1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "method_verifier-inl.h"
18
19 #include <iostream>
20
21 #include "art_field-inl.h"
22 #include "art_method-inl.h"
23 #include "base/logging.h"
24 #include "base/mutex-inl.h"
25 #include "base/time_utils.h"
26 #include "class_linker.h"
27 #include "compiler_callbacks.h"
28 #include "dex_file-inl.h"
29 #include "dex_instruction-inl.h"
30 #include "dex_instruction_utils.h"
31 #include "dex_instruction_visitor.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "indenter.h"
34 #include "intern_table.h"
35 #include "leb128.h"
36 #include "mirror/class.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/dex_cache-inl.h"
39 #include "mirror/object-inl.h"
40 #include "mirror/object_array-inl.h"
41 #include "reg_type-inl.h"
42 #include "register_line-inl.h"
43 #include "runtime.h"
44 #include "scoped_thread_state_change.h"
45 #include "utils.h"
46 #include "handle_scope-inl.h"
47 #include "verifier/dex_gc_map.h"
48
49 namespace art {
50 namespace verifier {
51
52 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53 static constexpr bool gDebugVerify = false;
54 // TODO: Add a constant to method_verifier to turn on verbose logging?
55
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,MethodVerifier * verifier)56 void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57 uint32_t insns_size, uint16_t registers_size,
58 MethodVerifier* verifier) {
59 DCHECK_GT(insns_size, 0U);
60 register_lines_.reset(new RegisterLine*[insns_size]());
61 size_ = insns_size;
62 for (uint32_t i = 0; i < insns_size; i++) {
63 bool interesting = false;
64 switch (mode) {
65 case kTrackRegsAll:
66 interesting = flags[i].IsOpcode();
67 break;
68 case kTrackCompilerInterestPoints:
69 interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70 break;
71 case kTrackRegsBranches:
72 interesting = flags[i].IsBranchTarget();
73 break;
74 default:
75 break;
76 }
77 if (interesting) {
78 register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79 }
80 }
81 }
82
~PcToRegisterLineTable()83 PcToRegisterLineTable::~PcToRegisterLineTable() {
84 for (size_t i = 0; i < size_; i++) {
85 delete register_lines_[i];
86 if (kIsDebugBuild) {
87 register_lines_[i] = nullptr;
88 }
89 }
90 }
91
92 // Note: returns true on failure.
FailOrAbort(MethodVerifier * verifier,bool condition,const char * error_msg,uint32_t work_insn_idx)93 ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94 const char* error_msg, uint32_t work_insn_idx) {
95 if (kIsDebugBuild) {
96 // In a debug build, abort if the error condition is wrong.
97 DCHECK(condition) << error_msg << work_insn_idx;
98 } else {
99 // In a non-debug build, just fail the class.
100 if (!condition) {
101 verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102 return true;
103 }
104 }
105
106 return false;
107 }
108
SafelyMarkAllRegistersAsConflicts(MethodVerifier * verifier,RegisterLine * reg_line)109 static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110 if (verifier->IsInstanceConstructor()) {
111 // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112 reg_line->CheckConstructorReturn(verifier);
113 }
114 reg_line->MarkAllRegistersAsConflicts(verifier);
115 }
116
VerifyMethod(ArtMethod * method,bool allow_soft_failures,std::string * error ATTRIBUTE_UNUSED)117 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118 ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119 StackHandleScope<2> hs(Thread::Current());
120 mirror::Class* klass = method->GetDeclaringClass();
121 auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122 auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123 return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124 h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125 method->GetAccessFlags(), allow_soft_failures, false);
126 }
127
128
VerifyClass(Thread * self,mirror::Class * klass,bool allow_soft_failures,std::string * error)129 MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130 mirror::Class* klass,
131 bool allow_soft_failures,
132 std::string* error) {
133 if (klass->IsVerified()) {
134 return kNoFailure;
135 }
136 bool early_failure = false;
137 std::string failure_message;
138 const DexFile& dex_file = klass->GetDexFile();
139 const DexFile::ClassDef* class_def = klass->GetClassDef();
140 mirror::Class* super = klass->GetSuperClass();
141 std::string temp;
142 if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143 early_failure = true;
144 failure_message = " that has no super class";
145 } else if (super != nullptr && super->IsFinal()) {
146 early_failure = true;
147 failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148 } else if (class_def == nullptr) {
149 early_failure = true;
150 failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151 }
152 if (early_failure) {
153 *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154 if (Runtime::Current()->IsAotCompiler()) {
155 ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157 }
158 return kHardFailure;
159 }
160 StackHandleScope<2> hs(self);
161 Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163 return VerifyClass(
164 self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165 }
166
VerifyClass(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,bool allow_soft_failures,std::string * error)167 MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168 const DexFile* dex_file,
169 Handle<mirror::DexCache> dex_cache,
170 Handle<mirror::ClassLoader> class_loader,
171 const DexFile::ClassDef* class_def,
172 bool allow_soft_failures,
173 std::string* error) {
174 DCHECK(class_def != nullptr);
175
176 // A class must not be abstract and final.
177 if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
178 *error = "Verifier rejected class ";
179 *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180 *error += ": class is abstract and final.";
181 return kHardFailure;
182 }
183
184 const uint8_t* class_data = dex_file->GetClassData(*class_def);
185 if (class_data == nullptr) {
186 // empty class, probably a marker interface
187 return kNoFailure;
188 }
189 ClassDataItemIterator it(*dex_file, class_data);
190 while (it.HasNextStaticField() || it.HasNextInstanceField()) {
191 it.Next();
192 }
193 size_t error_count = 0;
194 bool hard_fail = false;
195 ClassLinker* linker = Runtime::Current()->GetClassLinker();
196 int64_t previous_direct_method_idx = -1;
197 while (it.HasNextDirectMethod()) {
198 self->AllowThreadSuspension();
199 uint32_t method_idx = it.GetMemberIndex();
200 if (method_idx == previous_direct_method_idx) {
201 // smali can create dex files with two encoded_methods sharing the same method_idx
202 // http://code.google.com/p/smali/issues/detail?id=119
203 it.Next();
204 continue;
205 }
206 previous_direct_method_idx = method_idx;
207 InvokeType type = it.GetMethodInvokeType(*class_def);
208 ArtMethod* method = linker->ResolveMethod(
209 *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
210 if (method == nullptr) {
211 DCHECK(self->IsExceptionPending());
212 // We couldn't resolve the method, but continue regardless.
213 self->ClearException();
214 } else {
215 DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
216 }
217 StackHandleScope<1> hs(self);
218 MethodVerifier::FailureKind result = VerifyMethod(self,
219 method_idx,
220 dex_file,
221 dex_cache,
222 class_loader,
223 class_def,
224 it.GetMethodCodeItem(),
225 method, it.GetMethodAccessFlags(), allow_soft_failures, false);
226 if (result != kNoFailure) {
227 if (result == kHardFailure) {
228 hard_fail = true;
229 if (error_count > 0) {
230 *error += "\n";
231 }
232 *error = "Verifier rejected class ";
233 *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
234 *error += " due to bad method ";
235 *error += PrettyMethod(method_idx, *dex_file);
236 }
237 ++error_count;
238 }
239 it.Next();
240 }
241 int64_t previous_virtual_method_idx = -1;
242 while (it.HasNextVirtualMethod()) {
243 self->AllowThreadSuspension();
244 uint32_t method_idx = it.GetMemberIndex();
245 if (method_idx == previous_virtual_method_idx) {
246 // smali can create dex files with two encoded_methods sharing the same method_idx
247 // http://code.google.com/p/smali/issues/detail?id=119
248 it.Next();
249 continue;
250 }
251 previous_virtual_method_idx = method_idx;
252 InvokeType type = it.GetMethodInvokeType(*class_def);
253 ArtMethod* method = linker->ResolveMethod(
254 *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
255 if (method == nullptr) {
256 DCHECK(self->IsExceptionPending());
257 // We couldn't resolve the method, but continue regardless.
258 self->ClearException();
259 }
260 StackHandleScope<1> hs(self);
261 MethodVerifier::FailureKind result = VerifyMethod(self,
262 method_idx,
263 dex_file,
264 dex_cache,
265 class_loader,
266 class_def,
267 it.GetMethodCodeItem(),
268 method, it.GetMethodAccessFlags(), allow_soft_failures, false);
269 if (result != kNoFailure) {
270 if (result == kHardFailure) {
271 hard_fail = true;
272 if (error_count > 0) {
273 *error += "\n";
274 }
275 *error = "Verifier rejected class ";
276 *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
277 *error += " due to bad method ";
278 *error += PrettyMethod(method_idx, *dex_file);
279 }
280 ++error_count;
281 }
282 it.Next();
283 }
284 if (error_count == 0) {
285 return kNoFailure;
286 } else {
287 return hard_fail ? kHardFailure : kSoftFailure;
288 }
289 }
290
IsLargeMethod(const DexFile::CodeItem * const code_item)291 static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
292 if (code_item == nullptr) {
293 return false;
294 }
295
296 uint16_t registers_size = code_item->registers_size_;
297 uint32_t insns_size = code_item->insns_size_in_code_units_;
298
299 return registers_size * insns_size > 4*1024*1024;
300 }
301
VerifyMethod(Thread * self,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,bool allow_soft_failures,bool need_precise_constants)302 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
303 const DexFile* dex_file,
304 Handle<mirror::DexCache> dex_cache,
305 Handle<mirror::ClassLoader> class_loader,
306 const DexFile::ClassDef* class_def,
307 const DexFile::CodeItem* code_item,
308 ArtMethod* method,
309 uint32_t method_access_flags,
310 bool allow_soft_failures,
311 bool need_precise_constants) {
312 MethodVerifier::FailureKind result = kNoFailure;
313 uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
314
315 MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
316 method_idx, method, method_access_flags, true, allow_soft_failures,
317 need_precise_constants, true);
318 if (verifier.Verify()) {
319 // Verification completed, however failures may be pending that didn't cause the verification
320 // to hard fail.
321 CHECK(!verifier.have_pending_hard_failure_);
322 if (verifier.failures_.size() != 0) {
323 if (VLOG_IS_ON(verifier)) {
324 verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
325 << PrettyMethod(method_idx, *dex_file) << "\n");
326 }
327 result = kSoftFailure;
328 }
329 } else {
330 // Bad method data.
331 CHECK_NE(verifier.failures_.size(), 0U);
332 CHECK(verifier.have_pending_hard_failure_);
333 verifier.DumpFailures(LOG(INFO) << "Verification error in "
334 << PrettyMethod(method_idx, *dex_file) << "\n");
335 if (gDebugVerify) {
336 std::cout << "\n" << verifier.info_messages_.str();
337 verifier.Dump(std::cout);
338 }
339 result = kHardFailure;
340 }
341 if (kTimeVerifyMethod) {
342 uint64_t duration_ns = NanoTime() - start_ns;
343 if (duration_ns > MsToNs(100)) {
344 LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
345 << " took " << PrettyDuration(duration_ns)
346 << (IsLargeMethod(code_item) ? " (large method)" : "");
347 }
348 }
349 return result;
350 }
351
VerifyMethodAndDump(Thread * self,std::ostream & os,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags)352 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
353 const DexFile* dex_file,
354 Handle<mirror::DexCache> dex_cache,
355 Handle<mirror::ClassLoader> class_loader,
356 const DexFile::ClassDef* class_def,
357 const DexFile::CodeItem* code_item,
358 ArtMethod* method,
359 uint32_t method_access_flags) {
360 MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
361 class_def, code_item, dex_method_idx, method,
362 method_access_flags, true, true, true, true);
363 verifier->Verify();
364 verifier->DumpFailures(os);
365 os << verifier->info_messages_.str();
366 // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
367 // and querying any info is dangerous/can abort.
368 if (verifier->have_pending_hard_failure_) {
369 delete verifier;
370 return nullptr;
371 } else {
372 verifier->Dump(os);
373 return verifier;
374 }
375 }
376
MethodVerifier(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef * class_def,const DexFile::CodeItem * code_item,uint32_t dex_method_idx,ArtMethod * method,uint32_t method_access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump,bool allow_thread_suspension)377 MethodVerifier::MethodVerifier(Thread* self,
378 const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
379 Handle<mirror::ClassLoader> class_loader,
380 const DexFile::ClassDef* class_def,
381 const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
382 ArtMethod* method, uint32_t method_access_flags,
383 bool can_load_classes, bool allow_soft_failures,
384 bool need_precise_constants, bool verify_to_dump,
385 bool allow_thread_suspension)
386 : self_(self),
387 reg_types_(can_load_classes),
388 work_insn_idx_(DexFile::kDexNoIndex),
389 dex_method_idx_(dex_method_idx),
390 mirror_method_(method),
391 method_access_flags_(method_access_flags),
392 return_type_(nullptr),
393 dex_file_(dex_file),
394 dex_cache_(dex_cache),
395 class_loader_(class_loader),
396 class_def_(class_def),
397 code_item_(code_item),
398 declaring_class_(nullptr),
399 interesting_dex_pc_(-1),
400 monitor_enter_dex_pcs_(nullptr),
401 have_pending_hard_failure_(false),
402 have_pending_runtime_throw_failure_(false),
403 have_any_pending_runtime_throw_failure_(false),
404 new_instance_count_(0),
405 monitor_enter_count_(0),
406 can_load_classes_(can_load_classes),
407 allow_soft_failures_(allow_soft_failures),
408 need_precise_constants_(need_precise_constants),
409 has_check_casts_(false),
410 has_virtual_or_interface_invokes_(false),
411 verify_to_dump_(verify_to_dump),
412 allow_thread_suspension_(allow_thread_suspension),
413 link_(nullptr) {
414 self->PushVerifier(this);
415 DCHECK(class_def != nullptr);
416 }
417
~MethodVerifier()418 MethodVerifier::~MethodVerifier() {
419 Thread::Current()->PopVerifier(this);
420 STLDeleteElements(&failure_messages_);
421 }
422
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<uint32_t> * monitor_enter_dex_pcs)423 void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
424 std::vector<uint32_t>* monitor_enter_dex_pcs) {
425 StackHandleScope<2> hs(Thread::Current());
426 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
427 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
428 MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
429 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
430 false, true, false, false);
431 verifier.interesting_dex_pc_ = dex_pc;
432 verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
433 verifier.FindLocksAtDexPc();
434 }
435
HasMonitorEnterInstructions(const DexFile::CodeItem * const code_item)436 static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
437 const Instruction* inst = Instruction::At(code_item->insns_);
438
439 uint32_t insns_size = code_item->insns_size_in_code_units_;
440 for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
441 if (inst->Opcode() == Instruction::MONITOR_ENTER) {
442 return true;
443 }
444
445 dex_pc += inst->SizeInCodeUnits();
446 inst = inst->Next();
447 }
448
449 return false;
450 }
451
FindLocksAtDexPc()452 void MethodVerifier::FindLocksAtDexPc() {
453 CHECK(monitor_enter_dex_pcs_ != nullptr);
454 CHECK(code_item_ != nullptr); // This only makes sense for methods with code.
455
456 // Quick check whether there are any monitor_enter instructions at all.
457 if (!HasMonitorEnterInstructions(code_item_)) {
458 return;
459 }
460
461 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
462 // verification. In practice, the phase we want relies on data structures set up by all the
463 // earlier passes, so we just run the full method verification and bail out early when we've
464 // got what we wanted.
465 Verify();
466 }
467
FindAccessedFieldAtDexPc(ArtMethod * m,uint32_t dex_pc)468 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
469 StackHandleScope<2> hs(Thread::Current());
470 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
471 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
472 MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
473 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
474 true, false, true);
475 return verifier.FindAccessedFieldAtDexPc(dex_pc);
476 }
477
FindAccessedFieldAtDexPc(uint32_t dex_pc)478 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
479 CHECK(code_item_ != nullptr); // This only makes sense for methods with code.
480
481 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
482 // verification. In practice, the phase we want relies on data structures set up by all the
483 // earlier passes, so we just run the full method verification and bail out early when we've
484 // got what we wanted.
485 bool success = Verify();
486 if (!success) {
487 return nullptr;
488 }
489 RegisterLine* register_line = reg_table_.GetLine(dex_pc);
490 if (register_line == nullptr) {
491 return nullptr;
492 }
493 const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
494 return GetQuickFieldAccess(inst, register_line);
495 }
496
FindInvokedMethodAtDexPc(ArtMethod * m,uint32_t dex_pc)497 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
498 StackHandleScope<2> hs(Thread::Current());
499 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
500 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
501 MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
502 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
503 true, false, true);
504 return verifier.FindInvokedMethodAtDexPc(dex_pc);
505 }
506
FindInvokedMethodAtDexPc(uint32_t dex_pc)507 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
508 CHECK(code_item_ != nullptr); // This only makes sense for methods with code.
509
510 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
511 // verification. In practice, the phase we want relies on data structures set up by all the
512 // earlier passes, so we just run the full method verification and bail out early when we've
513 // got what we wanted.
514 bool success = Verify();
515 if (!success) {
516 return nullptr;
517 }
518 RegisterLine* register_line = reg_table_.GetLine(dex_pc);
519 if (register_line == nullptr) {
520 return nullptr;
521 }
522 const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
523 const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
524 return GetQuickInvokedMethod(inst, register_line, is_range, false);
525 }
526
FindStringInitMap(ArtMethod * m)527 SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
528 Thread* self = Thread::Current();
529 StackHandleScope<2> hs(self);
530 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
531 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
532 MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
533 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
534 true, true, false, true);
535 return verifier.FindStringInitMap();
536 }
537
FindStringInitMap()538 SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
539 Verify();
540 return GetStringInitPcRegMap();
541 }
542
Verify()543 bool MethodVerifier::Verify() {
544 // If there aren't any instructions, make sure that's expected, then exit successfully.
545 if (code_item_ == nullptr) {
546 if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
547 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
548 return false;
549 } else {
550 return true;
551 }
552 }
553 // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
554 if (code_item_->ins_size_ > code_item_->registers_size_) {
555 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
556 << " regs=" << code_item_->registers_size_;
557 return false;
558 }
559 // Allocate and initialize an array to hold instruction data.
560 insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
561 // Run through the instructions and see if the width checks out.
562 bool result = ComputeWidthsAndCountOps();
563 // Flag instructions guarded by a "try" block and check exception handlers.
564 result = result && ScanTryCatchBlocks();
565 // Perform static instruction verification.
566 result = result && VerifyInstructions();
567 // Perform code-flow analysis and return.
568 result = result && VerifyCodeFlow();
569 // Compute information for compiler.
570 if (result && Runtime::Current()->IsCompiler()) {
571 result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
572 }
573 return result;
574 }
575
Fail(VerifyError error)576 std::ostream& MethodVerifier::Fail(VerifyError error) {
577 switch (error) {
578 case VERIFY_ERROR_NO_CLASS:
579 case VERIFY_ERROR_NO_FIELD:
580 case VERIFY_ERROR_NO_METHOD:
581 case VERIFY_ERROR_ACCESS_CLASS:
582 case VERIFY_ERROR_ACCESS_FIELD:
583 case VERIFY_ERROR_ACCESS_METHOD:
584 case VERIFY_ERROR_INSTANTIATION:
585 case VERIFY_ERROR_CLASS_CHANGE:
586 if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
587 // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
588 // class change and instantiation errors into soft verification errors so that we re-verify
589 // at runtime. We may fail to find or to agree on access because of not yet available class
590 // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
591 // affect the soundness of the code being compiled. Instead, the generated code runs "slow
592 // paths" that dynamically perform the verification and cause the behavior to be that akin
593 // to an interpreter.
594 error = VERIFY_ERROR_BAD_CLASS_SOFT;
595 } else {
596 // If we fail again at runtime, mark that this instruction would throw and force this
597 // method to be executed using the interpreter with checks.
598 have_pending_runtime_throw_failure_ = true;
599
600 // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
601 // try to merge garbage.
602 // Note: this assumes that Fail is called before we do any work_line modifications.
603 // Note: this can fail before we touch any instruction, for the signature of a method. So
604 // add a check.
605 if (work_insn_idx_ < DexFile::kDexNoIndex) {
606 const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
607 const Instruction* inst = Instruction::At(insns);
608 int opcode_flags = Instruction::FlagsOf(inst->Opcode());
609
610 if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
611 saved_line_->CopyFromLine(work_line_.get());
612 }
613 }
614 }
615 break;
616 // Indication that verification should be retried at runtime.
617 case VERIFY_ERROR_BAD_CLASS_SOFT:
618 if (!allow_soft_failures_) {
619 have_pending_hard_failure_ = true;
620 }
621 break;
622 // Hard verification failures at compile time will still fail at runtime, so the class is
623 // marked as rejected to prevent it from being compiled.
624 case VERIFY_ERROR_BAD_CLASS_HARD: {
625 if (Runtime::Current()->IsAotCompiler()) {
626 ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
627 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
628 }
629 have_pending_hard_failure_ = true;
630 break;
631 }
632 }
633 failures_.push_back(error);
634 std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
635 work_insn_idx_));
636 std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
637 failure_messages_.push_back(failure_message);
638 return *failure_message;
639 }
640
LogVerifyInfo()641 std::ostream& MethodVerifier::LogVerifyInfo() {
642 return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
643 << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
644 }
645
PrependToLastFailMessage(std::string prepend)646 void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
647 size_t failure_num = failure_messages_.size();
648 DCHECK_NE(failure_num, 0U);
649 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
650 prepend += last_fail_message->str();
651 failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
652 delete last_fail_message;
653 }
654
AppendToLastFailMessage(std::string append)655 void MethodVerifier::AppendToLastFailMessage(std::string append) {
656 size_t failure_num = failure_messages_.size();
657 DCHECK_NE(failure_num, 0U);
658 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
659 (*last_fail_message) << append;
660 }
661
ComputeWidthsAndCountOps()662 bool MethodVerifier::ComputeWidthsAndCountOps() {
663 const uint16_t* insns = code_item_->insns_;
664 size_t insns_size = code_item_->insns_size_in_code_units_;
665 const Instruction* inst = Instruction::At(insns);
666 size_t new_instance_count = 0;
667 size_t monitor_enter_count = 0;
668 size_t dex_pc = 0;
669
670 while (dex_pc < insns_size) {
671 Instruction::Code opcode = inst->Opcode();
672 switch (opcode) {
673 case Instruction::APUT_OBJECT:
674 case Instruction::CHECK_CAST:
675 has_check_casts_ = true;
676 break;
677 case Instruction::INVOKE_VIRTUAL:
678 case Instruction::INVOKE_VIRTUAL_RANGE:
679 case Instruction::INVOKE_INTERFACE:
680 case Instruction::INVOKE_INTERFACE_RANGE:
681 has_virtual_or_interface_invokes_ = true;
682 break;
683 case Instruction::MONITOR_ENTER:
684 monitor_enter_count++;
685 break;
686 case Instruction::NEW_INSTANCE:
687 new_instance_count++;
688 break;
689 default:
690 break;
691 }
692 size_t inst_size = inst->SizeInCodeUnits();
693 insn_flags_[dex_pc].SetIsOpcode();
694 dex_pc += inst_size;
695 inst = inst->RelativeAt(inst_size);
696 }
697
698 if (dex_pc != insns_size) {
699 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
700 << dex_pc << " vs. " << insns_size << ")";
701 return false;
702 }
703
704 new_instance_count_ = new_instance_count;
705 monitor_enter_count_ = monitor_enter_count;
706 return true;
707 }
708
ScanTryCatchBlocks()709 bool MethodVerifier::ScanTryCatchBlocks() {
710 uint32_t tries_size = code_item_->tries_size_;
711 if (tries_size == 0) {
712 return true;
713 }
714 uint32_t insns_size = code_item_->insns_size_in_code_units_;
715 const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
716
717 for (uint32_t idx = 0; idx < tries_size; idx++) {
718 const DexFile::TryItem* try_item = &tries[idx];
719 uint32_t start = try_item->start_addr_;
720 uint32_t end = start + try_item->insn_count_;
721 if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
722 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
723 << " endAddr=" << end << " (size=" << insns_size << ")";
724 return false;
725 }
726 if (!insn_flags_[start].IsOpcode()) {
727 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
728 << "'try' block starts inside an instruction (" << start << ")";
729 return false;
730 }
731 uint32_t dex_pc = start;
732 const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
733 while (dex_pc < end) {
734 insn_flags_[dex_pc].SetInTry();
735 size_t insn_size = inst->SizeInCodeUnits();
736 dex_pc += insn_size;
737 inst = inst->RelativeAt(insn_size);
738 }
739 }
740 // Iterate over each of the handlers to verify target addresses.
741 const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
742 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
743 ClassLinker* linker = Runtime::Current()->GetClassLinker();
744 for (uint32_t idx = 0; idx < handlers_size; idx++) {
745 CatchHandlerIterator iterator(handlers_ptr);
746 for (; iterator.HasNext(); iterator.Next()) {
747 uint32_t dex_pc= iterator.GetHandlerAddress();
748 if (!insn_flags_[dex_pc].IsOpcode()) {
749 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
750 << "exception handler starts at bad address (" << dex_pc << ")";
751 return false;
752 }
753 if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
754 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
755 << "exception handler begins with move-result* (" << dex_pc << ")";
756 return false;
757 }
758 insn_flags_[dex_pc].SetBranchTarget();
759 // Ensure exception types are resolved so that they don't need resolution to be delivered,
760 // unresolved exception types will be ignored by exception delivery
761 if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
762 mirror::Class* exception_type = linker->ResolveType(*dex_file_,
763 iterator.GetHandlerTypeIndex(),
764 dex_cache_, class_loader_);
765 if (exception_type == nullptr) {
766 DCHECK(self_->IsExceptionPending());
767 self_->ClearException();
768 }
769 }
770 }
771 handlers_ptr = iterator.EndDataPointer();
772 }
773 return true;
774 }
775
VerifyInstructions()776 bool MethodVerifier::VerifyInstructions() {
777 const Instruction* inst = Instruction::At(code_item_->insns_);
778
779 /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
780 insn_flags_[0].SetBranchTarget();
781 insn_flags_[0].SetCompileTimeInfoPoint();
782
783 uint32_t insns_size = code_item_->insns_size_in_code_units_;
784 for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
785 if (!VerifyInstruction(inst, dex_pc)) {
786 DCHECK_NE(failures_.size(), 0U);
787 return false;
788 }
789 /* Flag instructions that are garbage collection points */
790 // All invoke points are marked as "Throw" points already.
791 // We are relying on this to also count all the invokes as interesting.
792 if (inst->IsBranch()) {
793 insn_flags_[dex_pc].SetCompileTimeInfoPoint();
794 // The compiler also needs safepoints for fall-through to loop heads.
795 // Such a loop head must be a target of a branch.
796 int32_t offset = 0;
797 bool cond, self_ok;
798 bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
799 DCHECK(target_ok);
800 insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
801 } else if (inst->IsSwitch() || inst->IsThrow()) {
802 insn_flags_[dex_pc].SetCompileTimeInfoPoint();
803 } else if (inst->IsReturn()) {
804 insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
805 }
806 dex_pc += inst->SizeInCodeUnits();
807 inst = inst->Next();
808 }
809 return true;
810 }
811
VerifyInstruction(const Instruction * inst,uint32_t code_offset)812 bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
813 bool result = true;
814 switch (inst->GetVerifyTypeArgumentA()) {
815 case Instruction::kVerifyRegA:
816 result = result && CheckRegisterIndex(inst->VRegA());
817 break;
818 case Instruction::kVerifyRegAWide:
819 result = result && CheckWideRegisterIndex(inst->VRegA());
820 break;
821 }
822 switch (inst->GetVerifyTypeArgumentB()) {
823 case Instruction::kVerifyRegB:
824 result = result && CheckRegisterIndex(inst->VRegB());
825 break;
826 case Instruction::kVerifyRegBField:
827 result = result && CheckFieldIndex(inst->VRegB());
828 break;
829 case Instruction::kVerifyRegBMethod:
830 result = result && CheckMethodIndex(inst->VRegB());
831 break;
832 case Instruction::kVerifyRegBNewInstance:
833 result = result && CheckNewInstance(inst->VRegB());
834 break;
835 case Instruction::kVerifyRegBString:
836 result = result && CheckStringIndex(inst->VRegB());
837 break;
838 case Instruction::kVerifyRegBType:
839 result = result && CheckTypeIndex(inst->VRegB());
840 break;
841 case Instruction::kVerifyRegBWide:
842 result = result && CheckWideRegisterIndex(inst->VRegB());
843 break;
844 }
845 switch (inst->GetVerifyTypeArgumentC()) {
846 case Instruction::kVerifyRegC:
847 result = result && CheckRegisterIndex(inst->VRegC());
848 break;
849 case Instruction::kVerifyRegCField:
850 result = result && CheckFieldIndex(inst->VRegC());
851 break;
852 case Instruction::kVerifyRegCNewArray:
853 result = result && CheckNewArray(inst->VRegC());
854 break;
855 case Instruction::kVerifyRegCType:
856 result = result && CheckTypeIndex(inst->VRegC());
857 break;
858 case Instruction::kVerifyRegCWide:
859 result = result && CheckWideRegisterIndex(inst->VRegC());
860 break;
861 }
862 switch (inst->GetVerifyExtraFlags()) {
863 case Instruction::kVerifyArrayData:
864 result = result && CheckArrayData(code_offset);
865 break;
866 case Instruction::kVerifyBranchTarget:
867 result = result && CheckBranchTarget(code_offset);
868 break;
869 case Instruction::kVerifySwitchTargets:
870 result = result && CheckSwitchTargets(code_offset);
871 break;
872 case Instruction::kVerifyVarArgNonZero:
873 // Fall-through.
874 case Instruction::kVerifyVarArg: {
875 // Instructions that can actually return a negative value shouldn't have this flag.
876 uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
877 if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
878 v_a > Instruction::kMaxVarArgRegs) {
879 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
880 "non-range invoke";
881 return false;
882 }
883
884 uint32_t args[Instruction::kMaxVarArgRegs];
885 inst->GetVarArgs(args);
886 result = result && CheckVarArgRegs(v_a, args);
887 break;
888 }
889 case Instruction::kVerifyVarArgRangeNonZero:
890 // Fall-through.
891 case Instruction::kVerifyVarArgRange:
892 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
893 inst->VRegA() <= 0) {
894 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
895 "range invoke";
896 return false;
897 }
898 result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
899 break;
900 case Instruction::kVerifyError:
901 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
902 result = false;
903 break;
904 }
905 if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
906 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
907 result = false;
908 }
909 return result;
910 }
911
CheckRegisterIndex(uint32_t idx)912 inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
913 if (idx >= code_item_->registers_size_) {
914 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
915 << code_item_->registers_size_ << ")";
916 return false;
917 }
918 return true;
919 }
920
CheckWideRegisterIndex(uint32_t idx)921 inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
922 if (idx + 1 >= code_item_->registers_size_) {
923 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
924 << "+1 >= " << code_item_->registers_size_ << ")";
925 return false;
926 }
927 return true;
928 }
929
CheckFieldIndex(uint32_t idx)930 inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
931 if (idx >= dex_file_->GetHeader().field_ids_size_) {
932 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
933 << dex_file_->GetHeader().field_ids_size_ << ")";
934 return false;
935 }
936 return true;
937 }
938
CheckMethodIndex(uint32_t idx)939 inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
940 if (idx >= dex_file_->GetHeader().method_ids_size_) {
941 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
942 << dex_file_->GetHeader().method_ids_size_ << ")";
943 return false;
944 }
945 return true;
946 }
947
CheckNewInstance(uint32_t idx)948 inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
949 if (idx >= dex_file_->GetHeader().type_ids_size_) {
950 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
951 << dex_file_->GetHeader().type_ids_size_ << ")";
952 return false;
953 }
954 // We don't need the actual class, just a pointer to the class name.
955 const char* descriptor = dex_file_->StringByTypeIdx(idx);
956 if (descriptor[0] != 'L') {
957 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
958 return false;
959 }
960 return true;
961 }
962
CheckStringIndex(uint32_t idx)963 inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
964 if (idx >= dex_file_->GetHeader().string_ids_size_) {
965 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
966 << dex_file_->GetHeader().string_ids_size_ << ")";
967 return false;
968 }
969 return true;
970 }
971
CheckTypeIndex(uint32_t idx)972 inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
973 if (idx >= dex_file_->GetHeader().type_ids_size_) {
974 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
975 << dex_file_->GetHeader().type_ids_size_ << ")";
976 return false;
977 }
978 return true;
979 }
980
CheckNewArray(uint32_t idx)981 bool MethodVerifier::CheckNewArray(uint32_t idx) {
982 if (idx >= dex_file_->GetHeader().type_ids_size_) {
983 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
984 << dex_file_->GetHeader().type_ids_size_ << ")";
985 return false;
986 }
987 int bracket_count = 0;
988 const char* descriptor = dex_file_->StringByTypeIdx(idx);
989 const char* cp = descriptor;
990 while (*cp++ == '[') {
991 bracket_count++;
992 }
993 if (bracket_count == 0) {
994 /* The given class must be an array type. */
995 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
996 << "can't new-array class '" << descriptor << "' (not an array)";
997 return false;
998 } else if (bracket_count > 255) {
999 /* It is illegal to create an array of more than 255 dimensions. */
1000 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1001 << "can't new-array class '" << descriptor << "' (exceeds limit)";
1002 return false;
1003 }
1004 return true;
1005 }
1006
CheckArrayData(uint32_t cur_offset)1007 bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1008 const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1009 const uint16_t* insns = code_item_->insns_ + cur_offset;
1010 const uint16_t* array_data;
1011 int32_t array_data_offset;
1012
1013 DCHECK_LT(cur_offset, insn_count);
1014 /* make sure the start of the array data table is in range */
1015 array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1016 if ((int32_t) cur_offset + array_data_offset < 0 ||
1017 cur_offset + array_data_offset + 2 >= insn_count) {
1018 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1019 << ", data offset " << array_data_offset
1020 << ", count " << insn_count;
1021 return false;
1022 }
1023 /* offset to array data table is a relative branch-style offset */
1024 array_data = insns + array_data_offset;
1025 /* make sure the table is 32-bit aligned */
1026 if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1027 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1028 << ", data offset " << array_data_offset;
1029 return false;
1030 }
1031 uint32_t value_width = array_data[1];
1032 uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1033 uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1034 /* make sure the end of the switch is in range */
1035 if (cur_offset + array_data_offset + table_size > insn_count) {
1036 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1037 << ", data offset " << array_data_offset << ", end "
1038 << cur_offset + array_data_offset + table_size
1039 << ", count " << insn_count;
1040 return false;
1041 }
1042 return true;
1043 }
1044
CheckBranchTarget(uint32_t cur_offset)1045 bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1046 int32_t offset;
1047 bool isConditional, selfOkay;
1048 if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1049 return false;
1050 }
1051 if (!selfOkay && offset == 0) {
1052 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1053 << reinterpret_cast<void*>(cur_offset);
1054 return false;
1055 }
1056 // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1057 // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1058 if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1059 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1060 << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1061 return false;
1062 }
1063 const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1064 int32_t abs_offset = cur_offset + offset;
1065 if (abs_offset < 0 ||
1066 (uint32_t) abs_offset >= insn_count ||
1067 !insn_flags_[abs_offset].IsOpcode()) {
1068 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1069 << reinterpret_cast<void*>(abs_offset) << ") at "
1070 << reinterpret_cast<void*>(cur_offset);
1071 return false;
1072 }
1073 insn_flags_[abs_offset].SetBranchTarget();
1074 return true;
1075 }
1076
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1077 bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1078 bool* selfOkay) {
1079 const uint16_t* insns = code_item_->insns_ + cur_offset;
1080 *pConditional = false;
1081 *selfOkay = false;
1082 switch (*insns & 0xff) {
1083 case Instruction::GOTO:
1084 *pOffset = ((int16_t) *insns) >> 8;
1085 break;
1086 case Instruction::GOTO_32:
1087 *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1088 *selfOkay = true;
1089 break;
1090 case Instruction::GOTO_16:
1091 *pOffset = (int16_t) insns[1];
1092 break;
1093 case Instruction::IF_EQ:
1094 case Instruction::IF_NE:
1095 case Instruction::IF_LT:
1096 case Instruction::IF_GE:
1097 case Instruction::IF_GT:
1098 case Instruction::IF_LE:
1099 case Instruction::IF_EQZ:
1100 case Instruction::IF_NEZ:
1101 case Instruction::IF_LTZ:
1102 case Instruction::IF_GEZ:
1103 case Instruction::IF_GTZ:
1104 case Instruction::IF_LEZ:
1105 *pOffset = (int16_t) insns[1];
1106 *pConditional = true;
1107 break;
1108 default:
1109 return false;
1110 }
1111 return true;
1112 }
1113
CheckSwitchTargets(uint32_t cur_offset)1114 bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1115 const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1116 DCHECK_LT(cur_offset, insn_count);
1117 const uint16_t* insns = code_item_->insns_ + cur_offset;
1118 /* make sure the start of the switch is in range */
1119 int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1120 if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1121 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1122 << ", switch offset " << switch_offset
1123 << ", count " << insn_count;
1124 return false;
1125 }
1126 /* offset to switch table is a relative branch-style offset */
1127 const uint16_t* switch_insns = insns + switch_offset;
1128 /* make sure the table is 32-bit aligned */
1129 if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1130 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1131 << ", switch offset " << switch_offset;
1132 return false;
1133 }
1134 uint32_t switch_count = switch_insns[1];
1135 int32_t keys_offset, targets_offset;
1136 uint16_t expected_signature;
1137 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1138 /* 0=sig, 1=count, 2/3=firstKey */
1139 targets_offset = 4;
1140 keys_offset = -1;
1141 expected_signature = Instruction::kPackedSwitchSignature;
1142 } else {
1143 /* 0=sig, 1=count, 2..count*2 = keys */
1144 keys_offset = 2;
1145 targets_offset = 2 + 2 * switch_count;
1146 expected_signature = Instruction::kSparseSwitchSignature;
1147 }
1148 uint32_t table_size = targets_offset + switch_count * 2;
1149 if (switch_insns[0] != expected_signature) {
1150 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1151 << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1152 switch_insns[0], expected_signature);
1153 return false;
1154 }
1155 /* make sure the end of the switch is in range */
1156 if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1157 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1158 << ", switch offset " << switch_offset
1159 << ", end " << (cur_offset + switch_offset + table_size)
1160 << ", count " << insn_count;
1161 return false;
1162 }
1163 /* for a sparse switch, verify the keys are in ascending order */
1164 if (keys_offset > 0 && switch_count > 1) {
1165 int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1166 for (uint32_t targ = 1; targ < switch_count; targ++) {
1167 int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1168 (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1169 if (key <= last_key) {
1170 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1171 << ", this=" << key;
1172 return false;
1173 }
1174 last_key = key;
1175 }
1176 }
1177 /* verify each switch target */
1178 for (uint32_t targ = 0; targ < switch_count; targ++) {
1179 int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1180 (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1181 int32_t abs_offset = cur_offset + offset;
1182 if (abs_offset < 0 ||
1183 abs_offset >= (int32_t) insn_count ||
1184 !insn_flags_[abs_offset].IsOpcode()) {
1185 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1186 << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1187 << reinterpret_cast<void*>(cur_offset)
1188 << "[" << targ << "]";
1189 return false;
1190 }
1191 insn_flags_[abs_offset].SetBranchTarget();
1192 }
1193 return true;
1194 }
1195
CheckVarArgRegs(uint32_t vA,uint32_t arg[])1196 bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1197 uint16_t registers_size = code_item_->registers_size_;
1198 for (uint32_t idx = 0; idx < vA; idx++) {
1199 if (arg[idx] >= registers_size) {
1200 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1201 << ") in non-range invoke (>= " << registers_size << ")";
1202 return false;
1203 }
1204 }
1205
1206 return true;
1207 }
1208
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)1209 bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1210 uint16_t registers_size = code_item_->registers_size_;
1211 // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1212 // integer overflow when adding them here.
1213 if (vA + vC > registers_size) {
1214 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1215 << " in range invoke (> " << registers_size << ")";
1216 return false;
1217 }
1218 return true;
1219 }
1220
VerifyCodeFlow()1221 bool MethodVerifier::VerifyCodeFlow() {
1222 uint16_t registers_size = code_item_->registers_size_;
1223 uint32_t insns_size = code_item_->insns_size_in_code_units_;
1224
1225 /* Create and initialize table holding register status */
1226 reg_table_.Init(kTrackCompilerInterestPoints,
1227 insn_flags_.get(),
1228 insns_size,
1229 registers_size,
1230 this);
1231
1232
1233 work_line_.reset(RegisterLine::Create(registers_size, this));
1234 saved_line_.reset(RegisterLine::Create(registers_size, this));
1235
1236 /* Initialize register types of method arguments. */
1237 if (!SetTypesFromSignature()) {
1238 DCHECK_NE(failures_.size(), 0U);
1239 std::string prepend("Bad signature in ");
1240 prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1241 PrependToLastFailMessage(prepend);
1242 return false;
1243 }
1244 // We may have a runtime failure here, clear.
1245 have_pending_runtime_throw_failure_ = false;
1246
1247 /* Perform code flow verification. */
1248 if (!CodeFlowVerifyMethod()) {
1249 DCHECK_NE(failures_.size(), 0U);
1250 return false;
1251 }
1252 return true;
1253 }
1254
DumpFailures(std::ostream & os)1255 std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1256 DCHECK_EQ(failures_.size(), failure_messages_.size());
1257 for (size_t i = 0; i < failures_.size(); ++i) {
1258 os << failure_messages_[i]->str() << "\n";
1259 }
1260 return os;
1261 }
1262
Dump(std::ostream & os)1263 void MethodVerifier::Dump(std::ostream& os) {
1264 if (code_item_ == nullptr) {
1265 os << "Native method\n";
1266 return;
1267 }
1268 {
1269 os << "Register Types:\n";
1270 Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1271 std::ostream indent_os(&indent_filter);
1272 reg_types_.Dump(indent_os);
1273 }
1274 os << "Dumping instructions and register lines:\n";
1275 Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1276 std::ostream indent_os(&indent_filter);
1277 const Instruction* inst = Instruction::At(code_item_->insns_);
1278 for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1279 dex_pc += inst->SizeInCodeUnits()) {
1280 RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1281 if (reg_line != nullptr) {
1282 indent_os << reg_line->Dump(this) << "\n";
1283 }
1284 indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1285 const bool kDumpHexOfInstruction = false;
1286 if (kDumpHexOfInstruction) {
1287 indent_os << inst->DumpHex(5) << " ";
1288 }
1289 indent_os << inst->DumpString(dex_file_) << "\n";
1290 inst = inst->Next();
1291 }
1292 }
1293
IsPrimitiveDescriptor(char descriptor)1294 static bool IsPrimitiveDescriptor(char descriptor) {
1295 switch (descriptor) {
1296 case 'I':
1297 case 'C':
1298 case 'S':
1299 case 'B':
1300 case 'Z':
1301 case 'F':
1302 case 'D':
1303 case 'J':
1304 return true;
1305 default:
1306 return false;
1307 }
1308 }
1309
SetTypesFromSignature()1310 bool MethodVerifier::SetTypesFromSignature() {
1311 RegisterLine* reg_line = reg_table_.GetLine(0);
1312
1313 // Should have been verified earlier.
1314 DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1315
1316 uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1317 size_t expected_args = code_item_->ins_size_; /* long/double count as two */
1318
1319 // Include the "this" pointer.
1320 size_t cur_arg = 0;
1321 if (!IsStatic()) {
1322 if (expected_args == 0) {
1323 // Expect at least a receiver.
1324 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1325 return false;
1326 }
1327
1328 // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1329 // argument as uninitialized. This restricts field access until the superclass constructor is
1330 // called.
1331 const RegType& declaring_class = GetDeclaringClass();
1332 if (IsConstructor()) {
1333 if (declaring_class.IsJavaLangObject()) {
1334 // "this" is implicitly initialized.
1335 reg_line->SetThisInitialized();
1336 reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1337 } else {
1338 reg_line->SetRegisterType(this, arg_start + cur_arg,
1339 reg_types_.UninitializedThisArgument(declaring_class));
1340 }
1341 } else {
1342 reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1343 }
1344 cur_arg++;
1345 }
1346
1347 const DexFile::ProtoId& proto_id =
1348 dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1349 DexFileParameterIterator iterator(*dex_file_, proto_id);
1350
1351 for (; iterator.HasNext(); iterator.Next()) {
1352 const char* descriptor = iterator.GetDescriptor();
1353 if (descriptor == nullptr) {
1354 LOG(FATAL) << "Null descriptor";
1355 }
1356 if (cur_arg >= expected_args) {
1357 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1358 << " args, found more (" << descriptor << ")";
1359 return false;
1360 }
1361 switch (descriptor[0]) {
1362 case 'L':
1363 case '[':
1364 // We assume that reference arguments are initialized. The only way it could be otherwise
1365 // (assuming the caller was verified) is if the current method is <init>, but in that case
1366 // it's effectively considered initialized the instant we reach here (in the sense that we
1367 // can return without doing anything or call virtual methods).
1368 {
1369 const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1370 if (!reg_type.IsNonZeroReferenceTypes()) {
1371 DCHECK(HasFailures());
1372 return false;
1373 }
1374 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1375 }
1376 break;
1377 case 'Z':
1378 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1379 break;
1380 case 'C':
1381 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1382 break;
1383 case 'B':
1384 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1385 break;
1386 case 'I':
1387 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1388 break;
1389 case 'S':
1390 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1391 break;
1392 case 'F':
1393 reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1394 break;
1395 case 'J':
1396 case 'D': {
1397 if (cur_arg + 1 >= expected_args) {
1398 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1399 << " args, found more (" << descriptor << ")";
1400 return false;
1401 }
1402
1403 const RegType* lo_half;
1404 const RegType* hi_half;
1405 if (descriptor[0] == 'J') {
1406 lo_half = ®_types_.LongLo();
1407 hi_half = ®_types_.LongHi();
1408 } else {
1409 lo_half = ®_types_.DoubleLo();
1410 hi_half = ®_types_.DoubleHi();
1411 }
1412 reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1413 cur_arg++;
1414 break;
1415 }
1416 default:
1417 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1418 << descriptor << "'";
1419 return false;
1420 }
1421 cur_arg++;
1422 }
1423 if (cur_arg != expected_args) {
1424 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1425 << " arguments, found " << cur_arg;
1426 return false;
1427 }
1428 const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1429 // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1430 // format. Only major difference from the method argument format is that 'V' is supported.
1431 bool result;
1432 if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1433 result = descriptor[1] == '\0';
1434 } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
1435 size_t i = 0;
1436 do {
1437 i++;
1438 } while (descriptor[i] == '['); // process leading [
1439 if (descriptor[i] == 'L') { // object array
1440 do {
1441 i++; // find closing ;
1442 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1443 result = descriptor[i] == ';';
1444 } else { // primitive array
1445 result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1446 }
1447 } else if (descriptor[0] == 'L') {
1448 // could be more thorough here, but shouldn't be required
1449 size_t i = 0;
1450 do {
1451 i++;
1452 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1453 result = descriptor[i] == ';';
1454 } else {
1455 result = false;
1456 }
1457 if (!result) {
1458 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1459 << descriptor << "'";
1460 }
1461 return result;
1462 }
1463
CodeFlowVerifyMethod()1464 bool MethodVerifier::CodeFlowVerifyMethod() {
1465 const uint16_t* insns = code_item_->insns_;
1466 const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1467
1468 /* Begin by marking the first instruction as "changed". */
1469 insn_flags_[0].SetChanged();
1470 uint32_t start_guess = 0;
1471
1472 /* Continue until no instructions are marked "changed". */
1473 while (true) {
1474 if (allow_thread_suspension_) {
1475 self_->AllowThreadSuspension();
1476 }
1477 // Find the first marked one. Use "start_guess" as a way to find one quickly.
1478 uint32_t insn_idx = start_guess;
1479 for (; insn_idx < insns_size; insn_idx++) {
1480 if (insn_flags_[insn_idx].IsChanged())
1481 break;
1482 }
1483 if (insn_idx == insns_size) {
1484 if (start_guess != 0) {
1485 /* try again, starting from the top */
1486 start_guess = 0;
1487 continue;
1488 } else {
1489 /* all flags are clear */
1490 break;
1491 }
1492 }
1493 // We carry the working set of registers from instruction to instruction. If this address can
1494 // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1495 // "changed" flags, we need to load the set of registers from the table.
1496 // Because we always prefer to continue on to the next instruction, we should never have a
1497 // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1498 // target.
1499 work_insn_idx_ = insn_idx;
1500 if (insn_flags_[insn_idx].IsBranchTarget()) {
1501 work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1502 } else if (kIsDebugBuild) {
1503 /*
1504 * Sanity check: retrieve the stored register line (assuming
1505 * a full table) and make sure it actually matches.
1506 */
1507 RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1508 if (register_line != nullptr) {
1509 if (work_line_->CompareLine(register_line) != 0) {
1510 Dump(std::cout);
1511 std::cout << info_messages_.str();
1512 LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1513 << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1514 << " work_line=" << work_line_->Dump(this) << "\n"
1515 << " expected=" << register_line->Dump(this);
1516 }
1517 }
1518 }
1519 if (!CodeFlowVerifyInstruction(&start_guess)) {
1520 std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1521 prepend += " failed to verify: ";
1522 PrependToLastFailMessage(prepend);
1523 return false;
1524 }
1525 /* Clear "changed" and mark as visited. */
1526 insn_flags_[insn_idx].SetVisited();
1527 insn_flags_[insn_idx].ClearChanged();
1528 }
1529
1530 if (gDebugVerify) {
1531 /*
1532 * Scan for dead code. There's nothing "evil" about dead code
1533 * (besides the wasted space), but it indicates a flaw somewhere
1534 * down the line, possibly in the verifier.
1535 *
1536 * If we've substituted "always throw" instructions into the stream,
1537 * we are almost certainly going to have some dead code.
1538 */
1539 int dead_start = -1;
1540 uint32_t insn_idx = 0;
1541 for (; insn_idx < insns_size;
1542 insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1543 /*
1544 * Switch-statement data doesn't get "visited" by scanner. It
1545 * may or may not be preceded by a padding NOP (for alignment).
1546 */
1547 if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1548 insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1549 insns[insn_idx] == Instruction::kArrayDataSignature ||
1550 (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1551 (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1552 insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1553 insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1554 insn_flags_[insn_idx].SetVisited();
1555 }
1556
1557 if (!insn_flags_[insn_idx].IsVisited()) {
1558 if (dead_start < 0)
1559 dead_start = insn_idx;
1560 } else if (dead_start >= 0) {
1561 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1562 << "-" << reinterpret_cast<void*>(insn_idx - 1);
1563 dead_start = -1;
1564 }
1565 }
1566 if (dead_start >= 0) {
1567 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1568 << "-" << reinterpret_cast<void*>(insn_idx - 1);
1569 }
1570 // To dump the state of the verify after a method, do something like:
1571 // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1572 // "boolean java.lang.String.equals(java.lang.Object)") {
1573 // LOG(INFO) << info_messages_.str();
1574 // }
1575 }
1576 return true;
1577 }
1578
1579 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1580 // is no such field.
GetFirstFinalInstanceFieldIndex(const DexFile & dex_file,uint16_t type_idx)1581 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1582 const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1583 DCHECK(class_def != nullptr);
1584 const uint8_t* class_data = dex_file.GetClassData(*class_def);
1585 DCHECK(class_data != nullptr);
1586 ClassDataItemIterator it(dex_file, class_data);
1587 // Skip static fields.
1588 while (it.HasNextStaticField()) {
1589 it.Next();
1590 }
1591 while (it.HasNextInstanceField()) {
1592 if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1593 return it.GetMemberIndex();
1594 }
1595 it.Next();
1596 }
1597 return DexFile::kDexNoIndex;
1598 }
1599
CodeFlowVerifyInstruction(uint32_t * start_guess)1600 bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1601 // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1602 // We want the state _before_ the instruction, for the case where the dex pc we're
1603 // interested in is itself a monitor-enter instruction (which is a likely place
1604 // for a thread to be suspended).
1605 if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1606 monitor_enter_dex_pcs_->clear(); // The new work line is more accurate than the previous one.
1607 for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1608 monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1609 }
1610 }
1611
1612 /*
1613 * Once we finish decoding the instruction, we need to figure out where
1614 * we can go from here. There are three possible ways to transfer
1615 * control to another statement:
1616 *
1617 * (1) Continue to the next instruction. Applies to all but
1618 * unconditional branches, method returns, and exception throws.
1619 * (2) Branch to one or more possible locations. Applies to branches
1620 * and switch statements.
1621 * (3) Exception handlers. Applies to any instruction that can
1622 * throw an exception that is handled by an encompassing "try"
1623 * block.
1624 *
1625 * We can also return, in which case there is no successor instruction
1626 * from this point.
1627 *
1628 * The behavior can be determined from the opcode flags.
1629 */
1630 const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1631 const Instruction* inst = Instruction::At(insns);
1632 int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1633
1634 int32_t branch_target = 0;
1635 bool just_set_result = false;
1636 if (gDebugVerify) {
1637 // Generate processing back trace to debug verifier
1638 LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1639 << work_line_->Dump(this) << "\n";
1640 }
1641
1642 /*
1643 * Make a copy of the previous register state. If the instruction
1644 * can throw an exception, we will copy/merge this into the "catch"
1645 * address rather than work_line, because we don't want the result
1646 * from the "successful" code path (e.g. a check-cast that "improves"
1647 * a type) to be visible to the exception handler.
1648 */
1649 if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1650 saved_line_->CopyFromLine(work_line_.get());
1651 } else if (kIsDebugBuild) {
1652 saved_line_->FillWithGarbage();
1653 }
1654 DCHECK(!have_pending_runtime_throw_failure_); // Per-instruction flag, should not be set here.
1655
1656
1657 // We need to ensure the work line is consistent while performing validation. When we spot a
1658 // peephole pattern we compute a new line for either the fallthrough instruction or the
1659 // branch target.
1660 std::unique_ptr<RegisterLine> branch_line;
1661 std::unique_ptr<RegisterLine> fallthrough_line;
1662
1663 switch (inst->Opcode()) {
1664 case Instruction::NOP:
1665 /*
1666 * A "pure" NOP has no effect on anything. Data tables start with
1667 * a signature that looks like a NOP; if we see one of these in
1668 * the course of executing code then we have a problem.
1669 */
1670 if (inst->VRegA_10x() != 0) {
1671 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1672 }
1673 break;
1674
1675 case Instruction::MOVE:
1676 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1677 break;
1678 case Instruction::MOVE_FROM16:
1679 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1680 break;
1681 case Instruction::MOVE_16:
1682 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1683 break;
1684 case Instruction::MOVE_WIDE:
1685 work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1686 break;
1687 case Instruction::MOVE_WIDE_FROM16:
1688 work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1689 break;
1690 case Instruction::MOVE_WIDE_16:
1691 work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1692 break;
1693 case Instruction::MOVE_OBJECT:
1694 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1695 break;
1696 case Instruction::MOVE_OBJECT_FROM16:
1697 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1698 break;
1699 case Instruction::MOVE_OBJECT_16:
1700 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1701 break;
1702
1703 /*
1704 * The move-result instructions copy data out of a "pseudo-register"
1705 * with the results from the last method invocation. In practice we
1706 * might want to hold the result in an actual CPU register, so the
1707 * Dalvik spec requires that these only appear immediately after an
1708 * invoke or filled-new-array.
1709 *
1710 * These calls invalidate the "result" register. (This is now
1711 * redundant with the reset done below, but it can make the debug info
1712 * easier to read in some cases.)
1713 */
1714 case Instruction::MOVE_RESULT:
1715 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1716 break;
1717 case Instruction::MOVE_RESULT_WIDE:
1718 work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1719 break;
1720 case Instruction::MOVE_RESULT_OBJECT:
1721 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1722 break;
1723
1724 case Instruction::MOVE_EXCEPTION: {
1725 // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1726 // where one entrypoint to the catch block is not actually an exception path.
1727 if (work_insn_idx_ == 0) {
1728 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1729 break;
1730 }
1731 /*
1732 * This statement can only appear as the first instruction in an exception handler. We verify
1733 * that as part of extracting the exception type from the catch block list.
1734 */
1735 const RegType& res_type = GetCaughtExceptionType();
1736 work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1737 break;
1738 }
1739 case Instruction::RETURN_VOID:
1740 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1741 if (!GetMethodReturnType().IsConflict()) {
1742 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1743 }
1744 }
1745 break;
1746 case Instruction::RETURN:
1747 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1748 /* check the method signature */
1749 const RegType& return_type = GetMethodReturnType();
1750 if (!return_type.IsCategory1Types()) {
1751 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1752 << return_type;
1753 } else {
1754 // Compilers may generate synthetic functions that write byte values into boolean fields.
1755 // Also, it may use integer values for boolean, byte, short, and character return types.
1756 const uint32_t vregA = inst->VRegA_11x();
1757 const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1758 bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1759 ((return_type.IsBoolean() || return_type.IsByte() ||
1760 return_type.IsShort() || return_type.IsChar()) &&
1761 src_type.IsInteger()));
1762 /* check the register contents */
1763 bool success =
1764 work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1765 if (!success) {
1766 AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1767 }
1768 }
1769 }
1770 break;
1771 case Instruction::RETURN_WIDE:
1772 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1773 /* check the method signature */
1774 const RegType& return_type = GetMethodReturnType();
1775 if (!return_type.IsCategory2Types()) {
1776 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1777 } else {
1778 /* check the register contents */
1779 const uint32_t vregA = inst->VRegA_11x();
1780 bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1781 if (!success) {
1782 AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1783 }
1784 }
1785 }
1786 break;
1787 case Instruction::RETURN_OBJECT:
1788 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1789 const RegType& return_type = GetMethodReturnType();
1790 if (!return_type.IsReferenceTypes()) {
1791 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1792 } else {
1793 /* return_type is the *expected* return type, not register value */
1794 DCHECK(!return_type.IsZero());
1795 DCHECK(!return_type.IsUninitializedReference());
1796 const uint32_t vregA = inst->VRegA_11x();
1797 const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1798 // Disallow returning uninitialized values and verify that the reference in vAA is an
1799 // instance of the "return_type"
1800 if (reg_type.IsUninitializedTypes()) {
1801 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1802 << reg_type << "'";
1803 } else if (!return_type.IsAssignableFrom(reg_type)) {
1804 if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1805 Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1806 << "' or '" << reg_type << "'";
1807 } else {
1808 bool soft_error = false;
1809 // Check whether arrays are involved. They will show a valid class status, even
1810 // if their components are erroneous.
1811 if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1812 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1813 if (soft_error) {
1814 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1815 << reg_type << " vs " << return_type;
1816 }
1817 }
1818
1819 if (!soft_error) {
1820 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1821 << "', but expected from declaration '" << return_type << "'";
1822 }
1823 }
1824 }
1825 }
1826 }
1827 break;
1828
1829 /* could be boolean, int, float, or a null reference */
1830 case Instruction::CONST_4: {
1831 int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1832 work_line_->SetRegisterType(this, inst->VRegA_11n(),
1833 DetermineCat1Constant(val, need_precise_constants_));
1834 break;
1835 }
1836 case Instruction::CONST_16: {
1837 int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1838 work_line_->SetRegisterType(this, inst->VRegA_21s(),
1839 DetermineCat1Constant(val, need_precise_constants_));
1840 break;
1841 }
1842 case Instruction::CONST: {
1843 int32_t val = inst->VRegB_31i();
1844 work_line_->SetRegisterType(this, inst->VRegA_31i(),
1845 DetermineCat1Constant(val, need_precise_constants_));
1846 break;
1847 }
1848 case Instruction::CONST_HIGH16: {
1849 int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1850 work_line_->SetRegisterType(this, inst->VRegA_21h(),
1851 DetermineCat1Constant(val, need_precise_constants_));
1852 break;
1853 }
1854 /* could be long or double; resolved upon use */
1855 case Instruction::CONST_WIDE_16: {
1856 int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1857 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1858 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1859 work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1860 break;
1861 }
1862 case Instruction::CONST_WIDE_32: {
1863 int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1864 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1865 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1866 work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1867 break;
1868 }
1869 case Instruction::CONST_WIDE: {
1870 int64_t val = inst->VRegB_51l();
1871 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1872 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1873 work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1874 break;
1875 }
1876 case Instruction::CONST_WIDE_HIGH16: {
1877 int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1878 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1879 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1880 work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1881 break;
1882 }
1883 case Instruction::CONST_STRING:
1884 work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1885 break;
1886 case Instruction::CONST_STRING_JUMBO:
1887 work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1888 break;
1889 case Instruction::CONST_CLASS: {
1890 // Get type from instruction if unresolved then we need an access check
1891 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1892 const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1893 // Register holds class, ie its type is class, on error it will hold Conflict.
1894 work_line_->SetRegisterType(this, inst->VRegA_21c(),
1895 res_type.IsConflict() ? res_type
1896 : reg_types_.JavaLangClass());
1897 break;
1898 }
1899 case Instruction::MONITOR_ENTER:
1900 work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1901 break;
1902 case Instruction::MONITOR_EXIT:
1903 /*
1904 * monitor-exit instructions are odd. They can throw exceptions,
1905 * but when they do they act as if they succeeded and the PC is
1906 * pointing to the following instruction. (This behavior goes back
1907 * to the need to handle asynchronous exceptions, a now-deprecated
1908 * feature that Dalvik doesn't support.)
1909 *
1910 * In practice we don't need to worry about this. The only
1911 * exceptions that can be thrown from monitor-exit are for a
1912 * null reference and -exit without a matching -enter. If the
1913 * structured locking checks are working, the former would have
1914 * failed on the -enter instruction, and the latter is impossible.
1915 *
1916 * This is fortunate, because issue 3221411 prevents us from
1917 * chasing the "can throw" path when monitor verification is
1918 * enabled. If we can fully verify the locking we can ignore
1919 * some catch blocks (which will show up as "dead" code when
1920 * we skip them here); if we can't, then the code path could be
1921 * "live" so we still need to check it.
1922 */
1923 opcode_flags &= ~Instruction::kThrow;
1924 work_line_->PopMonitor(this, inst->VRegA_11x());
1925 break;
1926
1927 case Instruction::CHECK_CAST:
1928 case Instruction::INSTANCE_OF: {
1929 /*
1930 * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1931 * could be a "upcast" -- not expected, so we don't try to address it.)
1932 *
1933 * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1934 * dec_insn.vA when branching to a handler.
1935 */
1936 const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1937 const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1938 const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1939 if (res_type.IsConflict()) {
1940 // If this is a primitive type, fail HARD.
1941 mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1942 if (klass != nullptr && klass->IsPrimitive()) {
1943 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1944 << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1945 << GetDeclaringClass();
1946 break;
1947 }
1948
1949 DCHECK_NE(failures_.size(), 0U);
1950 if (!is_checkcast) {
1951 work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1952 }
1953 break; // bad class
1954 }
1955 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1956 uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1957 const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1958 if (!res_type.IsNonZeroReferenceTypes()) {
1959 if (is_checkcast) {
1960 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1961 } else {
1962 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1963 }
1964 } else if (!orig_type.IsReferenceTypes()) {
1965 if (is_checkcast) {
1966 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1967 } else {
1968 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1969 }
1970 } else {
1971 if (is_checkcast) {
1972 work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1973 } else {
1974 work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1975 }
1976 }
1977 break;
1978 }
1979 case Instruction::ARRAY_LENGTH: {
1980 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1981 if (res_type.IsReferenceTypes()) {
1982 if (!res_type.IsArrayTypes() && !res_type.IsZero()) { // ie not an array or null
1983 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1984 } else {
1985 work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1986 }
1987 } else {
1988 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1989 }
1990 break;
1991 }
1992 case Instruction::NEW_INSTANCE: {
1993 const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1994 if (res_type.IsConflict()) {
1995 DCHECK_NE(failures_.size(), 0U);
1996 break; // bad class
1997 }
1998 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1999 // can't create an instance of an interface or abstract class */
2000 if (!res_type.IsInstantiableTypes()) {
2001 Fail(VERIFY_ERROR_INSTANTIATION)
2002 << "new-instance on primitive, interface or abstract class" << res_type;
2003 // Soft failure so carry on to set register type.
2004 }
2005 const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2006 // Any registers holding previous allocations from this address that have not yet been
2007 // initialized must be marked invalid.
2008 work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2009 // add the new uninitialized reference to the register state
2010 work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
2011 break;
2012 }
2013 case Instruction::NEW_ARRAY:
2014 VerifyNewArray(inst, false, false);
2015 break;
2016 case Instruction::FILLED_NEW_ARRAY:
2017 VerifyNewArray(inst, true, false);
2018 just_set_result = true; // Filled new array sets result register
2019 break;
2020 case Instruction::FILLED_NEW_ARRAY_RANGE:
2021 VerifyNewArray(inst, true, true);
2022 just_set_result = true; // Filled new array range sets result register
2023 break;
2024 case Instruction::CMPL_FLOAT:
2025 case Instruction::CMPG_FLOAT:
2026 if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2027 break;
2028 }
2029 if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2030 break;
2031 }
2032 work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2033 break;
2034 case Instruction::CMPL_DOUBLE:
2035 case Instruction::CMPG_DOUBLE:
2036 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2037 reg_types_.DoubleHi())) {
2038 break;
2039 }
2040 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2041 reg_types_.DoubleHi())) {
2042 break;
2043 }
2044 work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2045 break;
2046 case Instruction::CMP_LONG:
2047 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2048 reg_types_.LongHi())) {
2049 break;
2050 }
2051 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2052 reg_types_.LongHi())) {
2053 break;
2054 }
2055 work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2056 break;
2057 case Instruction::THROW: {
2058 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2059 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2060 Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2061 << "thrown class " << res_type << " not instanceof Throwable";
2062 }
2063 break;
2064 }
2065 case Instruction::GOTO:
2066 case Instruction::GOTO_16:
2067 case Instruction::GOTO_32:
2068 /* no effect on or use of registers */
2069 break;
2070
2071 case Instruction::PACKED_SWITCH:
2072 case Instruction::SPARSE_SWITCH:
2073 /* verify that vAA is an integer, or can be converted to one */
2074 work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2075 break;
2076
2077 case Instruction::FILL_ARRAY_DATA: {
2078 /* Similar to the verification done for APUT */
2079 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2080 /* array_type can be null if the reg type is Zero */
2081 if (!array_type.IsZero()) {
2082 if (!array_type.IsArrayTypes()) {
2083 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2084 << array_type;
2085 } else {
2086 const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2087 DCHECK(!component_type.IsConflict());
2088 if (component_type.IsNonZeroReferenceTypes()) {
2089 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2090 << component_type;
2091 } else {
2092 // Now verify if the element width in the table matches the element width declared in
2093 // the array
2094 const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2095 if (array_data[0] != Instruction::kArrayDataSignature) {
2096 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2097 } else {
2098 size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2099 // Since we don't compress the data in Dex, expect to see equal width of data stored
2100 // in the table and expected from the array class.
2101 if (array_data[1] != elem_width) {
2102 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2103 << " vs " << elem_width << ")";
2104 }
2105 }
2106 }
2107 }
2108 }
2109 break;
2110 }
2111 case Instruction::IF_EQ:
2112 case Instruction::IF_NE: {
2113 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2114 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2115 bool mismatch = false;
2116 if (reg_type1.IsZero()) { // zero then integral or reference expected
2117 mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2118 } else if (reg_type1.IsReferenceTypes()) { // both references?
2119 mismatch = !reg_type2.IsReferenceTypes();
2120 } else { // both integral?
2121 mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2122 }
2123 if (mismatch) {
2124 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2125 << reg_type2 << ") must both be references or integral";
2126 }
2127 break;
2128 }
2129 case Instruction::IF_LT:
2130 case Instruction::IF_GE:
2131 case Instruction::IF_GT:
2132 case Instruction::IF_LE: {
2133 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2134 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2135 if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2136 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2137 << reg_type2 << ") must be integral";
2138 }
2139 break;
2140 }
2141 case Instruction::IF_EQZ:
2142 case Instruction::IF_NEZ: {
2143 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2144 if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2145 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2146 << " unexpected as arg to if-eqz/if-nez";
2147 }
2148
2149 // Find previous instruction - its existence is a precondition to peephole optimization.
2150 uint32_t instance_of_idx = 0;
2151 if (0 != work_insn_idx_) {
2152 instance_of_idx = work_insn_idx_ - 1;
2153 while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2154 instance_of_idx--;
2155 }
2156 if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2157 "Unable to get previous instruction of if-eqz/if-nez for work index ",
2158 work_insn_idx_)) {
2159 break;
2160 }
2161 } else {
2162 break;
2163 }
2164
2165 const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2166
2167 /* Check for peep-hole pattern of:
2168 * ...;
2169 * instance-of vX, vY, T;
2170 * ifXXX vX, label ;
2171 * ...;
2172 * label:
2173 * ...;
2174 * and sharpen the type of vY to be type T.
2175 * Note, this pattern can't be if:
2176 * - if there are other branches to this branch,
2177 * - when vX == vY.
2178 */
2179 if (!CurrentInsnFlags()->IsBranchTarget() &&
2180 (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2181 (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2182 (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2183 // Check the type of the instance-of is different than that of registers type, as if they
2184 // are the same there is no work to be done here. Check that the conversion is not to or
2185 // from an unresolved type as type information is imprecise. If the instance-of is to an
2186 // interface then ignore the type information as interfaces can only be treated as Objects
2187 // and we don't want to disallow field and other operations on the object. If the value
2188 // being instance-of checked against is known null (zero) then allow the optimization as
2189 // we didn't have type information. If the merge of the instance-of type with the original
2190 // type is assignable to the original then allow optimization. This check is performed to
2191 // ensure that subsequent merges don't lose type information - such as becoming an
2192 // interface from a class that would lose information relevant to field checks.
2193 const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2194 const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2195
2196 if (!orig_type.Equals(cast_type) &&
2197 !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2198 cast_type.HasClass() && // Could be conflict type, make sure it has a class.
2199 !cast_type.GetClass()->IsInterface() &&
2200 (orig_type.IsZero() ||
2201 orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, ®_types_)))) {
2202 RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2203 if (inst->Opcode() == Instruction::IF_EQZ) {
2204 fallthrough_line.reset(update_line);
2205 } else {
2206 branch_line.reset(update_line);
2207 }
2208 update_line->CopyFromLine(work_line_.get());
2209 update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2210 if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2211 // See if instance-of was preceded by a move-object operation, common due to the small
2212 // register encoding space of instance-of, and propagate type information to the source
2213 // of the move-object.
2214 uint32_t move_idx = instance_of_idx - 1;
2215 while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2216 move_idx--;
2217 }
2218 if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2219 "Unable to get previous instruction of if-eqz/if-nez for work index ",
2220 work_insn_idx_)) {
2221 break;
2222 }
2223 const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2224 switch (move_inst->Opcode()) {
2225 case Instruction::MOVE_OBJECT:
2226 if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2227 update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2228 }
2229 break;
2230 case Instruction::MOVE_OBJECT_FROM16:
2231 if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2232 update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2233 }
2234 break;
2235 case Instruction::MOVE_OBJECT_16:
2236 if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2237 update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2238 }
2239 break;
2240 default:
2241 break;
2242 }
2243 }
2244 }
2245 }
2246
2247 break;
2248 }
2249 case Instruction::IF_LTZ:
2250 case Instruction::IF_GEZ:
2251 case Instruction::IF_GTZ:
2252 case Instruction::IF_LEZ: {
2253 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2254 if (!reg_type.IsIntegralTypes()) {
2255 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2256 << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2257 }
2258 break;
2259 }
2260 case Instruction::AGET_BOOLEAN:
2261 VerifyAGet(inst, reg_types_.Boolean(), true);
2262 break;
2263 case Instruction::AGET_BYTE:
2264 VerifyAGet(inst, reg_types_.Byte(), true);
2265 break;
2266 case Instruction::AGET_CHAR:
2267 VerifyAGet(inst, reg_types_.Char(), true);
2268 break;
2269 case Instruction::AGET_SHORT:
2270 VerifyAGet(inst, reg_types_.Short(), true);
2271 break;
2272 case Instruction::AGET:
2273 VerifyAGet(inst, reg_types_.Integer(), true);
2274 break;
2275 case Instruction::AGET_WIDE:
2276 VerifyAGet(inst, reg_types_.LongLo(), true);
2277 break;
2278 case Instruction::AGET_OBJECT:
2279 VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2280 break;
2281
2282 case Instruction::APUT_BOOLEAN:
2283 VerifyAPut(inst, reg_types_.Boolean(), true);
2284 break;
2285 case Instruction::APUT_BYTE:
2286 VerifyAPut(inst, reg_types_.Byte(), true);
2287 break;
2288 case Instruction::APUT_CHAR:
2289 VerifyAPut(inst, reg_types_.Char(), true);
2290 break;
2291 case Instruction::APUT_SHORT:
2292 VerifyAPut(inst, reg_types_.Short(), true);
2293 break;
2294 case Instruction::APUT:
2295 VerifyAPut(inst, reg_types_.Integer(), true);
2296 break;
2297 case Instruction::APUT_WIDE:
2298 VerifyAPut(inst, reg_types_.LongLo(), true);
2299 break;
2300 case Instruction::APUT_OBJECT:
2301 VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2302 break;
2303
2304 case Instruction::IGET_BOOLEAN:
2305 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2306 break;
2307 case Instruction::IGET_BYTE:
2308 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2309 break;
2310 case Instruction::IGET_CHAR:
2311 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2312 break;
2313 case Instruction::IGET_SHORT:
2314 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2315 break;
2316 case Instruction::IGET:
2317 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2318 break;
2319 case Instruction::IGET_WIDE:
2320 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2321 break;
2322 case Instruction::IGET_OBJECT:
2323 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2324 false);
2325 break;
2326
2327 case Instruction::IPUT_BOOLEAN:
2328 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2329 break;
2330 case Instruction::IPUT_BYTE:
2331 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2332 break;
2333 case Instruction::IPUT_CHAR:
2334 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2335 break;
2336 case Instruction::IPUT_SHORT:
2337 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2338 break;
2339 case Instruction::IPUT:
2340 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2341 break;
2342 case Instruction::IPUT_WIDE:
2343 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2344 break;
2345 case Instruction::IPUT_OBJECT:
2346 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2347 false);
2348 break;
2349
2350 case Instruction::SGET_BOOLEAN:
2351 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2352 break;
2353 case Instruction::SGET_BYTE:
2354 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2355 break;
2356 case Instruction::SGET_CHAR:
2357 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2358 break;
2359 case Instruction::SGET_SHORT:
2360 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2361 break;
2362 case Instruction::SGET:
2363 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2364 break;
2365 case Instruction::SGET_WIDE:
2366 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2367 break;
2368 case Instruction::SGET_OBJECT:
2369 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2370 true);
2371 break;
2372
2373 case Instruction::SPUT_BOOLEAN:
2374 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2375 break;
2376 case Instruction::SPUT_BYTE:
2377 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2378 break;
2379 case Instruction::SPUT_CHAR:
2380 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2381 break;
2382 case Instruction::SPUT_SHORT:
2383 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2384 break;
2385 case Instruction::SPUT:
2386 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2387 break;
2388 case Instruction::SPUT_WIDE:
2389 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2390 break;
2391 case Instruction::SPUT_OBJECT:
2392 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2393 true);
2394 break;
2395
2396 case Instruction::INVOKE_VIRTUAL:
2397 case Instruction::INVOKE_VIRTUAL_RANGE:
2398 case Instruction::INVOKE_SUPER:
2399 case Instruction::INVOKE_SUPER_RANGE: {
2400 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2401 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2402 bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2403 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2404 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2405 const RegType* return_type = nullptr;
2406 if (called_method != nullptr) {
2407 StackHandleScope<1> hs(self_);
2408 mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2409 if (return_type_class != nullptr) {
2410 return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2411 return_type_class,
2412 return_type_class->CannotBeAssignedFromOtherTypes());
2413 } else {
2414 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2415 self_->ClearException();
2416 }
2417 }
2418 if (return_type == nullptr) {
2419 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2420 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2421 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2422 const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2423 return_type = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2424 }
2425 if (!return_type->IsLowHalf()) {
2426 work_line_->SetResultRegisterType(this, *return_type);
2427 } else {
2428 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2429 }
2430 just_set_result = true;
2431 break;
2432 }
2433 case Instruction::INVOKE_DIRECT:
2434 case Instruction::INVOKE_DIRECT_RANGE: {
2435 bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2436 ArtMethod* called_method = VerifyInvocationArgs(inst,
2437 METHOD_DIRECT,
2438 is_range,
2439 false);
2440 const char* return_type_descriptor;
2441 bool is_constructor;
2442 const RegType* return_type = nullptr;
2443 if (called_method == nullptr) {
2444 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2445 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2446 is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2447 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2448 return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2449 } else {
2450 is_constructor = called_method->IsConstructor();
2451 return_type_descriptor = called_method->GetReturnTypeDescriptor();
2452 StackHandleScope<1> hs(self_);
2453 mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2454 if (return_type_class != nullptr) {
2455 return_type = &FromClass(return_type_descriptor,
2456 return_type_class,
2457 return_type_class->CannotBeAssignedFromOtherTypes());
2458 } else {
2459 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2460 self_->ClearException();
2461 }
2462 }
2463 if (is_constructor) {
2464 /*
2465 * Some additional checks when calling a constructor. We know from the invocation arg check
2466 * that the "this" argument is an instance of called_method->klass. Now we further restrict
2467 * that to require that called_method->klass is the same as this->klass or this->super,
2468 * allowing the latter only if the "this" argument is the same as the "this" argument to
2469 * this method (which implies that we're in a constructor ourselves).
2470 */
2471 const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2472 if (this_type.IsConflict()) // failure.
2473 break;
2474
2475 /* no null refs allowed (?) */
2476 if (this_type.IsZero()) {
2477 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2478 break;
2479 }
2480
2481 /* must be in same class or in superclass */
2482 // const RegType& this_super_klass = this_type.GetSuperClass(®_types_);
2483 // TODO: re-enable constructor type verification
2484 // if (this_super_klass.IsConflict()) {
2485 // Unknown super class, fail so we re-check at runtime.
2486 // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2487 // break;
2488 // }
2489
2490 /* arg must be an uninitialized reference */
2491 if (!this_type.IsUninitializedTypes()) {
2492 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2493 << this_type;
2494 break;
2495 }
2496
2497 /*
2498 * Replace the uninitialized reference with an initialized one. We need to do this for all
2499 * registers that have the same object instance in them, not just the "this" register.
2500 */
2501 const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2502 work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2503 }
2504 if (return_type == nullptr) {
2505 return_type = ®_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2506 false);
2507 }
2508 if (!return_type->IsLowHalf()) {
2509 work_line_->SetResultRegisterType(this, *return_type);
2510 } else {
2511 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2512 }
2513 just_set_result = true;
2514 break;
2515 }
2516 case Instruction::INVOKE_STATIC:
2517 case Instruction::INVOKE_STATIC_RANGE: {
2518 bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2519 ArtMethod* called_method = VerifyInvocationArgs(inst,
2520 METHOD_STATIC,
2521 is_range,
2522 false);
2523 const char* descriptor;
2524 if (called_method == nullptr) {
2525 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2526 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2527 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2528 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2529 } else {
2530 descriptor = called_method->GetReturnTypeDescriptor();
2531 }
2532 const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2533 if (!return_type.IsLowHalf()) {
2534 work_line_->SetResultRegisterType(this, return_type);
2535 } else {
2536 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
2537 }
2538 just_set_result = true;
2539 }
2540 break;
2541 case Instruction::INVOKE_INTERFACE:
2542 case Instruction::INVOKE_INTERFACE_RANGE: {
2543 bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2544 ArtMethod* abs_method = VerifyInvocationArgs(inst,
2545 METHOD_INTERFACE,
2546 is_range,
2547 false);
2548 if (abs_method != nullptr) {
2549 mirror::Class* called_interface = abs_method->GetDeclaringClass();
2550 if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2551 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2552 << PrettyMethod(abs_method) << "'";
2553 break;
2554 }
2555 }
2556 /* Get the type of the "this" arg, which should either be a sub-interface of called
2557 * interface or Object (see comments in RegType::JoinClass).
2558 */
2559 const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2560 if (this_type.IsZero()) {
2561 /* null pointer always passes (and always fails at runtime) */
2562 } else {
2563 if (this_type.IsUninitializedTypes()) {
2564 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2565 << this_type;
2566 break;
2567 }
2568 // In the past we have tried to assert that "called_interface" is assignable
2569 // from "this_type.GetClass()", however, as we do an imprecise Join
2570 // (RegType::JoinClass) we don't have full information on what interfaces are
2571 // implemented by "this_type". For example, two classes may implement the same
2572 // interfaces and have a common parent that doesn't implement the interface. The
2573 // join will set "this_type" to the parent class and a test that this implements
2574 // the interface will incorrectly fail.
2575 }
2576 /*
2577 * We don't have an object instance, so we can't find the concrete method. However, all of
2578 * the type information is in the abstract method, so we're good.
2579 */
2580 const char* descriptor;
2581 if (abs_method == nullptr) {
2582 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2583 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2584 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2585 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2586 } else {
2587 descriptor = abs_method->GetReturnTypeDescriptor();
2588 }
2589 const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2590 if (!return_type.IsLowHalf()) {
2591 work_line_->SetResultRegisterType(this, return_type);
2592 } else {
2593 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
2594 }
2595 just_set_result = true;
2596 break;
2597 }
2598 case Instruction::NEG_INT:
2599 case Instruction::NOT_INT:
2600 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2601 break;
2602 case Instruction::NEG_LONG:
2603 case Instruction::NOT_LONG:
2604 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2605 reg_types_.LongLo(), reg_types_.LongHi());
2606 break;
2607 case Instruction::NEG_FLOAT:
2608 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2609 break;
2610 case Instruction::NEG_DOUBLE:
2611 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2612 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2613 break;
2614 case Instruction::INT_TO_LONG:
2615 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2616 reg_types_.Integer());
2617 break;
2618 case Instruction::INT_TO_FLOAT:
2619 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2620 break;
2621 case Instruction::INT_TO_DOUBLE:
2622 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2623 reg_types_.Integer());
2624 break;
2625 case Instruction::LONG_TO_INT:
2626 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2627 reg_types_.LongLo(), reg_types_.LongHi());
2628 break;
2629 case Instruction::LONG_TO_FLOAT:
2630 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2631 reg_types_.LongLo(), reg_types_.LongHi());
2632 break;
2633 case Instruction::LONG_TO_DOUBLE:
2634 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2635 reg_types_.LongLo(), reg_types_.LongHi());
2636 break;
2637 case Instruction::FLOAT_TO_INT:
2638 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2639 break;
2640 case Instruction::FLOAT_TO_LONG:
2641 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2642 reg_types_.Float());
2643 break;
2644 case Instruction::FLOAT_TO_DOUBLE:
2645 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2646 reg_types_.Float());
2647 break;
2648 case Instruction::DOUBLE_TO_INT:
2649 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2650 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2651 break;
2652 case Instruction::DOUBLE_TO_LONG:
2653 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2654 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2655 break;
2656 case Instruction::DOUBLE_TO_FLOAT:
2657 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2658 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2659 break;
2660 case Instruction::INT_TO_BYTE:
2661 work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2662 break;
2663 case Instruction::INT_TO_CHAR:
2664 work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2665 break;
2666 case Instruction::INT_TO_SHORT:
2667 work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2668 break;
2669
2670 case Instruction::ADD_INT:
2671 case Instruction::SUB_INT:
2672 case Instruction::MUL_INT:
2673 case Instruction::REM_INT:
2674 case Instruction::DIV_INT:
2675 case Instruction::SHL_INT:
2676 case Instruction::SHR_INT:
2677 case Instruction::USHR_INT:
2678 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2679 reg_types_.Integer(), false);
2680 break;
2681 case Instruction::AND_INT:
2682 case Instruction::OR_INT:
2683 case Instruction::XOR_INT:
2684 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2685 reg_types_.Integer(), true);
2686 break;
2687 case Instruction::ADD_LONG:
2688 case Instruction::SUB_LONG:
2689 case Instruction::MUL_LONG:
2690 case Instruction::DIV_LONG:
2691 case Instruction::REM_LONG:
2692 case Instruction::AND_LONG:
2693 case Instruction::OR_LONG:
2694 case Instruction::XOR_LONG:
2695 work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2696 reg_types_.LongLo(), reg_types_.LongHi(),
2697 reg_types_.LongLo(), reg_types_.LongHi());
2698 break;
2699 case Instruction::SHL_LONG:
2700 case Instruction::SHR_LONG:
2701 case Instruction::USHR_LONG:
2702 /* shift distance is Int, making these different from other binary operations */
2703 work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2704 reg_types_.Integer());
2705 break;
2706 case Instruction::ADD_FLOAT:
2707 case Instruction::SUB_FLOAT:
2708 case Instruction::MUL_FLOAT:
2709 case Instruction::DIV_FLOAT:
2710 case Instruction::REM_FLOAT:
2711 work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2712 reg_types_.Float(), false);
2713 break;
2714 case Instruction::ADD_DOUBLE:
2715 case Instruction::SUB_DOUBLE:
2716 case Instruction::MUL_DOUBLE:
2717 case Instruction::DIV_DOUBLE:
2718 case Instruction::REM_DOUBLE:
2719 work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2720 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2721 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2722 break;
2723 case Instruction::ADD_INT_2ADDR:
2724 case Instruction::SUB_INT_2ADDR:
2725 case Instruction::MUL_INT_2ADDR:
2726 case Instruction::REM_INT_2ADDR:
2727 case Instruction::SHL_INT_2ADDR:
2728 case Instruction::SHR_INT_2ADDR:
2729 case Instruction::USHR_INT_2ADDR:
2730 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2731 reg_types_.Integer(), false);
2732 break;
2733 case Instruction::AND_INT_2ADDR:
2734 case Instruction::OR_INT_2ADDR:
2735 case Instruction::XOR_INT_2ADDR:
2736 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2737 reg_types_.Integer(), true);
2738 break;
2739 case Instruction::DIV_INT_2ADDR:
2740 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2741 reg_types_.Integer(), false);
2742 break;
2743 case Instruction::ADD_LONG_2ADDR:
2744 case Instruction::SUB_LONG_2ADDR:
2745 case Instruction::MUL_LONG_2ADDR:
2746 case Instruction::DIV_LONG_2ADDR:
2747 case Instruction::REM_LONG_2ADDR:
2748 case Instruction::AND_LONG_2ADDR:
2749 case Instruction::OR_LONG_2ADDR:
2750 case Instruction::XOR_LONG_2ADDR:
2751 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2752 reg_types_.LongLo(), reg_types_.LongHi(),
2753 reg_types_.LongLo(), reg_types_.LongHi());
2754 break;
2755 case Instruction::SHL_LONG_2ADDR:
2756 case Instruction::SHR_LONG_2ADDR:
2757 case Instruction::USHR_LONG_2ADDR:
2758 work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2759 reg_types_.Integer());
2760 break;
2761 case Instruction::ADD_FLOAT_2ADDR:
2762 case Instruction::SUB_FLOAT_2ADDR:
2763 case Instruction::MUL_FLOAT_2ADDR:
2764 case Instruction::DIV_FLOAT_2ADDR:
2765 case Instruction::REM_FLOAT_2ADDR:
2766 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2767 reg_types_.Float(), false);
2768 break;
2769 case Instruction::ADD_DOUBLE_2ADDR:
2770 case Instruction::SUB_DOUBLE_2ADDR:
2771 case Instruction::MUL_DOUBLE_2ADDR:
2772 case Instruction::DIV_DOUBLE_2ADDR:
2773 case Instruction::REM_DOUBLE_2ADDR:
2774 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2775 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2776 reg_types_.DoubleLo(), reg_types_.DoubleHi());
2777 break;
2778 case Instruction::ADD_INT_LIT16:
2779 case Instruction::RSUB_INT_LIT16:
2780 case Instruction::MUL_INT_LIT16:
2781 case Instruction::DIV_INT_LIT16:
2782 case Instruction::REM_INT_LIT16:
2783 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2784 true);
2785 break;
2786 case Instruction::AND_INT_LIT16:
2787 case Instruction::OR_INT_LIT16:
2788 case Instruction::XOR_INT_LIT16:
2789 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2790 true);
2791 break;
2792 case Instruction::ADD_INT_LIT8:
2793 case Instruction::RSUB_INT_LIT8:
2794 case Instruction::MUL_INT_LIT8:
2795 case Instruction::DIV_INT_LIT8:
2796 case Instruction::REM_INT_LIT8:
2797 case Instruction::SHL_INT_LIT8:
2798 case Instruction::SHR_INT_LIT8:
2799 case Instruction::USHR_INT_LIT8:
2800 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2801 false);
2802 break;
2803 case Instruction::AND_INT_LIT8:
2804 case Instruction::OR_INT_LIT8:
2805 case Instruction::XOR_INT_LIT8:
2806 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2807 false);
2808 break;
2809
2810 // Special instructions.
2811 case Instruction::RETURN_VOID_NO_BARRIER:
2812 if (IsConstructor() && !IsStatic()) {
2813 auto& declaring_class = GetDeclaringClass();
2814 if (declaring_class.IsUnresolvedReference()) {
2815 // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
2816 // manually over the underlying dex file.
2817 uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
2818 dex_file_->GetMethodId(dex_method_idx_).class_idx_);
2819 if (first_index != DexFile::kDexNoIndex) {
2820 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
2821 << first_index;
2822 }
2823 break;
2824 }
2825 auto* klass = declaring_class.GetClass();
2826 for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2827 if (klass->GetInstanceField(i)->IsFinal()) {
2828 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2829 << PrettyField(klass->GetInstanceField(i));
2830 break;
2831 }
2832 }
2833 }
2834 break;
2835 // Note: the following instructions encode offsets derived from class linking.
2836 // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2837 // meaning if the class linking and resolution were successful.
2838 case Instruction::IGET_QUICK:
2839 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2840 break;
2841 case Instruction::IGET_WIDE_QUICK:
2842 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2843 break;
2844 case Instruction::IGET_OBJECT_QUICK:
2845 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2846 break;
2847 case Instruction::IGET_BOOLEAN_QUICK:
2848 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2849 break;
2850 case Instruction::IGET_BYTE_QUICK:
2851 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2852 break;
2853 case Instruction::IGET_CHAR_QUICK:
2854 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2855 break;
2856 case Instruction::IGET_SHORT_QUICK:
2857 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2858 break;
2859 case Instruction::IPUT_QUICK:
2860 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2861 break;
2862 case Instruction::IPUT_BOOLEAN_QUICK:
2863 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2864 break;
2865 case Instruction::IPUT_BYTE_QUICK:
2866 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2867 break;
2868 case Instruction::IPUT_CHAR_QUICK:
2869 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2870 break;
2871 case Instruction::IPUT_SHORT_QUICK:
2872 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2873 break;
2874 case Instruction::IPUT_WIDE_QUICK:
2875 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2876 break;
2877 case Instruction::IPUT_OBJECT_QUICK:
2878 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2879 break;
2880 case Instruction::INVOKE_VIRTUAL_QUICK:
2881 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2882 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2883 ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2884 if (called_method != nullptr) {
2885 const char* descriptor = called_method->GetReturnTypeDescriptor();
2886 const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2887 if (!return_type.IsLowHalf()) {
2888 work_line_->SetResultRegisterType(this, return_type);
2889 } else {
2890 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
2891 }
2892 just_set_result = true;
2893 }
2894 break;
2895 }
2896
2897 /* These should never appear during verification. */
2898 case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2899 case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2900 case Instruction::UNUSED_79:
2901 case Instruction::UNUSED_7A:
2902 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2903 break;
2904
2905 /*
2906 * DO NOT add a "default" clause here. Without it the compiler will
2907 * complain if an instruction is missing (which is desirable).
2908 */
2909 } // end - switch (dec_insn.opcode)
2910
2911 if (have_pending_hard_failure_) {
2912 if (Runtime::Current()->IsAotCompiler()) {
2913 /* When AOT compiling, check that the last failure is a hard failure */
2914 if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2915 LOG(ERROR) << "Pending failures:";
2916 for (auto& error : failures_) {
2917 LOG(ERROR) << error;
2918 }
2919 for (auto& error_msg : failure_messages_) {
2920 LOG(ERROR) << error_msg->str();
2921 }
2922 LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2923 }
2924 }
2925 /* immediate failure, reject class */
2926 info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2927 return false;
2928 } else if (have_pending_runtime_throw_failure_) {
2929 /* checking interpreter will throw, mark following code as unreachable */
2930 opcode_flags = Instruction::kThrow;
2931 have_any_pending_runtime_throw_failure_ = true;
2932 // Reset the pending_runtime_throw flag. The flag is a global to decouple Fail and is per
2933 // instruction.
2934 have_pending_runtime_throw_failure_ = false;
2935 }
2936 /*
2937 * If we didn't just set the result register, clear it out. This ensures that you can only use
2938 * "move-result" immediately after the result is set. (We could check this statically, but it's
2939 * not expensive and it makes our debugging output cleaner.)
2940 */
2941 if (!just_set_result) {
2942 work_line_->SetResultTypeToUnknown(this);
2943 }
2944
2945
2946
2947 /*
2948 * Handle "branch". Tag the branch target.
2949 *
2950 * NOTE: instructions like Instruction::EQZ provide information about the
2951 * state of the register when the branch is taken or not taken. For example,
2952 * somebody could get a reference field, check it for zero, and if the
2953 * branch is taken immediately store that register in a boolean field
2954 * since the value is known to be zero. We do not currently account for
2955 * that, and will reject the code.
2956 *
2957 * TODO: avoid re-fetching the branch target
2958 */
2959 if ((opcode_flags & Instruction::kBranch) != 0) {
2960 bool isConditional, selfOkay;
2961 if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2962 /* should never happen after static verification */
2963 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2964 return false;
2965 }
2966 DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2967 if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2968 return false;
2969 }
2970 /* update branch target, set "changed" if appropriate */
2971 if (nullptr != branch_line.get()) {
2972 if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2973 return false;
2974 }
2975 } else {
2976 if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2977 return false;
2978 }
2979 }
2980 }
2981
2982 /*
2983 * Handle "switch". Tag all possible branch targets.
2984 *
2985 * We've already verified that the table is structurally sound, so we
2986 * just need to walk through and tag the targets.
2987 */
2988 if ((opcode_flags & Instruction::kSwitch) != 0) {
2989 int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2990 const uint16_t* switch_insns = insns + offset_to_switch;
2991 int switch_count = switch_insns[1];
2992 int offset_to_targets, targ;
2993
2994 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2995 /* 0 = sig, 1 = count, 2/3 = first key */
2996 offset_to_targets = 4;
2997 } else {
2998 /* 0 = sig, 1 = count, 2..count * 2 = keys */
2999 DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3000 offset_to_targets = 2 + 2 * switch_count;
3001 }
3002
3003 /* verify each switch target */
3004 for (targ = 0; targ < switch_count; targ++) {
3005 int offset;
3006 uint32_t abs_offset;
3007
3008 /* offsets are 32-bit, and only partly endian-swapped */
3009 offset = switch_insns[offset_to_targets + targ * 2] |
3010 (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3011 abs_offset = work_insn_idx_ + offset;
3012 DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3013 if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3014 return false;
3015 }
3016 if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3017 return false;
3018 }
3019 }
3020 }
3021
3022 /*
3023 * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3024 * "try" block when they throw, control transfers out of the method.)
3025 */
3026 if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
3027 bool has_catch_all_handler = false;
3028 CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3029
3030 // Need the linker to try and resolve the handled class to check if it's Throwable.
3031 ClassLinker* linker = Runtime::Current()->GetClassLinker();
3032
3033 for (; iterator.HasNext(); iterator.Next()) {
3034 uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3035 if (handler_type_idx == DexFile::kDexNoIndex16) {
3036 has_catch_all_handler = true;
3037 } else {
3038 // It is also a catch-all if it is java.lang.Throwable.
3039 mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3040 class_loader_);
3041 if (klass != nullptr) {
3042 if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3043 has_catch_all_handler = true;
3044 }
3045 } else {
3046 // Clear exception.
3047 DCHECK(self_->IsExceptionPending());
3048 self_->ClearException();
3049 }
3050 }
3051 /*
3052 * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3053 * "work_regs", because at runtime the exception will be thrown before the instruction
3054 * modifies any registers.
3055 */
3056 if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3057 return false;
3058 }
3059 }
3060
3061 /*
3062 * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3063 * instruction. This does apply to monitor-exit because of async exception handling.
3064 */
3065 if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3066 /*
3067 * The state in work_line reflects the post-execution state. If the current instruction is a
3068 * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3069 * it will do so before grabbing the lock).
3070 */
3071 if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3072 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3073 << "expected to be within a catch-all for an instruction where a monitor is held";
3074 return false;
3075 }
3076 }
3077 }
3078
3079 /* Handle "continue". Tag the next consecutive instruction.
3080 * Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3081 * because it changes work_line_ when performing peephole optimization
3082 * and this change should not be used in those cases.
3083 */
3084 if ((opcode_flags & Instruction::kContinue) != 0) {
3085 DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3086 uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3087 if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3088 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3089 return false;
3090 }
3091 // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3092 // next instruction isn't one.
3093 if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3094 return false;
3095 }
3096 if (nullptr != fallthrough_line.get()) {
3097 // Make workline consistent with fallthrough computed from peephole optimization.
3098 work_line_->CopyFromLine(fallthrough_line.get());
3099 }
3100 if (insn_flags_[next_insn_idx].IsReturn()) {
3101 // For returns we only care about the operand to the return, all other registers are dead.
3102 const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3103 Instruction::Code opcode = ret_inst->Opcode();
3104 if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3105 SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3106 } else {
3107 if (opcode == Instruction::RETURN_WIDE) {
3108 work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3109 } else {
3110 work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3111 }
3112 }
3113 }
3114 RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3115 if (next_line != nullptr) {
3116 // Merge registers into what we have for the next instruction, and set the "changed" flag if
3117 // needed. If the merge changes the state of the registers then the work line will be
3118 // updated.
3119 if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3120 return false;
3121 }
3122 } else {
3123 /*
3124 * We're not recording register data for the next instruction, so we don't know what the
3125 * prior state was. We have to assume that something has changed and re-evaluate it.
3126 */
3127 insn_flags_[next_insn_idx].SetChanged();
3128 }
3129 }
3130
3131 /* If we're returning from the method, make sure monitor stack is empty. */
3132 if ((opcode_flags & Instruction::kReturn) != 0) {
3133 if (!work_line_->VerifyMonitorStackEmpty(this)) {
3134 return false;
3135 }
3136 }
3137
3138 /*
3139 * Update start_guess. Advance to the next instruction of that's
3140 * possible, otherwise use the branch target if one was found. If
3141 * neither of those exists we're in a return or throw; leave start_guess
3142 * alone and let the caller sort it out.
3143 */
3144 if ((opcode_flags & Instruction::kContinue) != 0) {
3145 DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3146 *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3147 } else if ((opcode_flags & Instruction::kBranch) != 0) {
3148 /* we're still okay if branch_target is zero */
3149 *start_guess = work_insn_idx_ + branch_target;
3150 }
3151
3152 DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3153 DCHECK(insn_flags_[*start_guess].IsOpcode());
3154
3155 return true;
3156 } // NOLINT(readability/fn_size)
3157
ResolveClassAndCheckAccess(uint32_t class_idx)3158 const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3159 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3160 const RegType& referrer = GetDeclaringClass();
3161 mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3162 const RegType& result = klass != nullptr ?
3163 FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3164 reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3165 if (result.IsConflict()) {
3166 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3167 << "' in " << referrer;
3168 return result;
3169 }
3170 if (klass == nullptr && !result.IsUnresolvedTypes()) {
3171 dex_cache_->SetResolvedType(class_idx, result.GetClass());
3172 }
3173 // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3174 // check at runtime if access is allowed and so pass here. If result is
3175 // primitive, skip the access check.
3176 if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3177 !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3178 Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3179 << referrer << "' -> '" << result << "'";
3180 }
3181 return result;
3182 }
3183
GetCaughtExceptionType()3184 const RegType& MethodVerifier::GetCaughtExceptionType() {
3185 const RegType* common_super = nullptr;
3186 if (code_item_->tries_size_ != 0) {
3187 const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3188 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3189 for (uint32_t i = 0; i < handlers_size; i++) {
3190 CatchHandlerIterator iterator(handlers_ptr);
3191 for (; iterator.HasNext(); iterator.Next()) {
3192 if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3193 if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3194 common_super = ®_types_.JavaLangThrowable(false);
3195 } else {
3196 const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3197 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3198 if (exception.IsUnresolvedTypes()) {
3199 // We don't know enough about the type. Fail here and let runtime handle it.
3200 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3201 return exception;
3202 } else {
3203 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3204 return reg_types_.Conflict();
3205 }
3206 } else if (common_super == nullptr) {
3207 common_super = &exception;
3208 } else if (common_super->Equals(exception)) {
3209 // odd case, but nothing to do
3210 } else {
3211 common_super = &common_super->Merge(exception, ®_types_);
3212 if (FailOrAbort(this,
3213 reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3214 "java.lang.Throwable is not assignable-from common_super at ",
3215 work_insn_idx_)) {
3216 break;
3217 }
3218 }
3219 }
3220 }
3221 }
3222 handlers_ptr = iterator.EndDataPointer();
3223 }
3224 }
3225 if (common_super == nullptr) {
3226 /* no catch blocks, or no catches with classes we can find */
3227 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3228 return reg_types_.Conflict();
3229 }
3230 return *common_super;
3231 }
3232
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3233 ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3234 uint32_t dex_method_idx, MethodType method_type) {
3235 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3236 const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3237 if (klass_type.IsConflict()) {
3238 std::string append(" in attempt to access method ");
3239 append += dex_file_->GetMethodName(method_id);
3240 AppendToLastFailMessage(append);
3241 return nullptr;
3242 }
3243 if (klass_type.IsUnresolvedTypes()) {
3244 return nullptr; // Can't resolve Class so no more to do here
3245 }
3246 mirror::Class* klass = klass_type.GetClass();
3247 const RegType& referrer = GetDeclaringClass();
3248 auto* cl = Runtime::Current()->GetClassLinker();
3249 auto pointer_size = cl->GetImagePointerSize();
3250 ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3251 if (res_method == nullptr) {
3252 const char* name = dex_file_->GetMethodName(method_id);
3253 const Signature signature = dex_file_->GetMethodSignature(method_id);
3254
3255 if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3256 res_method = klass->FindDirectMethod(name, signature, pointer_size);
3257 } else if (method_type == METHOD_INTERFACE) {
3258 res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3259 } else {
3260 res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3261 }
3262 if (res_method != nullptr) {
3263 dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3264 } else {
3265 // If a virtual or interface method wasn't found with the expected type, look in
3266 // the direct methods. This can happen when the wrong invoke type is used or when
3267 // a class has changed, and will be flagged as an error in later checks.
3268 if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3269 res_method = klass->FindDirectMethod(name, signature, pointer_size);
3270 }
3271 if (res_method == nullptr) {
3272 Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3273 << PrettyDescriptor(klass) << "." << name
3274 << " " << signature;
3275 return nullptr;
3276 }
3277 }
3278 }
3279 // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3280 // enforce them here.
3281 if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3282 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3283 << PrettyMethod(res_method);
3284 return nullptr;
3285 }
3286 // Disallow any calls to class initializers.
3287 if (res_method->IsClassInitializer()) {
3288 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3289 << PrettyMethod(res_method);
3290 return nullptr;
3291 }
3292 // Check if access is allowed.
3293 if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3294 Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3295 << " from " << referrer << ")";
3296 return res_method;
3297 }
3298 // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3299 if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3300 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3301 << PrettyMethod(res_method);
3302 return nullptr;
3303 }
3304 // Check that interface methods match interface classes.
3305 if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3306 Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3307 << " is in an interface class " << PrettyClass(klass);
3308 return nullptr;
3309 } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3310 Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3311 << " is in a non-interface class " << PrettyClass(klass);
3312 return nullptr;
3313 }
3314 // See if the method type implied by the invoke instruction matches the access flags for the
3315 // target method.
3316 if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3317 (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3318 ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3319 ) {
3320 Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3321 " type of " << PrettyMethod(res_method);
3322 return nullptr;
3323 }
3324 return res_method;
3325 }
3326
3327 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)3328 ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3329 T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3330 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3331 // match the call to the signature. Also, we might be calling through an abstract method
3332 // definition (which doesn't have register count values).
3333 const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3334 /* caught by static verifier */
3335 DCHECK(is_range || expected_args <= 5);
3336 if (expected_args > code_item_->outs_size_) {
3337 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3338 << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3339 return nullptr;
3340 }
3341
3342 uint32_t arg[5];
3343 if (!is_range) {
3344 inst->GetVarArgs(arg);
3345 }
3346 uint32_t sig_registers = 0;
3347
3348 /*
3349 * Check the "this" argument, which must be an instance of the class that declared the method.
3350 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3351 * rigorous check here (which is okay since we have to do it at runtime).
3352 */
3353 if (method_type != METHOD_STATIC) {
3354 const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3355 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
3356 CHECK(have_pending_hard_failure_);
3357 return nullptr;
3358 }
3359 if (actual_arg_type.IsUninitializedReference()) {
3360 if (res_method) {
3361 if (!res_method->IsConstructor()) {
3362 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3363 return nullptr;
3364 }
3365 } else {
3366 // Check whether the name of the called method is "<init>"
3367 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3368 if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3369 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3370 return nullptr;
3371 }
3372 }
3373 }
3374 if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3375 const RegType* res_method_class;
3376 if (res_method != nullptr) {
3377 mirror::Class* klass = res_method->GetDeclaringClass();
3378 std::string temp;
3379 res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3380 klass->CannotBeAssignedFromOtherTypes());
3381 } else {
3382 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3383 const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3384 res_method_class = ®_types_.FromDescriptor(GetClassLoader(),
3385 dex_file_->StringByTypeIdx(class_idx),
3386 false);
3387 }
3388 if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3389 Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3390 VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3391 << "' not instance of '" << *res_method_class << "'";
3392 // Continue on soft failures. We need to find possible hard failures to avoid problems in
3393 // the compiler.
3394 if (have_pending_hard_failure_) {
3395 return nullptr;
3396 }
3397 }
3398 }
3399 sig_registers = 1;
3400 }
3401
3402 for ( ; it->HasNext(); it->Next()) {
3403 if (sig_registers >= expected_args) {
3404 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3405 " arguments, found " << sig_registers << " or more.";
3406 return nullptr;
3407 }
3408
3409 const char* param_descriptor = it->GetDescriptor();
3410
3411 if (param_descriptor == nullptr) {
3412 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3413 "component";
3414 return nullptr;
3415 }
3416
3417 const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3418 uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3419 arg[sig_registers];
3420 if (reg_type.IsIntegralTypes()) {
3421 const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3422 if (!src_type.IsIntegralTypes()) {
3423 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3424 << " but expected " << reg_type;
3425 return nullptr;
3426 }
3427 } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3428 // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3429 // compiler.
3430 if (have_pending_hard_failure_) {
3431 return nullptr;
3432 }
3433 }
3434 sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1;
3435 }
3436 if (expected_args != sig_registers) {
3437 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3438 " arguments, found " << sig_registers;
3439 return nullptr;
3440 }
3441 return res_method;
3442 }
3443
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)3444 void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3445 MethodType method_type,
3446 bool is_range) {
3447 // As the method may not have been resolved, make this static check against what we expect.
3448 // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3449 // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3450 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3451 DexFileParameterIterator it(*dex_file_,
3452 dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3453 VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3454 nullptr);
3455 }
3456
3457 class MethodParamListDescriptorIterator {
3458 public:
MethodParamListDescriptorIterator(ArtMethod * res_method)3459 explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3460 res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3461 params_size_(params_ == nullptr ? 0 : params_->Size()) {
3462 }
3463
HasNext()3464 bool HasNext() {
3465 return pos_ < params_size_;
3466 }
3467
Next()3468 void Next() {
3469 ++pos_;
3470 }
3471
GetDescriptor()3472 const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3473 return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3474 }
3475
3476 private:
3477 ArtMethod* res_method_;
3478 size_t pos_;
3479 const DexFile::TypeList* params_;
3480 const size_t params_size_;
3481 };
3482
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range,bool is_super)3483 ArtMethod* MethodVerifier::VerifyInvocationArgs(
3484 const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3485 // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3486 // we're making.
3487 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3488
3489 ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3490 if (res_method == nullptr) { // error or class is unresolved
3491 // Check what we can statically.
3492 if (!have_pending_hard_failure_) {
3493 VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3494 }
3495 return nullptr;
3496 }
3497
3498 // If we're using invoke-super(method), make sure that the executing method's class' superclass
3499 // has a vtable entry for the target method.
3500 if (is_super) {
3501 DCHECK(method_type == METHOD_VIRTUAL);
3502 const RegType& super = GetDeclaringClass().GetSuperClass(®_types_);
3503 if (super.IsUnresolvedTypes()) {
3504 Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3505 << PrettyMethod(dex_method_idx_, *dex_file_)
3506 << " to super " << PrettyMethod(res_method);
3507 return nullptr;
3508 }
3509 mirror::Class* super_klass = super.GetClass();
3510 if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3511 Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3512 << PrettyMethod(dex_method_idx_, *dex_file_)
3513 << " to super " << super
3514 << "." << res_method->GetName()
3515 << res_method->GetSignature();
3516 return nullptr;
3517 }
3518 }
3519
3520 // Process the target method's signature. This signature may or may not
3521 MethodParamListDescriptorIterator it(res_method);
3522 return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3523 is_range, res_method);
3524 }
3525
GetQuickInvokedMethod(const Instruction * inst,RegisterLine * reg_line,bool is_range,bool allow_failure)3526 ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3527 bool is_range, bool allow_failure) {
3528 if (is_range) {
3529 DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3530 } else {
3531 DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3532 }
3533 const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3534 if (!actual_arg_type.HasClass()) {
3535 VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3536 return nullptr;
3537 }
3538 mirror::Class* klass = actual_arg_type.GetClass();
3539 mirror::Class* dispatch_class;
3540 if (klass->IsInterface()) {
3541 // Derive Object.class from Class.class.getSuperclass().
3542 mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3543 if (FailOrAbort(this, object_klass->IsObjectClass(),
3544 "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3545 return nullptr;
3546 }
3547 dispatch_class = object_klass;
3548 } else {
3549 dispatch_class = klass;
3550 }
3551 if (!dispatch_class->HasVTable()) {
3552 FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3553 work_insn_idx_);
3554 return nullptr;
3555 }
3556 uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3557 auto* cl = Runtime::Current()->GetClassLinker();
3558 auto pointer_size = cl->GetImagePointerSize();
3559 if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3560 FailOrAbort(this, allow_failure,
3561 "Receiver class has not enough vtable slots for quickened invoke at ",
3562 work_insn_idx_);
3563 return nullptr;
3564 }
3565 ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3566 if (self_->IsExceptionPending()) {
3567 FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3568 work_insn_idx_);
3569 return nullptr;
3570 }
3571 return res_method;
3572 }
3573
VerifyInvokeVirtualQuickArgs(const Instruction * inst,bool is_range)3574 ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3575 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3576 << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3577
3578 ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3579 if (res_method == nullptr) {
3580 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3581 return nullptr;
3582 }
3583 if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3584 work_insn_idx_)) {
3585 return nullptr;
3586 }
3587 if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3588 work_insn_idx_)) {
3589 return nullptr;
3590 }
3591
3592 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3593 // match the call to the signature. Also, we might be calling through an abstract method
3594 // definition (which doesn't have register count values).
3595 const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3596 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
3597 return nullptr;
3598 }
3599 const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3600 /* caught by static verifier */
3601 DCHECK(is_range || expected_args <= 5);
3602 if (expected_args > code_item_->outs_size_) {
3603 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3604 << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3605 return nullptr;
3606 }
3607
3608 /*
3609 * Check the "this" argument, which must be an instance of the class that declared the method.
3610 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3611 * rigorous check here (which is okay since we have to do it at runtime).
3612 */
3613 if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3614 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3615 return nullptr;
3616 }
3617 if (!actual_arg_type.IsZero()) {
3618 mirror::Class* klass = res_method->GetDeclaringClass();
3619 std::string temp;
3620 const RegType& res_method_class =
3621 FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
3622 if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3623 Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3624 VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3625 << "' not instance of '" << res_method_class << "'";
3626 return nullptr;
3627 }
3628 }
3629 /*
3630 * Process the target method's signature. This signature may or may not
3631 * have been verified, so we can't assume it's properly formed.
3632 */
3633 const DexFile::TypeList* params = res_method->GetParameterTypeList();
3634 size_t params_size = params == nullptr ? 0 : params->Size();
3635 uint32_t arg[5];
3636 if (!is_range) {
3637 inst->GetVarArgs(arg);
3638 }
3639 size_t actual_args = 1;
3640 for (size_t param_index = 0; param_index < params_size; param_index++) {
3641 if (actual_args >= expected_args) {
3642 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3643 << "'. Expected " << expected_args
3644 << " arguments, processing argument " << actual_args
3645 << " (where longs/doubles count twice).";
3646 return nullptr;
3647 }
3648 const char* descriptor =
3649 res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3650 if (descriptor == nullptr) {
3651 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3652 << " missing signature component";
3653 return nullptr;
3654 }
3655 const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3656 uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3657 if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3658 return res_method;
3659 }
3660 actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3661 }
3662 if (actual_args != expected_args) {
3663 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3664 << " expected " << expected_args << " arguments, found " << actual_args;
3665 return nullptr;
3666 } else {
3667 return res_method;
3668 }
3669 }
3670
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)3671 void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3672 uint32_t type_idx;
3673 if (!is_filled) {
3674 DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3675 type_idx = inst->VRegC_22c();
3676 } else if (!is_range) {
3677 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3678 type_idx = inst->VRegB_35c();
3679 } else {
3680 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3681 type_idx = inst->VRegB_3rc();
3682 }
3683 const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3684 if (res_type.IsConflict()) { // bad class
3685 DCHECK_NE(failures_.size(), 0U);
3686 } else {
3687 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3688 if (!res_type.IsArrayTypes()) {
3689 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3690 } else if (!is_filled) {
3691 /* make sure "size" register is valid type */
3692 work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3693 /* set register type to array class */
3694 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3695 work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3696 } else {
3697 // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3698 // the list and fail. It's legal, if silly, for arg_count to be zero.
3699 const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3700 uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3701 uint32_t arg[5];
3702 if (!is_range) {
3703 inst->GetVarArgs(arg);
3704 }
3705 for (size_t ui = 0; ui < arg_count; ui++) {
3706 uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3707 if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3708 work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3709 return;
3710 }
3711 }
3712 // filled-array result goes into "result" register
3713 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3714 work_line_->SetResultRegisterType(this, precise_type);
3715 }
3716 }
3717 }
3718
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)3719 void MethodVerifier::VerifyAGet(const Instruction* inst,
3720 const RegType& insn_type, bool is_primitive) {
3721 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3722 if (!index_type.IsArrayIndexTypes()) {
3723 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3724 } else {
3725 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3726 if (array_type.IsZero()) {
3727 have_pending_runtime_throw_failure_ = true;
3728 // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3729 // instruction type. TODO: have a proper notion of bottom here.
3730 if (!is_primitive || insn_type.IsCategory1Types()) {
3731 // Reference or category 1
3732 work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3733 } else {
3734 // Category 2
3735 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3736 reg_types_.FromCat2ConstLo(0, false),
3737 reg_types_.FromCat2ConstHi(0, false));
3738 }
3739 } else if (!array_type.IsArrayTypes()) {
3740 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3741 } else {
3742 /* verify the class */
3743 const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3744 if (!component_type.IsReferenceTypes() && !is_primitive) {
3745 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3746 << " source for aget-object";
3747 } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3748 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3749 << " source for category 1 aget";
3750 } else if (is_primitive && !insn_type.Equals(component_type) &&
3751 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3752 (insn_type.IsLong() && component_type.IsDouble()))) {
3753 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3754 << " incompatible with aget of type " << insn_type;
3755 } else {
3756 // Use knowledge of the field type which is stronger than the type inferred from the
3757 // instruction, which can't differentiate object types and ints from floats, longs from
3758 // doubles.
3759 if (!component_type.IsLowHalf()) {
3760 work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3761 } else {
3762 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3763 component_type.HighHalf(®_types_));
3764 }
3765 }
3766 }
3767 }
3768 }
3769
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)3770 void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3771 const uint32_t vregA) {
3772 // Primitive assignability rules are weaker than regular assignability rules.
3773 bool instruction_compatible;
3774 bool value_compatible;
3775 const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3776 if (target_type.IsIntegralTypes()) {
3777 instruction_compatible = target_type.Equals(insn_type);
3778 value_compatible = value_type.IsIntegralTypes();
3779 } else if (target_type.IsFloat()) {
3780 instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int
3781 value_compatible = value_type.IsFloatTypes();
3782 } else if (target_type.IsLong()) {
3783 instruction_compatible = insn_type.IsLong();
3784 // Additional register check: this is not checked statically (as part of VerifyInstructions),
3785 // as target_type depends on the resolved type of the field.
3786 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3787 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3788 value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3789 } else {
3790 value_compatible = false;
3791 }
3792 } else if (target_type.IsDouble()) {
3793 instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long
3794 // Additional register check: this is not checked statically (as part of VerifyInstructions),
3795 // as target_type depends on the resolved type of the field.
3796 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3797 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3798 value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3799 } else {
3800 value_compatible = false;
3801 }
3802 } else {
3803 instruction_compatible = false; // reference with primitive store
3804 value_compatible = false; // unused
3805 }
3806 if (!instruction_compatible) {
3807 // This is a global failure rather than a class change failure as the instructions and
3808 // the descriptors for the type should have been consistent within the same file at
3809 // compile time.
3810 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3811 << "' but expected type '" << target_type << "'";
3812 return;
3813 }
3814 if (!value_compatible) {
3815 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3816 << " of type " << value_type << " but expected " << target_type << " for put";
3817 return;
3818 }
3819 }
3820
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)3821 void MethodVerifier::VerifyAPut(const Instruction* inst,
3822 const RegType& insn_type, bool is_primitive) {
3823 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3824 if (!index_type.IsArrayIndexTypes()) {
3825 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3826 } else {
3827 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3828 if (array_type.IsZero()) {
3829 // Null array type; this code path will fail at runtime.
3830 // Still check that the given value matches the instruction's type.
3831 // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
3832 // and fits multiple register types.
3833 const RegType* modified_reg_type = &insn_type;
3834 if ((modified_reg_type == ®_types_.Integer()) ||
3835 (modified_reg_type == ®_types_.LongLo())) {
3836 // May be integer or float | long or double. Overwrite insn_type accordingly.
3837 const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
3838 if (modified_reg_type == ®_types_.Integer()) {
3839 if (&value_type == ®_types_.Float()) {
3840 modified_reg_type = &value_type;
3841 }
3842 } else {
3843 if (&value_type == ®_types_.DoubleLo()) {
3844 modified_reg_type = &value_type;
3845 }
3846 }
3847 }
3848 work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
3849 } else if (!array_type.IsArrayTypes()) {
3850 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3851 } else {
3852 const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3853 const uint32_t vregA = inst->VRegA_23x();
3854 if (is_primitive) {
3855 VerifyPrimitivePut(component_type, insn_type, vregA);
3856 } else {
3857 if (!component_type.IsReferenceTypes()) {
3858 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3859 << " source for aput-object";
3860 } else {
3861 // The instruction agrees with the type of array, confirm the value to be stored does too
3862 // Note: we use the instruction type (rather than the component type) for aput-object as
3863 // incompatible classes will be caught at runtime as an array store exception
3864 work_line_->VerifyRegisterType(this, vregA, insn_type);
3865 }
3866 }
3867 }
3868 }
3869 }
3870
GetStaticField(int field_idx)3871 ArtField* MethodVerifier::GetStaticField(int field_idx) {
3872 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3873 // Check access to class
3874 const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3875 if (klass_type.IsConflict()) { // bad class
3876 AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3877 field_idx, dex_file_->GetFieldName(field_id),
3878 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3879 return nullptr;
3880 }
3881 if (klass_type.IsUnresolvedTypes()) {
3882 return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime.
3883 }
3884 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3885 ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3886 class_loader_);
3887 if (field == nullptr) {
3888 VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3889 << dex_file_->GetFieldName(field_id) << ") in "
3890 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3891 DCHECK(self_->IsExceptionPending());
3892 self_->ClearException();
3893 return nullptr;
3894 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3895 field->GetAccessFlags())) {
3896 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3897 << " from " << GetDeclaringClass();
3898 return nullptr;
3899 } else if (!field->IsStatic()) {
3900 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3901 return nullptr;
3902 }
3903 return field;
3904 }
3905
GetInstanceField(const RegType & obj_type,int field_idx)3906 ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3907 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3908 // Check access to class
3909 const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3910 if (klass_type.IsConflict()) {
3911 AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3912 field_idx, dex_file_->GetFieldName(field_id),
3913 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3914 return nullptr;
3915 }
3916 if (klass_type.IsUnresolvedTypes()) {
3917 return nullptr; // Can't resolve Class so no more to do here
3918 }
3919 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3920 ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3921 class_loader_);
3922 if (field == nullptr) {
3923 VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3924 << dex_file_->GetFieldName(field_id) << ") in "
3925 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3926 DCHECK(self_->IsExceptionPending());
3927 self_->ClearException();
3928 return nullptr;
3929 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3930 field->GetAccessFlags())) {
3931 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3932 << " from " << GetDeclaringClass();
3933 return nullptr;
3934 } else if (field->IsStatic()) {
3935 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3936 << " to not be static";
3937 return nullptr;
3938 } else if (obj_type.IsZero()) {
3939 // Cannot infer and check type, however, access will cause null pointer exception
3940 return field;
3941 } else if (!obj_type.IsReferenceTypes()) {
3942 // Trying to read a field from something that isn't a reference
3943 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3944 << "non-reference type " << obj_type;
3945 return nullptr;
3946 } else {
3947 mirror::Class* klass = field->GetDeclaringClass();
3948 const RegType& field_klass =
3949 FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3950 klass, klass->CannotBeAssignedFromOtherTypes());
3951 if (obj_type.IsUninitializedTypes() &&
3952 (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3953 !field_klass.Equals(GetDeclaringClass()))) {
3954 // Field accesses through uninitialized references are only allowable for constructors where
3955 // the field is declared in this class
3956 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3957 << " of a not fully initialized object within the context"
3958 << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3959 return nullptr;
3960 } else if (!field_klass.IsAssignableFrom(obj_type)) {
3961 // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3962 // of C1. For resolution to occur the declared class of the field must be compatible with
3963 // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3964 Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3965 << " from object of type " << obj_type;
3966 return nullptr;
3967 } else {
3968 return field;
3969 }
3970 }
3971 }
3972
3973 template <MethodVerifier::FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)3974 void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3975 bool is_primitive, bool is_static) {
3976 uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3977 ArtField* field;
3978 if (is_static) {
3979 field = GetStaticField(field_idx);
3980 } else {
3981 const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3982 field = GetInstanceField(object_type, field_idx);
3983 if (UNLIKELY(have_pending_hard_failure_)) {
3984 return;
3985 }
3986 }
3987 const RegType* field_type = nullptr;
3988 if (field != nullptr) {
3989 if (kAccType == FieldAccessType::kAccPut) {
3990 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3991 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3992 << " from other class " << GetDeclaringClass();
3993 return;
3994 }
3995 }
3996
3997 mirror::Class* field_type_class =
3998 can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3999 if (field_type_class != nullptr) {
4000 field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4001 field_type_class->CannotBeAssignedFromOtherTypes());
4002 } else {
4003 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4004 self_->ClearException();
4005 }
4006 }
4007 if (field_type == nullptr) {
4008 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4009 const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4010 field_type = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4011 }
4012 DCHECK(field_type != nullptr);
4013 const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4014 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4015 "Unexpected third access type");
4016 if (kAccType == FieldAccessType::kAccPut) {
4017 // sput or iput.
4018 if (is_primitive) {
4019 VerifyPrimitivePut(*field_type, insn_type, vregA);
4020 } else {
4021 if (!insn_type.IsAssignableFrom(*field_type)) {
4022 // If the field type is not a reference, this is a global failure rather than
4023 // a class change failure as the instructions and the descriptors for the type
4024 // should have been consistent within the same file at compile time.
4025 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4026 : VERIFY_ERROR_BAD_CLASS_HARD;
4027 Fail(error) << "expected field " << PrettyField(field)
4028 << " to be compatible with type '" << insn_type
4029 << "' but found type '" << *field_type
4030 << "' in put-object";
4031 return;
4032 }
4033 work_line_->VerifyRegisterType(this, vregA, *field_type);
4034 }
4035 } else if (kAccType == FieldAccessType::kAccGet) {
4036 // sget or iget.
4037 if (is_primitive) {
4038 if (field_type->Equals(insn_type) ||
4039 (field_type->IsFloat() && insn_type.IsInteger()) ||
4040 (field_type->IsDouble() && insn_type.IsLong())) {
4041 // expected that read is of the correct primitive type or that int reads are reading
4042 // floats or long reads are reading doubles
4043 } else {
4044 // This is a global failure rather than a class change failure as the instructions and
4045 // the descriptors for the type should have been consistent within the same file at
4046 // compile time
4047 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4048 << " to be of type '" << insn_type
4049 << "' but found type '" << *field_type << "' in get";
4050 return;
4051 }
4052 } else {
4053 if (!insn_type.IsAssignableFrom(*field_type)) {
4054 // If the field type is not a reference, this is a global failure rather than
4055 // a class change failure as the instructions and the descriptors for the type
4056 // should have been consistent within the same file at compile time.
4057 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4058 : VERIFY_ERROR_BAD_CLASS_HARD;
4059 Fail(error) << "expected field " << PrettyField(field)
4060 << " to be compatible with type '" << insn_type
4061 << "' but found type '" << *field_type
4062 << "' in get-object";
4063 if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4064 work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4065 }
4066 return;
4067 }
4068 }
4069 if (!field_type->IsLowHalf()) {
4070 work_line_->SetRegisterType(this, vregA, *field_type);
4071 } else {
4072 work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_));
4073 }
4074 } else {
4075 LOG(FATAL) << "Unexpected case.";
4076 }
4077 }
4078
GetQuickFieldAccess(const Instruction * inst,RegisterLine * reg_line)4079 ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4080 RegisterLine* reg_line) {
4081 DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4082 const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4083 if (!object_type.HasClass()) {
4084 VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4085 return nullptr;
4086 }
4087 uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4088 ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4089 DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4090 if (f == nullptr) {
4091 VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4092 << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4093 }
4094 return f;
4095 }
4096
4097 template <MethodVerifier::FieldAccessType kAccType>
VerifyQuickFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive)4098 void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4099 bool is_primitive) {
4100 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4101
4102 ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4103 if (field == nullptr) {
4104 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4105 return;
4106 }
4107
4108 // For an IPUT_QUICK, we now test for final flag of the field.
4109 if (kAccType == FieldAccessType::kAccPut) {
4110 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4111 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4112 << " from other class " << GetDeclaringClass();
4113 return;
4114 }
4115 }
4116
4117 // Get the field type.
4118 const RegType* field_type;
4119 {
4120 mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4121 field->GetType<false>();
4122
4123 if (field_type_class != nullptr) {
4124 field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4125 field_type_class->CannotBeAssignedFromOtherTypes());
4126 } else {
4127 Thread* self = Thread::Current();
4128 DCHECK(!can_load_classes_ || self->IsExceptionPending());
4129 self->ClearException();
4130 field_type = ®_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4131 field->GetTypeDescriptor(), false);
4132 }
4133 if (field_type == nullptr) {
4134 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4135 return;
4136 }
4137 }
4138
4139 const uint32_t vregA = inst->VRegA_22c();
4140 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4141 "Unexpected third access type");
4142 if (kAccType == FieldAccessType::kAccPut) {
4143 if (is_primitive) {
4144 // Primitive field assignability rules are weaker than regular assignability rules
4145 bool instruction_compatible;
4146 bool value_compatible;
4147 const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4148 if (field_type->IsIntegralTypes()) {
4149 instruction_compatible = insn_type.IsIntegralTypes();
4150 value_compatible = value_type.IsIntegralTypes();
4151 } else if (field_type->IsFloat()) {
4152 instruction_compatible = insn_type.IsInteger(); // no [is]put-float, so expect [is]put-int
4153 value_compatible = value_type.IsFloatTypes();
4154 } else if (field_type->IsLong()) {
4155 instruction_compatible = insn_type.IsLong();
4156 value_compatible = value_type.IsLongTypes();
4157 } else if (field_type->IsDouble()) {
4158 instruction_compatible = insn_type.IsLong(); // no [is]put-double, so expect [is]put-long
4159 value_compatible = value_type.IsDoubleTypes();
4160 } else {
4161 instruction_compatible = false; // reference field with primitive store
4162 value_compatible = false; // unused
4163 }
4164 if (!instruction_compatible) {
4165 // This is a global failure rather than a class change failure as the instructions and
4166 // the descriptors for the type should have been consistent within the same file at
4167 // compile time
4168 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4169 << " to be of type '" << insn_type
4170 << "' but found type '" << *field_type
4171 << "' in put";
4172 return;
4173 }
4174 if (!value_compatible) {
4175 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4176 << " of type " << value_type
4177 << " but expected " << *field_type
4178 << " for store to " << PrettyField(field) << " in put";
4179 return;
4180 }
4181 } else {
4182 if (!insn_type.IsAssignableFrom(*field_type)) {
4183 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4184 << " to be compatible with type '" << insn_type
4185 << "' but found type '" << *field_type
4186 << "' in put-object";
4187 return;
4188 }
4189 work_line_->VerifyRegisterType(this, vregA, *field_type);
4190 }
4191 } else if (kAccType == FieldAccessType::kAccGet) {
4192 if (is_primitive) {
4193 if (field_type->Equals(insn_type) ||
4194 (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4195 (field_type->IsDouble() && insn_type.IsLongTypes())) {
4196 // expected that read is of the correct primitive type or that int reads are reading
4197 // floats or long reads are reading doubles
4198 } else {
4199 // This is a global failure rather than a class change failure as the instructions and
4200 // the descriptors for the type should have been consistent within the same file at
4201 // compile time
4202 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4203 << " to be of type '" << insn_type
4204 << "' but found type '" << *field_type << "' in Get";
4205 return;
4206 }
4207 } else {
4208 if (!insn_type.IsAssignableFrom(*field_type)) {
4209 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4210 << " to be compatible with type '" << insn_type
4211 << "' but found type '" << *field_type
4212 << "' in get-object";
4213 work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4214 return;
4215 }
4216 }
4217 if (!field_type->IsLowHalf()) {
4218 work_line_->SetRegisterType(this, vregA, *field_type);
4219 } else {
4220 work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_));
4221 }
4222 } else {
4223 LOG(FATAL) << "Unexpected case.";
4224 }
4225 }
4226
CheckNotMoveException(const uint16_t * insns,int insn_idx)4227 bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4228 if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4229 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4230 return false;
4231 }
4232 return true;
4233 }
4234
CheckNotMoveResult(const uint16_t * insns,int insn_idx)4235 bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4236 if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4237 ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4238 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4239 return false;
4240 }
4241 return true;
4242 }
4243
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)4244 bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4245 return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4246 }
4247
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4248 bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4249 bool update_merge_line) {
4250 bool changed = true;
4251 RegisterLine* target_line = reg_table_.GetLine(next_insn);
4252 if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4253 /*
4254 * We haven't processed this instruction before, and we haven't touched the registers here, so
4255 * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4256 * only way a register can transition out of "unknown", so this is not just an optimization.)
4257 */
4258 if (!insn_flags_[next_insn].IsReturn()) {
4259 target_line->CopyFromLine(merge_line);
4260 } else {
4261 // Verify that the monitor stack is empty on return.
4262 if (!merge_line->VerifyMonitorStackEmpty(this)) {
4263 return false;
4264 }
4265 // For returns we only care about the operand to the return, all other registers are dead.
4266 // Initialize them as conflicts so they don't add to GC and deoptimization information.
4267 const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4268 Instruction::Code opcode = ret_inst->Opcode();
4269 if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4270 // Explicitly copy the this-initialized flag from the merge-line, as we didn't copy its
4271 // state. Must be done before SafelyMarkAllRegistersAsConflicts as that will do the
4272 // super-constructor-call checking.
4273 target_line->CopyThisInitialized(*merge_line);
4274 SafelyMarkAllRegistersAsConflicts(this, target_line);
4275 } else {
4276 target_line->CopyFromLine(merge_line);
4277 if (opcode == Instruction::RETURN_WIDE) {
4278 target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4279 } else {
4280 target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4281 }
4282 }
4283 }
4284 } else {
4285 std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4286 RegisterLine::Create(target_line->NumRegs(), this) :
4287 nullptr);
4288 if (gDebugVerify) {
4289 copy->CopyFromLine(target_line);
4290 }
4291 changed = target_line->MergeRegisters(this, merge_line);
4292 if (have_pending_hard_failure_) {
4293 return false;
4294 }
4295 if (gDebugVerify && changed) {
4296 LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4297 << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4298 << copy->Dump(this) << " MERGE\n"
4299 << merge_line->Dump(this) << " ==\n"
4300 << target_line->Dump(this) << "\n";
4301 }
4302 if (update_merge_line && changed) {
4303 merge_line->CopyFromLine(target_line);
4304 }
4305 }
4306 if (changed) {
4307 insn_flags_[next_insn].SetChanged();
4308 }
4309 return true;
4310 }
4311
CurrentInsnFlags()4312 InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4313 return &insn_flags_[work_insn_idx_];
4314 }
4315
GetMethodReturnType()4316 const RegType& MethodVerifier::GetMethodReturnType() {
4317 if (return_type_ == nullptr) {
4318 if (mirror_method_ != nullptr) {
4319 mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4320 if (return_type_class != nullptr) {
4321 return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4322 return_type_class,
4323 return_type_class->CannotBeAssignedFromOtherTypes());
4324 } else {
4325 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4326 self_->ClearException();
4327 }
4328 }
4329 if (return_type_ == nullptr) {
4330 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4331 const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4332 uint16_t return_type_idx = proto_id.return_type_idx_;
4333 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4334 return_type_ = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4335 }
4336 }
4337 return *return_type_;
4338 }
4339
GetDeclaringClass()4340 const RegType& MethodVerifier::GetDeclaringClass() {
4341 if (declaring_class_ == nullptr) {
4342 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4343 const char* descriptor
4344 = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4345 if (mirror_method_ != nullptr) {
4346 mirror::Class* klass = mirror_method_->GetDeclaringClass();
4347 declaring_class_ = &FromClass(descriptor, klass,
4348 klass->CannotBeAssignedFromOtherTypes());
4349 } else {
4350 declaring_class_ = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4351 }
4352 }
4353 return *declaring_class_;
4354 }
4355
DescribeVRegs(uint32_t dex_pc)4356 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4357 RegisterLine* line = reg_table_.GetLine(dex_pc);
4358 DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4359 std::vector<int32_t> result;
4360 for (size_t i = 0; i < line->NumRegs(); ++i) {
4361 const RegType& type = line->GetRegisterType(this, i);
4362 if (type.IsConstant()) {
4363 result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4364 const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4365 result.push_back(const_val->ConstantValue());
4366 } else if (type.IsConstantLo()) {
4367 result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4368 const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4369 result.push_back(const_val->ConstantValueLo());
4370 } else if (type.IsConstantHi()) {
4371 result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4372 const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4373 result.push_back(const_val->ConstantValueHi());
4374 } else if (type.IsIntegralTypes()) {
4375 result.push_back(kIntVReg);
4376 result.push_back(0);
4377 } else if (type.IsFloat()) {
4378 result.push_back(kFloatVReg);
4379 result.push_back(0);
4380 } else if (type.IsLong()) {
4381 result.push_back(kLongLoVReg);
4382 result.push_back(0);
4383 result.push_back(kLongHiVReg);
4384 result.push_back(0);
4385 ++i;
4386 } else if (type.IsDouble()) {
4387 result.push_back(kDoubleLoVReg);
4388 result.push_back(0);
4389 result.push_back(kDoubleHiVReg);
4390 result.push_back(0);
4391 ++i;
4392 } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4393 result.push_back(kUndefined);
4394 result.push_back(0);
4395 } else {
4396 CHECK(type.IsNonZeroReferenceTypes());
4397 result.push_back(kReferenceVReg);
4398 result.push_back(0);
4399 }
4400 }
4401 return result;
4402 }
4403
DetermineCat1Constant(int32_t value,bool precise)4404 const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4405 if (precise) {
4406 // Precise constant type.
4407 return reg_types_.FromCat1Const(value, true);
4408 } else {
4409 // Imprecise constant type.
4410 if (value < -32768) {
4411 return reg_types_.IntConstant();
4412 } else if (value < -128) {
4413 return reg_types_.ShortConstant();
4414 } else if (value < 0) {
4415 return reg_types_.ByteConstant();
4416 } else if (value == 0) {
4417 return reg_types_.Zero();
4418 } else if (value == 1) {
4419 return reg_types_.One();
4420 } else if (value < 128) {
4421 return reg_types_.PosByteConstant();
4422 } else if (value < 32768) {
4423 return reg_types_.PosShortConstant();
4424 } else if (value < 65536) {
4425 return reg_types_.CharConstant();
4426 } else {
4427 return reg_types_.IntConstant();
4428 }
4429 }
4430 }
4431
Init()4432 void MethodVerifier::Init() {
4433 art::verifier::RegTypeCache::Init();
4434 }
4435
Shutdown()4436 void MethodVerifier::Shutdown() {
4437 verifier::RegTypeCache::ShutDown();
4438 }
4439
VisitStaticRoots(RootVisitor * visitor)4440 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4441 RegTypeCache::VisitStaticRoots(visitor);
4442 }
4443
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)4444 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4445 reg_types_.VisitRoots(visitor, root_info);
4446 }
4447
FromClass(const char * descriptor,mirror::Class * klass,bool precise)4448 const RegType& MethodVerifier::FromClass(const char* descriptor,
4449 mirror::Class* klass,
4450 bool precise) {
4451 DCHECK(klass != nullptr);
4452 if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
4453 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
4454 << "non-instantiable klass " << descriptor;
4455 precise = false;
4456 }
4457 return reg_types_.FromClass(descriptor, klass, precise);
4458 }
4459
4460 } // namespace verifier
4461 } // namespace art
4462