1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/rand.h>
16 
17 #include <limits.h>
18 #include <string.h>
19 
20 #include <openssl/mem.h>
21 
22 #include "internal.h"
23 #include "../internal.h"
24 
25 
26 /* It's assumed that the operating system always has an unfailing source of
27  * entropy which is accessed via |CRYPTO_sysrand|. (If the operating system
28  * entropy source fails, it's up to |CRYPTO_sysrand| to abort the process—we
29  * don't try to handle it.)
30  *
31  * In addition, the hardware may provide a low-latency RNG. Intel's rdrand
32  * instruction is the canonical example of this. When a hardware RNG is
33  * available we don't need to worry about an RNG failure arising from fork()ing
34  * the process or moving a VM, so we can keep thread-local RNG state and XOR
35  * the hardware entropy in.
36  *
37  * (We assume that the OS entropy is safe from fork()ing and VM duplication.
38  * This might be a bit of a leap of faith, esp on Windows, but there's nothing
39  * that we can do about it.) */
40 
41 /* rand_thread_state contains the per-thread state for the RNG. This is only
42  * used if the system has support for a hardware RNG. */
43 struct rand_thread_state {
44   uint8_t key[32];
45   uint64_t calls_used;
46   size_t bytes_used;
47   uint8_t partial_block[64];
48   unsigned partial_block_used;
49 };
50 
51 /* kMaxCallsPerRefresh is the maximum number of |RAND_bytes| calls that we'll
52  * serve before reading a new key from the operating system. This only applies
53  * if we have a hardware RNG. */
54 static const unsigned kMaxCallsPerRefresh = 1024;
55 
56 /* kMaxBytesPerRefresh is the maximum number of bytes that we'll return from
57  * |RAND_bytes| before reading a new key from the operating system. This only
58  * applies if we have a hardware RNG. */
59 static const uint64_t kMaxBytesPerRefresh = 1024 * 1024;
60 
61 /* rand_thread_state_free frees a |rand_thread_state|. This is called when a
62  * thread exits. */
rand_thread_state_free(void * state)63 static void rand_thread_state_free(void *state) {
64   if (state == NULL) {
65     return;
66   }
67 
68   OPENSSL_cleanse(state, sizeof(struct rand_thread_state));
69   OPENSSL_free(state);
70 }
71 
72 extern void CRYPTO_chacha_20(uint8_t *out, const uint8_t *in, size_t in_len,
73                              const uint8_t key[32], const uint8_t nonce[8],
74                              size_t counter);
75 
RAND_bytes(uint8_t * buf,size_t len)76 int RAND_bytes(uint8_t *buf, size_t len) {
77   if (len == 0) {
78     return 1;
79   }
80 
81   if (!CRYPTO_have_hwrand()) {
82     /* Without a hardware RNG to save us from address-space duplication, the OS
83      * entropy is used directly. */
84     CRYPTO_sysrand(buf, len);
85     return 1;
86   }
87 
88   struct rand_thread_state *state =
89       CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
90   if (state == NULL) {
91     state = OPENSSL_malloc(sizeof(struct rand_thread_state));
92     if (state == NULL ||
93         !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
94                                  rand_thread_state_free)) {
95       CRYPTO_sysrand(buf, len);
96       return 1;
97     }
98 
99     memset(state->partial_block, 0, sizeof(state->partial_block));
100     state->calls_used = kMaxCallsPerRefresh;
101   }
102 
103   if (state->calls_used >= kMaxCallsPerRefresh ||
104       state->bytes_used >= kMaxBytesPerRefresh) {
105     CRYPTO_sysrand(state->key, sizeof(state->key));
106     state->calls_used = 0;
107     state->bytes_used = 0;
108     state->partial_block_used = sizeof(state->partial_block);
109   }
110 
111   CRYPTO_hwrand(buf, len);
112 
113   if (len >= sizeof(state->partial_block)) {
114     size_t remaining = len;
115     while (remaining > 0) {
116       // kMaxBytesPerCall is only 2GB, while ChaCha can handle 256GB. But this
117       // is sufficient and easier on 32-bit.
118       static const size_t kMaxBytesPerCall = 0x80000000;
119       size_t todo = remaining;
120       if (todo > kMaxBytesPerCall) {
121         todo = kMaxBytesPerCall;
122       }
123       CRYPTO_chacha_20(buf, buf, todo, state->key,
124                        (uint8_t *)&state->calls_used, 0);
125       buf += todo;
126       remaining -= todo;
127       state->calls_used++;
128     }
129   } else {
130     if (sizeof(state->partial_block) - state->partial_block_used < len) {
131       CRYPTO_chacha_20(state->partial_block, state->partial_block,
132                        sizeof(state->partial_block), state->key,
133                        (uint8_t *)&state->calls_used, 0);
134       state->partial_block_used = 0;
135     }
136 
137     unsigned i;
138     for (i = 0; i < len; i++) {
139       buf[i] ^= state->partial_block[state->partial_block_used++];
140     }
141     state->calls_used++;
142   }
143   state->bytes_used += len;
144 
145   return 1;
146 }
147 
RAND_pseudo_bytes(uint8_t * buf,size_t len)148 int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
149   return RAND_bytes(buf, len);
150 }
151 
RAND_seed(const void * buf,int num)152 void RAND_seed(const void *buf, int num) {}
153 
RAND_load_file(const char * path,long num)154 int RAND_load_file(const char *path, long num) {
155   if (num < 0) {  /* read the "whole file" */
156     return 1;
157   } else if (num <= INT_MAX) {
158     return (int) num;
159   } else {
160     return INT_MAX;
161   }
162 }
163 
RAND_add(const void * buf,int num,double entropy)164 void RAND_add(const void *buf, int num, double entropy) {}
165 
RAND_poll(void)166 int RAND_poll(void) {
167   return 1;
168 }
169 
RAND_status(void)170 int RAND_status(void) {
171   return 1;
172 }
173