1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ScheduleDAGInstrs class, which implements 11 // scheduling for a MachineInstr-based dependency graph. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 17 18 #include "llvm/ADT/SparseMultiSet.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/CodeGen/ScheduleDAG.h" 21 #include "llvm/CodeGen/TargetSchedule.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 25 namespace llvm { 26 class MachineFrameInfo; 27 class MachineLoopInfo; 28 class MachineDominatorTree; 29 class LiveIntervals; 30 class RegPressureTracker; 31 class PressureDiffs; 32 33 /// An individual mapping from virtual register number to SUnit. 34 struct VReg2SUnit { 35 unsigned VirtReg; 36 SUnit *SU; 37 VReg2SUnitVReg2SUnit38 VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {} 39 getSparseSetIndexVReg2SUnit40 unsigned getSparseSetIndex() const { 41 return TargetRegisterInfo::virtReg2Index(VirtReg); 42 } 43 }; 44 45 /// Record a physical register access. 46 /// For non-data-dependent uses, OpIdx == -1. 47 struct PhysRegSUOper { 48 SUnit *SU; 49 int OpIdx; 50 unsigned Reg; 51 PhysRegSUOperPhysRegSUOper52 PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {} 53 getSparseSetIndexPhysRegSUOper54 unsigned getSparseSetIndex() const { return Reg; } 55 }; 56 57 /// Use a SparseMultiSet to track physical registers. Storage is only 58 /// allocated once for the pass. It can be cleared in constant time and reused 59 /// without any frees. 60 typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t> 61 Reg2SUnitsMap; 62 63 /// Use SparseSet as a SparseMap by relying on the fact that it never 64 /// compares ValueT's, only unsigned keys. This allows the set to be cleared 65 /// between scheduling regions in constant time as long as ValueT does not 66 /// require a destructor. 67 typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap; 68 69 /// Track local uses of virtual registers. These uses are gathered by the DAG 70 /// builder and may be consulted by the scheduler to avoid iterating an entire 71 /// vreg use list. 72 typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap; 73 74 /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of 75 /// MachineInstrs. 76 class ScheduleDAGInstrs : public ScheduleDAG { 77 protected: 78 const MachineLoopInfo *MLI; 79 const MachineFrameInfo *MFI; 80 81 /// Live Intervals provides reaching defs in preRA scheduling. 82 LiveIntervals *LIS; 83 84 /// TargetSchedModel provides an interface to the machine model. 85 TargetSchedModel SchedModel; 86 87 /// isPostRA flag indicates vregs cannot be present. 88 bool IsPostRA; 89 90 /// True if the DAG builder should remove kill flags (in preparation for 91 /// rescheduling). 92 bool RemoveKillFlags; 93 94 /// The standard DAG builder does not normally include terminators as DAG 95 /// nodes because it does not create the necessary dependencies to prevent 96 /// reordering. A specialized scheduler can override 97 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate 98 /// it has taken responsibility for scheduling the terminator correctly. 99 bool CanHandleTerminators; 100 101 /// State specific to the current scheduling region. 102 /// ------------------------------------------------ 103 104 /// The block in which to insert instructions 105 MachineBasicBlock *BB; 106 107 /// The beginning of the range to be scheduled. 108 MachineBasicBlock::iterator RegionBegin; 109 110 /// The end of the range to be scheduled. 111 MachineBasicBlock::iterator RegionEnd; 112 113 /// Instructions in this region (distance(RegionBegin, RegionEnd)). 114 unsigned NumRegionInstrs; 115 116 /// After calling BuildSchedGraph, each machine instruction in the current 117 /// scheduling region is mapped to an SUnit. 118 DenseMap<MachineInstr*, SUnit*> MISUnitMap; 119 120 /// After calling BuildSchedGraph, each vreg used in the scheduling region 121 /// is mapped to a set of SUnits. These include all local vreg uses, not 122 /// just the uses for a singly defined vreg. 123 VReg2UseMap VRegUses; 124 125 /// State internal to DAG building. 126 /// ------------------------------- 127 128 /// Defs, Uses - Remember where defs and uses of each register are as we 129 /// iterate upward through the instructions. This is allocated here instead 130 /// of inside BuildSchedGraph to avoid the need for it to be initialized and 131 /// destructed for each block. 132 Reg2SUnitsMap Defs; 133 Reg2SUnitsMap Uses; 134 135 /// Track the last instruction in this region defining each virtual register. 136 VReg2SUnitMap VRegDefs; 137 138 /// PendingLoads - Remember where unknown loads are after the most recent 139 /// unknown store, as we iterate. As with Defs and Uses, this is here 140 /// to minimize construction/destruction. 141 std::vector<SUnit *> PendingLoads; 142 143 /// DbgValues - Remember instruction that precedes DBG_VALUE. 144 /// These are generated by buildSchedGraph but persist so they can be 145 /// referenced when emitting the final schedule. 146 typedef std::vector<std::pair<MachineInstr *, MachineInstr *> > 147 DbgValueVector; 148 DbgValueVector DbgValues; 149 MachineInstr *FirstDbgValue; 150 151 /// Set of live physical registers for updating kill flags. 152 BitVector LiveRegs; 153 154 public: 155 explicit ScheduleDAGInstrs(MachineFunction &mf, 156 const MachineLoopInfo *mli, 157 bool IsPostRAFlag, 158 bool RemoveKillFlags = false, 159 LiveIntervals *LIS = nullptr); 160 ~ScheduleDAGInstrs()161 ~ScheduleDAGInstrs() override {} 162 isPostRA()163 bool isPostRA() const { return IsPostRA; } 164 165 /// \brief Expose LiveIntervals for use in DAG mutators and such. getLIS()166 LiveIntervals *getLIS() const { return LIS; } 167 168 /// \brief Get the machine model for instruction scheduling. getSchedModel()169 const TargetSchedModel *getSchedModel() const { return &SchedModel; } 170 171 /// \brief Resolve and cache a resolved scheduling class for an SUnit. getSchedClass(SUnit * SU)172 const MCSchedClassDesc *getSchedClass(SUnit *SU) const { 173 if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) 174 SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); 175 return SU->SchedClass; 176 } 177 178 /// begin - Return an iterator to the top of the current scheduling region. begin()179 MachineBasicBlock::iterator begin() const { return RegionBegin; } 180 181 /// end - Return an iterator to the bottom of the current scheduling region. end()182 MachineBasicBlock::iterator end() const { return RegionEnd; } 183 184 /// newSUnit - Creates a new SUnit and return a ptr to it. 185 SUnit *newSUnit(MachineInstr *MI); 186 187 /// getSUnit - Return an existing SUnit for this MI, or NULL. 188 SUnit *getSUnit(MachineInstr *MI) const; 189 190 /// startBlock - Prepare to perform scheduling in the given block. 191 virtual void startBlock(MachineBasicBlock *BB); 192 193 /// finishBlock - Clean up after scheduling in the given block. 194 virtual void finishBlock(); 195 196 /// Initialize the scheduler state for the next scheduling region. 197 virtual void enterRegion(MachineBasicBlock *bb, 198 MachineBasicBlock::iterator begin, 199 MachineBasicBlock::iterator end, 200 unsigned regioninstrs); 201 202 /// Notify that the scheduler has finished scheduling the current region. 203 virtual void exitRegion(); 204 205 /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are 206 /// input. 207 void buildSchedGraph(AliasAnalysis *AA, 208 RegPressureTracker *RPTracker = nullptr, 209 PressureDiffs *PDiffs = nullptr); 210 211 /// addSchedBarrierDeps - Add dependencies from instructions in the current 212 /// list of instructions being scheduled to scheduling barrier. We want to 213 /// make sure instructions which define registers that are either used by 214 /// the terminator or are live-out are properly scheduled. This is 215 /// especially important when the definition latency of the return value(s) 216 /// are too high to be hidden by the branch or when the liveout registers 217 /// used by instructions in the fallthrough block. 218 void addSchedBarrierDeps(); 219 220 /// schedule - Order nodes according to selected style, filling 221 /// in the Sequence member. 222 /// 223 /// Typically, a scheduling algorithm will implement schedule() without 224 /// overriding enterRegion() or exitRegion(). 225 virtual void schedule() = 0; 226 227 /// finalizeSchedule - Allow targets to perform final scheduling actions at 228 /// the level of the whole MachineFunction. By default does nothing. finalizeSchedule()229 virtual void finalizeSchedule() {} 230 231 void dumpNode(const SUnit *SU) const override; 232 233 /// Return a label for a DAG node that points to an instruction. 234 std::string getGraphNodeLabel(const SUnit *SU) const override; 235 236 /// Return a label for the region of code covered by the DAG. 237 std::string getDAGName() const override; 238 239 /// \brief Fix register kill flags that scheduling has made invalid. 240 void fixupKills(MachineBasicBlock *MBB); 241 protected: 242 void initSUnits(); 243 void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); 244 void addPhysRegDeps(SUnit *SU, unsigned OperIdx); 245 void addVRegDefDeps(SUnit *SU, unsigned OperIdx); 246 void addVRegUseDeps(SUnit *SU, unsigned OperIdx); 247 248 /// \brief PostRA helper for rewriting kill flags. 249 void startBlockForKills(MachineBasicBlock *BB); 250 251 /// \brief Toggle a register operand kill flag. 252 /// 253 /// Other adjustments may be made to the instruction if necessary. Return 254 /// true if the operand has been deleted, false if not. 255 bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO); 256 }; 257 258 /// newSUnit - Creates a new SUnit and return a ptr to it. newSUnit(MachineInstr * MI)259 inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { 260 #ifndef NDEBUG 261 const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; 262 #endif 263 SUnits.push_back(SUnit(MI, (unsigned)SUnits.size())); 264 assert((Addr == nullptr || Addr == &SUnits[0]) && 265 "SUnits std::vector reallocated on the fly!"); 266 SUnits.back().OrigNode = &SUnits.back(); 267 return &SUnits.back(); 268 } 269 270 /// getSUnit - Return an existing SUnit for this MI, or NULL. getSUnit(MachineInstr * MI)271 inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { 272 DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI); 273 if (I == MISUnitMap.end()) 274 return nullptr; 275 return I->second; 276 } 277 } // namespace llvm 278 279 #endif 280