1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "RAIIObjectsForParser.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Sema/DeclSpec.h"
21 #include "clang/Sema/ParsedTemplate.h"
22 #include "clang/Sema/Scope.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25
26 using namespace clang;
27
SelectDigraphErrorMessage(tok::TokenKind Kind)28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
29 switch (Kind) {
30 // template name
31 case tok::unknown: return 0;
32 // casts
33 case tok::kw_const_cast: return 1;
34 case tok::kw_dynamic_cast: return 2;
35 case tok::kw_reinterpret_cast: return 3;
36 case tok::kw_static_cast: return 4;
37 default:
38 llvm_unreachable("Unknown type for digraph error message.");
39 }
40 }
41
42 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
44 SourceManager &SM = PP.getSourceManager();
45 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
46 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
47 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
48 }
49
50 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
52 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
53 // Pull '<:' and ':' off token stream.
54 if (!AtDigraph)
55 PP.Lex(DigraphToken);
56 PP.Lex(ColonToken);
57
58 SourceRange Range;
59 Range.setBegin(DigraphToken.getLocation());
60 Range.setEnd(ColonToken.getLocation());
61 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
62 << SelectDigraphErrorMessage(Kind)
63 << FixItHint::CreateReplacement(Range, "< ::");
64
65 // Update token information to reflect their change in token type.
66 ColonToken.setKind(tok::coloncolon);
67 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
68 ColonToken.setLength(2);
69 DigraphToken.setKind(tok::less);
70 DigraphToken.setLength(1);
71
72 // Push new tokens back to token stream.
73 PP.EnterToken(ColonToken);
74 if (!AtDigraph)
75 PP.EnterToken(DigraphToken);
76 }
77
78 // Check for '<::' which should be '< ::' instead of '[:' when following
79 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
81 bool EnteringContext,
82 IdentifierInfo &II, CXXScopeSpec &SS) {
83 if (!Next.is(tok::l_square) || Next.getLength() != 2)
84 return;
85
86 Token SecondToken = GetLookAheadToken(2);
87 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
88 return;
89
90 TemplateTy Template;
91 UnqualifiedId TemplateName;
92 TemplateName.setIdentifier(&II, Tok.getLocation());
93 bool MemberOfUnknownSpecialization;
94 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
95 TemplateName, ObjectType, EnteringContext,
96 Template, MemberOfUnknownSpecialization))
97 return;
98
99 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
100 /*AtDigraph*/false);
101 }
102
103 /// \brief Emits an error for a left parentheses after a double colon.
104 ///
105 /// When a '(' is found after a '::', emit an error. Attempt to fix the token
106 /// stream by removing the '(', and the matching ')' if found.
CheckForLParenAfterColonColon()107 void Parser::CheckForLParenAfterColonColon() {
108 if (!Tok.is(tok::l_paren))
109 return;
110
111 Token LParen = Tok;
112 Token NextTok = GetLookAheadToken(1);
113 Token StarTok = NextTok;
114 // Check for (identifier or (*identifier
115 Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
116 if (IdentifierTok.isNot(tok::identifier))
117 return;
118 // Eat the '('.
119 ConsumeParen();
120 Token RParen;
121 RParen.setLocation(SourceLocation());
122 // Do we have a ')' ?
123 NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
124 if (NextTok.is(tok::r_paren)) {
125 RParen = NextTok;
126 // Eat the '*' if it is present.
127 if (StarTok.is(tok::star))
128 ConsumeToken();
129 // Eat the identifier.
130 ConsumeToken();
131 // Add the identifier token back.
132 PP.EnterToken(IdentifierTok);
133 // Add the '*' back if it was present.
134 if (StarTok.is(tok::star))
135 PP.EnterToken(StarTok);
136 // Eat the ')'.
137 ConsumeParen();
138 }
139
140 Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
141 << FixItHint::CreateRemoval(LParen.getLocation())
142 << FixItHint::CreateRemoval(RParen.getLocation());
143 }
144
145 /// \brief Parse global scope or nested-name-specifier if present.
146 ///
147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
148 /// may be preceded by '::'). Note that this routine will not parse ::new or
149 /// ::delete; it will just leave them in the token stream.
150 ///
151 /// '::'[opt] nested-name-specifier
152 /// '::'
153 ///
154 /// nested-name-specifier:
155 /// type-name '::'
156 /// namespace-name '::'
157 /// nested-name-specifier identifier '::'
158 /// nested-name-specifier 'template'[opt] simple-template-id '::'
159 ///
160 ///
161 /// \param SS the scope specifier that will be set to the parsed
162 /// nested-name-specifier (or empty)
163 ///
164 /// \param ObjectType if this nested-name-specifier is being parsed following
165 /// the "." or "->" of a member access expression, this parameter provides the
166 /// type of the object whose members are being accessed.
167 ///
168 /// \param EnteringContext whether we will be entering into the context of
169 /// the nested-name-specifier after parsing it.
170 ///
171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
172 /// indicates whether this nested-name-specifier may be part of a
173 /// pseudo-destructor name. In this case, the flag will be set false
174 /// if we don't actually end up parsing a destructor name. Moreorover,
175 /// if we do end up determining that we are parsing a destructor name,
176 /// the last component of the nested-name-specifier is not parsed as
177 /// part of the scope specifier.
178 ///
179 /// \param IsTypename If \c true, this nested-name-specifier is known to be
180 /// part of a type name. This is used to improve error recovery.
181 ///
182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
183 /// filled in with the leading identifier in the last component of the
184 /// nested-name-specifier, if any.
185 ///
186 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII)187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
188 ParsedType ObjectType,
189 bool EnteringContext,
190 bool *MayBePseudoDestructor,
191 bool IsTypename,
192 IdentifierInfo **LastII) {
193 assert(getLangOpts().CPlusPlus &&
194 "Call sites of this function should be guarded by checking for C++");
195
196 if (Tok.is(tok::annot_cxxscope)) {
197 assert(!LastII && "want last identifier but have already annotated scope");
198 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
199 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
200 Tok.getAnnotationRange(),
201 SS);
202 ConsumeToken();
203 return false;
204 }
205
206 if (Tok.is(tok::annot_template_id)) {
207 // If the current token is an annotated template id, it may already have
208 // a scope specifier. Restore it.
209 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
210 SS = TemplateId->SS;
211 }
212
213 // Has to happen before any "return false"s in this function.
214 bool CheckForDestructor = false;
215 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
216 CheckForDestructor = true;
217 *MayBePseudoDestructor = false;
218 }
219
220 if (LastII)
221 *LastII = nullptr;
222
223 bool HasScopeSpecifier = false;
224
225 if (Tok.is(tok::coloncolon)) {
226 // ::new and ::delete aren't nested-name-specifiers.
227 tok::TokenKind NextKind = NextToken().getKind();
228 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
229 return false;
230
231 if (NextKind == tok::l_brace) {
232 // It is invalid to have :: {, consume the scope qualifier and pretend
233 // like we never saw it.
234 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
235 } else {
236 // '::' - Global scope qualifier.
237 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
238 return true;
239
240 CheckForLParenAfterColonColon();
241
242 HasScopeSpecifier = true;
243 }
244 }
245
246 if (Tok.is(tok::kw___super)) {
247 SourceLocation SuperLoc = ConsumeToken();
248 if (!Tok.is(tok::coloncolon)) {
249 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
250 return true;
251 }
252
253 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
254 }
255
256 if (!HasScopeSpecifier &&
257 (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))) {
258 DeclSpec DS(AttrFactory);
259 SourceLocation DeclLoc = Tok.getLocation();
260 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
261
262 SourceLocation CCLoc;
263 if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
264 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
265 return false;
266 }
267
268 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
269 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
270
271 HasScopeSpecifier = true;
272 }
273
274 while (true) {
275 if (HasScopeSpecifier) {
276 // C++ [basic.lookup.classref]p5:
277 // If the qualified-id has the form
278 //
279 // ::class-name-or-namespace-name::...
280 //
281 // the class-name-or-namespace-name is looked up in global scope as a
282 // class-name or namespace-name.
283 //
284 // To implement this, we clear out the object type as soon as we've
285 // seen a leading '::' or part of a nested-name-specifier.
286 ObjectType = ParsedType();
287
288 if (Tok.is(tok::code_completion)) {
289 // Code completion for a nested-name-specifier, where the code
290 // code completion token follows the '::'.
291 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
292 // Include code completion token into the range of the scope otherwise
293 // when we try to annotate the scope tokens the dangling code completion
294 // token will cause assertion in
295 // Preprocessor::AnnotatePreviousCachedTokens.
296 SS.setEndLoc(Tok.getLocation());
297 cutOffParsing();
298 return true;
299 }
300 }
301
302 // nested-name-specifier:
303 // nested-name-specifier 'template'[opt] simple-template-id '::'
304
305 // Parse the optional 'template' keyword, then make sure we have
306 // 'identifier <' after it.
307 if (Tok.is(tok::kw_template)) {
308 // If we don't have a scope specifier or an object type, this isn't a
309 // nested-name-specifier, since they aren't allowed to start with
310 // 'template'.
311 if (!HasScopeSpecifier && !ObjectType)
312 break;
313
314 TentativeParsingAction TPA(*this);
315 SourceLocation TemplateKWLoc = ConsumeToken();
316
317 UnqualifiedId TemplateName;
318 if (Tok.is(tok::identifier)) {
319 // Consume the identifier.
320 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
321 ConsumeToken();
322 } else if (Tok.is(tok::kw_operator)) {
323 // We don't need to actually parse the unqualified-id in this case,
324 // because a simple-template-id cannot start with 'operator', but
325 // go ahead and parse it anyway for consistency with the case where
326 // we already annotated the template-id.
327 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
328 TemplateName)) {
329 TPA.Commit();
330 break;
331 }
332
333 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
334 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
335 Diag(TemplateName.getSourceRange().getBegin(),
336 diag::err_id_after_template_in_nested_name_spec)
337 << TemplateName.getSourceRange();
338 TPA.Commit();
339 break;
340 }
341 } else {
342 TPA.Revert();
343 break;
344 }
345
346 // If the next token is not '<', we have a qualified-id that refers
347 // to a template name, such as T::template apply, but is not a
348 // template-id.
349 if (Tok.isNot(tok::less)) {
350 TPA.Revert();
351 break;
352 }
353
354 // Commit to parsing the template-id.
355 TPA.Commit();
356 TemplateTy Template;
357 if (TemplateNameKind TNK
358 = Actions.ActOnDependentTemplateName(getCurScope(),
359 SS, TemplateKWLoc, TemplateName,
360 ObjectType, EnteringContext,
361 Template)) {
362 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
363 TemplateName, false))
364 return true;
365 } else
366 return true;
367
368 continue;
369 }
370
371 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
372 // We have
373 //
374 // template-id '::'
375 //
376 // So we need to check whether the template-id is a simple-template-id of
377 // the right kind (it should name a type or be dependent), and then
378 // convert it into a type within the nested-name-specifier.
379 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
380 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
381 *MayBePseudoDestructor = true;
382 return false;
383 }
384
385 if (LastII)
386 *LastII = TemplateId->Name;
387
388 // Consume the template-id token.
389 ConsumeToken();
390
391 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
392 SourceLocation CCLoc = ConsumeToken();
393
394 HasScopeSpecifier = true;
395
396 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
397 TemplateId->NumArgs);
398
399 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
400 SS,
401 TemplateId->TemplateKWLoc,
402 TemplateId->Template,
403 TemplateId->TemplateNameLoc,
404 TemplateId->LAngleLoc,
405 TemplateArgsPtr,
406 TemplateId->RAngleLoc,
407 CCLoc,
408 EnteringContext)) {
409 SourceLocation StartLoc
410 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
411 : TemplateId->TemplateNameLoc;
412 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
413 }
414
415 continue;
416 }
417
418 // The rest of the nested-name-specifier possibilities start with
419 // tok::identifier.
420 if (Tok.isNot(tok::identifier))
421 break;
422
423 IdentifierInfo &II = *Tok.getIdentifierInfo();
424
425 // nested-name-specifier:
426 // type-name '::'
427 // namespace-name '::'
428 // nested-name-specifier identifier '::'
429 Token Next = NextToken();
430
431 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
432 // and emit a fixit hint for it.
433 if (Next.is(tok::colon) && !ColonIsSacred) {
434 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
435 Tok.getLocation(),
436 Next.getLocation(), ObjectType,
437 EnteringContext) &&
438 // If the token after the colon isn't an identifier, it's still an
439 // error, but they probably meant something else strange so don't
440 // recover like this.
441 PP.LookAhead(1).is(tok::identifier)) {
442 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
443 << FixItHint::CreateReplacement(Next.getLocation(), "::");
444 // Recover as if the user wrote '::'.
445 Next.setKind(tok::coloncolon);
446 }
447 }
448
449 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
450 // It is invalid to have :: {, consume the scope qualifier and pretend
451 // like we never saw it.
452 Token Identifier = Tok; // Stash away the identifier.
453 ConsumeToken(); // Eat the identifier, current token is now '::'.
454 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
455 << tok::identifier;
456 UnconsumeToken(Identifier); // Stick the identifier back.
457 Next = NextToken(); // Point Next at the '{' token.
458 }
459
460 if (Next.is(tok::coloncolon)) {
461 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
462 !Actions.isNonTypeNestedNameSpecifier(
463 getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
464 *MayBePseudoDestructor = true;
465 return false;
466 }
467
468 if (ColonIsSacred) {
469 const Token &Next2 = GetLookAheadToken(2);
470 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
471 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
472 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
473 << Next2.getName()
474 << FixItHint::CreateReplacement(Next.getLocation(), ":");
475 Token ColonColon;
476 PP.Lex(ColonColon);
477 ColonColon.setKind(tok::colon);
478 PP.EnterToken(ColonColon);
479 break;
480 }
481 }
482
483 if (LastII)
484 *LastII = &II;
485
486 // We have an identifier followed by a '::'. Lookup this name
487 // as the name in a nested-name-specifier.
488 Token Identifier = Tok;
489 SourceLocation IdLoc = ConsumeToken();
490 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
491 "NextToken() not working properly!");
492 Token ColonColon = Tok;
493 SourceLocation CCLoc = ConsumeToken();
494
495 CheckForLParenAfterColonColon();
496
497 bool IsCorrectedToColon = false;
498 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
499 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
500 ObjectType, EnteringContext, SS,
501 false, CorrectionFlagPtr)) {
502 // Identifier is not recognized as a nested name, but we can have
503 // mistyped '::' instead of ':'.
504 if (CorrectionFlagPtr && IsCorrectedToColon) {
505 ColonColon.setKind(tok::colon);
506 PP.EnterToken(Tok);
507 PP.EnterToken(ColonColon);
508 Tok = Identifier;
509 break;
510 }
511 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
512 }
513 HasScopeSpecifier = true;
514 continue;
515 }
516
517 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
518
519 // nested-name-specifier:
520 // type-name '<'
521 if (Next.is(tok::less)) {
522 TemplateTy Template;
523 UnqualifiedId TemplateName;
524 TemplateName.setIdentifier(&II, Tok.getLocation());
525 bool MemberOfUnknownSpecialization;
526 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
527 /*hasTemplateKeyword=*/false,
528 TemplateName,
529 ObjectType,
530 EnteringContext,
531 Template,
532 MemberOfUnknownSpecialization)) {
533 // We have found a template name, so annotate this token
534 // with a template-id annotation. We do not permit the
535 // template-id to be translated into a type annotation,
536 // because some clients (e.g., the parsing of class template
537 // specializations) still want to see the original template-id
538 // token.
539 ConsumeToken();
540 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
541 TemplateName, false))
542 return true;
543 continue;
544 }
545
546 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
547 (IsTypename || IsTemplateArgumentList(1))) {
548 // We have something like t::getAs<T>, where getAs is a
549 // member of an unknown specialization. However, this will only
550 // parse correctly as a template, so suggest the keyword 'template'
551 // before 'getAs' and treat this as a dependent template name.
552 unsigned DiagID = diag::err_missing_dependent_template_keyword;
553 if (getLangOpts().MicrosoftExt)
554 DiagID = diag::warn_missing_dependent_template_keyword;
555
556 Diag(Tok.getLocation(), DiagID)
557 << II.getName()
558 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
559
560 if (TemplateNameKind TNK
561 = Actions.ActOnDependentTemplateName(getCurScope(),
562 SS, SourceLocation(),
563 TemplateName, ObjectType,
564 EnteringContext, Template)) {
565 // Consume the identifier.
566 ConsumeToken();
567 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
568 TemplateName, false))
569 return true;
570 }
571 else
572 return true;
573
574 continue;
575 }
576 }
577
578 // We don't have any tokens that form the beginning of a
579 // nested-name-specifier, so we're done.
580 break;
581 }
582
583 // Even if we didn't see any pieces of a nested-name-specifier, we
584 // still check whether there is a tilde in this position, which
585 // indicates a potential pseudo-destructor.
586 if (CheckForDestructor && Tok.is(tok::tilde))
587 *MayBePseudoDestructor = true;
588
589 return false;
590 }
591
tryParseCXXIdExpression(CXXScopeSpec & SS,bool isAddressOfOperand,Token & Replacement)592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
593 Token &Replacement) {
594 SourceLocation TemplateKWLoc;
595 UnqualifiedId Name;
596 if (ParseUnqualifiedId(SS,
597 /*EnteringContext=*/false,
598 /*AllowDestructorName=*/false,
599 /*AllowConstructorName=*/false,
600 /*ObjectType=*/ParsedType(), TemplateKWLoc, Name))
601 return ExprError();
602
603 // This is only the direct operand of an & operator if it is not
604 // followed by a postfix-expression suffix.
605 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
606 isAddressOfOperand = false;
607
608 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
609 Tok.is(tok::l_paren), isAddressOfOperand,
610 nullptr, /*IsInlineAsmIdentifier=*/false,
611 &Replacement);
612 }
613
614 /// ParseCXXIdExpression - Handle id-expression.
615 ///
616 /// id-expression:
617 /// unqualified-id
618 /// qualified-id
619 ///
620 /// qualified-id:
621 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
622 /// '::' identifier
623 /// '::' operator-function-id
624 /// '::' template-id
625 ///
626 /// NOTE: The standard specifies that, for qualified-id, the parser does not
627 /// expect:
628 ///
629 /// '::' conversion-function-id
630 /// '::' '~' class-name
631 ///
632 /// This may cause a slight inconsistency on diagnostics:
633 ///
634 /// class C {};
635 /// namespace A {}
636 /// void f() {
637 /// :: A :: ~ C(); // Some Sema error about using destructor with a
638 /// // namespace.
639 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
640 /// }
641 ///
642 /// We simplify the parser a bit and make it work like:
643 ///
644 /// qualified-id:
645 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
646 /// '::' unqualified-id
647 ///
648 /// That way Sema can handle and report similar errors for namespaces and the
649 /// global scope.
650 ///
651 /// The isAddressOfOperand parameter indicates that this id-expression is a
652 /// direct operand of the address-of operator. This is, besides member contexts,
653 /// the only place where a qualified-id naming a non-static class member may
654 /// appear.
655 ///
ParseCXXIdExpression(bool isAddressOfOperand)656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
657 // qualified-id:
658 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
659 // '::' unqualified-id
660 //
661 CXXScopeSpec SS;
662 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
663
664 Token Replacement;
665 ExprResult Result =
666 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
667 if (Result.isUnset()) {
668 // If the ExprResult is valid but null, then typo correction suggested a
669 // keyword replacement that needs to be reparsed.
670 UnconsumeToken(Replacement);
671 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
672 }
673 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
674 "for a previous keyword suggestion");
675 return Result;
676 }
677
678 /// ParseLambdaExpression - Parse a C++11 lambda expression.
679 ///
680 /// lambda-expression:
681 /// lambda-introducer lambda-declarator[opt] compound-statement
682 ///
683 /// lambda-introducer:
684 /// '[' lambda-capture[opt] ']'
685 ///
686 /// lambda-capture:
687 /// capture-default
688 /// capture-list
689 /// capture-default ',' capture-list
690 ///
691 /// capture-default:
692 /// '&'
693 /// '='
694 ///
695 /// capture-list:
696 /// capture
697 /// capture-list ',' capture
698 ///
699 /// capture:
700 /// simple-capture
701 /// init-capture [C++1y]
702 ///
703 /// simple-capture:
704 /// identifier
705 /// '&' identifier
706 /// 'this'
707 ///
708 /// init-capture: [C++1y]
709 /// identifier initializer
710 /// '&' identifier initializer
711 ///
712 /// lambda-declarator:
713 /// '(' parameter-declaration-clause ')' attribute-specifier[opt]
714 /// 'mutable'[opt] exception-specification[opt]
715 /// trailing-return-type[opt]
716 ///
ParseLambdaExpression()717 ExprResult Parser::ParseLambdaExpression() {
718 // Parse lambda-introducer.
719 LambdaIntroducer Intro;
720 Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
721 if (DiagID) {
722 Diag(Tok, DiagID.getValue());
723 SkipUntil(tok::r_square, StopAtSemi);
724 SkipUntil(tok::l_brace, StopAtSemi);
725 SkipUntil(tok::r_brace, StopAtSemi);
726 return ExprError();
727 }
728
729 return ParseLambdaExpressionAfterIntroducer(Intro);
730 }
731
732 /// TryParseLambdaExpression - Use lookahead and potentially tentative
733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
734 /// it if we are.
735 ///
736 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()737 ExprResult Parser::TryParseLambdaExpression() {
738 assert(getLangOpts().CPlusPlus11
739 && Tok.is(tok::l_square)
740 && "Not at the start of a possible lambda expression.");
741
742 const Token Next = NextToken(), After = GetLookAheadToken(2);
743
744 // If lookahead indicates this is a lambda...
745 if (Next.is(tok::r_square) || // []
746 Next.is(tok::equal) || // [=
747 (Next.is(tok::amp) && // [&] or [&,
748 (After.is(tok::r_square) ||
749 After.is(tok::comma))) ||
750 (Next.is(tok::identifier) && // [identifier]
751 After.is(tok::r_square))) {
752 return ParseLambdaExpression();
753 }
754
755 // If lookahead indicates an ObjC message send...
756 // [identifier identifier
757 if (Next.is(tok::identifier) && After.is(tok::identifier)) {
758 return ExprEmpty();
759 }
760
761 // Here, we're stuck: lambda introducers and Objective-C message sends are
762 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
763 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
764 // writing two routines to parse a lambda introducer, just try to parse
765 // a lambda introducer first, and fall back if that fails.
766 // (TryParseLambdaIntroducer never produces any diagnostic output.)
767 LambdaIntroducer Intro;
768 if (TryParseLambdaIntroducer(Intro))
769 return ExprEmpty();
770
771 return ParseLambdaExpressionAfterIntroducer(Intro);
772 }
773
774 /// \brief Parse a lambda introducer.
775 /// \param Intro A LambdaIntroducer filled in with information about the
776 /// contents of the lambda-introducer.
777 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
778 /// message send and a lambda expression. In this mode, we will
779 /// sometimes skip the initializers for init-captures and not fully
780 /// populate \p Intro. This flag will be set to \c true if we do so.
781 /// \return A DiagnosticID if it hit something unexpected. The location for
782 /// for the diagnostic is that of the current token.
ParseLambdaIntroducer(LambdaIntroducer & Intro,bool * SkippedInits)783 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
784 bool *SkippedInits) {
785 typedef Optional<unsigned> DiagResult;
786
787 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
788 BalancedDelimiterTracker T(*this, tok::l_square);
789 T.consumeOpen();
790
791 Intro.Range.setBegin(T.getOpenLocation());
792
793 bool first = true;
794
795 // Parse capture-default.
796 if (Tok.is(tok::amp) &&
797 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
798 Intro.Default = LCD_ByRef;
799 Intro.DefaultLoc = ConsumeToken();
800 first = false;
801 } else if (Tok.is(tok::equal)) {
802 Intro.Default = LCD_ByCopy;
803 Intro.DefaultLoc = ConsumeToken();
804 first = false;
805 }
806
807 while (Tok.isNot(tok::r_square)) {
808 if (!first) {
809 if (Tok.isNot(tok::comma)) {
810 // Provide a completion for a lambda introducer here. Except
811 // in Objective-C, where this is Almost Surely meant to be a message
812 // send. In that case, fail here and let the ObjC message
813 // expression parser perform the completion.
814 if (Tok.is(tok::code_completion) &&
815 !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
816 !Intro.Captures.empty())) {
817 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
818 /*AfterAmpersand=*/false);
819 cutOffParsing();
820 break;
821 }
822
823 return DiagResult(diag::err_expected_comma_or_rsquare);
824 }
825 ConsumeToken();
826 }
827
828 if (Tok.is(tok::code_completion)) {
829 // If we're in Objective-C++ and we have a bare '[', then this is more
830 // likely to be a message receiver.
831 if (getLangOpts().ObjC1 && first)
832 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
833 else
834 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
835 /*AfterAmpersand=*/false);
836 cutOffParsing();
837 break;
838 }
839
840 first = false;
841
842 // Parse capture.
843 LambdaCaptureKind Kind = LCK_ByCopy;
844 SourceLocation Loc;
845 IdentifierInfo *Id = nullptr;
846 SourceLocation EllipsisLoc;
847 ExprResult Init;
848
849 if (Tok.is(tok::kw_this)) {
850 Kind = LCK_This;
851 Loc = ConsumeToken();
852 } else {
853 if (Tok.is(tok::amp)) {
854 Kind = LCK_ByRef;
855 ConsumeToken();
856
857 if (Tok.is(tok::code_completion)) {
858 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
859 /*AfterAmpersand=*/true);
860 cutOffParsing();
861 break;
862 }
863 }
864
865 if (Tok.is(tok::identifier)) {
866 Id = Tok.getIdentifierInfo();
867 Loc = ConsumeToken();
868 } else if (Tok.is(tok::kw_this)) {
869 // FIXME: If we want to suggest a fixit here, will need to return more
870 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
871 // Clear()ed to prevent emission in case of tentative parsing?
872 return DiagResult(diag::err_this_captured_by_reference);
873 } else {
874 return DiagResult(diag::err_expected_capture);
875 }
876
877 if (Tok.is(tok::l_paren)) {
878 BalancedDelimiterTracker Parens(*this, tok::l_paren);
879 Parens.consumeOpen();
880
881 ExprVector Exprs;
882 CommaLocsTy Commas;
883 if (SkippedInits) {
884 Parens.skipToEnd();
885 *SkippedInits = true;
886 } else if (ParseExpressionList(Exprs, Commas)) {
887 Parens.skipToEnd();
888 Init = ExprError();
889 } else {
890 Parens.consumeClose();
891 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
892 Parens.getCloseLocation(),
893 Exprs);
894 }
895 } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
896 // Each lambda init-capture forms its own full expression, which clears
897 // Actions.MaybeODRUseExprs. So create an expression evaluation context
898 // to save the necessary state, and restore it later.
899 EnterExpressionEvaluationContext EC(Actions,
900 Sema::PotentiallyEvaluated);
901 bool HadEquals = TryConsumeToken(tok::equal);
902
903 if (!SkippedInits) {
904 // Warn on constructs that will change meaning when we implement N3922
905 if (!HadEquals && Tok.is(tok::l_brace)) {
906 Diag(Tok, diag::warn_init_capture_direct_list_init)
907 << FixItHint::CreateInsertion(Tok.getLocation(), "=");
908 }
909 Init = ParseInitializer();
910 } else if (Tok.is(tok::l_brace)) {
911 BalancedDelimiterTracker Braces(*this, tok::l_brace);
912 Braces.consumeOpen();
913 Braces.skipToEnd();
914 *SkippedInits = true;
915 } else {
916 // We're disambiguating this:
917 //
918 // [..., x = expr
919 //
920 // We need to find the end of the following expression in order to
921 // determine whether this is an Obj-C message send's receiver, a
922 // C99 designator, or a lambda init-capture.
923 //
924 // Parse the expression to find where it ends, and annotate it back
925 // onto the tokens. We would have parsed this expression the same way
926 // in either case: both the RHS of an init-capture and the RHS of an
927 // assignment expression are parsed as an initializer-clause, and in
928 // neither case can anything be added to the scope between the '[' and
929 // here.
930 //
931 // FIXME: This is horrible. Adding a mechanism to skip an expression
932 // would be much cleaner.
933 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
934 // that instead. (And if we see a ':' with no matching '?', we can
935 // classify this as an Obj-C message send.)
936 SourceLocation StartLoc = Tok.getLocation();
937 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
938 Init = ParseInitializer();
939
940 if (Tok.getLocation() != StartLoc) {
941 // Back out the lexing of the token after the initializer.
942 PP.RevertCachedTokens(1);
943
944 // Replace the consumed tokens with an appropriate annotation.
945 Tok.setLocation(StartLoc);
946 Tok.setKind(tok::annot_primary_expr);
947 setExprAnnotation(Tok, Init);
948 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
949 PP.AnnotateCachedTokens(Tok);
950
951 // Consume the annotated initializer.
952 ConsumeToken();
953 }
954 }
955 } else
956 TryConsumeToken(tok::ellipsis, EllipsisLoc);
957 }
958 // If this is an init capture, process the initialization expression
959 // right away. For lambda init-captures such as the following:
960 // const int x = 10;
961 // auto L = [i = x+1](int a) {
962 // return [j = x+2,
963 // &k = x](char b) { };
964 // };
965 // keep in mind that each lambda init-capture has to have:
966 // - its initialization expression executed in the context
967 // of the enclosing/parent decl-context.
968 // - but the variable itself has to be 'injected' into the
969 // decl-context of its lambda's call-operator (which has
970 // not yet been created).
971 // Each init-expression is a full-expression that has to get
972 // Sema-analyzed (for capturing etc.) before its lambda's
973 // call-operator's decl-context, scope & scopeinfo are pushed on their
974 // respective stacks. Thus if any variable is odr-used in the init-capture
975 // it will correctly get captured in the enclosing lambda, if one exists.
976 // The init-variables above are created later once the lambdascope and
977 // call-operators decl-context is pushed onto its respective stack.
978
979 // Since the lambda init-capture's initializer expression occurs in the
980 // context of the enclosing function or lambda, therefore we can not wait
981 // till a lambda scope has been pushed on before deciding whether the
982 // variable needs to be captured. We also need to process all
983 // lvalue-to-rvalue conversions and discarded-value conversions,
984 // so that we can avoid capturing certain constant variables.
985 // For e.g.,
986 // void test() {
987 // const int x = 10;
988 // auto L = [&z = x](char a) { <-- don't capture by the current lambda
989 // return [y = x](int i) { <-- don't capture by enclosing lambda
990 // return y;
991 // }
992 // };
993 // If x was not const, the second use would require 'L' to capture, and
994 // that would be an error.
995
996 ParsedType InitCaptureParsedType;
997 if (Init.isUsable()) {
998 // Get the pointer and store it in an lvalue, so we can use it as an
999 // out argument.
1000 Expr *InitExpr = Init.get();
1001 // This performs any lvalue-to-rvalue conversions if necessary, which
1002 // can affect what gets captured in the containing decl-context.
1003 QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization(
1004 Loc, Kind == LCK_ByRef, Id, InitExpr);
1005 Init = InitExpr;
1006 InitCaptureParsedType.set(InitCaptureType);
1007 }
1008 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType);
1009 }
1010
1011 T.consumeClose();
1012 Intro.Range.setEnd(T.getCloseLocation());
1013 return DiagResult();
1014 }
1015
1016 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
1017 ///
1018 /// Returns true if it hit something unexpected.
TryParseLambdaIntroducer(LambdaIntroducer & Intro)1019 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
1020 TentativeParsingAction PA(*this);
1021
1022 bool SkippedInits = false;
1023 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
1024
1025 if (DiagID) {
1026 PA.Revert();
1027 return true;
1028 }
1029
1030 if (SkippedInits) {
1031 // Parse it again, but this time parse the init-captures too.
1032 PA.Revert();
1033 Intro = LambdaIntroducer();
1034 DiagID = ParseLambdaIntroducer(Intro);
1035 assert(!DiagID && "parsing lambda-introducer failed on reparse");
1036 return false;
1037 }
1038
1039 PA.Commit();
1040 return false;
1041 }
1042
1043 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1044 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)1045 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1046 LambdaIntroducer &Intro) {
1047 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1048 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1049
1050 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1051 "lambda expression parsing");
1052
1053
1054
1055 // FIXME: Call into Actions to add any init-capture declarations to the
1056 // scope while parsing the lambda-declarator and compound-statement.
1057
1058 // Parse lambda-declarator[opt].
1059 DeclSpec DS(AttrFactory);
1060 Declarator D(DS, Declarator::LambdaExprContext);
1061 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1062 Actions.PushLambdaScope();
1063
1064 TypeResult TrailingReturnType;
1065 if (Tok.is(tok::l_paren)) {
1066 ParseScope PrototypeScope(this,
1067 Scope::FunctionPrototypeScope |
1068 Scope::FunctionDeclarationScope |
1069 Scope::DeclScope);
1070
1071 SourceLocation DeclEndLoc;
1072 BalancedDelimiterTracker T(*this, tok::l_paren);
1073 T.consumeOpen();
1074 SourceLocation LParenLoc = T.getOpenLocation();
1075
1076 // Parse parameter-declaration-clause.
1077 ParsedAttributes Attr(AttrFactory);
1078 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1079 SourceLocation EllipsisLoc;
1080
1081 if (Tok.isNot(tok::r_paren)) {
1082 Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
1083 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
1084 // For a generic lambda, each 'auto' within the parameter declaration
1085 // clause creates a template type parameter, so increment the depth.
1086 if (Actions.getCurGenericLambda())
1087 ++CurTemplateDepthTracker;
1088 }
1089 T.consumeClose();
1090 SourceLocation RParenLoc = T.getCloseLocation();
1091 DeclEndLoc = RParenLoc;
1092
1093 // GNU-style attributes must be parsed before the mutable specifier to be
1094 // compatible with GCC.
1095 MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1096
1097 // MSVC-style attributes must be parsed before the mutable specifier to be
1098 // compatible with MSVC.
1099 while (Tok.is(tok::kw___declspec))
1100 ParseMicrosoftDeclSpec(Attr);
1101
1102 // Parse 'mutable'[opt].
1103 SourceLocation MutableLoc;
1104 if (TryConsumeToken(tok::kw_mutable, MutableLoc))
1105 DeclEndLoc = MutableLoc;
1106
1107 // Parse exception-specification[opt].
1108 ExceptionSpecificationType ESpecType = EST_None;
1109 SourceRange ESpecRange;
1110 SmallVector<ParsedType, 2> DynamicExceptions;
1111 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1112 ExprResult NoexceptExpr;
1113 CachedTokens *ExceptionSpecTokens;
1114 ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
1115 ESpecRange,
1116 DynamicExceptions,
1117 DynamicExceptionRanges,
1118 NoexceptExpr,
1119 ExceptionSpecTokens);
1120
1121 if (ESpecType != EST_None)
1122 DeclEndLoc = ESpecRange.getEnd();
1123
1124 // Parse attribute-specifier[opt].
1125 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1126
1127 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1128
1129 // Parse trailing-return-type[opt].
1130 if (Tok.is(tok::arrow)) {
1131 FunLocalRangeEnd = Tok.getLocation();
1132 SourceRange Range;
1133 TrailingReturnType = ParseTrailingReturnType(Range);
1134 if (Range.getEnd().isValid())
1135 DeclEndLoc = Range.getEnd();
1136 }
1137
1138 PrototypeScope.Exit();
1139
1140 SourceLocation NoLoc;
1141 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1142 /*isAmbiguous=*/false,
1143 LParenLoc,
1144 ParamInfo.data(), ParamInfo.size(),
1145 EllipsisLoc, RParenLoc,
1146 DS.getTypeQualifiers(),
1147 /*RefQualifierIsLValueRef=*/true,
1148 /*RefQualifierLoc=*/NoLoc,
1149 /*ConstQualifierLoc=*/NoLoc,
1150 /*VolatileQualifierLoc=*/NoLoc,
1151 /*RestrictQualifierLoc=*/NoLoc,
1152 MutableLoc,
1153 ESpecType, ESpecRange.getBegin(),
1154 DynamicExceptions.data(),
1155 DynamicExceptionRanges.data(),
1156 DynamicExceptions.size(),
1157 NoexceptExpr.isUsable() ?
1158 NoexceptExpr.get() : nullptr,
1159 /*ExceptionSpecTokens*/nullptr,
1160 LParenLoc, FunLocalRangeEnd, D,
1161 TrailingReturnType),
1162 Attr, DeclEndLoc);
1163 } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) ||
1164 Tok.is(tok::kw___attribute) ||
1165 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1166 // It's common to forget that one needs '()' before 'mutable', an attribute
1167 // specifier, or the result type. Deal with this.
1168 unsigned TokKind = 0;
1169 switch (Tok.getKind()) {
1170 case tok::kw_mutable: TokKind = 0; break;
1171 case tok::arrow: TokKind = 1; break;
1172 case tok::kw___attribute:
1173 case tok::l_square: TokKind = 2; break;
1174 default: llvm_unreachable("Unknown token kind");
1175 }
1176
1177 Diag(Tok, diag::err_lambda_missing_parens)
1178 << TokKind
1179 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1180 SourceLocation DeclLoc = Tok.getLocation();
1181 SourceLocation DeclEndLoc = DeclLoc;
1182
1183 // GNU-style attributes must be parsed before the mutable specifier to be
1184 // compatible with GCC.
1185 ParsedAttributes Attr(AttrFactory);
1186 MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1187
1188 // Parse 'mutable', if it's there.
1189 SourceLocation MutableLoc;
1190 if (Tok.is(tok::kw_mutable)) {
1191 MutableLoc = ConsumeToken();
1192 DeclEndLoc = MutableLoc;
1193 }
1194
1195 // Parse attribute-specifier[opt].
1196 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1197
1198 // Parse the return type, if there is one.
1199 if (Tok.is(tok::arrow)) {
1200 SourceRange Range;
1201 TrailingReturnType = ParseTrailingReturnType(Range);
1202 if (Range.getEnd().isValid())
1203 DeclEndLoc = Range.getEnd();
1204 }
1205
1206 SourceLocation NoLoc;
1207 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1208 /*isAmbiguous=*/false,
1209 /*LParenLoc=*/NoLoc,
1210 /*Params=*/nullptr,
1211 /*NumParams=*/0,
1212 /*EllipsisLoc=*/NoLoc,
1213 /*RParenLoc=*/NoLoc,
1214 /*TypeQuals=*/0,
1215 /*RefQualifierIsLValueRef=*/true,
1216 /*RefQualifierLoc=*/NoLoc,
1217 /*ConstQualifierLoc=*/NoLoc,
1218 /*VolatileQualifierLoc=*/NoLoc,
1219 /*RestrictQualifierLoc=*/NoLoc,
1220 MutableLoc,
1221 EST_None,
1222 /*ESpecLoc=*/NoLoc,
1223 /*Exceptions=*/nullptr,
1224 /*ExceptionRanges=*/nullptr,
1225 /*NumExceptions=*/0,
1226 /*NoexceptExpr=*/nullptr,
1227 /*ExceptionSpecTokens=*/nullptr,
1228 DeclLoc, DeclEndLoc, D,
1229 TrailingReturnType),
1230 Attr, DeclEndLoc);
1231 }
1232
1233
1234 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1235 // it.
1236 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
1237 ParseScope BodyScope(this, ScopeFlags);
1238
1239 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1240
1241 // Parse compound-statement.
1242 if (!Tok.is(tok::l_brace)) {
1243 Diag(Tok, diag::err_expected_lambda_body);
1244 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1245 return ExprError();
1246 }
1247
1248 StmtResult Stmt(ParseCompoundStatementBody());
1249 BodyScope.Exit();
1250
1251 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1252 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1253
1254 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1255 return ExprError();
1256 }
1257
1258 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1259 /// type.
1260 ///
1261 /// postfix-expression: [C++ 5.2p1]
1262 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1263 /// 'static_cast' '<' type-name '>' '(' expression ')'
1264 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1265 /// 'const_cast' '<' type-name '>' '(' expression ')'
1266 ///
ParseCXXCasts()1267 ExprResult Parser::ParseCXXCasts() {
1268 tok::TokenKind Kind = Tok.getKind();
1269 const char *CastName = nullptr; // For error messages
1270
1271 switch (Kind) {
1272 default: llvm_unreachable("Unknown C++ cast!");
1273 case tok::kw_const_cast: CastName = "const_cast"; break;
1274 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1275 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1276 case tok::kw_static_cast: CastName = "static_cast"; break;
1277 }
1278
1279 SourceLocation OpLoc = ConsumeToken();
1280 SourceLocation LAngleBracketLoc = Tok.getLocation();
1281
1282 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1283 // diagnose error, suggest fix, and recover parsing.
1284 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1285 Token Next = NextToken();
1286 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1287 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1288 }
1289
1290 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1291 return ExprError();
1292
1293 // Parse the common declaration-specifiers piece.
1294 DeclSpec DS(AttrFactory);
1295 ParseSpecifierQualifierList(DS);
1296
1297 // Parse the abstract-declarator, if present.
1298 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1299 ParseDeclarator(DeclaratorInfo);
1300
1301 SourceLocation RAngleBracketLoc = Tok.getLocation();
1302
1303 if (ExpectAndConsume(tok::greater))
1304 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1305
1306 SourceLocation LParenLoc, RParenLoc;
1307 BalancedDelimiterTracker T(*this, tok::l_paren);
1308
1309 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1310 return ExprError();
1311
1312 ExprResult Result = ParseExpression();
1313
1314 // Match the ')'.
1315 T.consumeClose();
1316
1317 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1318 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1319 LAngleBracketLoc, DeclaratorInfo,
1320 RAngleBracketLoc,
1321 T.getOpenLocation(), Result.get(),
1322 T.getCloseLocation());
1323
1324 return Result;
1325 }
1326
1327 /// ParseCXXTypeid - This handles the C++ typeid expression.
1328 ///
1329 /// postfix-expression: [C++ 5.2p1]
1330 /// 'typeid' '(' expression ')'
1331 /// 'typeid' '(' type-id ')'
1332 ///
ParseCXXTypeid()1333 ExprResult Parser::ParseCXXTypeid() {
1334 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1335
1336 SourceLocation OpLoc = ConsumeToken();
1337 SourceLocation LParenLoc, RParenLoc;
1338 BalancedDelimiterTracker T(*this, tok::l_paren);
1339
1340 // typeid expressions are always parenthesized.
1341 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1342 return ExprError();
1343 LParenLoc = T.getOpenLocation();
1344
1345 ExprResult Result;
1346
1347 // C++0x [expr.typeid]p3:
1348 // When typeid is applied to an expression other than an lvalue of a
1349 // polymorphic class type [...] The expression is an unevaluated
1350 // operand (Clause 5).
1351 //
1352 // Note that we can't tell whether the expression is an lvalue of a
1353 // polymorphic class type until after we've parsed the expression; we
1354 // speculatively assume the subexpression is unevaluated, and fix it up
1355 // later.
1356 //
1357 // We enter the unevaluated context before trying to determine whether we
1358 // have a type-id, because the tentative parse logic will try to resolve
1359 // names, and must treat them as unevaluated.
1360 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1361 Sema::ReuseLambdaContextDecl);
1362
1363 if (isTypeIdInParens()) {
1364 TypeResult Ty = ParseTypeName();
1365
1366 // Match the ')'.
1367 T.consumeClose();
1368 RParenLoc = T.getCloseLocation();
1369 if (Ty.isInvalid() || RParenLoc.isInvalid())
1370 return ExprError();
1371
1372 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1373 Ty.get().getAsOpaquePtr(), RParenLoc);
1374 } else {
1375 Result = ParseExpression();
1376
1377 // Match the ')'.
1378 if (Result.isInvalid())
1379 SkipUntil(tok::r_paren, StopAtSemi);
1380 else {
1381 T.consumeClose();
1382 RParenLoc = T.getCloseLocation();
1383 if (RParenLoc.isInvalid())
1384 return ExprError();
1385
1386 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1387 Result.get(), RParenLoc);
1388 }
1389 }
1390
1391 return Result;
1392 }
1393
1394 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1395 ///
1396 /// '__uuidof' '(' expression ')'
1397 /// '__uuidof' '(' type-id ')'
1398 ///
ParseCXXUuidof()1399 ExprResult Parser::ParseCXXUuidof() {
1400 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1401
1402 SourceLocation OpLoc = ConsumeToken();
1403 BalancedDelimiterTracker T(*this, tok::l_paren);
1404
1405 // __uuidof expressions are always parenthesized.
1406 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1407 return ExprError();
1408
1409 ExprResult Result;
1410
1411 if (isTypeIdInParens()) {
1412 TypeResult Ty = ParseTypeName();
1413
1414 // Match the ')'.
1415 T.consumeClose();
1416
1417 if (Ty.isInvalid())
1418 return ExprError();
1419
1420 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1421 Ty.get().getAsOpaquePtr(),
1422 T.getCloseLocation());
1423 } else {
1424 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1425 Result = ParseExpression();
1426
1427 // Match the ')'.
1428 if (Result.isInvalid())
1429 SkipUntil(tok::r_paren, StopAtSemi);
1430 else {
1431 T.consumeClose();
1432
1433 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1434 /*isType=*/false,
1435 Result.get(), T.getCloseLocation());
1436 }
1437 }
1438
1439 return Result;
1440 }
1441
1442 /// \brief Parse a C++ pseudo-destructor expression after the base,
1443 /// . or -> operator, and nested-name-specifier have already been
1444 /// parsed.
1445 ///
1446 /// postfix-expression: [C++ 5.2]
1447 /// postfix-expression . pseudo-destructor-name
1448 /// postfix-expression -> pseudo-destructor-name
1449 ///
1450 /// pseudo-destructor-name:
1451 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1452 /// ::[opt] nested-name-specifier template simple-template-id ::
1453 /// ~type-name
1454 /// ::[opt] nested-name-specifier[opt] ~type-name
1455 ///
1456 ExprResult
ParseCXXPseudoDestructor(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1457 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1458 tok::TokenKind OpKind,
1459 CXXScopeSpec &SS,
1460 ParsedType ObjectType) {
1461 // We're parsing either a pseudo-destructor-name or a dependent
1462 // member access that has the same form as a
1463 // pseudo-destructor-name. We parse both in the same way and let
1464 // the action model sort them out.
1465 //
1466 // Note that the ::[opt] nested-name-specifier[opt] has already
1467 // been parsed, and if there was a simple-template-id, it has
1468 // been coalesced into a template-id annotation token.
1469 UnqualifiedId FirstTypeName;
1470 SourceLocation CCLoc;
1471 if (Tok.is(tok::identifier)) {
1472 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1473 ConsumeToken();
1474 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1475 CCLoc = ConsumeToken();
1476 } else if (Tok.is(tok::annot_template_id)) {
1477 // FIXME: retrieve TemplateKWLoc from template-id annotation and
1478 // store it in the pseudo-dtor node (to be used when instantiating it).
1479 FirstTypeName.setTemplateId(
1480 (TemplateIdAnnotation *)Tok.getAnnotationValue());
1481 ConsumeToken();
1482 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1483 CCLoc = ConsumeToken();
1484 } else {
1485 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1486 }
1487
1488 // Parse the tilde.
1489 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1490 SourceLocation TildeLoc = ConsumeToken();
1491
1492 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1493 DeclSpec DS(AttrFactory);
1494 ParseDecltypeSpecifier(DS);
1495 if (DS.getTypeSpecType() == TST_error)
1496 return ExprError();
1497 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1498 TildeLoc, DS);
1499 }
1500
1501 if (!Tok.is(tok::identifier)) {
1502 Diag(Tok, diag::err_destructor_tilde_identifier);
1503 return ExprError();
1504 }
1505
1506 // Parse the second type.
1507 UnqualifiedId SecondTypeName;
1508 IdentifierInfo *Name = Tok.getIdentifierInfo();
1509 SourceLocation NameLoc = ConsumeToken();
1510 SecondTypeName.setIdentifier(Name, NameLoc);
1511
1512 // If there is a '<', the second type name is a template-id. Parse
1513 // it as such.
1514 if (Tok.is(tok::less) &&
1515 ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1516 Name, NameLoc,
1517 false, ObjectType, SecondTypeName,
1518 /*AssumeTemplateName=*/true))
1519 return ExprError();
1520
1521 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1522 SS, FirstTypeName, CCLoc, TildeLoc,
1523 SecondTypeName);
1524 }
1525
1526 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1527 ///
1528 /// boolean-literal: [C++ 2.13.5]
1529 /// 'true'
1530 /// 'false'
ParseCXXBoolLiteral()1531 ExprResult Parser::ParseCXXBoolLiteral() {
1532 tok::TokenKind Kind = Tok.getKind();
1533 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1534 }
1535
1536 /// ParseThrowExpression - This handles the C++ throw expression.
1537 ///
1538 /// throw-expression: [C++ 15]
1539 /// 'throw' assignment-expression[opt]
ParseThrowExpression()1540 ExprResult Parser::ParseThrowExpression() {
1541 assert(Tok.is(tok::kw_throw) && "Not throw!");
1542 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1543
1544 // If the current token isn't the start of an assignment-expression,
1545 // then the expression is not present. This handles things like:
1546 // "C ? throw : (void)42", which is crazy but legal.
1547 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1548 case tok::semi:
1549 case tok::r_paren:
1550 case tok::r_square:
1551 case tok::r_brace:
1552 case tok::colon:
1553 case tok::comma:
1554 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1555
1556 default:
1557 ExprResult Expr(ParseAssignmentExpression());
1558 if (Expr.isInvalid()) return Expr;
1559 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1560 }
1561 }
1562
1563 /// ParseCXXThis - This handles the C++ 'this' pointer.
1564 ///
1565 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1566 /// a non-lvalue expression whose value is the address of the object for which
1567 /// the function is called.
ParseCXXThis()1568 ExprResult Parser::ParseCXXThis() {
1569 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1570 SourceLocation ThisLoc = ConsumeToken();
1571 return Actions.ActOnCXXThis(ThisLoc);
1572 }
1573
1574 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1575 /// Can be interpreted either as function-style casting ("int(x)")
1576 /// or class type construction ("ClassType(x,y,z)")
1577 /// or creation of a value-initialized type ("int()").
1578 /// See [C++ 5.2.3].
1579 ///
1580 /// postfix-expression: [C++ 5.2p1]
1581 /// simple-type-specifier '(' expression-list[opt] ')'
1582 /// [C++0x] simple-type-specifier braced-init-list
1583 /// typename-specifier '(' expression-list[opt] ')'
1584 /// [C++0x] typename-specifier braced-init-list
1585 ///
1586 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1587 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1588 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1589 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1590
1591 assert((Tok.is(tok::l_paren) ||
1592 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1593 && "Expected '(' or '{'!");
1594
1595 if (Tok.is(tok::l_brace)) {
1596 ExprResult Init = ParseBraceInitializer();
1597 if (Init.isInvalid())
1598 return Init;
1599 Expr *InitList = Init.get();
1600 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1601 MultiExprArg(&InitList, 1),
1602 SourceLocation());
1603 } else {
1604 BalancedDelimiterTracker T(*this, tok::l_paren);
1605 T.consumeOpen();
1606
1607 ExprVector Exprs;
1608 CommaLocsTy CommaLocs;
1609
1610 if (Tok.isNot(tok::r_paren)) {
1611 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1612 Actions.CodeCompleteConstructor(getCurScope(),
1613 TypeRep.get()->getCanonicalTypeInternal(),
1614 DS.getLocEnd(), Exprs);
1615 })) {
1616 SkipUntil(tok::r_paren, StopAtSemi);
1617 return ExprError();
1618 }
1619 }
1620
1621 // Match the ')'.
1622 T.consumeClose();
1623
1624 // TypeRep could be null, if it references an invalid typedef.
1625 if (!TypeRep)
1626 return ExprError();
1627
1628 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1629 "Unexpected number of commas!");
1630 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1631 Exprs,
1632 T.getCloseLocation());
1633 }
1634 }
1635
1636 /// ParseCXXCondition - if/switch/while condition expression.
1637 ///
1638 /// condition:
1639 /// expression
1640 /// type-specifier-seq declarator '=' assignment-expression
1641 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1642 /// [C++11] type-specifier-seq declarator braced-init-list
1643 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1644 /// '=' assignment-expression
1645 ///
1646 /// \param ExprOut if the condition was parsed as an expression, the parsed
1647 /// expression.
1648 ///
1649 /// \param DeclOut if the condition was parsed as a declaration, the parsed
1650 /// declaration.
1651 ///
1652 /// \param Loc The location of the start of the statement that requires this
1653 /// condition, e.g., the "for" in a for loop.
1654 ///
1655 /// \param ConvertToBoolean Whether the condition expression should be
1656 /// converted to a boolean value.
1657 ///
1658 /// \returns true if there was a parsing, false otherwise.
ParseCXXCondition(ExprResult & ExprOut,Decl * & DeclOut,SourceLocation Loc,bool ConvertToBoolean)1659 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1660 Decl *&DeclOut,
1661 SourceLocation Loc,
1662 bool ConvertToBoolean) {
1663 if (Tok.is(tok::code_completion)) {
1664 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1665 cutOffParsing();
1666 return true;
1667 }
1668
1669 ParsedAttributesWithRange attrs(AttrFactory);
1670 MaybeParseCXX11Attributes(attrs);
1671
1672 if (!isCXXConditionDeclaration()) {
1673 ProhibitAttributes(attrs);
1674
1675 // Parse the expression.
1676 ExprOut = ParseExpression(); // expression
1677 DeclOut = nullptr;
1678 if (ExprOut.isInvalid())
1679 return true;
1680
1681 // If required, convert to a boolean value.
1682 if (ConvertToBoolean)
1683 ExprOut
1684 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1685 return ExprOut.isInvalid();
1686 }
1687
1688 // type-specifier-seq
1689 DeclSpec DS(AttrFactory);
1690 DS.takeAttributesFrom(attrs);
1691 ParseSpecifierQualifierList(DS);
1692
1693 // declarator
1694 Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1695 ParseDeclarator(DeclaratorInfo);
1696
1697 // simple-asm-expr[opt]
1698 if (Tok.is(tok::kw_asm)) {
1699 SourceLocation Loc;
1700 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1701 if (AsmLabel.isInvalid()) {
1702 SkipUntil(tok::semi, StopAtSemi);
1703 return true;
1704 }
1705 DeclaratorInfo.setAsmLabel(AsmLabel.get());
1706 DeclaratorInfo.SetRangeEnd(Loc);
1707 }
1708
1709 // If attributes are present, parse them.
1710 MaybeParseGNUAttributes(DeclaratorInfo);
1711
1712 // Type-check the declaration itself.
1713 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1714 DeclaratorInfo);
1715 DeclOut = Dcl.get();
1716 ExprOut = ExprError();
1717
1718 // '=' assignment-expression
1719 // If a '==' or '+=' is found, suggest a fixit to '='.
1720 bool CopyInitialization = isTokenEqualOrEqualTypo();
1721 if (CopyInitialization)
1722 ConsumeToken();
1723
1724 ExprResult InitExpr = ExprError();
1725 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1726 Diag(Tok.getLocation(),
1727 diag::warn_cxx98_compat_generalized_initializer_lists);
1728 InitExpr = ParseBraceInitializer();
1729 } else if (CopyInitialization) {
1730 InitExpr = ParseAssignmentExpression();
1731 } else if (Tok.is(tok::l_paren)) {
1732 // This was probably an attempt to initialize the variable.
1733 SourceLocation LParen = ConsumeParen(), RParen = LParen;
1734 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
1735 RParen = ConsumeParen();
1736 Diag(DeclOut ? DeclOut->getLocation() : LParen,
1737 diag::err_expected_init_in_condition_lparen)
1738 << SourceRange(LParen, RParen);
1739 } else {
1740 Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1741 diag::err_expected_init_in_condition);
1742 }
1743
1744 if (!InitExpr.isInvalid())
1745 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
1746 DS.containsPlaceholderType());
1747 else
1748 Actions.ActOnInitializerError(DeclOut);
1749
1750 // FIXME: Build a reference to this declaration? Convert it to bool?
1751 // (This is currently handled by Sema).
1752
1753 Actions.FinalizeDeclaration(DeclOut);
1754
1755 return false;
1756 }
1757
1758 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1759 /// This should only be called when the current token is known to be part of
1760 /// simple-type-specifier.
1761 ///
1762 /// simple-type-specifier:
1763 /// '::'[opt] nested-name-specifier[opt] type-name
1764 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1765 /// char
1766 /// wchar_t
1767 /// bool
1768 /// short
1769 /// int
1770 /// long
1771 /// signed
1772 /// unsigned
1773 /// float
1774 /// double
1775 /// void
1776 /// [GNU] typeof-specifier
1777 /// [C++0x] auto [TODO]
1778 ///
1779 /// type-name:
1780 /// class-name
1781 /// enum-name
1782 /// typedef-name
1783 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)1784 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1785 DS.SetRangeStart(Tok.getLocation());
1786 const char *PrevSpec;
1787 unsigned DiagID;
1788 SourceLocation Loc = Tok.getLocation();
1789 const clang::PrintingPolicy &Policy =
1790 Actions.getASTContext().getPrintingPolicy();
1791
1792 switch (Tok.getKind()) {
1793 case tok::identifier: // foo::bar
1794 case tok::coloncolon: // ::foo::bar
1795 llvm_unreachable("Annotation token should already be formed!");
1796 default:
1797 llvm_unreachable("Not a simple-type-specifier token!");
1798
1799 // type-name
1800 case tok::annot_typename: {
1801 if (getTypeAnnotation(Tok))
1802 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1803 getTypeAnnotation(Tok), Policy);
1804 else
1805 DS.SetTypeSpecError();
1806
1807 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1808 ConsumeToken();
1809
1810 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1811 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1812 // Objective-C interface. If we don't have Objective-C or a '<', this is
1813 // just a normal reference to a typedef name.
1814 if (Tok.is(tok::less) && getLangOpts().ObjC1)
1815 ParseObjCProtocolQualifiers(DS);
1816
1817 DS.Finish(Diags, PP, Policy);
1818 return;
1819 }
1820
1821 // builtin types
1822 case tok::kw_short:
1823 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
1824 break;
1825 case tok::kw_long:
1826 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
1827 break;
1828 case tok::kw___int64:
1829 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
1830 break;
1831 case tok::kw_signed:
1832 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1833 break;
1834 case tok::kw_unsigned:
1835 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1836 break;
1837 case tok::kw_void:
1838 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
1839 break;
1840 case tok::kw_char:
1841 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
1842 break;
1843 case tok::kw_int:
1844 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
1845 break;
1846 case tok::kw___int128:
1847 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
1848 break;
1849 case tok::kw_half:
1850 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
1851 break;
1852 case tok::kw_float:
1853 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
1854 break;
1855 case tok::kw_double:
1856 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
1857 break;
1858 case tok::kw_wchar_t:
1859 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
1860 break;
1861 case tok::kw_char16_t:
1862 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
1863 break;
1864 case tok::kw_char32_t:
1865 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
1866 break;
1867 case tok::kw_bool:
1868 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
1869 break;
1870 case tok::annot_decltype:
1871 case tok::kw_decltype:
1872 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1873 return DS.Finish(Diags, PP, Policy);
1874
1875 // GNU typeof support.
1876 case tok::kw_typeof:
1877 ParseTypeofSpecifier(DS);
1878 DS.Finish(Diags, PP, Policy);
1879 return;
1880 }
1881 if (Tok.is(tok::annot_typename))
1882 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1883 else
1884 DS.SetRangeEnd(Tok.getLocation());
1885 ConsumeToken();
1886 DS.Finish(Diags, PP, Policy);
1887 }
1888
1889 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1890 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1891 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1892 /// by parsing the type-specifier-seq, because these sequences are
1893 /// typically followed by some form of declarator. Returns true and
1894 /// emits diagnostics if this is not a type-specifier-seq, false
1895 /// otherwise.
1896 ///
1897 /// type-specifier-seq: [C++ 8.1]
1898 /// type-specifier type-specifier-seq[opt]
1899 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)1900 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1901 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1902 DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
1903 return false;
1904 }
1905
1906 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1907 /// some form.
1908 ///
1909 /// This routine is invoked when a '<' is encountered after an identifier or
1910 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1911 /// whether the unqualified-id is actually a template-id. This routine will
1912 /// then parse the template arguments and form the appropriate template-id to
1913 /// return to the caller.
1914 ///
1915 /// \param SS the nested-name-specifier that precedes this template-id, if
1916 /// we're actually parsing a qualified-id.
1917 ///
1918 /// \param Name for constructor and destructor names, this is the actual
1919 /// identifier that may be a template-name.
1920 ///
1921 /// \param NameLoc the location of the class-name in a constructor or
1922 /// destructor.
1923 ///
1924 /// \param EnteringContext whether we're entering the scope of the
1925 /// nested-name-specifier.
1926 ///
1927 /// \param ObjectType if this unqualified-id occurs within a member access
1928 /// expression, the type of the base object whose member is being accessed.
1929 ///
1930 /// \param Id as input, describes the template-name or operator-function-id
1931 /// that precedes the '<'. If template arguments were parsed successfully,
1932 /// will be updated with the template-id.
1933 ///
1934 /// \param AssumeTemplateId When true, this routine will assume that the name
1935 /// refers to a template without performing name lookup to verify.
1936 ///
1937 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Id,bool AssumeTemplateId)1938 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1939 SourceLocation TemplateKWLoc,
1940 IdentifierInfo *Name,
1941 SourceLocation NameLoc,
1942 bool EnteringContext,
1943 ParsedType ObjectType,
1944 UnqualifiedId &Id,
1945 bool AssumeTemplateId) {
1946 assert((AssumeTemplateId || Tok.is(tok::less)) &&
1947 "Expected '<' to finish parsing a template-id");
1948
1949 TemplateTy Template;
1950 TemplateNameKind TNK = TNK_Non_template;
1951 switch (Id.getKind()) {
1952 case UnqualifiedId::IK_Identifier:
1953 case UnqualifiedId::IK_OperatorFunctionId:
1954 case UnqualifiedId::IK_LiteralOperatorId:
1955 if (AssumeTemplateId) {
1956 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1957 Id, ObjectType, EnteringContext,
1958 Template);
1959 if (TNK == TNK_Non_template)
1960 return true;
1961 } else {
1962 bool MemberOfUnknownSpecialization;
1963 TNK = Actions.isTemplateName(getCurScope(), SS,
1964 TemplateKWLoc.isValid(), Id,
1965 ObjectType, EnteringContext, Template,
1966 MemberOfUnknownSpecialization);
1967
1968 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1969 ObjectType && IsTemplateArgumentList()) {
1970 // We have something like t->getAs<T>(), where getAs is a
1971 // member of an unknown specialization. However, this will only
1972 // parse correctly as a template, so suggest the keyword 'template'
1973 // before 'getAs' and treat this as a dependent template name.
1974 std::string Name;
1975 if (Id.getKind() == UnqualifiedId::IK_Identifier)
1976 Name = Id.Identifier->getName();
1977 else {
1978 Name = "operator ";
1979 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1980 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1981 else
1982 Name += Id.Identifier->getName();
1983 }
1984 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1985 << Name
1986 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1987 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1988 SS, TemplateKWLoc, Id,
1989 ObjectType, EnteringContext,
1990 Template);
1991 if (TNK == TNK_Non_template)
1992 return true;
1993 }
1994 }
1995 break;
1996
1997 case UnqualifiedId::IK_ConstructorName: {
1998 UnqualifiedId TemplateName;
1999 bool MemberOfUnknownSpecialization;
2000 TemplateName.setIdentifier(Name, NameLoc);
2001 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2002 TemplateName, ObjectType,
2003 EnteringContext, Template,
2004 MemberOfUnknownSpecialization);
2005 break;
2006 }
2007
2008 case UnqualifiedId::IK_DestructorName: {
2009 UnqualifiedId TemplateName;
2010 bool MemberOfUnknownSpecialization;
2011 TemplateName.setIdentifier(Name, NameLoc);
2012 if (ObjectType) {
2013 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
2014 SS, TemplateKWLoc, TemplateName,
2015 ObjectType, EnteringContext,
2016 Template);
2017 if (TNK == TNK_Non_template)
2018 return true;
2019 } else {
2020 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2021 TemplateName, ObjectType,
2022 EnteringContext, Template,
2023 MemberOfUnknownSpecialization);
2024
2025 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2026 Diag(NameLoc, diag::err_destructor_template_id)
2027 << Name << SS.getRange();
2028 return true;
2029 }
2030 }
2031 break;
2032 }
2033
2034 default:
2035 return false;
2036 }
2037
2038 if (TNK == TNK_Non_template)
2039 return false;
2040
2041 // Parse the enclosed template argument list.
2042 SourceLocation LAngleLoc, RAngleLoc;
2043 TemplateArgList TemplateArgs;
2044 if (Tok.is(tok::less) &&
2045 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
2046 SS, true, LAngleLoc,
2047 TemplateArgs,
2048 RAngleLoc))
2049 return true;
2050
2051 if (Id.getKind() == UnqualifiedId::IK_Identifier ||
2052 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2053 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
2054 // Form a parsed representation of the template-id to be stored in the
2055 // UnqualifiedId.
2056 TemplateIdAnnotation *TemplateId
2057 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
2058
2059 // FIXME: Store name for literal operator too.
2060 if (Id.getKind() == UnqualifiedId::IK_Identifier) {
2061 TemplateId->Name = Id.Identifier;
2062 TemplateId->Operator = OO_None;
2063 TemplateId->TemplateNameLoc = Id.StartLocation;
2064 } else {
2065 TemplateId->Name = nullptr;
2066 TemplateId->Operator = Id.OperatorFunctionId.Operator;
2067 TemplateId->TemplateNameLoc = Id.StartLocation;
2068 }
2069
2070 TemplateId->SS = SS;
2071 TemplateId->TemplateKWLoc = TemplateKWLoc;
2072 TemplateId->Template = Template;
2073 TemplateId->Kind = TNK;
2074 TemplateId->LAngleLoc = LAngleLoc;
2075 TemplateId->RAngleLoc = RAngleLoc;
2076 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
2077 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
2078 Arg != ArgEnd; ++Arg)
2079 Args[Arg] = TemplateArgs[Arg];
2080
2081 Id.setTemplateId(TemplateId);
2082 return false;
2083 }
2084
2085 // Bundle the template arguments together.
2086 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2087
2088 // Constructor and destructor names.
2089 TypeResult Type
2090 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
2091 Template, NameLoc,
2092 LAngleLoc, TemplateArgsPtr, RAngleLoc,
2093 /*IsCtorOrDtorName=*/true);
2094 if (Type.isInvalid())
2095 return true;
2096
2097 if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
2098 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2099 else
2100 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2101
2102 return false;
2103 }
2104
2105 /// \brief Parse an operator-function-id or conversion-function-id as part
2106 /// of a C++ unqualified-id.
2107 ///
2108 /// This routine is responsible only for parsing the operator-function-id or
2109 /// conversion-function-id; it does not handle template arguments in any way.
2110 ///
2111 /// \code
2112 /// operator-function-id: [C++ 13.5]
2113 /// 'operator' operator
2114 ///
2115 /// operator: one of
2116 /// new delete new[] delete[]
2117 /// + - * / % ^ & | ~
2118 /// ! = < > += -= *= /= %=
2119 /// ^= &= |= << >> >>= <<= == !=
2120 /// <= >= && || ++ -- , ->* ->
2121 /// () []
2122 ///
2123 /// conversion-function-id: [C++ 12.3.2]
2124 /// operator conversion-type-id
2125 ///
2126 /// conversion-type-id:
2127 /// type-specifier-seq conversion-declarator[opt]
2128 ///
2129 /// conversion-declarator:
2130 /// ptr-operator conversion-declarator[opt]
2131 /// \endcode
2132 ///
2133 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2134 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2135 ///
2136 /// \param EnteringContext whether we are entering the scope of the
2137 /// nested-name-specifier.
2138 ///
2139 /// \param ObjectType if this unqualified-id occurs within a member access
2140 /// expression, the type of the base object whose member is being accessed.
2141 ///
2142 /// \param Result on a successful parse, contains the parsed unqualified-id.
2143 ///
2144 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)2145 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2146 ParsedType ObjectType,
2147 UnqualifiedId &Result) {
2148 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2149
2150 // Consume the 'operator' keyword.
2151 SourceLocation KeywordLoc = ConsumeToken();
2152
2153 // Determine what kind of operator name we have.
2154 unsigned SymbolIdx = 0;
2155 SourceLocation SymbolLocations[3];
2156 OverloadedOperatorKind Op = OO_None;
2157 switch (Tok.getKind()) {
2158 case tok::kw_new:
2159 case tok::kw_delete: {
2160 bool isNew = Tok.getKind() == tok::kw_new;
2161 // Consume the 'new' or 'delete'.
2162 SymbolLocations[SymbolIdx++] = ConsumeToken();
2163 // Check for array new/delete.
2164 if (Tok.is(tok::l_square) &&
2165 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2166 // Consume the '[' and ']'.
2167 BalancedDelimiterTracker T(*this, tok::l_square);
2168 T.consumeOpen();
2169 T.consumeClose();
2170 if (T.getCloseLocation().isInvalid())
2171 return true;
2172
2173 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2174 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2175 Op = isNew? OO_Array_New : OO_Array_Delete;
2176 } else {
2177 Op = isNew? OO_New : OO_Delete;
2178 }
2179 break;
2180 }
2181
2182 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2183 case tok::Token: \
2184 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2185 Op = OO_##Name; \
2186 break;
2187 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2188 #include "clang/Basic/OperatorKinds.def"
2189
2190 case tok::l_paren: {
2191 // Consume the '(' and ')'.
2192 BalancedDelimiterTracker T(*this, tok::l_paren);
2193 T.consumeOpen();
2194 T.consumeClose();
2195 if (T.getCloseLocation().isInvalid())
2196 return true;
2197
2198 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2199 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2200 Op = OO_Call;
2201 break;
2202 }
2203
2204 case tok::l_square: {
2205 // Consume the '[' and ']'.
2206 BalancedDelimiterTracker T(*this, tok::l_square);
2207 T.consumeOpen();
2208 T.consumeClose();
2209 if (T.getCloseLocation().isInvalid())
2210 return true;
2211
2212 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2213 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2214 Op = OO_Subscript;
2215 break;
2216 }
2217
2218 case tok::code_completion: {
2219 // Code completion for the operator name.
2220 Actions.CodeCompleteOperatorName(getCurScope());
2221 cutOffParsing();
2222 // Don't try to parse any further.
2223 return true;
2224 }
2225
2226 default:
2227 break;
2228 }
2229
2230 if (Op != OO_None) {
2231 // We have parsed an operator-function-id.
2232 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2233 return false;
2234 }
2235
2236 // Parse a literal-operator-id.
2237 //
2238 // literal-operator-id: C++11 [over.literal]
2239 // operator string-literal identifier
2240 // operator user-defined-string-literal
2241
2242 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2243 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2244
2245 SourceLocation DiagLoc;
2246 unsigned DiagId = 0;
2247
2248 // We're past translation phase 6, so perform string literal concatenation
2249 // before checking for "".
2250 SmallVector<Token, 4> Toks;
2251 SmallVector<SourceLocation, 4> TokLocs;
2252 while (isTokenStringLiteral()) {
2253 if (!Tok.is(tok::string_literal) && !DiagId) {
2254 // C++11 [over.literal]p1:
2255 // The string-literal or user-defined-string-literal in a
2256 // literal-operator-id shall have no encoding-prefix [...].
2257 DiagLoc = Tok.getLocation();
2258 DiagId = diag::err_literal_operator_string_prefix;
2259 }
2260 Toks.push_back(Tok);
2261 TokLocs.push_back(ConsumeStringToken());
2262 }
2263
2264 StringLiteralParser Literal(Toks, PP);
2265 if (Literal.hadError)
2266 return true;
2267
2268 // Grab the literal operator's suffix, which will be either the next token
2269 // or a ud-suffix from the string literal.
2270 IdentifierInfo *II = nullptr;
2271 SourceLocation SuffixLoc;
2272 if (!Literal.getUDSuffix().empty()) {
2273 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2274 SuffixLoc =
2275 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2276 Literal.getUDSuffixOffset(),
2277 PP.getSourceManager(), getLangOpts());
2278 } else if (Tok.is(tok::identifier)) {
2279 II = Tok.getIdentifierInfo();
2280 SuffixLoc = ConsumeToken();
2281 TokLocs.push_back(SuffixLoc);
2282 } else {
2283 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2284 return true;
2285 }
2286
2287 // The string literal must be empty.
2288 if (!Literal.GetString().empty() || Literal.Pascal) {
2289 // C++11 [over.literal]p1:
2290 // The string-literal or user-defined-string-literal in a
2291 // literal-operator-id shall [...] contain no characters
2292 // other than the implicit terminating '\0'.
2293 DiagLoc = TokLocs.front();
2294 DiagId = diag::err_literal_operator_string_not_empty;
2295 }
2296
2297 if (DiagId) {
2298 // This isn't a valid literal-operator-id, but we think we know
2299 // what the user meant. Tell them what they should have written.
2300 SmallString<32> Str;
2301 Str += "\"\" ";
2302 Str += II->getName();
2303 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2304 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2305 }
2306
2307 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2308
2309 return Actions.checkLiteralOperatorId(SS, Result);
2310 }
2311
2312 // Parse a conversion-function-id.
2313 //
2314 // conversion-function-id: [C++ 12.3.2]
2315 // operator conversion-type-id
2316 //
2317 // conversion-type-id:
2318 // type-specifier-seq conversion-declarator[opt]
2319 //
2320 // conversion-declarator:
2321 // ptr-operator conversion-declarator[opt]
2322
2323 // Parse the type-specifier-seq.
2324 DeclSpec DS(AttrFactory);
2325 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2326 return true;
2327
2328 // Parse the conversion-declarator, which is merely a sequence of
2329 // ptr-operators.
2330 Declarator D(DS, Declarator::ConversionIdContext);
2331 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2332
2333 // Finish up the type.
2334 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2335 if (Ty.isInvalid())
2336 return true;
2337
2338 // Note that this is a conversion-function-id.
2339 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2340 D.getSourceRange().getEnd());
2341 return false;
2342 }
2343
2344 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2345 /// name of an entity.
2346 ///
2347 /// \code
2348 /// unqualified-id: [C++ expr.prim.general]
2349 /// identifier
2350 /// operator-function-id
2351 /// conversion-function-id
2352 /// [C++0x] literal-operator-id [TODO]
2353 /// ~ class-name
2354 /// template-id
2355 ///
2356 /// \endcode
2357 ///
2358 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2359 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2360 ///
2361 /// \param EnteringContext whether we are entering the scope of the
2362 /// nested-name-specifier.
2363 ///
2364 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2365 ///
2366 /// \param AllowConstructorName whether we allow parsing a constructor name.
2367 ///
2368 /// \param ObjectType if this unqualified-id occurs within a member access
2369 /// expression, the type of the base object whose member is being accessed.
2370 ///
2371 /// \param Result on a successful parse, contains the parsed unqualified-id.
2372 ///
2373 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,ParsedType ObjectType,SourceLocation & TemplateKWLoc,UnqualifiedId & Result)2374 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2375 bool AllowDestructorName,
2376 bool AllowConstructorName,
2377 ParsedType ObjectType,
2378 SourceLocation& TemplateKWLoc,
2379 UnqualifiedId &Result) {
2380
2381 // Handle 'A::template B'. This is for template-ids which have not
2382 // already been annotated by ParseOptionalCXXScopeSpecifier().
2383 bool TemplateSpecified = false;
2384 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2385 (ObjectType || SS.isSet())) {
2386 TemplateSpecified = true;
2387 TemplateKWLoc = ConsumeToken();
2388 }
2389
2390 // unqualified-id:
2391 // identifier
2392 // template-id (when it hasn't already been annotated)
2393 if (Tok.is(tok::identifier)) {
2394 // Consume the identifier.
2395 IdentifierInfo *Id = Tok.getIdentifierInfo();
2396 SourceLocation IdLoc = ConsumeToken();
2397
2398 if (!getLangOpts().CPlusPlus) {
2399 // If we're not in C++, only identifiers matter. Record the
2400 // identifier and return.
2401 Result.setIdentifier(Id, IdLoc);
2402 return false;
2403 }
2404
2405 if (AllowConstructorName &&
2406 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2407 // We have parsed a constructor name.
2408 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2409 &SS, false, false,
2410 ParsedType(),
2411 /*IsCtorOrDtorName=*/true,
2412 /*NonTrivialTypeSourceInfo=*/true);
2413 Result.setConstructorName(Ty, IdLoc, IdLoc);
2414 } else {
2415 // We have parsed an identifier.
2416 Result.setIdentifier(Id, IdLoc);
2417 }
2418
2419 // If the next token is a '<', we may have a template.
2420 if (TemplateSpecified || Tok.is(tok::less))
2421 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2422 EnteringContext, ObjectType,
2423 Result, TemplateSpecified);
2424
2425 return false;
2426 }
2427
2428 // unqualified-id:
2429 // template-id (already parsed and annotated)
2430 if (Tok.is(tok::annot_template_id)) {
2431 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2432
2433 // If the template-name names the current class, then this is a constructor
2434 if (AllowConstructorName && TemplateId->Name &&
2435 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2436 if (SS.isSet()) {
2437 // C++ [class.qual]p2 specifies that a qualified template-name
2438 // is taken as the constructor name where a constructor can be
2439 // declared. Thus, the template arguments are extraneous, so
2440 // complain about them and remove them entirely.
2441 Diag(TemplateId->TemplateNameLoc,
2442 diag::err_out_of_line_constructor_template_id)
2443 << TemplateId->Name
2444 << FixItHint::CreateRemoval(
2445 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2446 ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2447 TemplateId->TemplateNameLoc,
2448 getCurScope(),
2449 &SS, false, false,
2450 ParsedType(),
2451 /*IsCtorOrDtorName=*/true,
2452 /*NontrivialTypeSourceInfo=*/true);
2453 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2454 TemplateId->RAngleLoc);
2455 ConsumeToken();
2456 return false;
2457 }
2458
2459 Result.setConstructorTemplateId(TemplateId);
2460 ConsumeToken();
2461 return false;
2462 }
2463
2464 // We have already parsed a template-id; consume the annotation token as
2465 // our unqualified-id.
2466 Result.setTemplateId(TemplateId);
2467 TemplateKWLoc = TemplateId->TemplateKWLoc;
2468 ConsumeToken();
2469 return false;
2470 }
2471
2472 // unqualified-id:
2473 // operator-function-id
2474 // conversion-function-id
2475 if (Tok.is(tok::kw_operator)) {
2476 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2477 return true;
2478
2479 // If we have an operator-function-id or a literal-operator-id and the next
2480 // token is a '<', we may have a
2481 //
2482 // template-id:
2483 // operator-function-id < template-argument-list[opt] >
2484 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2485 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2486 (TemplateSpecified || Tok.is(tok::less)))
2487 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2488 nullptr, SourceLocation(),
2489 EnteringContext, ObjectType,
2490 Result, TemplateSpecified);
2491
2492 return false;
2493 }
2494
2495 if (getLangOpts().CPlusPlus &&
2496 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2497 // C++ [expr.unary.op]p10:
2498 // There is an ambiguity in the unary-expression ~X(), where X is a
2499 // class-name. The ambiguity is resolved in favor of treating ~ as a
2500 // unary complement rather than treating ~X as referring to a destructor.
2501
2502 // Parse the '~'.
2503 SourceLocation TildeLoc = ConsumeToken();
2504
2505 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2506 DeclSpec DS(AttrFactory);
2507 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2508 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2509 Result.setDestructorName(TildeLoc, Type, EndLoc);
2510 return false;
2511 }
2512 return true;
2513 }
2514
2515 // Parse the class-name.
2516 if (Tok.isNot(tok::identifier)) {
2517 Diag(Tok, diag::err_destructor_tilde_identifier);
2518 return true;
2519 }
2520
2521 // If the user wrote ~T::T, correct it to T::~T.
2522 DeclaratorScopeObj DeclScopeObj(*this, SS);
2523 if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
2524 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2525 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2526 // it will confuse this recovery logic.
2527 ColonProtectionRAIIObject ColonRAII(*this, false);
2528
2529 if (SS.isSet()) {
2530 AnnotateScopeToken(SS, /*NewAnnotation*/true);
2531 SS.clear();
2532 }
2533 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
2534 return true;
2535 if (SS.isNotEmpty())
2536 ObjectType = ParsedType();
2537 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2538 !SS.isSet()) {
2539 Diag(TildeLoc, diag::err_destructor_tilde_scope);
2540 return true;
2541 }
2542
2543 // Recover as if the tilde had been written before the identifier.
2544 Diag(TildeLoc, diag::err_destructor_tilde_scope)
2545 << FixItHint::CreateRemoval(TildeLoc)
2546 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2547
2548 // Temporarily enter the scope for the rest of this function.
2549 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2550 DeclScopeObj.EnterDeclaratorScope();
2551 }
2552
2553 // Parse the class-name (or template-name in a simple-template-id).
2554 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2555 SourceLocation ClassNameLoc = ConsumeToken();
2556
2557 if (TemplateSpecified || Tok.is(tok::less)) {
2558 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2559 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2560 ClassName, ClassNameLoc,
2561 EnteringContext, ObjectType,
2562 Result, TemplateSpecified);
2563 }
2564
2565 // Note that this is a destructor name.
2566 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2567 ClassNameLoc, getCurScope(),
2568 SS, ObjectType,
2569 EnteringContext);
2570 if (!Ty)
2571 return true;
2572
2573 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2574 return false;
2575 }
2576
2577 Diag(Tok, diag::err_expected_unqualified_id)
2578 << getLangOpts().CPlusPlus;
2579 return true;
2580 }
2581
2582 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2583 /// memory in a typesafe manner and call constructors.
2584 ///
2585 /// This method is called to parse the new expression after the optional :: has
2586 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
2587 /// is its location. Otherwise, "Start" is the location of the 'new' token.
2588 ///
2589 /// new-expression:
2590 /// '::'[opt] 'new' new-placement[opt] new-type-id
2591 /// new-initializer[opt]
2592 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2593 /// new-initializer[opt]
2594 ///
2595 /// new-placement:
2596 /// '(' expression-list ')'
2597 ///
2598 /// new-type-id:
2599 /// type-specifier-seq new-declarator[opt]
2600 /// [GNU] attributes type-specifier-seq new-declarator[opt]
2601 ///
2602 /// new-declarator:
2603 /// ptr-operator new-declarator[opt]
2604 /// direct-new-declarator
2605 ///
2606 /// new-initializer:
2607 /// '(' expression-list[opt] ')'
2608 /// [C++0x] braced-init-list
2609 ///
2610 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)2611 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2612 assert(Tok.is(tok::kw_new) && "expected 'new' token");
2613 ConsumeToken(); // Consume 'new'
2614
2615 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2616 // second form of new-expression. It can't be a new-type-id.
2617
2618 ExprVector PlacementArgs;
2619 SourceLocation PlacementLParen, PlacementRParen;
2620
2621 SourceRange TypeIdParens;
2622 DeclSpec DS(AttrFactory);
2623 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2624 if (Tok.is(tok::l_paren)) {
2625 // If it turns out to be a placement, we change the type location.
2626 BalancedDelimiterTracker T(*this, tok::l_paren);
2627 T.consumeOpen();
2628 PlacementLParen = T.getOpenLocation();
2629 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2630 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2631 return ExprError();
2632 }
2633
2634 T.consumeClose();
2635 PlacementRParen = T.getCloseLocation();
2636 if (PlacementRParen.isInvalid()) {
2637 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2638 return ExprError();
2639 }
2640
2641 if (PlacementArgs.empty()) {
2642 // Reset the placement locations. There was no placement.
2643 TypeIdParens = T.getRange();
2644 PlacementLParen = PlacementRParen = SourceLocation();
2645 } else {
2646 // We still need the type.
2647 if (Tok.is(tok::l_paren)) {
2648 BalancedDelimiterTracker T(*this, tok::l_paren);
2649 T.consumeOpen();
2650 MaybeParseGNUAttributes(DeclaratorInfo);
2651 ParseSpecifierQualifierList(DS);
2652 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2653 ParseDeclarator(DeclaratorInfo);
2654 T.consumeClose();
2655 TypeIdParens = T.getRange();
2656 } else {
2657 MaybeParseGNUAttributes(DeclaratorInfo);
2658 if (ParseCXXTypeSpecifierSeq(DS))
2659 DeclaratorInfo.setInvalidType(true);
2660 else {
2661 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2662 ParseDeclaratorInternal(DeclaratorInfo,
2663 &Parser::ParseDirectNewDeclarator);
2664 }
2665 }
2666 }
2667 } else {
2668 // A new-type-id is a simplified type-id, where essentially the
2669 // direct-declarator is replaced by a direct-new-declarator.
2670 MaybeParseGNUAttributes(DeclaratorInfo);
2671 if (ParseCXXTypeSpecifierSeq(DS))
2672 DeclaratorInfo.setInvalidType(true);
2673 else {
2674 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2675 ParseDeclaratorInternal(DeclaratorInfo,
2676 &Parser::ParseDirectNewDeclarator);
2677 }
2678 }
2679 if (DeclaratorInfo.isInvalidType()) {
2680 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2681 return ExprError();
2682 }
2683
2684 ExprResult Initializer;
2685
2686 if (Tok.is(tok::l_paren)) {
2687 SourceLocation ConstructorLParen, ConstructorRParen;
2688 ExprVector ConstructorArgs;
2689 BalancedDelimiterTracker T(*this, tok::l_paren);
2690 T.consumeOpen();
2691 ConstructorLParen = T.getOpenLocation();
2692 if (Tok.isNot(tok::r_paren)) {
2693 CommaLocsTy CommaLocs;
2694 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
2695 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
2696 DeclaratorInfo).get();
2697 Actions.CodeCompleteConstructor(getCurScope(),
2698 TypeRep.get()->getCanonicalTypeInternal(),
2699 DeclaratorInfo.getLocEnd(),
2700 ConstructorArgs);
2701 })) {
2702 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2703 return ExprError();
2704 }
2705 }
2706 T.consumeClose();
2707 ConstructorRParen = T.getCloseLocation();
2708 if (ConstructorRParen.isInvalid()) {
2709 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2710 return ExprError();
2711 }
2712 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2713 ConstructorRParen,
2714 ConstructorArgs);
2715 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
2716 Diag(Tok.getLocation(),
2717 diag::warn_cxx98_compat_generalized_initializer_lists);
2718 Initializer = ParseBraceInitializer();
2719 }
2720 if (Initializer.isInvalid())
2721 return Initializer;
2722
2723 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2724 PlacementArgs, PlacementRParen,
2725 TypeIdParens, DeclaratorInfo, Initializer.get());
2726 }
2727
2728 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2729 /// passed to ParseDeclaratorInternal.
2730 ///
2731 /// direct-new-declarator:
2732 /// '[' expression ']'
2733 /// direct-new-declarator '[' constant-expression ']'
2734 ///
ParseDirectNewDeclarator(Declarator & D)2735 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2736 // Parse the array dimensions.
2737 bool first = true;
2738 while (Tok.is(tok::l_square)) {
2739 // An array-size expression can't start with a lambda.
2740 if (CheckProhibitedCXX11Attribute())
2741 continue;
2742
2743 BalancedDelimiterTracker T(*this, tok::l_square);
2744 T.consumeOpen();
2745
2746 ExprResult Size(first ? ParseExpression()
2747 : ParseConstantExpression());
2748 if (Size.isInvalid()) {
2749 // Recover
2750 SkipUntil(tok::r_square, StopAtSemi);
2751 return;
2752 }
2753 first = false;
2754
2755 T.consumeClose();
2756
2757 // Attributes here appertain to the array type. C++11 [expr.new]p5.
2758 ParsedAttributes Attrs(AttrFactory);
2759 MaybeParseCXX11Attributes(Attrs);
2760
2761 D.AddTypeInfo(DeclaratorChunk::getArray(0,
2762 /*static=*/false, /*star=*/false,
2763 Size.get(),
2764 T.getOpenLocation(),
2765 T.getCloseLocation()),
2766 Attrs, T.getCloseLocation());
2767
2768 if (T.getCloseLocation().isInvalid())
2769 return;
2770 }
2771 }
2772
2773 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2774 /// This ambiguity appears in the syntax of the C++ new operator.
2775 ///
2776 /// new-expression:
2777 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2778 /// new-initializer[opt]
2779 ///
2780 /// new-placement:
2781 /// '(' expression-list ')'
2782 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)2783 bool Parser::ParseExpressionListOrTypeId(
2784 SmallVectorImpl<Expr*> &PlacementArgs,
2785 Declarator &D) {
2786 // The '(' was already consumed.
2787 if (isTypeIdInParens()) {
2788 ParseSpecifierQualifierList(D.getMutableDeclSpec());
2789 D.SetSourceRange(D.getDeclSpec().getSourceRange());
2790 ParseDeclarator(D);
2791 return D.isInvalidType();
2792 }
2793
2794 // It's not a type, it has to be an expression list.
2795 // Discard the comma locations - ActOnCXXNew has enough parameters.
2796 CommaLocsTy CommaLocs;
2797 return ParseExpressionList(PlacementArgs, CommaLocs);
2798 }
2799
2800 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2801 /// to free memory allocated by new.
2802 ///
2803 /// This method is called to parse the 'delete' expression after the optional
2804 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
2805 /// and "Start" is its location. Otherwise, "Start" is the location of the
2806 /// 'delete' token.
2807 ///
2808 /// delete-expression:
2809 /// '::'[opt] 'delete' cast-expression
2810 /// '::'[opt] 'delete' '[' ']' cast-expression
2811 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)2812 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2813 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2814 ConsumeToken(); // Consume 'delete'
2815
2816 // Array delete?
2817 bool ArrayDelete = false;
2818 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2819 // C++11 [expr.delete]p1:
2820 // Whenever the delete keyword is followed by empty square brackets, it
2821 // shall be interpreted as [array delete].
2822 // [Footnote: A lambda expression with a lambda-introducer that consists
2823 // of empty square brackets can follow the delete keyword if
2824 // the lambda expression is enclosed in parentheses.]
2825 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2826 // lambda-introducer.
2827 ArrayDelete = true;
2828 BalancedDelimiterTracker T(*this, tok::l_square);
2829
2830 T.consumeOpen();
2831 T.consumeClose();
2832 if (T.getCloseLocation().isInvalid())
2833 return ExprError();
2834 }
2835
2836 ExprResult Operand(ParseCastExpression(false));
2837 if (Operand.isInvalid())
2838 return Operand;
2839
2840 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
2841 }
2842
TypeTraitFromTokKind(tok::TokenKind kind)2843 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2844 switch (kind) {
2845 default: llvm_unreachable("Not a known type trait");
2846 #define TYPE_TRAIT_1(Spelling, Name, Key) \
2847 case tok::kw_ ## Spelling: return UTT_ ## Name;
2848 #define TYPE_TRAIT_2(Spelling, Name, Key) \
2849 case tok::kw_ ## Spelling: return BTT_ ## Name;
2850 #include "clang/Basic/TokenKinds.def"
2851 #define TYPE_TRAIT_N(Spelling, Name, Key) \
2852 case tok::kw_ ## Spelling: return TT_ ## Name;
2853 #include "clang/Basic/TokenKinds.def"
2854 }
2855 }
2856
ArrayTypeTraitFromTokKind(tok::TokenKind kind)2857 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2858 switch(kind) {
2859 default: llvm_unreachable("Not a known binary type trait");
2860 case tok::kw___array_rank: return ATT_ArrayRank;
2861 case tok::kw___array_extent: return ATT_ArrayExtent;
2862 }
2863 }
2864
ExpressionTraitFromTokKind(tok::TokenKind kind)2865 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2866 switch(kind) {
2867 default: llvm_unreachable("Not a known unary expression trait.");
2868 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
2869 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
2870 }
2871 }
2872
TypeTraitArity(tok::TokenKind kind)2873 static unsigned TypeTraitArity(tok::TokenKind kind) {
2874 switch (kind) {
2875 default: llvm_unreachable("Not a known type trait");
2876 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
2877 #include "clang/Basic/TokenKinds.def"
2878 }
2879 }
2880
2881 /// \brief Parse the built-in type-trait pseudo-functions that allow
2882 /// implementation of the TR1/C++11 type traits templates.
2883 ///
2884 /// primary-expression:
2885 /// unary-type-trait '(' type-id ')'
2886 /// binary-type-trait '(' type-id ',' type-id ')'
2887 /// type-trait '(' type-id-seq ')'
2888 ///
2889 /// type-id-seq:
2890 /// type-id ...[opt] type-id-seq[opt]
2891 ///
ParseTypeTrait()2892 ExprResult Parser::ParseTypeTrait() {
2893 tok::TokenKind Kind = Tok.getKind();
2894 unsigned Arity = TypeTraitArity(Kind);
2895
2896 SourceLocation Loc = ConsumeToken();
2897
2898 BalancedDelimiterTracker Parens(*this, tok::l_paren);
2899 if (Parens.expectAndConsume())
2900 return ExprError();
2901
2902 SmallVector<ParsedType, 2> Args;
2903 do {
2904 // Parse the next type.
2905 TypeResult Ty = ParseTypeName();
2906 if (Ty.isInvalid()) {
2907 Parens.skipToEnd();
2908 return ExprError();
2909 }
2910
2911 // Parse the ellipsis, if present.
2912 if (Tok.is(tok::ellipsis)) {
2913 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2914 if (Ty.isInvalid()) {
2915 Parens.skipToEnd();
2916 return ExprError();
2917 }
2918 }
2919
2920 // Add this type to the list of arguments.
2921 Args.push_back(Ty.get());
2922 } while (TryConsumeToken(tok::comma));
2923
2924 if (Parens.consumeClose())
2925 return ExprError();
2926
2927 SourceLocation EndLoc = Parens.getCloseLocation();
2928
2929 if (Arity && Args.size() != Arity) {
2930 Diag(EndLoc, diag::err_type_trait_arity)
2931 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
2932 return ExprError();
2933 }
2934
2935 if (!Arity && Args.empty()) {
2936 Diag(EndLoc, diag::err_type_trait_arity)
2937 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
2938 return ExprError();
2939 }
2940
2941 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
2942 }
2943
2944 /// ParseArrayTypeTrait - Parse the built-in array type-trait
2945 /// pseudo-functions.
2946 ///
2947 /// primary-expression:
2948 /// [Embarcadero] '__array_rank' '(' type-id ')'
2949 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
2950 ///
ParseArrayTypeTrait()2951 ExprResult Parser::ParseArrayTypeTrait() {
2952 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2953 SourceLocation Loc = ConsumeToken();
2954
2955 BalancedDelimiterTracker T(*this, tok::l_paren);
2956 if (T.expectAndConsume())
2957 return ExprError();
2958
2959 TypeResult Ty = ParseTypeName();
2960 if (Ty.isInvalid()) {
2961 SkipUntil(tok::comma, StopAtSemi);
2962 SkipUntil(tok::r_paren, StopAtSemi);
2963 return ExprError();
2964 }
2965
2966 switch (ATT) {
2967 case ATT_ArrayRank: {
2968 T.consumeClose();
2969 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
2970 T.getCloseLocation());
2971 }
2972 case ATT_ArrayExtent: {
2973 if (ExpectAndConsume(tok::comma)) {
2974 SkipUntil(tok::r_paren, StopAtSemi);
2975 return ExprError();
2976 }
2977
2978 ExprResult DimExpr = ParseExpression();
2979 T.consumeClose();
2980
2981 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2982 T.getCloseLocation());
2983 }
2984 }
2985 llvm_unreachable("Invalid ArrayTypeTrait!");
2986 }
2987
2988 /// ParseExpressionTrait - Parse built-in expression-trait
2989 /// pseudo-functions like __is_lvalue_expr( xxx ).
2990 ///
2991 /// primary-expression:
2992 /// [Embarcadero] expression-trait '(' expression ')'
2993 ///
ParseExpressionTrait()2994 ExprResult Parser::ParseExpressionTrait() {
2995 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2996 SourceLocation Loc = ConsumeToken();
2997
2998 BalancedDelimiterTracker T(*this, tok::l_paren);
2999 if (T.expectAndConsume())
3000 return ExprError();
3001
3002 ExprResult Expr = ParseExpression();
3003
3004 T.consumeClose();
3005
3006 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3007 T.getCloseLocation());
3008 }
3009
3010
3011 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3012 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3013 /// based on the context past the parens.
3014 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker,ColonProtectionRAIIObject & ColonProt)3015 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3016 ParsedType &CastTy,
3017 BalancedDelimiterTracker &Tracker,
3018 ColonProtectionRAIIObject &ColonProt) {
3019 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3020 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3021 assert(isTypeIdInParens() && "Not a type-id!");
3022
3023 ExprResult Result(true);
3024 CastTy = ParsedType();
3025
3026 // We need to disambiguate a very ugly part of the C++ syntax:
3027 //
3028 // (T())x; - type-id
3029 // (T())*x; - type-id
3030 // (T())/x; - expression
3031 // (T()); - expression
3032 //
3033 // The bad news is that we cannot use the specialized tentative parser, since
3034 // it can only verify that the thing inside the parens can be parsed as
3035 // type-id, it is not useful for determining the context past the parens.
3036 //
3037 // The good news is that the parser can disambiguate this part without
3038 // making any unnecessary Action calls.
3039 //
3040 // It uses a scheme similar to parsing inline methods. The parenthesized
3041 // tokens are cached, the context that follows is determined (possibly by
3042 // parsing a cast-expression), and then we re-introduce the cached tokens
3043 // into the token stream and parse them appropriately.
3044
3045 ParenParseOption ParseAs;
3046 CachedTokens Toks;
3047
3048 // Store the tokens of the parentheses. We will parse them after we determine
3049 // the context that follows them.
3050 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3051 // We didn't find the ')' we expected.
3052 Tracker.consumeClose();
3053 return ExprError();
3054 }
3055
3056 if (Tok.is(tok::l_brace)) {
3057 ParseAs = CompoundLiteral;
3058 } else {
3059 bool NotCastExpr;
3060 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3061 NotCastExpr = true;
3062 } else {
3063 // Try parsing the cast-expression that may follow.
3064 // If it is not a cast-expression, NotCastExpr will be true and no token
3065 // will be consumed.
3066 ColonProt.restore();
3067 Result = ParseCastExpression(false/*isUnaryExpression*/,
3068 false/*isAddressofOperand*/,
3069 NotCastExpr,
3070 // type-id has priority.
3071 IsTypeCast);
3072 }
3073
3074 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3075 // an expression.
3076 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3077 }
3078
3079 // The current token should go after the cached tokens.
3080 Toks.push_back(Tok);
3081 // Re-enter the stored parenthesized tokens into the token stream, so we may
3082 // parse them now.
3083 PP.EnterTokenStream(Toks.data(), Toks.size(),
3084 true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
3085 // Drop the current token and bring the first cached one. It's the same token
3086 // as when we entered this function.
3087 ConsumeAnyToken();
3088
3089 if (ParseAs >= CompoundLiteral) {
3090 // Parse the type declarator.
3091 DeclSpec DS(AttrFactory);
3092 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
3093 {
3094 ColonProtectionRAIIObject InnerColonProtection(*this);
3095 ParseSpecifierQualifierList(DS);
3096 ParseDeclarator(DeclaratorInfo);
3097 }
3098
3099 // Match the ')'.
3100 Tracker.consumeClose();
3101 ColonProt.restore();
3102
3103 if (ParseAs == CompoundLiteral) {
3104 ExprType = CompoundLiteral;
3105 if (DeclaratorInfo.isInvalidType())
3106 return ExprError();
3107
3108 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3109 return ParseCompoundLiteralExpression(Ty.get(),
3110 Tracker.getOpenLocation(),
3111 Tracker.getCloseLocation());
3112 }
3113
3114 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3115 assert(ParseAs == CastExpr);
3116
3117 if (DeclaratorInfo.isInvalidType())
3118 return ExprError();
3119
3120 // Result is what ParseCastExpression returned earlier.
3121 if (!Result.isInvalid())
3122 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3123 DeclaratorInfo, CastTy,
3124 Tracker.getCloseLocation(), Result.get());
3125 return Result;
3126 }
3127
3128 // Not a compound literal, and not followed by a cast-expression.
3129 assert(ParseAs == SimpleExpr);
3130
3131 ExprType = SimpleExpr;
3132 Result = ParseExpression();
3133 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3134 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3135 Tok.getLocation(), Result.get());
3136
3137 // Match the ')'.
3138 if (Result.isInvalid()) {
3139 SkipUntil(tok::r_paren, StopAtSemi);
3140 return ExprError();
3141 }
3142
3143 Tracker.consumeClose();
3144 return Result;
3145 }
3146