1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/thread.h>
114 
115 #if defined(OPENSSL_NO_THREADS)
116 #elif defined(OPENSSL_WINDOWS)
117 #pragma warning(push, 3)
118 #include <windows.h>
119 #pragma warning(pop)
120 #else
121 #include <pthread.h>
122 #endif
123 
124 #if defined(__cplusplus)
125 extern "C" {
126 #endif
127 
128 
129 /* MSVC's C4701 warning about the use of *potentially*--as opposed to
130  * *definitely*--uninitialized values sometimes has false positives. Usually
131  * the false positives can and should be worked around by simplifying the
132  * control flow. When that is not practical, annotate the function containing
133  * the code that triggers the warning with
134  * OPENSSL_SUPPRESS_POTENTIALLY_UNINITIALIZED_WARNINGS after its parameters:
135  *
136  *    void f() OPENSSL_SUPPRESS_POTENTIALLY_UNINITIALIZED_WARNINGS {
137  *       ...
138  *    }
139  *
140  * Note that MSVC's control flow analysis seems to operate on a whole-function
141  * basis, so the annotation must be placed on the entire function, not just a
142  * block within the function. */
143 #if defined(_MSC_VER)
144 #define OPENSSL_SUPPRESS_POTENTIALLY_UNINITIALIZED_WARNINGS \
145         __pragma(warning(suppress:4701))
146 #else
147 #define OPENSSL_SUPPRESS_POTENTIALLY_UNINITIALIZED_WARNINGS
148 #endif
149 
150 /* MSVC will sometimes correctly detect unreachable code and issue a warning,
151  * which breaks the build since we treat errors as warnings, in some rare cases
152  * where we want to allow the dead code to continue to exist. In these
153  * situations, annotate the function containing the unreachable code with
154  * OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS after its parameters:
155  *
156  *    void f() OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS {
157  *       ...
158  *    }
159  *
160  * Note that MSVC's reachability analysis seems to operate on a whole-function
161  * basis, so the annotation must be placed on the entire function, not just a
162  * block within the function. */
163 #if defined(_MSC_VER)
164 #define OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS \
165         __pragma(warning(suppress:4702))
166 #else
167 #define OPENSSL_SUPPRESS_UNREACHABLE_CODE_WARNINGS
168 #endif
169 
170 
171 #if defined(_MSC_VER)
172 #define OPENSSL_U64(x) x##UI64
173 #else
174 
175 #if defined(OPENSSL_64_BIT)
176 #define OPENSSL_U64(x) x##UL
177 #else
178 #define OPENSSL_U64(x) x##ULL
179 #endif
180 
181 #endif  /* defined(_MSC_VER) */
182 
183 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
184     defined(OPENSSL_AARCH64)
185 /* OPENSSL_cpuid_setup initializes OPENSSL_ia32cap_P. */
186 void OPENSSL_cpuid_setup(void);
187 #endif
188 
189 #if !defined(inline)
190 #define inline __inline
191 #endif
192 
193 
194 /* Constant-time utility functions.
195  *
196  * The following methods return a bitmask of all ones (0xff...f) for true and 0
197  * for false. This is useful for choosing a value based on the result of a
198  * conditional in constant time. For example,
199  *
200  * if (a < b) {
201  *   c = a;
202  * } else {
203  *   c = b;
204  * }
205  *
206  * can be written as
207  *
208  * unsigned int lt = constant_time_lt(a, b);
209  * c = constant_time_select(lt, a, b); */
210 
211 /* constant_time_msb returns the given value with the MSB copied to all the
212  * other bits. */
constant_time_msb(unsigned int a)213 static inline unsigned int constant_time_msb(unsigned int a) {
214   return (unsigned int)((int)(a) >> (sizeof(int) * 8 - 1));
215 }
216 
217 /* constant_time_lt returns 0xff..f if a < b and 0 otherwise. */
constant_time_lt(unsigned int a,unsigned int b)218 static inline unsigned int constant_time_lt(unsigned int a, unsigned int b) {
219   /* Consider the two cases of the problem:
220    *   msb(a) == msb(b): a < b iff the MSB of a - b is set.
221    *   msb(a) != msb(b): a < b iff the MSB of b is set.
222    *
223    * If msb(a) == msb(b) then the following evaluates as:
224    *   msb(a^((a^b)|((a-b)^a))) ==
225    *   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
226    *   msb(a^a^(a-b))           ==   (rearranging)
227    *   msb(a-b)                      (because ∀x. x^x == 0)
228    *
229    * Else, if msb(a) != msb(b) then the following evaluates as:
230    *   msb(a^((a^b)|((a-b)^a))) ==
231    *   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
232    *                                  represents a value s.t. msb(��) = 1)
233    *   msb(a^��)                 ==   (because ORing with 1 results in 1)
234    *   msb(b)
235    *
236    *
237    * Here is an SMT-LIB verification of this formula:
238    *
239    * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
240    *   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
241    * )
242    *
243    * (declare-fun a () (_ BitVec 32))
244    * (declare-fun b () (_ BitVec 32))
245    *
246    * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
247    * (check-sat)
248    * (get-model)
249    */
250   return constant_time_msb(a^((a^b)|((a-b)^a)));
251 }
252 
253 /* constant_time_lt_8 acts like |constant_time_lt| but returns an 8-bit mask. */
constant_time_lt_8(unsigned int a,unsigned int b)254 static inline uint8_t constant_time_lt_8(unsigned int a, unsigned int b) {
255   return (uint8_t)(constant_time_lt(a, b));
256 }
257 
258 /* constant_time_gt returns 0xff..f if a >= b and 0 otherwise. */
constant_time_ge(unsigned int a,unsigned int b)259 static inline unsigned int constant_time_ge(unsigned int a, unsigned int b) {
260   return ~constant_time_lt(a, b);
261 }
262 
263 /* constant_time_ge_8 acts like |constant_time_ge| but returns an 8-bit mask. */
constant_time_ge_8(unsigned int a,unsigned int b)264 static inline uint8_t constant_time_ge_8(unsigned int a, unsigned int b) {
265   return (uint8_t)(constant_time_ge(a, b));
266 }
267 
268 /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
constant_time_is_zero(unsigned int a)269 static inline unsigned int constant_time_is_zero(unsigned int a) {
270   /* Here is an SMT-LIB verification of this formula:
271    *
272    * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
273    *   (bvand (bvnot a) (bvsub a #x00000001))
274    * )
275    *
276    * (declare-fun a () (_ BitVec 32))
277    *
278    * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
279    * (check-sat)
280    * (get-model)
281    */
282   return constant_time_msb(~a & (a - 1));
283 }
284 
285 /* constant_time_is_zero_8 acts like constant_time_is_zero but returns an 8-bit
286  * mask. */
constant_time_is_zero_8(unsigned int a)287 static inline uint8_t constant_time_is_zero_8(unsigned int a) {
288   return (uint8_t)(constant_time_is_zero(a));
289 }
290 
291 /* constant_time_eq returns 0xff..f if a == b and 0 otherwise. */
constant_time_eq(unsigned int a,unsigned int b)292 static inline unsigned int constant_time_eq(unsigned int a, unsigned int b) {
293   return constant_time_is_zero(a ^ b);
294 }
295 
296 /* constant_time_eq_8 acts like |constant_time_eq| but returns an 8-bit mask. */
constant_time_eq_8(unsigned int a,unsigned int b)297 static inline uint8_t constant_time_eq_8(unsigned int a, unsigned int b) {
298   return (uint8_t)(constant_time_eq(a, b));
299 }
300 
301 /* constant_time_eq_int acts like |constant_time_eq| but works on int values. */
constant_time_eq_int(int a,int b)302 static inline unsigned int constant_time_eq_int(int a, int b) {
303   return constant_time_eq((unsigned)(a), (unsigned)(b));
304 }
305 
306 /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
307  * mask. */
constant_time_eq_int_8(int a,int b)308 static inline uint8_t constant_time_eq_int_8(int a, int b) {
309   return constant_time_eq_8((unsigned)(a), (unsigned)(b));
310 }
311 
312 /* constant_time_select returns (mask & a) | (~mask & b). When |mask| is all 1s
313  * or all 0s (as returned by the methods above), the select methods return
314  * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
constant_time_select(unsigned int mask,unsigned int a,unsigned int b)315 static inline unsigned int constant_time_select(unsigned int mask,
316                                                 unsigned int a, unsigned int b) {
317   return (mask & a) | (~mask & b);
318 }
319 
320 /* constant_time_select_8 acts like |constant_time_select| but operates on
321  * 8-bit values. */
constant_time_select_8(uint8_t mask,uint8_t a,uint8_t b)322 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
323                                              uint8_t b) {
324   return (uint8_t)(constant_time_select(mask, a, b));
325 }
326 
327 /* constant_time_select_int acts like |constant_time_select| but operates on
328  * ints. */
constant_time_select_int(unsigned int mask,int a,int b)329 static inline int constant_time_select_int(unsigned int mask, int a, int b) {
330   return (int)(constant_time_select(mask, (unsigned)(a), (unsigned)(b)));
331 }
332 
333 
334 /* Thread-safe initialisation. */
335 
336 #if defined(OPENSSL_NO_THREADS)
337 typedef uint32_t CRYPTO_once_t;
338 #define CRYPTO_ONCE_INIT 0
339 #elif defined(OPENSSL_WINDOWS)
340 typedef LONG CRYPTO_once_t;
341 #define CRYPTO_ONCE_INIT 0
342 #else
343 typedef pthread_once_t CRYPTO_once_t;
344 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
345 #endif
346 
347 /* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
348  * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
349  * then they will block until |init| completes, but |init| will have only been
350  * called once.
351  *
352  * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
353  * the value |CRYPTO_ONCE_INIT|. */
354 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
355 
356 
357 /* Reference counting. */
358 
359 /* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
360 #define CRYPTO_REFCOUNT_MAX 0xffffffff
361 
362 /* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
363  * value would overflow. It's safe for multiple threads to concurrently call
364  * this or |CRYPTO_refcount_dec_and_test_zero| on the same
365  * |CRYPTO_refcount_t|. */
366 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
367 
368 /* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
369  *   if it's zero, it crashes the address space.
370  *   if it's the maximum value, it returns zero.
371  *   otherwise, it atomically decrements it and returns one iff the resulting
372  *       value is zero.
373  *
374  * It's safe for multiple threads to concurrently call this or
375  * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
376 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
377 
378 
379 /* Locks.
380  *
381  * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
382  * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
383  * a global lock. A global lock must be initialised to the value
384  * |CRYPTO_STATIC_MUTEX_INIT|.
385  *
386  * |CRYPTO_MUTEX| can appear in public structures and so is defined in
387  * thread.h.
388  *
389  * The global lock is a different type because there's no static initialiser
390  * value on Windows for locks, so global locks have to be coupled with a
391  * |CRYPTO_once_t| to ensure that the lock is setup before use. This is done
392  * automatically by |CRYPTO_STATIC_MUTEX_lock_*|. */
393 
394 #if defined(OPENSSL_NO_THREADS)
395 struct CRYPTO_STATIC_MUTEX {};
396 #define CRYPTO_STATIC_MUTEX_INIT {}
397 #elif defined(OPENSSL_WINDOWS)
398 struct CRYPTO_STATIC_MUTEX {
399   CRYPTO_once_t once;
400   CRITICAL_SECTION lock;
401 };
402 #define CRYPTO_STATIC_MUTEX_INIT { CRYPTO_ONCE_INIT, { 0 } }
403 #else
404 struct CRYPTO_STATIC_MUTEX {
405   pthread_rwlock_t lock;
406 };
407 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
408 #endif
409 
410 /* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
411  * |CRYPTO_STATIC_MUTEX|. */
412 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
413 
414 /* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
415  * read lock, but none may have a write lock. (On Windows, read locks are
416  * actually fully exclusive.) */
417 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
418 
419 /* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
420  * of lock on it. */
421 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
422 
423 /* CRYPTO_MUTEX_unlock unlocks |lock|. */
424 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock(CRYPTO_MUTEX *lock);
425 
426 /* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
427 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
428 
429 /* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
430  * have a read lock, but none may have a write lock. The |lock| variable does
431  * not need to be initialised by any function, but must have been statically
432  * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
433 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
434     struct CRYPTO_STATIC_MUTEX *lock);
435 
436 /* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
437  * any type of lock on it.  The |lock| variable does not need to be initialised
438  * by any function, but must have been statically initialised with
439  * |CRYPTO_STATIC_MUTEX_INIT|. */
440 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
441     struct CRYPTO_STATIC_MUTEX *lock);
442 
443 /* CRYPTO_STATIC_MUTEX_unlock unlocks |lock|. */
444 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock(
445     struct CRYPTO_STATIC_MUTEX *lock);
446 
447 
448 /* Thread local storage. */
449 
450 /* thread_local_data_t enumerates the types of thread-local data that can be
451  * stored. */
452 typedef enum {
453   OPENSSL_THREAD_LOCAL_ERR = 0,
454   OPENSSL_THREAD_LOCAL_RAND,
455   OPENSSL_THREAD_LOCAL_TEST,
456   NUM_OPENSSL_THREAD_LOCALS,
457 } thread_local_data_t;
458 
459 /* thread_local_destructor_t is the type of a destructor function that will be
460  * called when a thread exits and its thread-local storage needs to be freed. */
461 typedef void (*thread_local_destructor_t)(void *);
462 
463 /* CRYPTO_get_thread_local gets the pointer value that is stored for the
464  * current thread for the given index, or NULL if none has been set. */
465 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
466 
467 /* CRYPTO_set_thread_local sets a pointer value for the current thread at the
468  * given index. This function should only be called once per thread for a given
469  * |index|: rather than update the pointer value itself, update the data that
470  * is pointed to.
471  *
472  * The destructor function will be called when a thread exits to free this
473  * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
474  * |index| should have the same |destructor| argument. The destructor may be
475  * called with a NULL argument if a thread that never set a thread-local
476  * pointer for |index|, exits. The destructor may be called concurrently with
477  * different arguments.
478  *
479  * This function returns one on success or zero on error. If it returns zero
480  * then |destructor| has been called with |value| already. */
481 OPENSSL_EXPORT int CRYPTO_set_thread_local(
482     thread_local_data_t index, void *value,
483     thread_local_destructor_t destructor);
484 
485 
486 /* ex_data */
487 
488 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
489 
490 /* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
491  * supports ex_data. It should defined as a static global within the module
492  * which defines that type. */
493 typedef struct {
494   struct CRYPTO_STATIC_MUTEX lock;
495   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
496 } CRYPTO_EX_DATA_CLASS;
497 
498 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL}
499 
500 /* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
501  * it to |*out_index|. Each class of object should provide a wrapper function
502  * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
503  * zero otherwise. */
504 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
505                                            int *out_index, long argl,
506                                            void *argp, CRYPTO_EX_new *new_func,
507                                            CRYPTO_EX_dup *dup_func,
508                                            CRYPTO_EX_free *free_func);
509 
510 /* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
511  * of object should provide a wrapper function. */
512 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
513 
514 /* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
515  * if no such index exists. Each class of object should provide a wrapper
516  * function. */
517 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
518 
519 /* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA| which is
520  * embedded inside of |obj| which is of class |ex_data_class|. Returns one on
521  * success and zero otherwise. */
522 OPENSSL_EXPORT int CRYPTO_new_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
523                                       void *obj, CRYPTO_EX_DATA *ad);
524 
525 /* CRYPTO_dup_ex_data duplicates |from| into a freshly allocated
526  * |CRYPTO_EX_DATA|, |to|. Both of which are inside objects of the given
527  * class. It returns one on success and zero otherwise. */
528 OPENSSL_EXPORT int CRYPTO_dup_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
529                                       CRYPTO_EX_DATA *to,
530                                       const CRYPTO_EX_DATA *from);
531 
532 /* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
533  * object of the given class. */
534 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
535                                         void *obj, CRYPTO_EX_DATA *ad);
536 
537 
538 #if defined(__cplusplus)
539 }  /* extern C */
540 #endif
541 
542 #endif  /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
543