1 //===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Interface for the implementations of runtime dynamic linker facilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
15 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22 #include "llvm/ExecutionEngine/RuntimeDyld.h"
23 #include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
24 #include "llvm/Object/ObjectFile.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/Host.h"
29 #include "llvm/Support/Mutex.h"
30 #include "llvm/Support/SwapByteOrder.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <map>
33 #include <system_error>
34
35 using namespace llvm;
36 using namespace llvm::object;
37
38 namespace llvm {
39
40 // Helper for extensive error checking in debug builds.
Check(std::error_code Err)41 inline std::error_code Check(std::error_code Err) {
42 if (Err) {
43 report_fatal_error(Err.message());
44 }
45 return Err;
46 }
47
48 class Twine;
49
50 /// SectionEntry - represents a section emitted into memory by the dynamic
51 /// linker.
52 class SectionEntry {
53 public:
54 /// Name - section name.
55 std::string Name;
56
57 /// Address - address in the linker's memory where the section resides.
58 uint8_t *Address;
59
60 /// Size - section size. Doesn't include the stubs.
61 size_t Size;
62
63 /// LoadAddress - the address of the section in the target process's memory.
64 /// Used for situations in which JIT-ed code is being executed in the address
65 /// space of a separate process. If the code executes in the same address
66 /// space where it was JIT-ed, this just equals Address.
67 uint64_t LoadAddress;
68
69 /// StubOffset - used for architectures with stub functions for far
70 /// relocations (like ARM).
71 uintptr_t StubOffset;
72
73 /// ObjAddress - address of the section in the in-memory object file. Used
74 /// for calculating relocations in some object formats (like MachO).
75 uintptr_t ObjAddress;
76
SectionEntry(StringRef name,uint8_t * address,size_t size,uintptr_t objAddress)77 SectionEntry(StringRef name, uint8_t *address, size_t size,
78 uintptr_t objAddress)
79 : Name(name), Address(address), Size(size),
80 LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
81 ObjAddress(objAddress) {}
82 };
83
84 /// RelocationEntry - used to represent relocations internally in the dynamic
85 /// linker.
86 class RelocationEntry {
87 public:
88 /// SectionID - the section this relocation points to.
89 unsigned SectionID;
90
91 /// Offset - offset into the section.
92 uint64_t Offset;
93
94 /// RelType - relocation type.
95 uint32_t RelType;
96
97 /// Addend - the relocation addend encoded in the instruction itself. Also
98 /// used to make a relocation section relative instead of symbol relative.
99 int64_t Addend;
100
101 struct SectionPair {
102 uint32_t SectionA;
103 uint32_t SectionB;
104 };
105
106 /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
107 /// lookup).
108 union {
109 uint64_t SymOffset;
110 SectionPair Sections;
111 };
112
113 /// True if this is a PCRel relocation (MachO specific).
114 bool IsPCRel;
115
116 /// The size of this relocation (MachO specific).
117 unsigned Size;
118
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend)119 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
120 : SectionID(id), Offset(offset), RelType(type), Addend(addend),
121 SymOffset(0), IsPCRel(false), Size(0) {}
122
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,uint64_t symoffset)123 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
124 uint64_t symoffset)
125 : SectionID(id), Offset(offset), RelType(type), Addend(addend),
126 SymOffset(symoffset), IsPCRel(false), Size(0) {}
127
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,bool IsPCRel,unsigned Size)128 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
129 bool IsPCRel, unsigned Size)
130 : SectionID(id), Offset(offset), RelType(type), Addend(addend),
131 SymOffset(0), IsPCRel(IsPCRel), Size(Size) {}
132
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,unsigned SectionA,uint64_t SectionAOffset,unsigned SectionB,uint64_t SectionBOffset,bool IsPCRel,unsigned Size)133 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
134 unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
135 uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
136 : SectionID(id), Offset(offset), RelType(type),
137 Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
138 Size(Size) {
139 Sections.SectionA = SectionA;
140 Sections.SectionB = SectionB;
141 }
142 };
143
144 class RelocationValueRef {
145 public:
146 unsigned SectionID;
147 uint64_t Offset;
148 int64_t Addend;
149 const char *SymbolName;
RelocationValueRef()150 RelocationValueRef() : SectionID(0), Offset(0), Addend(0),
151 SymbolName(nullptr) {}
152
153 inline bool operator==(const RelocationValueRef &Other) const {
154 return SectionID == Other.SectionID && Offset == Other.Offset &&
155 Addend == Other.Addend && SymbolName == Other.SymbolName;
156 }
157 inline bool operator<(const RelocationValueRef &Other) const {
158 if (SectionID != Other.SectionID)
159 return SectionID < Other.SectionID;
160 if (Offset != Other.Offset)
161 return Offset < Other.Offset;
162 if (Addend != Other.Addend)
163 return Addend < Other.Addend;
164 return SymbolName < Other.SymbolName;
165 }
166 };
167
168 /// @brief Symbol info for RuntimeDyld.
169 class SymbolTableEntry : public JITSymbolBase {
170 public:
SymbolTableEntry()171 SymbolTableEntry()
172 : JITSymbolBase(JITSymbolFlags::None), Offset(0), SectionID(0) {}
173
SymbolTableEntry(unsigned SectionID,uint64_t Offset,JITSymbolFlags Flags)174 SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
175 : JITSymbolBase(Flags), Offset(Offset), SectionID(SectionID) {}
176
getSectionID()177 unsigned getSectionID() const { return SectionID; }
getOffset()178 uint64_t getOffset() const { return Offset; }
179
180 private:
181 uint64_t Offset;
182 unsigned SectionID;
183 };
184
185 typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
186
187 class RuntimeDyldImpl {
188 friend class RuntimeDyld::LoadedObjectInfo;
189 friend class RuntimeDyldCheckerImpl;
190 protected:
191 // The MemoryManager to load objects into.
192 RuntimeDyld::MemoryManager &MemMgr;
193
194 // The symbol resolver to use for external symbols.
195 RuntimeDyld::SymbolResolver &Resolver;
196
197 // Attached RuntimeDyldChecker instance. Null if no instance attached.
198 RuntimeDyldCheckerImpl *Checker;
199
200 // A list of all sections emitted by the dynamic linker. These sections are
201 // referenced in the code by means of their index in this list - SectionID.
202 typedef SmallVector<SectionEntry, 64> SectionList;
203 SectionList Sections;
204
205 typedef unsigned SID; // Type for SectionIDs
206 #define RTDYLD_INVALID_SECTION_ID ((SID)(-1))
207
208 // Keep a map of sections from object file to the SectionID which
209 // references it.
210 typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
211
212 // A global symbol table for symbols from all loaded modules.
213 RTDyldSymbolTable GlobalSymbolTable;
214
215 // Keep a map of common symbols to their info pairs
216 typedef std::vector<SymbolRef> CommonSymbolList;
217
218 // For each symbol, keep a list of relocations based on it. Anytime
219 // its address is reassigned (the JIT re-compiled the function, e.g.),
220 // the relocations get re-resolved.
221 // The symbol (or section) the relocation is sourced from is the Key
222 // in the relocation list where it's stored.
223 typedef SmallVector<RelocationEntry, 64> RelocationList;
224 // Relocations to sections already loaded. Indexed by SectionID which is the
225 // source of the address. The target where the address will be written is
226 // SectionID/Offset in the relocation itself.
227 DenseMap<unsigned, RelocationList> Relocations;
228
229 // Relocations to external symbols that are not yet resolved. Symbols are
230 // external when they aren't found in the global symbol table of all loaded
231 // modules. This map is indexed by symbol name.
232 StringMap<RelocationList> ExternalSymbolRelocations;
233
234
235 typedef std::map<RelocationValueRef, uintptr_t> StubMap;
236
237 Triple::ArchType Arch;
238 bool IsTargetLittleEndian;
239
240 // True if all sections should be passed to the memory manager, false if only
241 // sections containing relocations should be. Defaults to 'false'.
242 bool ProcessAllSections;
243
244 // This mutex prevents simultaneously loading objects from two different
245 // threads. This keeps us from having to protect individual data structures
246 // and guarantees that section allocation requests to the memory manager
247 // won't be interleaved between modules. It is also used in mapSectionAddress
248 // and resolveRelocations to protect write access to internal data structures.
249 //
250 // loadObject may be called on the same thread during the handling of of
251 // processRelocations, and that's OK. The handling of the relocation lists
252 // is written in such a way as to work correctly if new elements are added to
253 // the end of the list while the list is being processed.
254 sys::Mutex lock;
255
256 virtual unsigned getMaxStubSize() = 0;
257 virtual unsigned getStubAlignment() = 0;
258
259 bool HasError;
260 std::string ErrorStr;
261
262 // Set the error state and record an error string.
Error(const Twine & Msg)263 bool Error(const Twine &Msg) {
264 ErrorStr = Msg.str();
265 HasError = true;
266 return true;
267 }
268
getSectionLoadAddress(unsigned SectionID)269 uint64_t getSectionLoadAddress(unsigned SectionID) const {
270 return Sections[SectionID].LoadAddress;
271 }
272
getSectionAddress(unsigned SectionID)273 uint8_t *getSectionAddress(unsigned SectionID) const {
274 return (uint8_t *)Sections[SectionID].Address;
275 }
276
writeInt16BE(uint8_t * Addr,uint16_t Value)277 void writeInt16BE(uint8_t *Addr, uint16_t Value) {
278 if (IsTargetLittleEndian)
279 sys::swapByteOrder(Value);
280 *Addr = (Value >> 8) & 0xFF;
281 *(Addr + 1) = Value & 0xFF;
282 }
283
writeInt32BE(uint8_t * Addr,uint32_t Value)284 void writeInt32BE(uint8_t *Addr, uint32_t Value) {
285 if (IsTargetLittleEndian)
286 sys::swapByteOrder(Value);
287 *Addr = (Value >> 24) & 0xFF;
288 *(Addr + 1) = (Value >> 16) & 0xFF;
289 *(Addr + 2) = (Value >> 8) & 0xFF;
290 *(Addr + 3) = Value & 0xFF;
291 }
292
writeInt64BE(uint8_t * Addr,uint64_t Value)293 void writeInt64BE(uint8_t *Addr, uint64_t Value) {
294 if (IsTargetLittleEndian)
295 sys::swapByteOrder(Value);
296 *Addr = (Value >> 56) & 0xFF;
297 *(Addr + 1) = (Value >> 48) & 0xFF;
298 *(Addr + 2) = (Value >> 40) & 0xFF;
299 *(Addr + 3) = (Value >> 32) & 0xFF;
300 *(Addr + 4) = (Value >> 24) & 0xFF;
301 *(Addr + 5) = (Value >> 16) & 0xFF;
302 *(Addr + 6) = (Value >> 8) & 0xFF;
303 *(Addr + 7) = Value & 0xFF;
304 }
305
306 /// Endian-aware read Read the least significant Size bytes from Src.
307 uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
308
309 /// Endian-aware write. Write the least significant Size bytes from Value to
310 /// Dst.
311 void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
312
313 /// \brief Given the common symbols discovered in the object file, emit a
314 /// new section for them and update the symbol mappings in the object and
315 /// symbol table.
316 void emitCommonSymbols(const ObjectFile &Obj, CommonSymbolList &CommonSymbols);
317
318 /// \brief Emits section data from the object file to the MemoryManager.
319 /// \param IsCode if it's true then allocateCodeSection() will be
320 /// used for emits, else allocateDataSection() will be used.
321 /// \return SectionID.
322 unsigned emitSection(const ObjectFile &Obj, const SectionRef &Section,
323 bool IsCode);
324
325 /// \brief Find Section in LocalSections. If the secton is not found - emit
326 /// it and store in LocalSections.
327 /// \param IsCode if it's true then allocateCodeSection() will be
328 /// used for emmits, else allocateDataSection() will be used.
329 /// \return SectionID.
330 unsigned findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section,
331 bool IsCode, ObjSectionToIDMap &LocalSections);
332
333 // \brief Add a relocation entry that uses the given section.
334 void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
335
336 // \brief Add a relocation entry that uses the given symbol. This symbol may
337 // be found in the global symbol table, or it may be external.
338 void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
339
340 /// \brief Emits long jump instruction to Addr.
341 /// \return Pointer to the memory area for emitting target address.
342 uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
343
344 /// \brief Resolves relocations from Relocs list with address from Value.
345 void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
346
347 /// \brief A object file specific relocation resolver
348 /// \param RE The relocation to be resolved
349 /// \param Value Target symbol address to apply the relocation action
350 virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
351
352 /// \brief Parses one or more object file relocations (some object files use
353 /// relocation pairs) and stores it to Relocations or SymbolRelocations
354 /// (this depends on the object file type).
355 /// \return Iterator to the next relocation that needs to be parsed.
356 virtual relocation_iterator
357 processRelocationRef(unsigned SectionID, relocation_iterator RelI,
358 const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
359 StubMap &Stubs) = 0;
360
361 /// \brief Resolve relocations to external symbols.
362 void resolveExternalSymbols();
363
364 // \brief Compute an upper bound of the memory that is required to load all
365 // sections
366 void computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize,
367 uint64_t &DataSizeRO, uint64_t &DataSizeRW);
368
369 // \brief Compute the stub buffer size required for a section
370 unsigned computeSectionStubBufSize(const ObjectFile &Obj,
371 const SectionRef &Section);
372
373 // \brief Implementation of the generic part of the loadObject algorithm.
374 std::pair<unsigned, unsigned> loadObjectImpl(const object::ObjectFile &Obj);
375
376 public:
RuntimeDyldImpl(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)377 RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
378 RuntimeDyld::SymbolResolver &Resolver)
379 : MemMgr(MemMgr), Resolver(Resolver), Checker(nullptr),
380 ProcessAllSections(false), HasError(false) {
381 }
382
383 virtual ~RuntimeDyldImpl();
384
setProcessAllSections(bool ProcessAllSections)385 void setProcessAllSections(bool ProcessAllSections) {
386 this->ProcessAllSections = ProcessAllSections;
387 }
388
setRuntimeDyldChecker(RuntimeDyldCheckerImpl * Checker)389 void setRuntimeDyldChecker(RuntimeDyldCheckerImpl *Checker) {
390 this->Checker = Checker;
391 }
392
393 virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
394 loadObject(const object::ObjectFile &Obj) = 0;
395
getSymbolLocalAddress(StringRef Name)396 uint8_t* getSymbolLocalAddress(StringRef Name) const {
397 // FIXME: Just look up as a function for now. Overly simple of course.
398 // Work in progress.
399 RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
400 if (pos == GlobalSymbolTable.end())
401 return nullptr;
402 const auto &SymInfo = pos->second;
403 return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
404 }
405
getSymbol(StringRef Name)406 RuntimeDyld::SymbolInfo getSymbol(StringRef Name) const {
407 // FIXME: Just look up as a function for now. Overly simple of course.
408 // Work in progress.
409 RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
410 if (pos == GlobalSymbolTable.end())
411 return nullptr;
412 const auto &SymEntry = pos->second;
413 uint64_t TargetAddr =
414 getSectionLoadAddress(SymEntry.getSectionID()) + SymEntry.getOffset();
415 return RuntimeDyld::SymbolInfo(TargetAddr, SymEntry.getFlags());
416 }
417
418 void resolveRelocations();
419
420 void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
421
422 void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
423
424 // Is the linker in an error state?
hasError()425 bool hasError() { return HasError; }
426
427 // Mark the error condition as handled and continue.
clearError()428 void clearError() { HasError = false; }
429
430 // Get the error message.
getErrorString()431 StringRef getErrorString() { return ErrorStr; }
432
433 virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
434
435 virtual void registerEHFrames();
436
437 virtual void deregisterEHFrames();
438
finalizeLoad(const ObjectFile & ObjImg,ObjSectionToIDMap & SectionMap)439 virtual void finalizeLoad(const ObjectFile &ObjImg,
440 ObjSectionToIDMap &SectionMap) {}
441 };
442
443 } // end namespace llvm
444
445 #endif
446