1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production. C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession. In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce. Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 /// pm-expression: [C++ 5.5]
49 /// cast-expression
50 /// pm-expression '.*' cast-expression
51 /// pm-expression '->*' cast-expression
52 ///
53 /// multiplicative-expression: [C99 6.5.5]
54 /// Note: in C++, apply pm-expression instead of cast-expression
55 /// cast-expression
56 /// multiplicative-expression '*' cast-expression
57 /// multiplicative-expression '/' cast-expression
58 /// multiplicative-expression '%' cast-expression
59 ///
60 /// additive-expression: [C99 6.5.6]
61 /// multiplicative-expression
62 /// additive-expression '+' multiplicative-expression
63 /// additive-expression '-' multiplicative-expression
64 ///
65 /// shift-expression: [C99 6.5.7]
66 /// additive-expression
67 /// shift-expression '<<' additive-expression
68 /// shift-expression '>>' additive-expression
69 ///
70 /// relational-expression: [C99 6.5.8]
71 /// shift-expression
72 /// relational-expression '<' shift-expression
73 /// relational-expression '>' shift-expression
74 /// relational-expression '<=' shift-expression
75 /// relational-expression '>=' shift-expression
76 ///
77 /// equality-expression: [C99 6.5.9]
78 /// relational-expression
79 /// equality-expression '==' relational-expression
80 /// equality-expression '!=' relational-expression
81 ///
82 /// AND-expression: [C99 6.5.10]
83 /// equality-expression
84 /// AND-expression '&' equality-expression
85 ///
86 /// exclusive-OR-expression: [C99 6.5.11]
87 /// AND-expression
88 /// exclusive-OR-expression '^' AND-expression
89 ///
90 /// inclusive-OR-expression: [C99 6.5.12]
91 /// exclusive-OR-expression
92 /// inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 /// logical-AND-expression: [C99 6.5.13]
95 /// inclusive-OR-expression
96 /// logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 /// logical-OR-expression: [C99 6.5.14]
99 /// logical-AND-expression
100 /// logical-OR-expression '||' logical-AND-expression
101 ///
102 /// conditional-expression: [C99 6.5.15]
103 /// logical-OR-expression
104 /// logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU] logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 /// assignment-expression: [C99 6.5.16]
109 /// conditional-expression
110 /// unary-expression assignment-operator assignment-expression
111 /// [C++] throw-expression [C++ 15]
112 ///
113 /// assignment-operator: one of
114 /// = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 /// expression: [C99 6.5.17]
117 /// assignment-expression ...[opt]
118 /// expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132 ExprResult LHS(ParseObjCAtExpression(AtLoc));
133 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed. This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141 ExprResult LHS(true);
142 {
143 // Silence extension warnings in the sub-expression
144 ExtensionRAIIObject O(Diags);
145
146 LHS = ParseCastExpression(false);
147 }
148
149 if (!LHS.isInvalid())
150 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151 LHS.get());
152
153 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158 if (Tok.is(tok::code_completion)) {
159 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160 cutOffParsing();
161 return ExprError();
162 }
163
164 if (Tok.is(tok::kw_throw))
165 return ParseThrowExpression();
166
167 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
168 /*isAddressOfOperand=*/false,
169 isTypeCast);
170 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
171 }
172
173 /// \brief Parse an assignment expression where part of an Objective-C message
174 /// send has already been parsed.
175 ///
176 /// In this case \p LBracLoc indicates the location of the '[' of the message
177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
178 /// the receiver of the message.
179 ///
180 /// Since this handles full assignment-expression's, it handles postfix
181 /// expressions and other binary operators for these expressions as well.
182 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
184 SourceLocation SuperLoc,
185 ParsedType ReceiverType,
186 Expr *ReceiverExpr) {
187 ExprResult R
188 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
189 ReceiverType, ReceiverExpr);
190 R = ParsePostfixExpressionSuffix(R);
191 return ParseRHSOfBinaryExpression(R, prec::Assignment);
192 }
193
194
ParseConstantExpression(TypeCastState isTypeCast)195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
196 // C++03 [basic.def.odr]p2:
197 // An expression is potentially evaluated unless it appears where an
198 // integral constant expression is required (see 5.19) [...].
199 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
200 EnterExpressionEvaluationContext Unevaluated(Actions,
201 Sema::ConstantEvaluated);
202
203 ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
204 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
205 return Actions.ActOnConstantExpression(Res);
206 }
207
isNotExpressionStart()208 bool Parser::isNotExpressionStart() {
209 tok::TokenKind K = Tok.getKind();
210 if (K == tok::l_brace || K == tok::r_brace ||
211 K == tok::kw_for || K == tok::kw_while ||
212 K == tok::kw_if || K == tok::kw_else ||
213 K == tok::kw_goto || K == tok::kw_try)
214 return true;
215 // If this is a decl-specifier, we can't be at the start of an expression.
216 return isKnownToBeDeclarationSpecifier();
217 }
218
isFoldOperator(prec::Level Level)219 static bool isFoldOperator(prec::Level Level) {
220 return Level > prec::Unknown && Level != prec::Conditional;
221 }
isFoldOperator(tok::TokenKind Kind)222 static bool isFoldOperator(tok::TokenKind Kind) {
223 return isFoldOperator(getBinOpPrecedence(Kind, false, true));
224 }
225
226 /// \brief Parse a binary expression that starts with \p LHS and has a
227 /// precedence of at least \p MinPrec.
228 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)229 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
230 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
231 GreaterThanIsOperator,
232 getLangOpts().CPlusPlus11);
233 SourceLocation ColonLoc;
234
235 while (1) {
236 // If this token has a lower precedence than we are allowed to parse (e.g.
237 // because we are called recursively, or because the token is not a binop),
238 // then we are done!
239 if (NextTokPrec < MinPrec)
240 return LHS;
241
242 // Consume the operator, saving the operator token for error reporting.
243 Token OpToken = Tok;
244 ConsumeToken();
245
246 // Bail out when encountering a comma followed by a token which can't
247 // possibly be the start of an expression. For instance:
248 // int f() { return 1, }
249 // We can't do this before consuming the comma, because
250 // isNotExpressionStart() looks at the token stream.
251 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
252 PP.EnterToken(Tok);
253 Tok = OpToken;
254 return LHS;
255 }
256
257 // If the next token is an ellipsis, then this is a fold-expression. Leave
258 // it alone so we can handle it in the paren expression.
259 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
260 // FIXME: We can't check this via lookahead before we consume the token
261 // because that tickles a lexer bug.
262 PP.EnterToken(Tok);
263 Tok = OpToken;
264 return LHS;
265 }
266
267 // Special case handling for the ternary operator.
268 ExprResult TernaryMiddle(true);
269 if (NextTokPrec == prec::Conditional) {
270 if (Tok.isNot(tok::colon)) {
271 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
272 ColonProtectionRAIIObject X(*this);
273
274 // Handle this production specially:
275 // logical-OR-expression '?' expression ':' conditional-expression
276 // In particular, the RHS of the '?' is 'expression', not
277 // 'logical-OR-expression' as we might expect.
278 TernaryMiddle = ParseExpression();
279 if (TernaryMiddle.isInvalid()) {
280 Actions.CorrectDelayedTyposInExpr(LHS);
281 LHS = ExprError();
282 TernaryMiddle = nullptr;
283 }
284 } else {
285 // Special case handling of "X ? Y : Z" where Y is empty:
286 // logical-OR-expression '?' ':' conditional-expression [GNU]
287 TernaryMiddle = nullptr;
288 Diag(Tok, diag::ext_gnu_conditional_expr);
289 }
290
291 if (!TryConsumeToken(tok::colon, ColonLoc)) {
292 // Otherwise, we're missing a ':'. Assume that this was a typo that
293 // the user forgot. If we're not in a macro expansion, we can suggest
294 // a fixit hint. If there were two spaces before the current token,
295 // suggest inserting the colon in between them, otherwise insert ": ".
296 SourceLocation FILoc = Tok.getLocation();
297 const char *FIText = ": ";
298 const SourceManager &SM = PP.getSourceManager();
299 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
300 assert(FILoc.isFileID());
301 bool IsInvalid = false;
302 const char *SourcePtr =
303 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
304 if (!IsInvalid && *SourcePtr == ' ') {
305 SourcePtr =
306 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
307 if (!IsInvalid && *SourcePtr == ' ') {
308 FILoc = FILoc.getLocWithOffset(-1);
309 FIText = ":";
310 }
311 }
312 }
313
314 Diag(Tok, diag::err_expected)
315 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
316 Diag(OpToken, diag::note_matching) << tok::question;
317 ColonLoc = Tok.getLocation();
318 }
319 }
320
321 // Code completion for the right-hand side of an assignment expression
322 // goes through a special hook that takes the left-hand side into account.
323 if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
324 Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
325 cutOffParsing();
326 return ExprError();
327 }
328
329 // Parse another leaf here for the RHS of the operator.
330 // ParseCastExpression works here because all RHS expressions in C have it
331 // as a prefix, at least. However, in C++, an assignment-expression could
332 // be a throw-expression, which is not a valid cast-expression.
333 // Therefore we need some special-casing here.
334 // Also note that the third operand of the conditional operator is
335 // an assignment-expression in C++, and in C++11, we can have a
336 // braced-init-list on the RHS of an assignment. For better diagnostics,
337 // parse as if we were allowed braced-init-lists everywhere, and check that
338 // they only appear on the RHS of assignments later.
339 ExprResult RHS;
340 bool RHSIsInitList = false;
341 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
342 RHS = ParseBraceInitializer();
343 RHSIsInitList = true;
344 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
345 RHS = ParseAssignmentExpression();
346 else
347 RHS = ParseCastExpression(false);
348
349 if (RHS.isInvalid()) {
350 Actions.CorrectDelayedTyposInExpr(LHS);
351 LHS = ExprError();
352 }
353
354 // Remember the precedence of this operator and get the precedence of the
355 // operator immediately to the right of the RHS.
356 prec::Level ThisPrec = NextTokPrec;
357 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
358 getLangOpts().CPlusPlus11);
359
360 // Assignment and conditional expressions are right-associative.
361 bool isRightAssoc = ThisPrec == prec::Conditional ||
362 ThisPrec == prec::Assignment;
363
364 // Get the precedence of the operator to the right of the RHS. If it binds
365 // more tightly with RHS than we do, evaluate it completely first.
366 if (ThisPrec < NextTokPrec ||
367 (ThisPrec == NextTokPrec && isRightAssoc)) {
368 if (!RHS.isInvalid() && RHSIsInitList) {
369 Diag(Tok, diag::err_init_list_bin_op)
370 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
371 RHS = ExprError();
372 }
373 // If this is left-associative, only parse things on the RHS that bind
374 // more tightly than the current operator. If it is left-associative, it
375 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
376 // A=(B=(C=D)), where each paren is a level of recursion here.
377 // The function takes ownership of the RHS.
378 RHS = ParseRHSOfBinaryExpression(RHS,
379 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
380 RHSIsInitList = false;
381
382 if (RHS.isInvalid()) {
383 Actions.CorrectDelayedTyposInExpr(LHS);
384 LHS = ExprError();
385 }
386
387 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
388 getLangOpts().CPlusPlus11);
389 }
390
391 if (!RHS.isInvalid() && RHSIsInitList) {
392 if (ThisPrec == prec::Assignment) {
393 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
394 << Actions.getExprRange(RHS.get());
395 } else {
396 Diag(OpToken, diag::err_init_list_bin_op)
397 << /*RHS*/1 << PP.getSpelling(OpToken)
398 << Actions.getExprRange(RHS.get());
399 LHS = ExprError();
400 }
401 }
402
403 if (!LHS.isInvalid()) {
404 // Combine the LHS and RHS into the LHS (e.g. build AST).
405 if (TernaryMiddle.isInvalid()) {
406 // If we're using '>>' as an operator within a template
407 // argument list (in C++98), suggest the addition of
408 // parentheses so that the code remains well-formed in C++0x.
409 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
410 SuggestParentheses(OpToken.getLocation(),
411 diag::warn_cxx11_right_shift_in_template_arg,
412 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
413 Actions.getExprRange(RHS.get()).getEnd()));
414
415 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
416 OpToken.getKind(), LHS.get(), RHS.get());
417 } else
418 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
419 LHS.get(), TernaryMiddle.get(),
420 RHS.get());
421 } else
422 // Ensure potential typos in the RHS aren't left undiagnosed.
423 Actions.CorrectDelayedTyposInExpr(RHS);
424 }
425 }
426
427 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
428 /// parse a unary-expression.
429 ///
430 /// \p isAddressOfOperand exists because an id-expression that is the
431 /// operand of address-of gets special treatment due to member pointers.
432 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)433 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
434 bool isAddressOfOperand,
435 TypeCastState isTypeCast) {
436 bool NotCastExpr;
437 ExprResult Res = ParseCastExpression(isUnaryExpression,
438 isAddressOfOperand,
439 NotCastExpr,
440 isTypeCast);
441 if (NotCastExpr)
442 Diag(Tok, diag::err_expected_expression);
443 return Res;
444 }
445
446 namespace {
447 class CastExpressionIdValidator : public CorrectionCandidateCallback {
448 public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)449 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
450 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
451 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
452 }
453
ValidateCandidate(const TypoCorrection & candidate)454 bool ValidateCandidate(const TypoCorrection &candidate) override {
455 NamedDecl *ND = candidate.getCorrectionDecl();
456 if (!ND)
457 return candidate.isKeyword();
458
459 if (isa<TypeDecl>(ND))
460 return WantTypeSpecifiers;
461
462 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
463 return false;
464
465 if (!(NextToken.is(tok::equal) || NextToken.is(tok::arrow) ||
466 NextToken.is(tok::period)))
467 return true;
468
469 for (auto *C : candidate) {
470 NamedDecl *ND = C->getUnderlyingDecl();
471 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
472 return true;
473 }
474 return false;
475 }
476
477 private:
478 Token NextToken;
479 bool AllowNonTypes;
480 };
481 }
482
483 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
484 /// a unary-expression.
485 ///
486 /// \p isAddressOfOperand exists because an id-expression that is the operand
487 /// of address-of gets special treatment due to member pointers. NotCastExpr
488 /// is set to true if the token is not the start of a cast-expression, and no
489 /// diagnostic is emitted in this case.
490 ///
491 /// \verbatim
492 /// cast-expression: [C99 6.5.4]
493 /// unary-expression
494 /// '(' type-name ')' cast-expression
495 ///
496 /// unary-expression: [C99 6.5.3]
497 /// postfix-expression
498 /// '++' unary-expression
499 /// '--' unary-expression
500 /// unary-operator cast-expression
501 /// 'sizeof' unary-expression
502 /// 'sizeof' '(' type-name ')'
503 /// [C++11] 'sizeof' '...' '(' identifier ')'
504 /// [GNU] '__alignof' unary-expression
505 /// [GNU] '__alignof' '(' type-name ')'
506 /// [C11] '_Alignof' '(' type-name ')'
507 /// [C++11] 'alignof' '(' type-id ')'
508 /// [GNU] '&&' identifier
509 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
510 /// [C++] new-expression
511 /// [C++] delete-expression
512 ///
513 /// unary-operator: one of
514 /// '&' '*' '+' '-' '~' '!'
515 /// [GNU] '__extension__' '__real' '__imag'
516 ///
517 /// primary-expression: [C99 6.5.1]
518 /// [C99] identifier
519 /// [C++] id-expression
520 /// constant
521 /// string-literal
522 /// [C++] boolean-literal [C++ 2.13.5]
523 /// [C++11] 'nullptr' [C++11 2.14.7]
524 /// [C++11] user-defined-literal
525 /// '(' expression ')'
526 /// [C11] generic-selection
527 /// '__func__' [C99 6.4.2.2]
528 /// [GNU] '__FUNCTION__'
529 /// [MS] '__FUNCDNAME__'
530 /// [MS] 'L__FUNCTION__'
531 /// [GNU] '__PRETTY_FUNCTION__'
532 /// [GNU] '(' compound-statement ')'
533 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
534 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
535 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
536 /// assign-expr ')'
537 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
538 /// [GNU] '__null'
539 /// [OBJC] '[' objc-message-expr ']'
540 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
541 /// [OBJC] '\@protocol' '(' identifier ')'
542 /// [OBJC] '\@encode' '(' type-name ')'
543 /// [OBJC] objc-string-literal
544 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
545 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
546 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
547 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
548 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
549 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
550 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
551 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
552 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
553 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
554 /// [C++] 'this' [C++ 9.3.2]
555 /// [G++] unary-type-trait '(' type-id ')'
556 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
557 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
558 /// [clang] '^' block-literal
559 ///
560 /// constant: [C99 6.4.4]
561 /// integer-constant
562 /// floating-constant
563 /// enumeration-constant -> identifier
564 /// character-constant
565 ///
566 /// id-expression: [C++ 5.1]
567 /// unqualified-id
568 /// qualified-id
569 ///
570 /// unqualified-id: [C++ 5.1]
571 /// identifier
572 /// operator-function-id
573 /// conversion-function-id
574 /// '~' class-name
575 /// template-id
576 ///
577 /// new-expression: [C++ 5.3.4]
578 /// '::'[opt] 'new' new-placement[opt] new-type-id
579 /// new-initializer[opt]
580 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
581 /// new-initializer[opt]
582 ///
583 /// delete-expression: [C++ 5.3.5]
584 /// '::'[opt] 'delete' cast-expression
585 /// '::'[opt] 'delete' '[' ']' cast-expression
586 ///
587 /// [GNU/Embarcadero] unary-type-trait:
588 /// '__is_arithmetic'
589 /// '__is_floating_point'
590 /// '__is_integral'
591 /// '__is_lvalue_expr'
592 /// '__is_rvalue_expr'
593 /// '__is_complete_type'
594 /// '__is_void'
595 /// '__is_array'
596 /// '__is_function'
597 /// '__is_reference'
598 /// '__is_lvalue_reference'
599 /// '__is_rvalue_reference'
600 /// '__is_fundamental'
601 /// '__is_object'
602 /// '__is_scalar'
603 /// '__is_compound'
604 /// '__is_pointer'
605 /// '__is_member_object_pointer'
606 /// '__is_member_function_pointer'
607 /// '__is_member_pointer'
608 /// '__is_const'
609 /// '__is_volatile'
610 /// '__is_trivial'
611 /// '__is_standard_layout'
612 /// '__is_signed'
613 /// '__is_unsigned'
614 ///
615 /// [GNU] unary-type-trait:
616 /// '__has_nothrow_assign'
617 /// '__has_nothrow_copy'
618 /// '__has_nothrow_constructor'
619 /// '__has_trivial_assign' [TODO]
620 /// '__has_trivial_copy' [TODO]
621 /// '__has_trivial_constructor'
622 /// '__has_trivial_destructor'
623 /// '__has_virtual_destructor'
624 /// '__is_abstract' [TODO]
625 /// '__is_class'
626 /// '__is_empty' [TODO]
627 /// '__is_enum'
628 /// '__is_final'
629 /// '__is_pod'
630 /// '__is_polymorphic'
631 /// '__is_sealed' [MS]
632 /// '__is_trivial'
633 /// '__is_union'
634 ///
635 /// [Clang] unary-type-trait:
636 /// '__trivially_copyable'
637 ///
638 /// binary-type-trait:
639 /// [GNU] '__is_base_of'
640 /// [MS] '__is_convertible_to'
641 /// '__is_convertible'
642 /// '__is_same'
643 ///
644 /// [Embarcadero] array-type-trait:
645 /// '__array_rank'
646 /// '__array_extent'
647 ///
648 /// [Embarcadero] expression-trait:
649 /// '__is_lvalue_expr'
650 /// '__is_rvalue_expr'
651 /// \endverbatim
652 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)653 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
654 bool isAddressOfOperand,
655 bool &NotCastExpr,
656 TypeCastState isTypeCast) {
657 ExprResult Res;
658 tok::TokenKind SavedKind = Tok.getKind();
659 NotCastExpr = false;
660
661 // This handles all of cast-expression, unary-expression, postfix-expression,
662 // and primary-expression. We handle them together like this for efficiency
663 // and to simplify handling of an expression starting with a '(' token: which
664 // may be one of a parenthesized expression, cast-expression, compound literal
665 // expression, or statement expression.
666 //
667 // If the parsed tokens consist of a primary-expression, the cases below
668 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
669 // to handle the postfix expression suffixes. Cases that cannot be followed
670 // by postfix exprs should return without invoking
671 // ParsePostfixExpressionSuffix.
672 switch (SavedKind) {
673 case tok::l_paren: {
674 // If this expression is limited to being a unary-expression, the parent can
675 // not start a cast expression.
676 ParenParseOption ParenExprType =
677 (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
678 : CastExpr;
679 ParsedType CastTy;
680 SourceLocation RParenLoc;
681 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
682 isTypeCast == IsTypeCast, CastTy, RParenLoc);
683
684 switch (ParenExprType) {
685 case SimpleExpr: break; // Nothing else to do.
686 case CompoundStmt: break; // Nothing else to do.
687 case CompoundLiteral:
688 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
689 // postfix-expression exist, parse them now.
690 break;
691 case CastExpr:
692 // We have parsed the cast-expression and no postfix-expr pieces are
693 // following.
694 return Res;
695 }
696
697 break;
698 }
699
700 // primary-expression
701 case tok::numeric_constant:
702 // constant: integer-constant
703 // constant: floating-constant
704
705 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
706 ConsumeToken();
707 break;
708
709 case tok::kw_true:
710 case tok::kw_false:
711 return ParseCXXBoolLiteral();
712
713 case tok::kw___objc_yes:
714 case tok::kw___objc_no:
715 return ParseObjCBoolLiteral();
716
717 case tok::kw_nullptr:
718 Diag(Tok, diag::warn_cxx98_compat_nullptr);
719 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
720
721 case tok::annot_primary_expr:
722 assert(Res.get() == nullptr && "Stray primary-expression annotation?");
723 Res = getExprAnnotation(Tok);
724 ConsumeToken();
725 break;
726
727 case tok::kw___super:
728 case tok::kw_decltype:
729 // Annotate the token and tail recurse.
730 if (TryAnnotateTypeOrScopeToken())
731 return ExprError();
732 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
733 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
734
735 case tok::identifier: { // primary-expression: identifier
736 // unqualified-id: identifier
737 // constant: enumeration-constant
738 // Turn a potentially qualified name into a annot_typename or
739 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
740 if (getLangOpts().CPlusPlus) {
741 // Avoid the unnecessary parse-time lookup in the common case
742 // where the syntax forbids a type.
743 const Token &Next = NextToken();
744
745 // If this identifier was reverted from a token ID, and the next token
746 // is a parenthesis, this is likely to be a use of a type trait. Check
747 // those tokens.
748 if (Next.is(tok::l_paren) &&
749 Tok.is(tok::identifier) &&
750 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
751 IdentifierInfo *II = Tok.getIdentifierInfo();
752 // Build up the mapping of revertible type traits, for future use.
753 if (RevertibleTypeTraits.empty()) {
754 #define RTT_JOIN(X,Y) X##Y
755 #define REVERTIBLE_TYPE_TRAIT(Name) \
756 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
757 = RTT_JOIN(tok::kw_,Name)
758
759 REVERTIBLE_TYPE_TRAIT(__is_abstract);
760 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
761 REVERTIBLE_TYPE_TRAIT(__is_array);
762 REVERTIBLE_TYPE_TRAIT(__is_base_of);
763 REVERTIBLE_TYPE_TRAIT(__is_class);
764 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
765 REVERTIBLE_TYPE_TRAIT(__is_compound);
766 REVERTIBLE_TYPE_TRAIT(__is_const);
767 REVERTIBLE_TYPE_TRAIT(__is_constructible);
768 REVERTIBLE_TYPE_TRAIT(__is_convertible);
769 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
770 REVERTIBLE_TYPE_TRAIT(__is_destructible);
771 REVERTIBLE_TYPE_TRAIT(__is_empty);
772 REVERTIBLE_TYPE_TRAIT(__is_enum);
773 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
774 REVERTIBLE_TYPE_TRAIT(__is_final);
775 REVERTIBLE_TYPE_TRAIT(__is_function);
776 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
777 REVERTIBLE_TYPE_TRAIT(__is_integral);
778 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
779 REVERTIBLE_TYPE_TRAIT(__is_literal);
780 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
781 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
782 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
783 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
784 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
785 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
786 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
787 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
788 REVERTIBLE_TYPE_TRAIT(__is_object);
789 REVERTIBLE_TYPE_TRAIT(__is_pod);
790 REVERTIBLE_TYPE_TRAIT(__is_pointer);
791 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
792 REVERTIBLE_TYPE_TRAIT(__is_reference);
793 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
794 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
795 REVERTIBLE_TYPE_TRAIT(__is_same);
796 REVERTIBLE_TYPE_TRAIT(__is_scalar);
797 REVERTIBLE_TYPE_TRAIT(__is_sealed);
798 REVERTIBLE_TYPE_TRAIT(__is_signed);
799 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
800 REVERTIBLE_TYPE_TRAIT(__is_trivial);
801 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
802 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
803 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
804 REVERTIBLE_TYPE_TRAIT(__is_union);
805 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
806 REVERTIBLE_TYPE_TRAIT(__is_void);
807 REVERTIBLE_TYPE_TRAIT(__is_volatile);
808 #undef REVERTIBLE_TYPE_TRAIT
809 #undef RTT_JOIN
810 }
811
812 // If we find that this is in fact the name of a type trait,
813 // update the token kind in place and parse again to treat it as
814 // the appropriate kind of type trait.
815 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
816 = RevertibleTypeTraits.find(II);
817 if (Known != RevertibleTypeTraits.end()) {
818 Tok.setKind(Known->second);
819 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
820 NotCastExpr, isTypeCast);
821 }
822 }
823
824 if (Next.is(tok::coloncolon) ||
825 (!ColonIsSacred && Next.is(tok::colon)) ||
826 Next.is(tok::less) ||
827 Next.is(tok::l_paren) ||
828 Next.is(tok::l_brace)) {
829 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
830 if (TryAnnotateTypeOrScopeToken())
831 return ExprError();
832 if (!Tok.is(tok::identifier))
833 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
834 }
835 }
836
837 // Consume the identifier so that we can see if it is followed by a '(' or
838 // '.'.
839 IdentifierInfo &II = *Tok.getIdentifierInfo();
840 SourceLocation ILoc = ConsumeToken();
841
842 // Support 'Class.property' and 'super.property' notation.
843 if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
844 (Actions.getTypeName(II, ILoc, getCurScope()) ||
845 // Allow the base to be 'super' if in an objc-method.
846 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
847 ConsumeToken();
848
849 // Allow either an identifier or the keyword 'class' (in C++).
850 if (Tok.isNot(tok::identifier) &&
851 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
852 Diag(Tok, diag::err_expected_property_name);
853 return ExprError();
854 }
855 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
856 SourceLocation PropertyLoc = ConsumeToken();
857
858 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
859 ILoc, PropertyLoc);
860 break;
861 }
862
863 // In an Objective-C method, if we have "super" followed by an identifier,
864 // the token sequence is ill-formed. However, if there's a ':' or ']' after
865 // that identifier, this is probably a message send with a missing open
866 // bracket. Treat it as such.
867 if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
868 getCurScope()->isInObjcMethodScope() &&
869 ((Tok.is(tok::identifier) &&
870 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
871 Tok.is(tok::code_completion))) {
872 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
873 nullptr);
874 break;
875 }
876
877 // If we have an Objective-C class name followed by an identifier
878 // and either ':' or ']', this is an Objective-C class message
879 // send that's missing the opening '['. Recovery
880 // appropriately. Also take this path if we're performing code
881 // completion after an Objective-C class name.
882 if (getLangOpts().ObjC1 &&
883 ((Tok.is(tok::identifier) && !InMessageExpression) ||
884 Tok.is(tok::code_completion))) {
885 const Token& Next = NextToken();
886 if (Tok.is(tok::code_completion) ||
887 Next.is(tok::colon) || Next.is(tok::r_square))
888 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
889 if (Typ.get()->isObjCObjectOrInterfaceType()) {
890 // Fake up a Declarator to use with ActOnTypeName.
891 DeclSpec DS(AttrFactory);
892 DS.SetRangeStart(ILoc);
893 DS.SetRangeEnd(ILoc);
894 const char *PrevSpec = nullptr;
895 unsigned DiagID;
896 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
897 Actions.getASTContext().getPrintingPolicy());
898
899 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
900 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
901 DeclaratorInfo);
902 if (Ty.isInvalid())
903 break;
904
905 Res = ParseObjCMessageExpressionBody(SourceLocation(),
906 SourceLocation(),
907 Ty.get(), nullptr);
908 break;
909 }
910 }
911
912 // Make sure to pass down the right value for isAddressOfOperand.
913 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
914 isAddressOfOperand = false;
915
916 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
917 // need to know whether or not this identifier is a function designator or
918 // not.
919 UnqualifiedId Name;
920 CXXScopeSpec ScopeSpec;
921 SourceLocation TemplateKWLoc;
922 Token Replacement;
923 auto Validator = llvm::make_unique<CastExpressionIdValidator>(
924 Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
925 Validator->IsAddressOfOperand = isAddressOfOperand;
926 Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
927 Name.setIdentifier(&II, ILoc);
928 Res = Actions.ActOnIdExpression(
929 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
930 isAddressOfOperand, std::move(Validator),
931 /*IsInlineAsmIdentifier=*/false,
932 Tok.is(tok::r_paren) ? nullptr : &Replacement);
933 if (!Res.isInvalid() && !Res.get()) {
934 UnconsumeToken(Replacement);
935 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
936 NotCastExpr, isTypeCast);
937 }
938 break;
939 }
940 case tok::char_constant: // constant: character-constant
941 case tok::wide_char_constant:
942 case tok::utf8_char_constant:
943 case tok::utf16_char_constant:
944 case tok::utf32_char_constant:
945 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
946 ConsumeToken();
947 break;
948 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
949 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
950 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
951 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
952 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
953 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
954 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
955 ConsumeToken();
956 break;
957 case tok::string_literal: // primary-expression: string-literal
958 case tok::wide_string_literal:
959 case tok::utf8_string_literal:
960 case tok::utf16_string_literal:
961 case tok::utf32_string_literal:
962 Res = ParseStringLiteralExpression(true);
963 break;
964 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
965 Res = ParseGenericSelectionExpression();
966 break;
967 case tok::kw___builtin_va_arg:
968 case tok::kw___builtin_offsetof:
969 case tok::kw___builtin_choose_expr:
970 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
971 case tok::kw___builtin_convertvector:
972 return ParseBuiltinPrimaryExpression();
973 case tok::kw___null:
974 return Actions.ActOnGNUNullExpr(ConsumeToken());
975
976 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
977 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
978 // C++ [expr.unary] has:
979 // unary-expression:
980 // ++ cast-expression
981 // -- cast-expression
982 SourceLocation SavedLoc = ConsumeToken();
983 // One special case is implicitly handled here: if the preceding tokens are
984 // an ambiguous cast expression, such as "(T())++", then we recurse to
985 // determine whether the '++' is prefix or postfix.
986 Res = ParseCastExpression(!getLangOpts().CPlusPlus,
987 /*isAddressOfOperand*/false, NotCastExpr,
988 NotTypeCast);
989 if (!Res.isInvalid())
990 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
991 return Res;
992 }
993 case tok::amp: { // unary-expression: '&' cast-expression
994 // Special treatment because of member pointers
995 SourceLocation SavedLoc = ConsumeToken();
996 Res = ParseCastExpression(false, true);
997 if (!Res.isInvalid())
998 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
999 return Res;
1000 }
1001
1002 case tok::star: // unary-expression: '*' cast-expression
1003 case tok::plus: // unary-expression: '+' cast-expression
1004 case tok::minus: // unary-expression: '-' cast-expression
1005 case tok::tilde: // unary-expression: '~' cast-expression
1006 case tok::exclaim: // unary-expression: '!' cast-expression
1007 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1008 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1009 SourceLocation SavedLoc = ConsumeToken();
1010 Res = ParseCastExpression(false);
1011 if (!Res.isInvalid())
1012 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1013 return Res;
1014 }
1015
1016 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1017 // __extension__ silences extension warnings in the subexpression.
1018 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1019 SourceLocation SavedLoc = ConsumeToken();
1020 Res = ParseCastExpression(false);
1021 if (!Res.isInvalid())
1022 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1023 return Res;
1024 }
1025 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1026 if (!getLangOpts().C11)
1027 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1028 // fallthrough
1029 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1030 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1031 // unary-expression: '__alignof' '(' type-name ')'
1032 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1033 // unary-expression: 'sizeof' '(' type-name ')'
1034 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1035 return ParseUnaryExprOrTypeTraitExpression();
1036 case tok::ampamp: { // unary-expression: '&&' identifier
1037 SourceLocation AmpAmpLoc = ConsumeToken();
1038 if (Tok.isNot(tok::identifier))
1039 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1040
1041 if (getCurScope()->getFnParent() == nullptr)
1042 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1043
1044 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1045 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1046 Tok.getLocation());
1047 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1048 ConsumeToken();
1049 return Res;
1050 }
1051 case tok::kw_const_cast:
1052 case tok::kw_dynamic_cast:
1053 case tok::kw_reinterpret_cast:
1054 case tok::kw_static_cast:
1055 Res = ParseCXXCasts();
1056 break;
1057 case tok::kw_typeid:
1058 Res = ParseCXXTypeid();
1059 break;
1060 case tok::kw___uuidof:
1061 Res = ParseCXXUuidof();
1062 break;
1063 case tok::kw_this:
1064 Res = ParseCXXThis();
1065 break;
1066
1067 case tok::annot_typename:
1068 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1069 ParsedType Type = getTypeAnnotation(Tok);
1070
1071 // Fake up a Declarator to use with ActOnTypeName.
1072 DeclSpec DS(AttrFactory);
1073 DS.SetRangeStart(Tok.getLocation());
1074 DS.SetRangeEnd(Tok.getLastLoc());
1075
1076 const char *PrevSpec = nullptr;
1077 unsigned DiagID;
1078 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1079 PrevSpec, DiagID, Type,
1080 Actions.getASTContext().getPrintingPolicy());
1081
1082 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1083 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1084 if (Ty.isInvalid())
1085 break;
1086
1087 ConsumeToken();
1088 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1089 Ty.get(), nullptr);
1090 break;
1091 }
1092 // Fall through
1093
1094 case tok::annot_decltype:
1095 case tok::kw_char:
1096 case tok::kw_wchar_t:
1097 case tok::kw_char16_t:
1098 case tok::kw_char32_t:
1099 case tok::kw_bool:
1100 case tok::kw_short:
1101 case tok::kw_int:
1102 case tok::kw_long:
1103 case tok::kw___int64:
1104 case tok::kw___int128:
1105 case tok::kw_signed:
1106 case tok::kw_unsigned:
1107 case tok::kw_half:
1108 case tok::kw_float:
1109 case tok::kw_double:
1110 case tok::kw_void:
1111 case tok::kw_typename:
1112 case tok::kw_typeof:
1113 case tok::kw___vector: {
1114 if (!getLangOpts().CPlusPlus) {
1115 Diag(Tok, diag::err_expected_expression);
1116 return ExprError();
1117 }
1118
1119 if (SavedKind == tok::kw_typename) {
1120 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1121 // typename-specifier braced-init-list
1122 if (TryAnnotateTypeOrScopeToken())
1123 return ExprError();
1124
1125 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1126 // We are trying to parse a simple-type-specifier but might not get such
1127 // a token after error recovery.
1128 return ExprError();
1129 }
1130
1131 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1132 // simple-type-specifier braced-init-list
1133 //
1134 DeclSpec DS(AttrFactory);
1135
1136 ParseCXXSimpleTypeSpecifier(DS);
1137 if (Tok.isNot(tok::l_paren) &&
1138 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1139 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1140 << DS.getSourceRange());
1141
1142 if (Tok.is(tok::l_brace))
1143 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1144
1145 Res = ParseCXXTypeConstructExpression(DS);
1146 break;
1147 }
1148
1149 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1150 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1151 // (We can end up in this situation after tentative parsing.)
1152 if (TryAnnotateTypeOrScopeToken())
1153 return ExprError();
1154 if (!Tok.is(tok::annot_cxxscope))
1155 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1156 NotCastExpr, isTypeCast);
1157
1158 Token Next = NextToken();
1159 if (Next.is(tok::annot_template_id)) {
1160 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1161 if (TemplateId->Kind == TNK_Type_template) {
1162 // We have a qualified template-id that we know refers to a
1163 // type, translate it into a type and continue parsing as a
1164 // cast expression.
1165 CXXScopeSpec SS;
1166 ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1167 /*EnteringContext=*/false);
1168 AnnotateTemplateIdTokenAsType();
1169 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1170 NotCastExpr, isTypeCast);
1171 }
1172 }
1173
1174 // Parse as an id-expression.
1175 Res = ParseCXXIdExpression(isAddressOfOperand);
1176 break;
1177 }
1178
1179 case tok::annot_template_id: { // [C++] template-id
1180 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1181 if (TemplateId->Kind == TNK_Type_template) {
1182 // We have a template-id that we know refers to a type,
1183 // translate it into a type and continue parsing as a cast
1184 // expression.
1185 AnnotateTemplateIdTokenAsType();
1186 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1187 NotCastExpr, isTypeCast);
1188 }
1189
1190 // Fall through to treat the template-id as an id-expression.
1191 }
1192
1193 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1194 Res = ParseCXXIdExpression(isAddressOfOperand);
1195 break;
1196
1197 case tok::coloncolon: {
1198 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1199 // annotates the token, tail recurse.
1200 if (TryAnnotateTypeOrScopeToken())
1201 return ExprError();
1202 if (!Tok.is(tok::coloncolon))
1203 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1204
1205 // ::new -> [C++] new-expression
1206 // ::delete -> [C++] delete-expression
1207 SourceLocation CCLoc = ConsumeToken();
1208 if (Tok.is(tok::kw_new))
1209 return ParseCXXNewExpression(true, CCLoc);
1210 if (Tok.is(tok::kw_delete))
1211 return ParseCXXDeleteExpression(true, CCLoc);
1212
1213 // This is not a type name or scope specifier, it is an invalid expression.
1214 Diag(CCLoc, diag::err_expected_expression);
1215 return ExprError();
1216 }
1217
1218 case tok::kw_new: // [C++] new-expression
1219 return ParseCXXNewExpression(false, Tok.getLocation());
1220
1221 case tok::kw_delete: // [C++] delete-expression
1222 return ParseCXXDeleteExpression(false, Tok.getLocation());
1223
1224 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1225 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1226 SourceLocation KeyLoc = ConsumeToken();
1227 BalancedDelimiterTracker T(*this, tok::l_paren);
1228
1229 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1230 return ExprError();
1231 // C++11 [expr.unary.noexcept]p1:
1232 // The noexcept operator determines whether the evaluation of its operand,
1233 // which is an unevaluated operand, can throw an exception.
1234 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1235 ExprResult Result = ParseExpression();
1236
1237 T.consumeClose();
1238
1239 if (!Result.isInvalid())
1240 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1241 Result.get(), T.getCloseLocation());
1242 return Result;
1243 }
1244
1245 #define TYPE_TRAIT(N,Spelling,K) \
1246 case tok::kw_##Spelling:
1247 #include "clang/Basic/TokenKinds.def"
1248 return ParseTypeTrait();
1249
1250 case tok::kw___array_rank:
1251 case tok::kw___array_extent:
1252 return ParseArrayTypeTrait();
1253
1254 case tok::kw___is_lvalue_expr:
1255 case tok::kw___is_rvalue_expr:
1256 return ParseExpressionTrait();
1257
1258 case tok::at: {
1259 SourceLocation AtLoc = ConsumeToken();
1260 return ParseObjCAtExpression(AtLoc);
1261 }
1262 case tok::caret:
1263 Res = ParseBlockLiteralExpression();
1264 break;
1265 case tok::code_completion: {
1266 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1267 cutOffParsing();
1268 return ExprError();
1269 }
1270 case tok::l_square:
1271 if (getLangOpts().CPlusPlus11) {
1272 if (getLangOpts().ObjC1) {
1273 // C++11 lambda expressions and Objective-C message sends both start with a
1274 // square bracket. There are three possibilities here:
1275 // we have a valid lambda expression, we have an invalid lambda
1276 // expression, or we have something that doesn't appear to be a lambda.
1277 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1278 Res = TryParseLambdaExpression();
1279 if (!Res.isInvalid() && !Res.get())
1280 Res = ParseObjCMessageExpression();
1281 break;
1282 }
1283 Res = ParseLambdaExpression();
1284 break;
1285 }
1286 if (getLangOpts().ObjC1) {
1287 Res = ParseObjCMessageExpression();
1288 break;
1289 }
1290 // FALL THROUGH.
1291 default:
1292 NotCastExpr = true;
1293 return ExprError();
1294 }
1295
1296 // These can be followed by postfix-expr pieces.
1297 return ParsePostfixExpressionSuffix(Res);
1298 }
1299
1300 /// \brief Once the leading part of a postfix-expression is parsed, this
1301 /// method parses any suffixes that apply.
1302 ///
1303 /// \verbatim
1304 /// postfix-expression: [C99 6.5.2]
1305 /// primary-expression
1306 /// postfix-expression '[' expression ']'
1307 /// postfix-expression '[' braced-init-list ']'
1308 /// postfix-expression '(' argument-expression-list[opt] ')'
1309 /// postfix-expression '.' identifier
1310 /// postfix-expression '->' identifier
1311 /// postfix-expression '++'
1312 /// postfix-expression '--'
1313 /// '(' type-name ')' '{' initializer-list '}'
1314 /// '(' type-name ')' '{' initializer-list ',' '}'
1315 ///
1316 /// argument-expression-list: [C99 6.5.2]
1317 /// argument-expression ...[opt]
1318 /// argument-expression-list ',' assignment-expression ...[opt]
1319 /// \endverbatim
1320 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1321 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1322 // Now that the primary-expression piece of the postfix-expression has been
1323 // parsed, see if there are any postfix-expression pieces here.
1324 SourceLocation Loc;
1325 while (1) {
1326 switch (Tok.getKind()) {
1327 case tok::code_completion:
1328 if (InMessageExpression)
1329 return LHS;
1330
1331 Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1332 cutOffParsing();
1333 return ExprError();
1334
1335 case tok::identifier:
1336 // If we see identifier: after an expression, and we're not already in a
1337 // message send, then this is probably a message send with a missing
1338 // opening bracket '['.
1339 if (getLangOpts().ObjC1 && !InMessageExpression &&
1340 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1341 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1342 ParsedType(), LHS.get());
1343 break;
1344 }
1345
1346 // Fall through; this isn't a message send.
1347
1348 default: // Not a postfix-expression suffix.
1349 return LHS;
1350 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1351 // If we have a array postfix expression that starts on a new line and
1352 // Objective-C is enabled, it is highly likely that the user forgot a
1353 // semicolon after the base expression and that the array postfix-expr is
1354 // actually another message send. In this case, do some look-ahead to see
1355 // if the contents of the square brackets are obviously not a valid
1356 // expression and recover by pretending there is no suffix.
1357 if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1358 isSimpleObjCMessageExpression())
1359 return LHS;
1360
1361 // Reject array indices starting with a lambda-expression. '[[' is
1362 // reserved for attributes.
1363 if (CheckProhibitedCXX11Attribute())
1364 return ExprError();
1365
1366 BalancedDelimiterTracker T(*this, tok::l_square);
1367 T.consumeOpen();
1368 Loc = T.getOpenLocation();
1369 ExprResult Idx;
1370 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1371 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1372 Idx = ParseBraceInitializer();
1373 } else
1374 Idx = ParseExpression();
1375
1376 SourceLocation RLoc = Tok.getLocation();
1377
1378 if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1379 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1380 Idx.get(), RLoc);
1381 } else {
1382 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1383 (void)Actions.CorrectDelayedTyposInExpr(Idx);
1384 LHS = ExprError();
1385 Idx = ExprError();
1386 }
1387
1388 // Match the ']'.
1389 T.consumeClose();
1390 break;
1391 }
1392
1393 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1394 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1395 // '(' argument-expression-list[opt] ')'
1396 tok::TokenKind OpKind = Tok.getKind();
1397 InMessageExpressionRAIIObject InMessage(*this, false);
1398
1399 Expr *ExecConfig = nullptr;
1400
1401 BalancedDelimiterTracker PT(*this, tok::l_paren);
1402
1403 if (OpKind == tok::lesslessless) {
1404 ExprVector ExecConfigExprs;
1405 CommaLocsTy ExecConfigCommaLocs;
1406 SourceLocation OpenLoc = ConsumeToken();
1407
1408 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1409 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1410 LHS = ExprError();
1411 }
1412
1413 SourceLocation CloseLoc;
1414 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1415 } else if (LHS.isInvalid()) {
1416 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1417 } else {
1418 // There was an error closing the brackets
1419 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1420 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1421 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1422 LHS = ExprError();
1423 }
1424
1425 if (!LHS.isInvalid()) {
1426 if (ExpectAndConsume(tok::l_paren))
1427 LHS = ExprError();
1428 else
1429 Loc = PrevTokLocation;
1430 }
1431
1432 if (!LHS.isInvalid()) {
1433 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1434 OpenLoc,
1435 ExecConfigExprs,
1436 CloseLoc);
1437 if (ECResult.isInvalid())
1438 LHS = ExprError();
1439 else
1440 ExecConfig = ECResult.get();
1441 }
1442 } else {
1443 PT.consumeOpen();
1444 Loc = PT.getOpenLocation();
1445 }
1446
1447 ExprVector ArgExprs;
1448 CommaLocsTy CommaLocs;
1449
1450 if (Tok.is(tok::code_completion)) {
1451 Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1452 cutOffParsing();
1453 return ExprError();
1454 }
1455
1456 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1457 if (Tok.isNot(tok::r_paren)) {
1458 if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1459 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
1460 })) {
1461 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1462 LHS = ExprError();
1463 } else if (LHS.isInvalid()) {
1464 for (auto &E : ArgExprs)
1465 Actions.CorrectDelayedTyposInExpr(E);
1466 }
1467 }
1468 }
1469
1470 // Match the ')'.
1471 if (LHS.isInvalid()) {
1472 SkipUntil(tok::r_paren, StopAtSemi);
1473 } else if (Tok.isNot(tok::r_paren)) {
1474 PT.consumeClose();
1475 LHS = ExprError();
1476 } else {
1477 assert((ArgExprs.size() == 0 ||
1478 ArgExprs.size()-1 == CommaLocs.size())&&
1479 "Unexpected number of commas!");
1480 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1481 ArgExprs, Tok.getLocation(),
1482 ExecConfig);
1483 PT.consumeClose();
1484 }
1485
1486 break;
1487 }
1488 case tok::arrow:
1489 case tok::period: {
1490 // postfix-expression: p-e '->' template[opt] id-expression
1491 // postfix-expression: p-e '.' template[opt] id-expression
1492 tok::TokenKind OpKind = Tok.getKind();
1493 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1494
1495 CXXScopeSpec SS;
1496 ParsedType ObjectType;
1497 bool MayBePseudoDestructor = false;
1498 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1499 Expr *Base = LHS.get();
1500 const Type* BaseType = Base->getType().getTypePtrOrNull();
1501 if (BaseType && Tok.is(tok::l_paren) &&
1502 (BaseType->isFunctionType() ||
1503 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1504 Diag(OpLoc, diag::err_function_is_not_record)
1505 << OpKind << Base->getSourceRange()
1506 << FixItHint::CreateRemoval(OpLoc);
1507 return ParsePostfixExpressionSuffix(Base);
1508 }
1509
1510 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1511 OpLoc, OpKind, ObjectType,
1512 MayBePseudoDestructor);
1513 if (LHS.isInvalid())
1514 break;
1515
1516 ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1517 /*EnteringContext=*/false,
1518 &MayBePseudoDestructor);
1519 if (SS.isNotEmpty())
1520 ObjectType = ParsedType();
1521 }
1522
1523 if (Tok.is(tok::code_completion)) {
1524 // Code completion for a member access expression.
1525 Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1526 OpLoc, OpKind == tok::arrow);
1527
1528 cutOffParsing();
1529 return ExprError();
1530 }
1531
1532 if (MayBePseudoDestructor && !LHS.isInvalid()) {
1533 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1534 ObjectType);
1535 break;
1536 }
1537
1538 // Either the action has told us that this cannot be a
1539 // pseudo-destructor expression (based on the type of base
1540 // expression), or we didn't see a '~' in the right place. We
1541 // can still parse a destructor name here, but in that case it
1542 // names a real destructor.
1543 // Allow explicit constructor calls in Microsoft mode.
1544 // FIXME: Add support for explicit call of template constructor.
1545 SourceLocation TemplateKWLoc;
1546 UnqualifiedId Name;
1547 if (getLangOpts().ObjC2 && OpKind == tok::period &&
1548 Tok.is(tok::kw_class)) {
1549 // Objective-C++:
1550 // After a '.' in a member access expression, treat the keyword
1551 // 'class' as if it were an identifier.
1552 //
1553 // This hack allows property access to the 'class' method because it is
1554 // such a common method name. For other C++ keywords that are
1555 // Objective-C method names, one must use the message send syntax.
1556 IdentifierInfo *Id = Tok.getIdentifierInfo();
1557 SourceLocation Loc = ConsumeToken();
1558 Name.setIdentifier(Id, Loc);
1559 } else if (ParseUnqualifiedId(SS,
1560 /*EnteringContext=*/false,
1561 /*AllowDestructorName=*/true,
1562 /*AllowConstructorName=*/
1563 getLangOpts().MicrosoftExt,
1564 ObjectType, TemplateKWLoc, Name)) {
1565 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1566 LHS = ExprError();
1567 }
1568
1569 if (!LHS.isInvalid())
1570 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1571 OpKind, SS, TemplateKWLoc, Name,
1572 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1573 : nullptr);
1574 break;
1575 }
1576 case tok::plusplus: // postfix-expression: postfix-expression '++'
1577 case tok::minusminus: // postfix-expression: postfix-expression '--'
1578 if (!LHS.isInvalid()) {
1579 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1580 Tok.getKind(), LHS.get());
1581 }
1582 ConsumeToken();
1583 break;
1584 }
1585 }
1586 }
1587
1588 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1589 /// vec_step and we are at the start of an expression or a parenthesized
1590 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1591 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1592 ///
1593 /// \verbatim
1594 /// unary-expression: [C99 6.5.3]
1595 /// 'sizeof' unary-expression
1596 /// 'sizeof' '(' type-name ')'
1597 /// [GNU] '__alignof' unary-expression
1598 /// [GNU] '__alignof' '(' type-name ')'
1599 /// [C11] '_Alignof' '(' type-name ')'
1600 /// [C++0x] 'alignof' '(' type-id ')'
1601 ///
1602 /// [GNU] typeof-specifier:
1603 /// typeof ( expressions )
1604 /// typeof ( type-name )
1605 /// [GNU/C++] typeof unary-expression
1606 ///
1607 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1608 /// vec_step ( expressions )
1609 /// vec_step ( type-name )
1610 /// \endverbatim
1611 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1612 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1613 bool &isCastExpr,
1614 ParsedType &CastTy,
1615 SourceRange &CastRange) {
1616
1617 assert((OpTok.is(tok::kw_typeof) || OpTok.is(tok::kw_sizeof) ||
1618 OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1619 OpTok.is(tok::kw__Alignof) || OpTok.is(tok::kw_vec_step)) &&
1620 "Not a typeof/sizeof/alignof/vec_step expression!");
1621
1622 ExprResult Operand;
1623
1624 // If the operand doesn't start with an '(', it must be an expression.
1625 if (Tok.isNot(tok::l_paren)) {
1626 // If construct allows a form without parenthesis, user may forget to put
1627 // pathenthesis around type name.
1628 if (OpTok.is(tok::kw_sizeof) || OpTok.is(tok::kw___alignof) ||
1629 OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1630 if (isTypeIdUnambiguously()) {
1631 DeclSpec DS(AttrFactory);
1632 ParseSpecifierQualifierList(DS);
1633 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1634 ParseDeclarator(DeclaratorInfo);
1635
1636 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1637 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1638 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1639 << OpTok.getName()
1640 << FixItHint::CreateInsertion(LParenLoc, "(")
1641 << FixItHint::CreateInsertion(RParenLoc, ")");
1642 isCastExpr = true;
1643 return ExprEmpty();
1644 }
1645 }
1646
1647 isCastExpr = false;
1648 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1649 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1650 << tok::l_paren;
1651 return ExprError();
1652 }
1653
1654 Operand = ParseCastExpression(true/*isUnaryExpression*/);
1655 } else {
1656 // If it starts with a '(', we know that it is either a parenthesized
1657 // type-name, or it is a unary-expression that starts with a compound
1658 // literal, or starts with a primary-expression that is a parenthesized
1659 // expression.
1660 ParenParseOption ExprType = CastExpr;
1661 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1662
1663 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1664 false, CastTy, RParenLoc);
1665 CastRange = SourceRange(LParenLoc, RParenLoc);
1666
1667 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1668 // a type.
1669 if (ExprType == CastExpr) {
1670 isCastExpr = true;
1671 return ExprEmpty();
1672 }
1673
1674 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1675 // GNU typeof in C requires the expression to be parenthesized. Not so for
1676 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1677 // the start of a unary-expression, but doesn't include any postfix
1678 // pieces. Parse these now if present.
1679 if (!Operand.isInvalid())
1680 Operand = ParsePostfixExpressionSuffix(Operand.get());
1681 }
1682 }
1683
1684 // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1685 isCastExpr = false;
1686 return Operand;
1687 }
1688
1689
1690 /// \brief Parse a sizeof or alignof expression.
1691 ///
1692 /// \verbatim
1693 /// unary-expression: [C99 6.5.3]
1694 /// 'sizeof' unary-expression
1695 /// 'sizeof' '(' type-name ')'
1696 /// [C++11] 'sizeof' '...' '(' identifier ')'
1697 /// [GNU] '__alignof' unary-expression
1698 /// [GNU] '__alignof' '(' type-name ')'
1699 /// [C11] '_Alignof' '(' type-name ')'
1700 /// [C++11] 'alignof' '(' type-id ')'
1701 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1702 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1703 assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1704 Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1705 Tok.is(tok::kw_vec_step)) &&
1706 "Not a sizeof/alignof/vec_step expression!");
1707 Token OpTok = Tok;
1708 ConsumeToken();
1709
1710 // [C++11] 'sizeof' '...' '(' identifier ')'
1711 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1712 SourceLocation EllipsisLoc = ConsumeToken();
1713 SourceLocation LParenLoc, RParenLoc;
1714 IdentifierInfo *Name = nullptr;
1715 SourceLocation NameLoc;
1716 if (Tok.is(tok::l_paren)) {
1717 BalancedDelimiterTracker T(*this, tok::l_paren);
1718 T.consumeOpen();
1719 LParenLoc = T.getOpenLocation();
1720 if (Tok.is(tok::identifier)) {
1721 Name = Tok.getIdentifierInfo();
1722 NameLoc = ConsumeToken();
1723 T.consumeClose();
1724 RParenLoc = T.getCloseLocation();
1725 if (RParenLoc.isInvalid())
1726 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1727 } else {
1728 Diag(Tok, diag::err_expected_parameter_pack);
1729 SkipUntil(tok::r_paren, StopAtSemi);
1730 }
1731 } else if (Tok.is(tok::identifier)) {
1732 Name = Tok.getIdentifierInfo();
1733 NameLoc = ConsumeToken();
1734 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1735 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1736 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1737 << Name
1738 << FixItHint::CreateInsertion(LParenLoc, "(")
1739 << FixItHint::CreateInsertion(RParenLoc, ")");
1740 } else {
1741 Diag(Tok, diag::err_sizeof_parameter_pack);
1742 }
1743
1744 if (!Name)
1745 return ExprError();
1746
1747 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1748 Sema::ReuseLambdaContextDecl);
1749
1750 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1751 OpTok.getLocation(),
1752 *Name, NameLoc,
1753 RParenLoc);
1754 }
1755
1756 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1757 Diag(OpTok, diag::warn_cxx98_compat_alignof);
1758
1759 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1760 Sema::ReuseLambdaContextDecl);
1761
1762 bool isCastExpr;
1763 ParsedType CastTy;
1764 SourceRange CastRange;
1765 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1766 isCastExpr,
1767 CastTy,
1768 CastRange);
1769
1770 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1771 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1772 OpTok.is(tok::kw__Alignof))
1773 ExprKind = UETT_AlignOf;
1774 else if (OpTok.is(tok::kw_vec_step))
1775 ExprKind = UETT_VecStep;
1776
1777 if (isCastExpr)
1778 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1779 ExprKind,
1780 /*isType=*/true,
1781 CastTy.getAsOpaquePtr(),
1782 CastRange);
1783
1784 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1785 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1786
1787 // If we get here, the operand to the sizeof/alignof was an expresion.
1788 if (!Operand.isInvalid())
1789 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1790 ExprKind,
1791 /*isType=*/false,
1792 Operand.get(),
1793 CastRange);
1794 return Operand;
1795 }
1796
1797 /// ParseBuiltinPrimaryExpression
1798 ///
1799 /// \verbatim
1800 /// primary-expression: [C99 6.5.1]
1801 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1802 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1803 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1804 /// assign-expr ')'
1805 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1806 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
1807 ///
1808 /// [GNU] offsetof-member-designator:
1809 /// [GNU] identifier
1810 /// [GNU] offsetof-member-designator '.' identifier
1811 /// [GNU] offsetof-member-designator '[' expression ']'
1812 /// \endverbatim
ParseBuiltinPrimaryExpression()1813 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1814 ExprResult Res;
1815 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1816
1817 tok::TokenKind T = Tok.getKind();
1818 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
1819
1820 // All of these start with an open paren.
1821 if (Tok.isNot(tok::l_paren))
1822 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1823 << tok::l_paren);
1824
1825 BalancedDelimiterTracker PT(*this, tok::l_paren);
1826 PT.consumeOpen();
1827
1828 // TODO: Build AST.
1829
1830 switch (T) {
1831 default: llvm_unreachable("Not a builtin primary expression!");
1832 case tok::kw___builtin_va_arg: {
1833 ExprResult Expr(ParseAssignmentExpression());
1834
1835 if (ExpectAndConsume(tok::comma)) {
1836 SkipUntil(tok::r_paren, StopAtSemi);
1837 Expr = ExprError();
1838 }
1839
1840 TypeResult Ty = ParseTypeName();
1841
1842 if (Tok.isNot(tok::r_paren)) {
1843 Diag(Tok, diag::err_expected) << tok::r_paren;
1844 Expr = ExprError();
1845 }
1846
1847 if (Expr.isInvalid() || Ty.isInvalid())
1848 Res = ExprError();
1849 else
1850 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1851 break;
1852 }
1853 case tok::kw___builtin_offsetof: {
1854 SourceLocation TypeLoc = Tok.getLocation();
1855 TypeResult Ty = ParseTypeName();
1856 if (Ty.isInvalid()) {
1857 SkipUntil(tok::r_paren, StopAtSemi);
1858 return ExprError();
1859 }
1860
1861 if (ExpectAndConsume(tok::comma)) {
1862 SkipUntil(tok::r_paren, StopAtSemi);
1863 return ExprError();
1864 }
1865
1866 // We must have at least one identifier here.
1867 if (Tok.isNot(tok::identifier)) {
1868 Diag(Tok, diag::err_expected) << tok::identifier;
1869 SkipUntil(tok::r_paren, StopAtSemi);
1870 return ExprError();
1871 }
1872
1873 // Keep track of the various subcomponents we see.
1874 SmallVector<Sema::OffsetOfComponent, 4> Comps;
1875
1876 Comps.push_back(Sema::OffsetOfComponent());
1877 Comps.back().isBrackets = false;
1878 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1879 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1880
1881 // FIXME: This loop leaks the index expressions on error.
1882 while (1) {
1883 if (Tok.is(tok::period)) {
1884 // offsetof-member-designator: offsetof-member-designator '.' identifier
1885 Comps.push_back(Sema::OffsetOfComponent());
1886 Comps.back().isBrackets = false;
1887 Comps.back().LocStart = ConsumeToken();
1888
1889 if (Tok.isNot(tok::identifier)) {
1890 Diag(Tok, diag::err_expected) << tok::identifier;
1891 SkipUntil(tok::r_paren, StopAtSemi);
1892 return ExprError();
1893 }
1894 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1895 Comps.back().LocEnd = ConsumeToken();
1896
1897 } else if (Tok.is(tok::l_square)) {
1898 if (CheckProhibitedCXX11Attribute())
1899 return ExprError();
1900
1901 // offsetof-member-designator: offsetof-member-design '[' expression ']'
1902 Comps.push_back(Sema::OffsetOfComponent());
1903 Comps.back().isBrackets = true;
1904 BalancedDelimiterTracker ST(*this, tok::l_square);
1905 ST.consumeOpen();
1906 Comps.back().LocStart = ST.getOpenLocation();
1907 Res = ParseExpression();
1908 if (Res.isInvalid()) {
1909 SkipUntil(tok::r_paren, StopAtSemi);
1910 return Res;
1911 }
1912 Comps.back().U.E = Res.get();
1913
1914 ST.consumeClose();
1915 Comps.back().LocEnd = ST.getCloseLocation();
1916 } else {
1917 if (Tok.isNot(tok::r_paren)) {
1918 PT.consumeClose();
1919 Res = ExprError();
1920 } else if (Ty.isInvalid()) {
1921 Res = ExprError();
1922 } else {
1923 PT.consumeClose();
1924 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1925 Ty.get(), &Comps[0], Comps.size(),
1926 PT.getCloseLocation());
1927 }
1928 break;
1929 }
1930 }
1931 break;
1932 }
1933 case tok::kw___builtin_choose_expr: {
1934 ExprResult Cond(ParseAssignmentExpression());
1935 if (Cond.isInvalid()) {
1936 SkipUntil(tok::r_paren, StopAtSemi);
1937 return Cond;
1938 }
1939 if (ExpectAndConsume(tok::comma)) {
1940 SkipUntil(tok::r_paren, StopAtSemi);
1941 return ExprError();
1942 }
1943
1944 ExprResult Expr1(ParseAssignmentExpression());
1945 if (Expr1.isInvalid()) {
1946 SkipUntil(tok::r_paren, StopAtSemi);
1947 return Expr1;
1948 }
1949 if (ExpectAndConsume(tok::comma)) {
1950 SkipUntil(tok::r_paren, StopAtSemi);
1951 return ExprError();
1952 }
1953
1954 ExprResult Expr2(ParseAssignmentExpression());
1955 if (Expr2.isInvalid()) {
1956 SkipUntil(tok::r_paren, StopAtSemi);
1957 return Expr2;
1958 }
1959 if (Tok.isNot(tok::r_paren)) {
1960 Diag(Tok, diag::err_expected) << tok::r_paren;
1961 return ExprError();
1962 }
1963 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
1964 Expr2.get(), ConsumeParen());
1965 break;
1966 }
1967 case tok::kw___builtin_astype: {
1968 // The first argument is an expression to be converted, followed by a comma.
1969 ExprResult Expr(ParseAssignmentExpression());
1970 if (Expr.isInvalid()) {
1971 SkipUntil(tok::r_paren, StopAtSemi);
1972 return ExprError();
1973 }
1974
1975 if (ExpectAndConsume(tok::comma)) {
1976 SkipUntil(tok::r_paren, StopAtSemi);
1977 return ExprError();
1978 }
1979
1980 // Second argument is the type to bitcast to.
1981 TypeResult DestTy = ParseTypeName();
1982 if (DestTy.isInvalid())
1983 return ExprError();
1984
1985 // Attempt to consume the r-paren.
1986 if (Tok.isNot(tok::r_paren)) {
1987 Diag(Tok, diag::err_expected) << tok::r_paren;
1988 SkipUntil(tok::r_paren, StopAtSemi);
1989 return ExprError();
1990 }
1991
1992 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
1993 ConsumeParen());
1994 break;
1995 }
1996 case tok::kw___builtin_convertvector: {
1997 // The first argument is an expression to be converted, followed by a comma.
1998 ExprResult Expr(ParseAssignmentExpression());
1999 if (Expr.isInvalid()) {
2000 SkipUntil(tok::r_paren, StopAtSemi);
2001 return ExprError();
2002 }
2003
2004 if (ExpectAndConsume(tok::comma)) {
2005 SkipUntil(tok::r_paren, StopAtSemi);
2006 return ExprError();
2007 }
2008
2009 // Second argument is the type to bitcast to.
2010 TypeResult DestTy = ParseTypeName();
2011 if (DestTy.isInvalid())
2012 return ExprError();
2013
2014 // Attempt to consume the r-paren.
2015 if (Tok.isNot(tok::r_paren)) {
2016 Diag(Tok, diag::err_expected) << tok::r_paren;
2017 SkipUntil(tok::r_paren, StopAtSemi);
2018 return ExprError();
2019 }
2020
2021 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2022 ConsumeParen());
2023 break;
2024 }
2025 }
2026
2027 if (Res.isInvalid())
2028 return ExprError();
2029
2030 // These can be followed by postfix-expr pieces because they are
2031 // primary-expressions.
2032 return ParsePostfixExpressionSuffix(Res.get());
2033 }
2034
2035 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2036 /// based on what is allowed by ExprType. The actual thing parsed is returned
2037 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2038 /// not the parsed cast-expression.
2039 ///
2040 /// \verbatim
2041 /// primary-expression: [C99 6.5.1]
2042 /// '(' expression ')'
2043 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2044 /// postfix-expression: [C99 6.5.2]
2045 /// '(' type-name ')' '{' initializer-list '}'
2046 /// '(' type-name ')' '{' initializer-list ',' '}'
2047 /// cast-expression: [C99 6.5.4]
2048 /// '(' type-name ')' cast-expression
2049 /// [ARC] bridged-cast-expression
2050 /// [ARC] bridged-cast-expression:
2051 /// (__bridge type-name) cast-expression
2052 /// (__bridge_transfer type-name) cast-expression
2053 /// (__bridge_retained type-name) cast-expression
2054 /// fold-expression: [C++1z]
2055 /// '(' cast-expression fold-operator '...' ')'
2056 /// '(' '...' fold-operator cast-expression ')'
2057 /// '(' cast-expression fold-operator '...'
2058 /// fold-operator cast-expression ')'
2059 /// \endverbatim
2060 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2061 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2062 bool isTypeCast, ParsedType &CastTy,
2063 SourceLocation &RParenLoc) {
2064 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2065 ColonProtectionRAIIObject ColonProtection(*this, false);
2066 BalancedDelimiterTracker T(*this, tok::l_paren);
2067 if (T.consumeOpen())
2068 return ExprError();
2069 SourceLocation OpenLoc = T.getOpenLocation();
2070
2071 ExprResult Result(true);
2072 bool isAmbiguousTypeId;
2073 CastTy = ParsedType();
2074
2075 if (Tok.is(tok::code_completion)) {
2076 Actions.CodeCompleteOrdinaryName(getCurScope(),
2077 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2078 : Sema::PCC_Expression);
2079 cutOffParsing();
2080 return ExprError();
2081 }
2082
2083 // Diagnose use of bridge casts in non-arc mode.
2084 bool BridgeCast = (getLangOpts().ObjC2 &&
2085 (Tok.is(tok::kw___bridge) ||
2086 Tok.is(tok::kw___bridge_transfer) ||
2087 Tok.is(tok::kw___bridge_retained) ||
2088 Tok.is(tok::kw___bridge_retain)));
2089 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2090 if (!TryConsumeToken(tok::kw___bridge)) {
2091 StringRef BridgeCastName = Tok.getName();
2092 SourceLocation BridgeKeywordLoc = ConsumeToken();
2093 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2094 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2095 << BridgeCastName
2096 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2097 }
2098 BridgeCast = false;
2099 }
2100
2101 // None of these cases should fall through with an invalid Result
2102 // unless they've already reported an error.
2103 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2104 Diag(Tok, diag::ext_gnu_statement_expr);
2105
2106 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2107 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2108 } else {
2109 Actions.ActOnStartStmtExpr();
2110
2111 StmtResult Stmt(ParseCompoundStatement(true));
2112 ExprType = CompoundStmt;
2113
2114 // If the substmt parsed correctly, build the AST node.
2115 if (!Stmt.isInvalid()) {
2116 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2117 } else {
2118 Actions.ActOnStmtExprError();
2119 }
2120 }
2121 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2122 tok::TokenKind tokenKind = Tok.getKind();
2123 SourceLocation BridgeKeywordLoc = ConsumeToken();
2124
2125 // Parse an Objective-C ARC ownership cast expression.
2126 ObjCBridgeCastKind Kind;
2127 if (tokenKind == tok::kw___bridge)
2128 Kind = OBC_Bridge;
2129 else if (tokenKind == tok::kw___bridge_transfer)
2130 Kind = OBC_BridgeTransfer;
2131 else if (tokenKind == tok::kw___bridge_retained)
2132 Kind = OBC_BridgeRetained;
2133 else {
2134 // As a hopefully temporary workaround, allow __bridge_retain as
2135 // a synonym for __bridge_retained, but only in system headers.
2136 assert(tokenKind == tok::kw___bridge_retain);
2137 Kind = OBC_BridgeRetained;
2138 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2139 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2140 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2141 "__bridge_retained");
2142 }
2143
2144 TypeResult Ty = ParseTypeName();
2145 T.consumeClose();
2146 ColonProtection.restore();
2147 RParenLoc = T.getCloseLocation();
2148 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2149
2150 if (Ty.isInvalid() || SubExpr.isInvalid())
2151 return ExprError();
2152
2153 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2154 BridgeKeywordLoc, Ty.get(),
2155 RParenLoc, SubExpr.get());
2156 } else if (ExprType >= CompoundLiteral &&
2157 isTypeIdInParens(isAmbiguousTypeId)) {
2158
2159 // Otherwise, this is a compound literal expression or cast expression.
2160
2161 // In C++, if the type-id is ambiguous we disambiguate based on context.
2162 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2163 // in which case we should treat it as type-id.
2164 // if stopIfCastExpr is false, we need to determine the context past the
2165 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2166 if (isAmbiguousTypeId && !stopIfCastExpr) {
2167 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2168 ColonProtection);
2169 RParenLoc = T.getCloseLocation();
2170 return res;
2171 }
2172
2173 // Parse the type declarator.
2174 DeclSpec DS(AttrFactory);
2175 ParseSpecifierQualifierList(DS);
2176 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2177 ParseDeclarator(DeclaratorInfo);
2178
2179 // If our type is followed by an identifier and either ':' or ']', then
2180 // this is probably an Objective-C message send where the leading '[' is
2181 // missing. Recover as if that were the case.
2182 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2183 !InMessageExpression && getLangOpts().ObjC1 &&
2184 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2185 TypeResult Ty;
2186 {
2187 InMessageExpressionRAIIObject InMessage(*this, false);
2188 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2189 }
2190 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2191 SourceLocation(),
2192 Ty.get(), nullptr);
2193 } else {
2194 // Match the ')'.
2195 T.consumeClose();
2196 ColonProtection.restore();
2197 RParenLoc = T.getCloseLocation();
2198 if (Tok.is(tok::l_brace)) {
2199 ExprType = CompoundLiteral;
2200 TypeResult Ty;
2201 {
2202 InMessageExpressionRAIIObject InMessage(*this, false);
2203 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2204 }
2205 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2206 }
2207
2208 if (ExprType == CastExpr) {
2209 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2210
2211 if (DeclaratorInfo.isInvalidType())
2212 return ExprError();
2213
2214 // Note that this doesn't parse the subsequent cast-expression, it just
2215 // returns the parsed type to the callee.
2216 if (stopIfCastExpr) {
2217 TypeResult Ty;
2218 {
2219 InMessageExpressionRAIIObject InMessage(*this, false);
2220 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2221 }
2222 CastTy = Ty.get();
2223 return ExprResult();
2224 }
2225
2226 // Reject the cast of super idiom in ObjC.
2227 if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2228 Tok.getIdentifierInfo() == Ident_super &&
2229 getCurScope()->isInObjcMethodScope() &&
2230 GetLookAheadToken(1).isNot(tok::period)) {
2231 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2232 << SourceRange(OpenLoc, RParenLoc);
2233 return ExprError();
2234 }
2235
2236 // Parse the cast-expression that follows it next.
2237 // TODO: For cast expression with CastTy.
2238 Result = ParseCastExpression(/*isUnaryExpression=*/false,
2239 /*isAddressOfOperand=*/false,
2240 /*isTypeCast=*/IsTypeCast);
2241 if (!Result.isInvalid()) {
2242 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2243 DeclaratorInfo, CastTy,
2244 RParenLoc, Result.get());
2245 }
2246 return Result;
2247 }
2248
2249 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2250 return ExprError();
2251 }
2252 } else if (Tok.is(tok::ellipsis) &&
2253 isFoldOperator(NextToken().getKind())) {
2254 return ParseFoldExpression(ExprResult(), T);
2255 } else if (isTypeCast) {
2256 // Parse the expression-list.
2257 InMessageExpressionRAIIObject InMessage(*this, false);
2258
2259 ExprVector ArgExprs;
2260 CommaLocsTy CommaLocs;
2261
2262 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2263 // FIXME: If we ever support comma expressions as operands to
2264 // fold-expressions, we'll need to allow multiple ArgExprs here.
2265 if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
2266 NextToken().is(tok::ellipsis))
2267 return ParseFoldExpression(Result, T);
2268
2269 ExprType = SimpleExpr;
2270 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2271 ArgExprs);
2272 }
2273 } else {
2274 InMessageExpressionRAIIObject InMessage(*this, false);
2275
2276 Result = ParseExpression(MaybeTypeCast);
2277 ExprType = SimpleExpr;
2278
2279 if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
2280 return ParseFoldExpression(Result, T);
2281
2282 // Don't build a paren expression unless we actually match a ')'.
2283 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2284 Result =
2285 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2286 }
2287
2288 // Match the ')'.
2289 if (Result.isInvalid()) {
2290 SkipUntil(tok::r_paren, StopAtSemi);
2291 return ExprError();
2292 }
2293
2294 T.consumeClose();
2295 RParenLoc = T.getCloseLocation();
2296 return Result;
2297 }
2298
2299 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2300 /// and we are at the left brace.
2301 ///
2302 /// \verbatim
2303 /// postfix-expression: [C99 6.5.2]
2304 /// '(' type-name ')' '{' initializer-list '}'
2305 /// '(' type-name ')' '{' initializer-list ',' '}'
2306 /// \endverbatim
2307 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2308 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2309 SourceLocation LParenLoc,
2310 SourceLocation RParenLoc) {
2311 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2312 if (!getLangOpts().C99) // Compound literals don't exist in C90.
2313 Diag(LParenLoc, diag::ext_c99_compound_literal);
2314 ExprResult Result = ParseInitializer();
2315 if (!Result.isInvalid() && Ty)
2316 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2317 return Result;
2318 }
2319
2320 /// ParseStringLiteralExpression - This handles the various token types that
2321 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2322 /// translation phase #6].
2323 ///
2324 /// \verbatim
2325 /// primary-expression: [C99 6.5.1]
2326 /// string-literal
2327 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2328 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2329 assert(isTokenStringLiteral() && "Not a string literal!");
2330
2331 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2332 // considered to be strings for concatenation purposes.
2333 SmallVector<Token, 4> StringToks;
2334
2335 do {
2336 StringToks.push_back(Tok);
2337 ConsumeStringToken();
2338 } while (isTokenStringLiteral());
2339
2340 // Pass the set of string tokens, ready for concatenation, to the actions.
2341 return Actions.ActOnStringLiteral(StringToks,
2342 AllowUserDefinedLiteral ? getCurScope()
2343 : nullptr);
2344 }
2345
2346 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2347 /// [C11 6.5.1.1].
2348 ///
2349 /// \verbatim
2350 /// generic-selection:
2351 /// _Generic ( assignment-expression , generic-assoc-list )
2352 /// generic-assoc-list:
2353 /// generic-association
2354 /// generic-assoc-list , generic-association
2355 /// generic-association:
2356 /// type-name : assignment-expression
2357 /// default : assignment-expression
2358 /// \endverbatim
ParseGenericSelectionExpression()2359 ExprResult Parser::ParseGenericSelectionExpression() {
2360 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2361 SourceLocation KeyLoc = ConsumeToken();
2362
2363 if (!getLangOpts().C11)
2364 Diag(KeyLoc, diag::ext_c11_generic_selection);
2365
2366 BalancedDelimiterTracker T(*this, tok::l_paren);
2367 if (T.expectAndConsume())
2368 return ExprError();
2369
2370 ExprResult ControllingExpr;
2371 {
2372 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2373 // not evaluated."
2374 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2375 ControllingExpr =
2376 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2377 if (ControllingExpr.isInvalid()) {
2378 SkipUntil(tok::r_paren, StopAtSemi);
2379 return ExprError();
2380 }
2381 }
2382
2383 if (ExpectAndConsume(tok::comma)) {
2384 SkipUntil(tok::r_paren, StopAtSemi);
2385 return ExprError();
2386 }
2387
2388 SourceLocation DefaultLoc;
2389 TypeVector Types;
2390 ExprVector Exprs;
2391 do {
2392 ParsedType Ty;
2393 if (Tok.is(tok::kw_default)) {
2394 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2395 // generic association."
2396 if (!DefaultLoc.isInvalid()) {
2397 Diag(Tok, diag::err_duplicate_default_assoc);
2398 Diag(DefaultLoc, diag::note_previous_default_assoc);
2399 SkipUntil(tok::r_paren, StopAtSemi);
2400 return ExprError();
2401 }
2402 DefaultLoc = ConsumeToken();
2403 Ty = ParsedType();
2404 } else {
2405 ColonProtectionRAIIObject X(*this);
2406 TypeResult TR = ParseTypeName();
2407 if (TR.isInvalid()) {
2408 SkipUntil(tok::r_paren, StopAtSemi);
2409 return ExprError();
2410 }
2411 Ty = TR.get();
2412 }
2413 Types.push_back(Ty);
2414
2415 if (ExpectAndConsume(tok::colon)) {
2416 SkipUntil(tok::r_paren, StopAtSemi);
2417 return ExprError();
2418 }
2419
2420 // FIXME: These expressions should be parsed in a potentially potentially
2421 // evaluated context.
2422 ExprResult ER(
2423 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2424 if (ER.isInvalid()) {
2425 SkipUntil(tok::r_paren, StopAtSemi);
2426 return ExprError();
2427 }
2428 Exprs.push_back(ER.get());
2429 } while (TryConsumeToken(tok::comma));
2430
2431 T.consumeClose();
2432 if (T.getCloseLocation().isInvalid())
2433 return ExprError();
2434
2435 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2436 T.getCloseLocation(),
2437 ControllingExpr.get(),
2438 Types, Exprs);
2439 }
2440
2441 /// \brief Parse A C++1z fold-expression after the opening paren and optional
2442 /// left-hand-side expression.
2443 ///
2444 /// \verbatim
2445 /// fold-expression:
2446 /// ( cast-expression fold-operator ... )
2447 /// ( ... fold-operator cast-expression )
2448 /// ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)2449 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2450 BalancedDelimiterTracker &T) {
2451 if (LHS.isInvalid()) {
2452 T.skipToEnd();
2453 return true;
2454 }
2455
2456 tok::TokenKind Kind = tok::unknown;
2457 SourceLocation FirstOpLoc;
2458 if (LHS.isUsable()) {
2459 Kind = Tok.getKind();
2460 assert(isFoldOperator(Kind) && "missing fold-operator");
2461 FirstOpLoc = ConsumeToken();
2462 }
2463
2464 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2465 SourceLocation EllipsisLoc = ConsumeToken();
2466
2467 ExprResult RHS;
2468 if (Tok.isNot(tok::r_paren)) {
2469 if (!isFoldOperator(Tok.getKind()))
2470 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2471
2472 if (Kind != tok::unknown && Tok.getKind() != Kind)
2473 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2474 << SourceRange(FirstOpLoc);
2475 Kind = Tok.getKind();
2476 ConsumeToken();
2477
2478 RHS = ParseExpression();
2479 if (RHS.isInvalid()) {
2480 T.skipToEnd();
2481 return true;
2482 }
2483 }
2484
2485 Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
2486 ? diag::warn_cxx14_compat_fold_expression
2487 : diag::ext_fold_expression);
2488
2489 T.consumeClose();
2490 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2491 EllipsisLoc, RHS.get(), T.getCloseLocation());
2492 }
2493
2494 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2495 ///
2496 /// \verbatim
2497 /// argument-expression-list:
2498 /// assignment-expression
2499 /// argument-expression-list , assignment-expression
2500 ///
2501 /// [C++] expression-list:
2502 /// [C++] assignment-expression
2503 /// [C++] expression-list , assignment-expression
2504 ///
2505 /// [C++0x] expression-list:
2506 /// [C++0x] initializer-list
2507 ///
2508 /// [C++0x] initializer-list
2509 /// [C++0x] initializer-clause ...[opt]
2510 /// [C++0x] initializer-list , initializer-clause ...[opt]
2511 ///
2512 /// [C++0x] initializer-clause:
2513 /// [C++0x] assignment-expression
2514 /// [C++0x] braced-init-list
2515 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,std::function<void ()> Completer)2516 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2517 SmallVectorImpl<SourceLocation> &CommaLocs,
2518 std::function<void()> Completer) {
2519 bool SawError = false;
2520 while (1) {
2521 if (Tok.is(tok::code_completion)) {
2522 if (Completer)
2523 Completer();
2524 else
2525 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2526 cutOffParsing();
2527 return true;
2528 }
2529
2530 ExprResult Expr;
2531 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2532 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2533 Expr = ParseBraceInitializer();
2534 } else
2535 Expr = ParseAssignmentExpression();
2536
2537 if (Tok.is(tok::ellipsis))
2538 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2539 if (Expr.isInvalid()) {
2540 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2541 SawError = true;
2542 } else {
2543 Exprs.push_back(Expr.get());
2544 }
2545
2546 if (Tok.isNot(tok::comma))
2547 break;
2548 // Move to the next argument, remember where the comma was.
2549 CommaLocs.push_back(ConsumeToken());
2550 }
2551 if (SawError) {
2552 // Ensure typos get diagnosed when errors were encountered while parsing the
2553 // expression list.
2554 for (auto &E : Exprs) {
2555 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2556 if (Expr.isUsable()) E = Expr.get();
2557 }
2558 }
2559 return SawError;
2560 }
2561
2562 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2563 /// used for misc language extensions.
2564 ///
2565 /// \verbatim
2566 /// simple-expression-list:
2567 /// assignment-expression
2568 /// simple-expression-list , assignment-expression
2569 /// \endverbatim
2570 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2571 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2572 SmallVectorImpl<SourceLocation> &CommaLocs) {
2573 while (1) {
2574 ExprResult Expr = ParseAssignmentExpression();
2575 if (Expr.isInvalid())
2576 return true;
2577
2578 Exprs.push_back(Expr.get());
2579
2580 if (Tok.isNot(tok::comma))
2581 return false;
2582
2583 // Move to the next argument, remember where the comma was.
2584 CommaLocs.push_back(ConsumeToken());
2585 }
2586 }
2587
2588 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2589 ///
2590 /// \verbatim
2591 /// [clang] block-id:
2592 /// [clang] specifier-qualifier-list block-declarator
2593 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2594 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2595 if (Tok.is(tok::code_completion)) {
2596 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2597 return cutOffParsing();
2598 }
2599
2600 // Parse the specifier-qualifier-list piece.
2601 DeclSpec DS(AttrFactory);
2602 ParseSpecifierQualifierList(DS);
2603
2604 // Parse the block-declarator.
2605 Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2606 ParseDeclarator(DeclaratorInfo);
2607
2608 // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2609 DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2610
2611 MaybeParseGNUAttributes(DeclaratorInfo);
2612
2613 // Inform sema that we are starting a block.
2614 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2615 }
2616
2617 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2618 /// like ^(int x){ return x+1; }
2619 ///
2620 /// \verbatim
2621 /// block-literal:
2622 /// [clang] '^' block-args[opt] compound-statement
2623 /// [clang] '^' block-id compound-statement
2624 /// [clang] block-args:
2625 /// [clang] '(' parameter-list ')'
2626 /// \endverbatim
ParseBlockLiteralExpression()2627 ExprResult Parser::ParseBlockLiteralExpression() {
2628 assert(Tok.is(tok::caret) && "block literal starts with ^");
2629 SourceLocation CaretLoc = ConsumeToken();
2630
2631 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2632 "block literal parsing");
2633
2634 // Enter a scope to hold everything within the block. This includes the
2635 // argument decls, decls within the compound expression, etc. This also
2636 // allows determining whether a variable reference inside the block is
2637 // within or outside of the block.
2638 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2639 Scope::DeclScope);
2640
2641 // Inform sema that we are starting a block.
2642 Actions.ActOnBlockStart(CaretLoc, getCurScope());
2643
2644 // Parse the return type if present.
2645 DeclSpec DS(AttrFactory);
2646 Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2647 // FIXME: Since the return type isn't actually parsed, it can't be used to
2648 // fill ParamInfo with an initial valid range, so do it manually.
2649 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2650
2651 // If this block has arguments, parse them. There is no ambiguity here with
2652 // the expression case, because the expression case requires a parameter list.
2653 if (Tok.is(tok::l_paren)) {
2654 ParseParenDeclarator(ParamInfo);
2655 // Parse the pieces after the identifier as if we had "int(...)".
2656 // SetIdentifier sets the source range end, but in this case we're past
2657 // that location.
2658 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2659 ParamInfo.SetIdentifier(nullptr, CaretLoc);
2660 ParamInfo.SetRangeEnd(Tmp);
2661 if (ParamInfo.isInvalidType()) {
2662 // If there was an error parsing the arguments, they may have
2663 // tried to use ^(x+y) which requires an argument list. Just
2664 // skip the whole block literal.
2665 Actions.ActOnBlockError(CaretLoc, getCurScope());
2666 return ExprError();
2667 }
2668
2669 MaybeParseGNUAttributes(ParamInfo);
2670
2671 // Inform sema that we are starting a block.
2672 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2673 } else if (!Tok.is(tok::l_brace)) {
2674 ParseBlockId(CaretLoc);
2675 } else {
2676 // Otherwise, pretend we saw (void).
2677 ParsedAttributes attrs(AttrFactory);
2678 SourceLocation NoLoc;
2679 ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2680 /*IsAmbiguous=*/false,
2681 /*RParenLoc=*/NoLoc,
2682 /*ArgInfo=*/nullptr,
2683 /*NumArgs=*/0,
2684 /*EllipsisLoc=*/NoLoc,
2685 /*RParenLoc=*/NoLoc,
2686 /*TypeQuals=*/0,
2687 /*RefQualifierIsLvalueRef=*/true,
2688 /*RefQualifierLoc=*/NoLoc,
2689 /*ConstQualifierLoc=*/NoLoc,
2690 /*VolatileQualifierLoc=*/NoLoc,
2691 /*RestrictQualifierLoc=*/NoLoc,
2692 /*MutableLoc=*/NoLoc,
2693 EST_None,
2694 /*ESpecLoc=*/NoLoc,
2695 /*Exceptions=*/nullptr,
2696 /*ExceptionRanges=*/nullptr,
2697 /*NumExceptions=*/0,
2698 /*NoexceptExpr=*/nullptr,
2699 /*ExceptionSpecTokens=*/nullptr,
2700 CaretLoc, CaretLoc,
2701 ParamInfo),
2702 attrs, CaretLoc);
2703
2704 MaybeParseGNUAttributes(ParamInfo);
2705
2706 // Inform sema that we are starting a block.
2707 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2708 }
2709
2710
2711 ExprResult Result(true);
2712 if (!Tok.is(tok::l_brace)) {
2713 // Saw something like: ^expr
2714 Diag(Tok, diag::err_expected_expression);
2715 Actions.ActOnBlockError(CaretLoc, getCurScope());
2716 return ExprError();
2717 }
2718
2719 StmtResult Stmt(ParseCompoundStatementBody());
2720 BlockScope.Exit();
2721 if (!Stmt.isInvalid())
2722 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2723 else
2724 Actions.ActOnBlockError(CaretLoc, getCurScope());
2725 return Result;
2726 }
2727
2728 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2729 ///
2730 /// '__objc_yes'
2731 /// '__objc_no'
ParseObjCBoolLiteral()2732 ExprResult Parser::ParseObjCBoolLiteral() {
2733 tok::TokenKind Kind = Tok.getKind();
2734 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2735 }
2736