms[index];
69}
70
71OrderedCollection.prototype.size = function () {
72  return this.elms.length;
73}
74
75OrderedCollection.prototype.removeFirst = function () {
76  return this.elms.pop();
77}
78
79OrderedCollection.prototype.remove = function (elm) {
80  var index = 0, skipped = 0;
81  for (var i = 0; i < this.elms.length; i++) {
82    var value = this.elms[i];
83    if (value != elm) {
84      this.elms[index] = value;
85      index++;
86    } else {
87      skipped++;
88    }
89  }
90  for (var i = 0; i < skipped; i++)
91    this.elms.pop();
92}
93
94/* --- *
95 * S t r e n g t h
96 * --- */
97
98/**
99 * Strengths are used to measure the relative importance of constraints.
100 * New strengths may be inserted in the strength hierarchy without
101 * disrupting current constraints.  Strengths cannot be created outside
102 * this class, so pointer comparison can be used for value comparison.
103 */
104function Strength(strengthValue, name) {
105  this.strengthValue = strengthValue;
106  this.name = name;
107}
108
109Strength.stronger = function (s1, s2) {
110  return s1.strengthValue < s2.strengthValue;
111}
112
113Strength.weaker = function (s1, s2) {
114  return s1.strengthValue > s2.strengthValue;
115}
116
117Strength.weakestOf = function (s1, s2) {
118  return this.weaker(s1, s2) ? s1 : s2;
119}
120
121Strength.strongest = function (s1, s2) {
122  return this.stronger(s1, s2) ? s1 : s2;
123}
124
125Strength.prototype.nextWeaker = function () {
126  switch (this.strengthValue) {
127    case 0: return Strength.WEAKEST;
128    case 1: return Strength.WEAK_DEFAULT;
129    case 2: return Strength.NORMAL;
130    case 3: return Strength.STRONG_DEFAULT;
131    case 4: return Strength.PREFERRED;
132    case 5: return Strength.REQUIRED;
133  }
134}
135
136// Strength constants.
137Strength.REQUIRED        = new Strength(0, "required");
138Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
139Strength.PREFERRED       = new Strength(2, "preferred");
140Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
141Strength.NORMAL          = new Strength(4, "normal");
142Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
143Strength.WEAKEST         = new Strength(6, "weakest");
144
145/* --- *
146 * C o n s t r a i n t
147 * --- */
148
149/**
150 * An abstract class representing a system-maintainable relationship
151 * (or "constraint") between a set of variables. A constraint supplies
152 * a strength instance variable; concrete subclasses provide a means
153 * of storing the constrained variables and other information required
154 * to represent a constraint.
155 */
156function Constraint(strength) {
157  this.strength = strength;
158}
159
160/**
161 * Activate this constraint and attempt to satisfy it.
162 */
163Constraint.prototype.addConstraint = function () {
164  this.addToGraph();
165  planner.incrementalAdd(this);
166}
167
168/**
169 * Attempt to find a way to enforce this constraint. If successful,
170 * record the solution, perhaps modifying the current dataflow
171 * graph. Answer the constraint that this constraint overrides, if
172 * there is one, or nil, if there isn't.
173 * Assume: I am not already satisfied.
174 */
175Constraint.prototype.satisfy = function (mark) {
176  this.chooseMethod(mark);
177  if (!this.isSatisfied()) {
178    if (this.strength == Strength.REQUIRED)
179      alert("Could not satisfy a required constraint!");
180    return null;
181  }
182  this.markInputs(mark);
183  var out = this.output();
184  var overridden = out.determinedBy;
185  if (overridden != null) overridden.markUnsatisfied();
186  out.determinedBy = this;
187  if (!planner.addPropagate(this, mark))
188    alert("Cycle encountered");
189  out.mark = mark;
190  return overridden;
191}
192
193Constraint.prototype.destroyConstraint = function () {
194  if (this.isSatisfied()) planner.incrementalRemove(this);
195  else this.removeFromGraph();
196}
197
198/**
199 * Normal constraints are not input constraints.  An input constraint
200 * is one that depends on external state, such as the mouse, the
201 * keybord, a clock, or some arbitraty piece of imperative code.
202 */
203Constraint.prototype.isInput = function () {
204  return false;
205}
206
207/* --- *
208 * U n a r y   C o n s t r a i n t
209 * --- */
210
211/**
212 * Abstract superclass for constraints having a single possible output
213 * variable.
214 */
215function UnaryConstraint(v, strength) {
216  UnaryConstraint.superConstructor.call(this, strength);
217  this.myOutput = v;
218  this.satisfied = false;
219  this.addConstraint();
220}
221
222UnaryConstraint.inheritsFrom(Constraint);
223
224/**
225 * Adds this constraint to the constraint graph
226 */
227UnaryConstraint.prototype.addToGraph = function () {
228  this.myOutput.addConstraint(this);
229  this.satisfied = false;
230}
231
232/**
233 * Decides if this constraint can be satisfied and records that
234 * decision.
235 */
236UnaryConstraint.prototype.chooseMethod = function (mark) {
237  this.satisfied = (this.myOutput.mark != mark)
238    && Strength.stronger(this.strength, this.myOutput.walkStrength);
239}
240
241/**
242 * Returns true if this constraint is satisfied in the current solution.
243 */
244UnaryConstraint.prototype.isSatisfied = function () {
245  return this.satisfied;
246}
247
248UnaryConstraint.prototype.markInputs = function (mark) {
249  // has no inputs
250}
251
252/**
253 * Returns the current output variable.
254 */
255UnaryConstraint.prototype.output = function () {
256  return this.myOutput;
257}
258
259/**
260 * Calculate the walkabout strength, the stay flag, and, if it is
261 * 'stay', the value for the current output of this constraint. Assume
262 * this constraint is satisfied.
263 */
264UnaryConstraint.prototype.recalculate = function () {
265  this.myOutput.walkStrength = this.strength;
266  this.myOutput.stay = !this.isInput();
267  if (this.myOutput.stay) this.execute(); // Stay optimization
268}
269
270/**
271 * Records that this constraint is unsatisfied
272 */
273UnaryConstraint.prototype.markUnsatisfied = function () {
274  this.satisfied = false;
275}
276
277UnaryConstraint.prototype.inputsKnown = function () {
278  return true;
279}
280
281UnaryConstraint.prototype.removeFromGraph = function () {
282  if (this.myOutput != null) this.myOutput.removeConstraint(this);
283  this.satisfied = false;
284}
285
286/* --- *
287 * S t a y   C o n s t r a i n t
288 * --- */
289
290/**
291 * Variables that should, with some level of preference, stay the same.
292 * Planners may exploit the fact that instances, if satisfied, will not
293 * change their output during plan execution.  This is called "stay
294 * optimization".
295 */
296function StayConstraint(v, str) {
297  StayConstraint.superConstructor.call(this, v, str);
298}
299
300StayConstraint.inheritsFrom(UnaryConstraint);
301
302StayConstraint.prototype.execute = function () {
303  // Stay constraints do nothing
304}
305
306/* --- *
307 * E d i t   C o n s t r a i n t
308 * --- */
309
310/**
311 * A unary input constraint used to mark a variable that the client
312 * wishes to change.
313 */
314function EditConstraint(v, str) {
315  EditConstraint.superConstructor.call(this, v, str);
316}
317
318EditConstraint.inheritsFrom(UnaryConstraint);
319
320/**
321 * Edits indicate that a variable is to be changed by imperative code.
322 */
323EditConstraint.prototype.isInput = function () {
324  return true;
325}
326
327EditConstraint.prototype.execute = function () {
328  // Edit constraints do nothing
329}
330
331/* --- *
332 * B i n a r y   C o n s t r a i n t
333 * --- */
334
335var Direction = new Object();
336Direction.NONE     = 0;
337Direction.FORWARD  = 1;
338Direction.BACKWARD = -1;
339
340/**
341 * Abstract superclass for constraints having two possible output
342 * variables.
343 */
344function BinaryConstraint(var1, var2, strength) {
345  BinaryConstraint.superConstructor.call(this, strength);
346  this.v1 = var1;
347  this.v2 = var2;
348  this.direction = Direction.NONE;
349  this.addConstraint();
350}
351
352BinaryConstraint.inheritsFrom(Constraint);
353
354/**
355 * Decides if this constraint can be satisfied and which way it
356 * should flow based on the relative strength of the variables related,
357 * and record that decision.
358 */
359BinaryConstraint.prototype.chooseMethod = function (mark) {
360  if (this.v1.mark == mark) {
361    this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
362      ? Direction.FORWARD
363      : Direction.NONE;
364  }
365  if (this.v2.mark == mark) {
366    this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
367      ? Direction.BACKWARD
368      : Direction.NONE;
369  }
370  if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
371    this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
372      ? Direction.BACKWARD
373      : Direction.NONE;
374  } else {
375    this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
376      ? Direction.FORWARD
377      : Direction.BACKWARD
378  }
379}
380
381/**
382 * Add this constraint to the constraint graph
383 */
384BinaryConstraint.prototype.addToGraph = function () {
385  this.v1.addConstraint(this);
386  this.v2.addConstraint(this);
387  this.direction = Direction.NONE;
388}
389
390/**
391 * Answer true if this constraint is satisfied in the current solution.
392 */
393BinaryConstraint.prototype.isSatisfied = function () {
394  return this.direction != Direction.NONE;
395}
396
397/**
398 * Mark the input variable with the given mark.
399 */
400BinaryConstraint.prototype.markInputs = function (mark) {
401  this.input().mark = mark;
402}
403
404/**
405 * Returns the current input variable
406 */
407BinaryConstraint.prototype.input = function () {
408  return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
409}
410
411/**
412 * Returns the current output variable
413 */
414BinaryConstraint.prototype.output = function () {
415  return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
416}
417
418/**
419 * Calculate the walkabout strength, the stay flag, and, if it is
420 * 'stay', the value for the current output of this
421 * constraint. Assume this constraint is satisfied.
422 */
423BinaryConstraint.prototype.recalculate = function () {
424  var ihn = this.input(), out = this.output();
425  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
426  out.stay = ihn.stay;
427  if (out.stay) this.execute();
428}
429
430/**
431 * Record the fact that this constraint is unsatisfied.
432 */
433BinaryConstraint.prototype.markUnsatisfied = function () {
434  this.direction = Direction.NONE;
435}
436
437BinaryConstraint.prototype.inputsKnown = function (mark) {
438  var i = this.input();
439  return i.mark == mark || i.stay || i.determinedBy == null;
440}
441
442BinaryConstraint.prototype.removeFromGraph = function () {
443  if (this.v1 != null) this.v1.removeConstraint(this);
444  if (this.v2 != null) this.v2.removeConstraint(this);
445  this.direction = Direction.NONE;
446}
447
448/* --- *
449 * S c a l e   C o n s t r a i n t
450 * --- */
451
452/**
453 * Relates two variables by the linear scaling relationship: "v2 =
454 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
455 * this relationship but the scale factor and offset are considered
456 * read-only.
457 */
458function ScaleConstraint(src, scale, offset, dest, strength) {
459  this.direction = Direction.NONE;
460  this.scale = scale;
461  this.offset = offset;
462  ScaleConstraint.superConstructor.call(this, src, dest, strength);
463}
464
465ScaleConstraint.inheritsFrom(BinaryConstraint);
466
467/**
468 * Adds this constraint to the constraint graph.
469 */
470ScaleConstraint.prototype.addToGraph = function () {
471  ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
472  this.scale.addConstraint(this);
473  this.offset.addConstraint(this);
474}
475
476ScaleConstraint.prototype.removeFromGraph = function () {
477  ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
478  if (this.scale != null) this.scale.removeConstraint(this);
479  if (this.offset != null) this.offset.removeConstraint(this);
480}
481
482ScaleConstraint.prototype.markInputs = function (mark) {
483  ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
484  this.scale.mark = this.offset.mark = mark;
485}
486
487/**
488 * Enforce this constraint. Assume that it is satisfied.
489 */
490ScaleConstraint.prototype.execute = function () {
491  if (this.direction == Direction.FORWARD) {
492    this.v2.value = this.v1.value * this.scale.value + this.offset.value;
493  } else {
494    this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
495  }
496}
497
498/**
499 * Calculate the walkabout strength, the stay flag, and, if it is
500 * 'stay', the value for the current output of this constraint. Assume
501 * this constraint is satisfied.
502 */
503ScaleConstraint.prototype.recalculate = function () {
504  var ihn = this.input(), out = this.output();
505  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
506  out.stay = ihn.stay && this.scale.stay && this.offset.stay;
507  if (out.stay) this.execute();
508}
509
510/* --- *
511 * E q u a l i t  y   C o n s t r a i n t
512 * --- */
513
514/**
515 * Constrains two variables to have the same value.
516 */
517function EqualityConstraint(var1, var2, strength) {
518  EqualityConstraint.superConstructor.call(this, var1, var2, strength);
519}
520
521EqualityConstraint.inheritsFrom(BinaryConstraint);
522
523/**
524 * Enforce this constraint. Assume that it is satisfied.
525 */
526EqualityConstraint.prototype.execute = function () {
527  this.output().value = this.input().value;
528}
529
530/* --- *
531 * V a r i a b l e
532 * --- */
533
534/**
535 * A constrained variable. In addition to its value, it maintain the
536 * structure of the constraint graph, the current dataflow graph, and
537 * various parameters of interest to the DeltaBlue incremental
538 * constraint solver.
539 **/
540function Variable(name, initialValue) {
541  this.value = initialValue || 0;
542  this.constraints = new OrderedCollection();
543  this.determinedBy = null;
544  this.mark = 0;
545  this.walkStrength = Strength.WEAKEST;
546  this.stay = true;
547  this.name = name;
548}
549
550/**
551 * Add the given constraint to the set of all constraints that refer
552 * this variable.
553 */
554Variable.prototype.addConstraint = function (c) {
555  this.constraints.add(c);
556}
557
558/**
559 * Removes all traces of c from this variable.
560 */
561Variable.prototype.removeConstraint = function (c) {
562  this.constraints.remove(c);
563  if (this.determinedBy == c) this.determinedBy = null;
564}
565
566/* --- *
567 * P l a n n e r
568 * --- */
569
570/**
571 * The DeltaBlue planner
572 */
573function Planner() {
574  this.currentMark = 0;
575}
576
577/**
578 * Attempt to satisfy the given constraint and, if successful,
579 * incrementally update the dataflow graph.  Details: If satifying
580 * the constraint is successful, it may override a weaker constraint
581 * on its output. The algorithm attempts to resatisfy that
582 * constraint using some other method. This process is repeated
583 * until either a) it reaches a variable that was not previously
584 * determined by any constraint or b) it reaches a constraint that
585 * is too weak to be satisfied using any of its methods. The
586 * variables of constraints that have been processed are marked with
587 * a unique mark value so that we know where we've been. This allows
588 * the algorithm to avoid getting into an infinite loop even if the
589 * constraint graph has an inadvertent cycle.
590 */
591Planner.prototype.incrementalAdd = function (c) {
592  var mark = this.newMark();
593  var overridden = c.satisfy(mark);
594  while (overridden != null)
595    overridden = overridden.satisfy(mark);
596}
597
598/**
599 * Entry point for retracting a constraint. Remove the given
600 * constraint and incrementally update the dataflow graph.
601 * Details: Retracting the given constraint may allow some currently
602 * unsatisfiable downstream constraint to be satisfied. We therefore collect
603 * a list of unsatisfied downstream constraints and attempt to
604 * satisfy each one in turn. This list is traversed by constraint
605 * strength, strongest first, as a heuristic for avoiding
606 * unnecessarily adding and then overriding weak constraints.
607 * Assume: c is satisfied.
608 */
609Planner.prototype.incrementalRemove = function (c) {
610  var out = c.output();
611  c.markUnsatisfied();
612  c.removeFromGraph();
613  var unsatisfied = this.removePropagateFrom(out);
614  var strength = Strength.REQUIRED;
615  do {
616    for (var i = 0; i < unsatisfied.size(); i++) {
617      var u = unsatisfied.at(i);
618      if (u.strength == strength)
619        this.incrementalAdd(u);
620    }
621    strength = strength.nextWeaker();
622  } while (strength != Strength.WEAKEST);
623}
624
625/**
626 * Select a previously unused mark value.
627 */
628Planner.prototype.newMark = function () {
629  return ++this.currentMark;
630}
631
632/**
633 * Extract a plan for resatisfaction starting from the given source
634 * constraints, usually a set of input constraints. This method
635 * assumes that stay optimization is desired; the plan will contain
636 * only constraints whose output variables are not stay. Constraints
637 * that do no computation, such as stay and edit constraints, are
638 * not included in the plan.
639 * Details: The outputs of a constraint are marked when it is added
640 * to the plan under construction. A constraint may be appended to
641 * the plan when all its input variables are known. A variable is
642 * known if either a) the variable is marked (indicating that has
643 * been computed by a constraint appearing earlier in the plan), b)
644 * the variable is 'stay' (i.e. it is a constant at plan execution
645 * time), or c) the variable is not determined by any
646 * constraint. The last provision is for past states of history
647 * variables, which are not stay but which are also not computed by
648 * any constraint.
649 * Assume: sources are all satisfied.
650 */
651Planner.prototype.makePlan = function (sources) {
652  var mark = this.newMark();
653  var plan = new Plan();
654  var todo = sources;
655  while (todo.size() > 0) {
656    var c = todo.removeFirst();
657    if (c.output().mark != mark && c.inputsKnown(mark)) {
658      plan.addConstraint(c);
659      c.output().mark = mark;
660      this.addConstraintsConsumingTo(c.output(), todo);
661    }
662  }
663  return plan;
664}
665
666/**
667 * Extract a plan for resatisfying starting from the output of the
668 * given constraints, usually a set of input constraints.
669 */
670Planner.prototype.extractPlanFromConstraints = function (constraints) {
671  var sources = new OrderedCollection();
672  for (var i = 0; i < constraints.size(); i++) {
673    var c = constraints.at(i);
674    if (c.isInput() && c.isSatisfied())
675      // not in plan already and eligible for inclusion
676      sources.add(c);
677  }
678  return this.makePlan(sources);
679}
680
681/**
682 * Recompute the walkabout strengths and stay flags of all variables
683 * downstream of the given constraint and recompute the actual
684 * values of all variables whose stay flag is true. If a cycle is
685 * detected, remove the given constraint and answer
686 * false. Otherwise, answer true.
687 * Details: Cycles are detected when a marked variable is
688 * encountered downstream of the given constraint. The sender is
689 * assumed to have marked the inputs of the given constraint with
690 * the given mark. Thus, encountering a marked node downstream of
691 * the output constraint means that there is a path from the
692 * constraint's output to one of its inputs.
693 */
694Planner.prototype.addPropagate = function (c, mark) {
695  var todo = new OrderedCollection();
696  todo.add(c);
697  while (todo.size() > 0) {
698    var d = todo.removeFirst();
699    if (d.output().mark == mark) {
700      this.incrementalRemove(c);
701      return false;
702    }
703    d.recalculate();
704    this.addConstraintsConsumingTo(d.output(), todo);
705  }
706  return true;
707}
708
709
710/**
711 * Update the walkabout strengths and stay flags of all variables
712 * downstream of the given constraint. Answer a collection of
713 * unsatisfied constraints sorted in order of decreasing strength.
714 */
715Planner.prototype.removePropagateFrom = function (out) {
716  out.determinedBy = null;
717  out.walkStrength = Strength.WEAKEST;
718  out.stay = true;
719  var unsatisfied = new OrderedCollection();
720  var todo = new OrderedCollection();
721  todo.add(out);
722  while (todo.size() > 0) {
723    var v = todo.removeFirst();
724    for (var i = 0; i < v.constraints.size(); i++) {
725      var c = v.constraints.at(i);
726      if (!c.isSatisfied())
727        unsatisfied.add(c);
728    }
729    var determining = v.determinedBy;
730    for (var i = 0; i < v.constraints.size(); i++) {
731      var next = v.constraints.at(i);
732      if (next != determining && next.isSatisfied()) {
733        next.recalculate();
734        todo.add(next.output());
735      }
736    }
737  }
738  return unsatisfied;
739}
740
741Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
742  var determining = v.determinedBy;
743  var cc = v.constraints;
744  for (var i = 0; i < cc.size(); i++) {
745    var c = cc.at(i);
746    if (c != determining && c.isSatisfied())
747      coll.add(c);
748  }
749}
750
751/* --- *
752 * P l a n
753 * --- */
754
755/**
756 * A Plan is an ordered list of constraints to be executed in sequence
757 * to resatisfy all currently satisfiable constraints in the face of
758 * one or more changing inputs.
759 */
760function Plan() {
761  this.v = new OrderedCollection();
762}
763
764Plan.prototype.addConstraint = function (c) {
765  this.v.add(c);
766}
767
768Plan.prototype.size = function () {
769  return this.v.size();
770}
771
772Plan.prototype.constraintAt = function (index) {
773  return this.v.at(index);
774}
775
776Plan.prototype.execute = function () {
777  for (var i = 0; i < this.size(); i++) {
778    var c = this.constraintAt(i);
779    c.execute();
780  }
781}
782
783/* --- *
784 * M a i n
785 * --- */
786
787/**
788 * This is the standard DeltaBlue benchmark. A long chain of equality
789 * constraints is constructed with a stay constraint on one end. An
790 * edit constraint is then added to the opposite end and the time is
791 * measured for adding and removing this constraint, and extracting
792 * and executing a constraint satisfaction plan. There are two cases.
793 * In case 1, the added constraint is stronger than the stay
794 * constraint and values must propagate down the entire length of the
795 * chain. In case 2, the added constraint is weaker than the stay
796 * constraint so it cannot be accomodated. The cost in this case is,
797 * of course, very low. Typical situations lie somewhere between these
798 * two extremes.
799 */
800function chainTest(n) {
801  planner = new Planner();
802  var prev = null, first = null, last = null;
803
804  // Build chain of n equality constraints
805  for (var i = 0; i <= n; i++) {
806    var name = "v" + i;
807    var v = new Variable(name);
808    if (prev != null)
809      new EqualityConstraint(prev, v, Strength.REQUIRED);
810    if (i == 0) first = v;
811    if (i == n) last = v;
812    prev = v;
813  }
814
815  new StayConstraint(last, Strength.STRONG_DEFAULT);
816  var edit = new EditConstraint(first, Strength.PREFERRED);
817  var edits = new OrderedCollection();
818  edits.add(edit);
819  var plan = planner.extractPlanFromConstraints(edits);
820  for (var i = 0; i < 100; i++) {
821    first.value = i;
822    plan.execute();
823    if (last.value != i)
824      alert("Chain test failed.");
825  }
826}
827
828/**
829 * This test constructs a two sets of variables related to each
830 * other by a simple linear transformation (scale and offset). The
831 * time is measured to change a variable on either side of the
832 * mapping and to change the scale and offset factors.
833 */
834function projectionTest(n) {
835  planner = new Planner();
836  var scale = new Variable("scale", 10);
837  var offset = new Variable("offset", 1000);
838  var src = null, dst = null;
839
840  var dests = new OrderedCollection();
841  for (var i = 0; i < n; i++) {
842    src = new Variable("src" + i, i);
843    dst = new Variable("dst" + i, i);
844    dests.add(dst);
845    new StayConstraint(src, Strength.NORMAL);
846    new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
847  }
848
849  change(src, 17);
850  if (dst.value != 1170) alert("Projection 1 failed");
851  change(dst, 1050);
852  if (src.value != 5) alert("Projection 2 failed");
853  change(scale, 5);
854  for (var i = 0; i < n - 1; i++) {
855    if (dests.at(i).value != i * 5 + 1000)
856      alert("Projection 3 failed");
857  }
858  change(offset, 2000);
859  for (var i = 0; i < n - 1; i++) {
860    if (dests.at(i).value != i * 5 + 2000)
861      alert("Projection 4 failed");
862  }
863}
864
865function change(v, newValue) {
866  var edit = new EditConstraint(v, Strength.PREFERRED);
867  var edits = new OrderedCollection();
868  edits.add(edit);
869  var plan = planner.extractPlanFromConstraints(edits);
870  for (var i = 0; i < 10; i++) {
871    v.value = newValue;
872    plan.execute();
873  }
874  edit.destroyConstraint();
875}
876
877// Global variable holding the current planner.
878var planner = null;
879
880function deltaBlue() {
881  chainTest(100);
882  projectionTest(100);
883}
884