1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/rsa.h>
58
59 #include <string.h>
60
61 #include <openssl/bn.h>
62 #include <openssl/engine.h>
63 #include <openssl/err.h>
64 #include <openssl/ex_data.h>
65 #include <openssl/mem.h>
66 #include <openssl/obj.h>
67 #include <openssl/thread.h>
68
69 #include "internal.h"
70 #include "../internal.h"
71
72
73 extern const RSA_METHOD RSA_default_method;
74
75 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
76
RSA_new(void)77 RSA *RSA_new(void) { return RSA_new_method(NULL); }
78
RSA_new_method(const ENGINE * engine)79 RSA *RSA_new_method(const ENGINE *engine) {
80 RSA *rsa = (RSA *)OPENSSL_malloc(sizeof(RSA));
81 if (rsa == NULL) {
82 OPENSSL_PUT_ERROR(RSA, RSA_new_method, ERR_R_MALLOC_FAILURE);
83 return NULL;
84 }
85
86 memset(rsa, 0, sizeof(RSA));
87
88 if (engine) {
89 rsa->meth = ENGINE_get_RSA_method(engine);
90 }
91
92 if (rsa->meth == NULL) {
93 rsa->meth = (RSA_METHOD*) &RSA_default_method;
94 }
95 METHOD_ref(rsa->meth);
96
97 rsa->references = 1;
98 rsa->flags = rsa->meth->flags;
99 CRYPTO_MUTEX_init(&rsa->lock);
100
101 if (!CRYPTO_new_ex_data(&g_ex_data_class, rsa, &rsa->ex_data)) {
102 METHOD_unref(rsa->meth);
103 OPENSSL_free(rsa);
104 return NULL;
105 }
106
107 if (rsa->meth->init && !rsa->meth->init(rsa)) {
108 CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
109 METHOD_unref(rsa->meth);
110 OPENSSL_free(rsa);
111 return NULL;
112 }
113
114 return rsa;
115 }
116
RSA_free(RSA * rsa)117 void RSA_free(RSA *rsa) {
118 unsigned u;
119
120 if (rsa == NULL) {
121 return;
122 }
123
124 if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
125 return;
126 }
127
128 if (rsa->meth->finish) {
129 rsa->meth->finish(rsa);
130 }
131 METHOD_unref(rsa->meth);
132
133 CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
134
135 BN_clear_free(rsa->n);
136 BN_clear_free(rsa->e);
137 BN_clear_free(rsa->d);
138 BN_clear_free(rsa->p);
139 BN_clear_free(rsa->q);
140 BN_clear_free(rsa->dmp1);
141 BN_clear_free(rsa->dmq1);
142 BN_clear_free(rsa->iqmp);
143 for (u = 0; u < rsa->num_blindings; u++) {
144 BN_BLINDING_free(rsa->blindings[u]);
145 }
146 OPENSSL_free(rsa->blindings);
147 OPENSSL_free(rsa->blindings_inuse);
148 CRYPTO_MUTEX_cleanup(&rsa->lock);
149 OPENSSL_free(rsa);
150 }
151
RSA_up_ref(RSA * rsa)152 int RSA_up_ref(RSA *rsa) {
153 CRYPTO_refcount_inc(&rsa->references);
154 return 1;
155 }
156
RSA_generate_key_ex(RSA * rsa,int bits,BIGNUM * e_value,BN_GENCB * cb)157 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
158 if (rsa->meth->keygen) {
159 return rsa->meth->keygen(rsa, bits, e_value, cb);
160 }
161
162 return RSA_default_method.keygen(rsa, bits, e_value, cb);
163 }
164
RSA_encrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)165 int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
166 const uint8_t *in, size_t in_len, int padding) {
167 if (rsa->meth->encrypt) {
168 return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding);
169 }
170
171 return RSA_default_method.encrypt(rsa, out_len, out, max_out, in, in_len,
172 padding);
173 }
174
RSA_public_encrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)175 int RSA_public_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
176 int padding) {
177 size_t out_len;
178
179 if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
180 return -1;
181 }
182
183 return out_len;
184 }
185
RSA_sign_raw(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)186 int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
187 const uint8_t *in, size_t in_len, int padding) {
188 if (rsa->meth->sign_raw) {
189 return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
190 }
191
192 return RSA_default_method.sign_raw(rsa, out_len, out, max_out, in, in_len,
193 padding);
194 }
195
RSA_private_encrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)196 int RSA_private_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
197 int padding) {
198 size_t out_len;
199
200 if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
201 return -1;
202 }
203
204 return out_len;
205 }
206
RSA_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)207 int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
208 const uint8_t *in, size_t in_len, int padding) {
209 if (rsa->meth->decrypt) {
210 return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
211 }
212
213 return RSA_default_method.decrypt(rsa, out_len, out, max_out, in, in_len,
214 padding);
215 }
216
RSA_private_decrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)217 int RSA_private_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
218 int padding) {
219 size_t out_len;
220
221 if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
222 return -1;
223 }
224
225 return out_len;
226 }
227
RSA_verify_raw(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)228 int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
229 const uint8_t *in, size_t in_len, int padding) {
230 if (rsa->meth->verify_raw) {
231 return rsa->meth->verify_raw(rsa, out_len, out, max_out, in, in_len, padding);
232 }
233
234 return RSA_default_method.verify_raw(rsa, out_len, out, max_out, in, in_len,
235 padding);
236 }
237
RSA_public_decrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)238 int RSA_public_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
239 int padding) {
240 size_t out_len;
241
242 if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
243 return -1;
244 }
245
246 return out_len;
247 }
248
RSA_size(const RSA * rsa)249 unsigned RSA_size(const RSA *rsa) {
250 if (rsa->meth->size) {
251 return rsa->meth->size(rsa);
252 }
253
254 return RSA_default_method.size(rsa);
255 }
256
RSA_is_opaque(const RSA * rsa)257 int RSA_is_opaque(const RSA *rsa) {
258 return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
259 }
260
RSA_supports_digest(const RSA * rsa,const EVP_MD * md)261 int RSA_supports_digest(const RSA *rsa, const EVP_MD *md) {
262 if (rsa->meth && rsa->meth->supports_digest) {
263 return rsa->meth->supports_digest(rsa, md);
264 }
265 return 1;
266 }
267
RSA_get_ex_new_index(long argl,void * argp,CRYPTO_EX_new * new_func,CRYPTO_EX_dup * dup_func,CRYPTO_EX_free * free_func)268 int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
269 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
270 int index;
271 if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, new_func,
272 dup_func, free_func)) {
273 return -1;
274 }
275 return index;
276 }
277
RSA_set_ex_data(RSA * d,int idx,void * arg)278 int RSA_set_ex_data(RSA *d, int idx, void *arg) {
279 return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
280 }
281
RSA_get_ex_data(const RSA * d,int idx)282 void *RSA_get_ex_data(const RSA *d, int idx) {
283 return CRYPTO_get_ex_data(&d->ex_data, idx);
284 }
285
286 /* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
287 * the length of an MD5 and SHA1 hash. */
288 static const unsigned SSL_SIG_LENGTH = 36;
289
290 /* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
291 * to be signed with PKCS#1. */
292 struct pkcs1_sig_prefix {
293 /* nid identifies the hash function. */
294 int nid;
295 /* len is the number of bytes of |bytes| which are valid. */
296 uint8_t len;
297 /* bytes contains the DER bytes. */
298 uint8_t bytes[19];
299 };
300
301 /* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
302 * different hash functions. */
303 static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
304 {
305 NID_md5,
306 18,
307 {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
308 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
309 },
310 {
311 NID_sha1,
312 15,
313 {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
314 0x00, 0x04, 0x14},
315 },
316 {
317 NID_sha224,
318 19,
319 {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
320 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
321 },
322 {
323 NID_sha256,
324 19,
325 {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
326 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
327 },
328 {
329 NID_sha384,
330 19,
331 {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
332 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
333 },
334 {
335 NID_sha512,
336 19,
337 {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
338 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
339 },
340 {
341 NID_undef, 0, {0},
342 },
343 };
344
345 /* TODO(fork): mostly new code, needs careful review. */
346
347 /* pkcs1_prefixed_msg builds a PKCS#1, prefixed version of |msg| for the given
348 * hash function and sets |out_msg| to point to it. On successful return,
349 * |*out_msg| may be allocated memory and, if so, |*is_alloced| will be 1. */
pkcs1_prefixed_msg(uint8_t ** out_msg,size_t * out_msg_len,int * is_alloced,int hash_nid,const uint8_t * msg,size_t msg_len)350 static int pkcs1_prefixed_msg(uint8_t **out_msg, size_t *out_msg_len,
351 int *is_alloced, int hash_nid, const uint8_t *msg,
352 size_t msg_len) {
353 unsigned i;
354
355 if (hash_nid == NID_md5_sha1) {
356 /* Special case: SSL signature, just check the length. */
357 if (msg_len != SSL_SIG_LENGTH) {
358 OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_INVALID_MESSAGE_LENGTH);
359 return 0;
360 }
361
362 *out_msg = (uint8_t*) msg;
363 *out_msg_len = SSL_SIG_LENGTH;
364 *is_alloced = 0;
365 return 1;
366 }
367
368 for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
369 const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
370 if (sig_prefix->nid != hash_nid) {
371 continue;
372 }
373
374 const uint8_t* prefix = sig_prefix->bytes;
375 unsigned prefix_len = sig_prefix->len;
376 unsigned signed_msg_len;
377 uint8_t *signed_msg;
378
379 signed_msg_len = prefix_len + msg_len;
380 if (signed_msg_len < prefix_len) {
381 OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_TOO_LONG);
382 return 0;
383 }
384
385 signed_msg = OPENSSL_malloc(signed_msg_len);
386 if (!signed_msg) {
387 OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, ERR_R_MALLOC_FAILURE);
388 return 0;
389 }
390
391 memcpy(signed_msg, prefix, prefix_len);
392 memcpy(signed_msg + prefix_len, msg, msg_len);
393
394 *out_msg = signed_msg;
395 *out_msg_len = signed_msg_len;
396 *is_alloced = 1;
397
398 return 1;
399 }
400
401 OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_UNKNOWN_ALGORITHM_TYPE);
402 return 0;
403 }
404
RSA_sign(int hash_nid,const uint8_t * in,unsigned in_len,uint8_t * out,unsigned * out_len,RSA * rsa)405 int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
406 unsigned *out_len, RSA *rsa) {
407 const unsigned rsa_size = RSA_size(rsa);
408 int ret = 0;
409 uint8_t *signed_msg;
410 size_t signed_msg_len;
411 int signed_msg_is_alloced = 0;
412 size_t size_t_out_len;
413
414 if (rsa->meth->sign) {
415 return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
416 }
417
418 if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
419 hash_nid, in, in_len)) {
420 return 0;
421 }
422
423 if (rsa_size < RSA_PKCS1_PADDING_SIZE ||
424 signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) {
425 OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
426 goto finish;
427 }
428
429 if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
430 signed_msg_len, RSA_PKCS1_PADDING)) {
431 *out_len = size_t_out_len;
432 ret = 1;
433 }
434
435 finish:
436 if (signed_msg_is_alloced) {
437 OPENSSL_free(signed_msg);
438 }
439 return ret;
440 }
441
RSA_verify(int hash_nid,const uint8_t * msg,size_t msg_len,const uint8_t * sig,size_t sig_len,RSA * rsa)442 int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
443 const uint8_t *sig, size_t sig_len, RSA *rsa) {
444 const size_t rsa_size = RSA_size(rsa);
445 uint8_t *buf = NULL;
446 int ret = 0;
447 uint8_t *signed_msg = NULL;
448 size_t signed_msg_len, len;
449 int signed_msg_is_alloced = 0;
450
451 if (rsa->meth->verify) {
452 return rsa->meth->verify(hash_nid, msg, msg_len, sig, sig_len, rsa);
453 }
454
455 if (sig_len != rsa_size) {
456 OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_WRONG_SIGNATURE_LENGTH);
457 return 0;
458 }
459
460 if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
461 OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_INVALID_MESSAGE_LENGTH);
462 return 0;
463 }
464
465 buf = OPENSSL_malloc(rsa_size);
466 if (!buf) {
467 OPENSSL_PUT_ERROR(RSA, RSA_verify, ERR_R_MALLOC_FAILURE);
468 return 0;
469 }
470
471 if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
472 RSA_PKCS1_PADDING)) {
473 goto out;
474 }
475
476 if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
477 hash_nid, msg, msg_len)) {
478 goto out;
479 }
480
481 if (len != signed_msg_len || CRYPTO_memcmp(buf, signed_msg, len) != 0) {
482 OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_BAD_SIGNATURE);
483 goto out;
484 }
485
486 ret = 1;
487
488 out:
489 OPENSSL_free(buf);
490 if (signed_msg_is_alloced) {
491 OPENSSL_free(signed_msg);
492 }
493 return ret;
494 }
495
bn_free_and_null(BIGNUM ** bn)496 static void bn_free_and_null(BIGNUM **bn) {
497 BN_free(*bn);
498 *bn = NULL;
499 }
500
RSA_check_key(const RSA * key)501 int RSA_check_key(const RSA *key) {
502 BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp;
503 BN_CTX *ctx;
504 int ok = 0, has_crt_values;
505
506 if (RSA_is_opaque(key)) {
507 /* Opaque keys can't be checked. */
508 return 1;
509 }
510
511 if ((key->p != NULL) != (key->q != NULL)) {
512 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
513 return 0;
514 }
515
516 if (!key->n || !key->e) {
517 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_VALUE_MISSING);
518 return 0;
519 }
520
521 if (!key->d || !key->p) {
522 /* For a public key, or without p and q, there's nothing that can be
523 * checked. */
524 return 1;
525 }
526
527 ctx = BN_CTX_new();
528 if (ctx == NULL) {
529 OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_R_MALLOC_FAILURE);
530 return 0;
531 }
532
533 BN_init(&n);
534 BN_init(&pm1);
535 BN_init(&qm1);
536 BN_init(&lcm);
537 BN_init(&gcd);
538 BN_init(&de);
539 BN_init(&dmp1);
540 BN_init(&dmq1);
541 BN_init(&iqmp);
542
543 if (/* n = pq */
544 !BN_mul(&n, key->p, key->q, ctx) ||
545 /* lcm = lcm(p-1, q-1) */
546 !BN_sub(&pm1, key->p, BN_value_one()) ||
547 !BN_sub(&qm1, key->q, BN_value_one()) ||
548 !BN_mul(&lcm, &pm1, &qm1, ctx) ||
549 !BN_gcd(&gcd, &pm1, &qm1, ctx) ||
550 !BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
551 /* de = d*e mod lcm(p-1, q-1) */
552 !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
553 OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
554 goto out;
555 }
556
557 if (BN_cmp(&n, key->n) != 0) {
558 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_N_NOT_EQUAL_P_Q);
559 goto out;
560 }
561
562 if (!BN_is_one(&de)) {
563 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_D_E_NOT_CONGRUENT_TO_1);
564 goto out;
565 }
566
567 has_crt_values = key->dmp1 != NULL;
568 if (has_crt_values != (key->dmq1 != NULL) ||
569 has_crt_values != (key->iqmp != NULL)) {
570 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
571 goto out;
572 }
573
574 if (has_crt_values) {
575 if (/* dmp1 = d mod (p-1) */
576 !BN_mod(&dmp1, key->d, &pm1, ctx) ||
577 /* dmq1 = d mod (q-1) */
578 !BN_mod(&dmq1, key->d, &qm1, ctx) ||
579 /* iqmp = q^-1 mod p */
580 !BN_mod_inverse(&iqmp, key->q, key->p, ctx)) {
581 OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
582 goto out;
583 }
584
585 if (BN_cmp(&dmp1, key->dmp1) != 0 ||
586 BN_cmp(&dmq1, key->dmq1) != 0 ||
587 BN_cmp(&iqmp, key->iqmp) != 0) {
588 OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_CRT_VALUES_INCORRECT);
589 goto out;
590 }
591 }
592
593 ok = 1;
594
595 out:
596 BN_free(&n);
597 BN_free(&pm1);
598 BN_free(&qm1);
599 BN_free(&lcm);
600 BN_free(&gcd);
601 BN_free(&de);
602 BN_free(&dmp1);
603 BN_free(&dmq1);
604 BN_free(&iqmp);
605 BN_CTX_free(ctx);
606
607 return ok;
608 }
609
RSA_recover_crt_params(RSA * rsa)610 int RSA_recover_crt_params(RSA *rsa) {
611 BN_CTX *ctx;
612 BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q;
613 int ok = 0;
614
615 if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) {
616 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_EMPTY_PUBLIC_KEY);
617 return 0;
618 }
619
620 if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) {
621 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params,
622 RSA_R_CRT_PARAMS_ALREADY_GIVEN);
623 return 0;
624 }
625
626 /* This uses the algorithm from section 9B of the RSA paper:
627 * http://people.csail.mit.edu/rivest/Rsapaper.pdf */
628
629 ctx = BN_CTX_new();
630 if (ctx == NULL) {
631 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
632 return 0;
633 }
634
635 BN_CTX_start(ctx);
636 totient = BN_CTX_get(ctx);
637 rem = BN_CTX_get(ctx);
638 multiple = BN_CTX_get(ctx);
639 p_plus_q = BN_CTX_get(ctx);
640 p_minus_q = BN_CTX_get(ctx);
641
642 if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL ||
643 p_minus_q == NULL) {
644 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
645 goto err;
646 }
647
648 /* ed-1 is a small multiple of φ(n). */
649 if (!BN_mul(totient, rsa->e, rsa->d, ctx) ||
650 !BN_sub_word(totient, 1) ||
651 /* φ(n) =
652 * pq - p - q + 1 =
653 * n - (p + q) + 1
654 *
655 * Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very
656 * close. But, when we calculate the quotient, we'll be truncating it
657 * because we discard the remainder. Thus (ed-1)/multiple will be >= n,
658 * which the totient cannot be. So we add one to the estimate.
659 *
660 * Consider ed-1 as:
661 *
662 * multiple * (n - (p+q) + 1) =
663 * multiple*n - multiple*(p+q) + multiple
664 *
665 * When we divide by n, the first term becomes multiple and, since
666 * multiple and p+q is tiny compared to n, the second and third terms can
667 * be ignored. Thus I claim that subtracting one from the estimate is
668 * sufficient. */
669 !BN_div(multiple, NULL, totient, rsa->n, ctx) ||
670 !BN_add_word(multiple, 1) ||
671 !BN_div(totient, rem, totient, multiple, ctx)) {
672 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
673 goto err;
674 }
675
676 if (!BN_is_zero(rem)) {
677 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_BAD_RSA_PARAMETERS);
678 goto err;
679 }
680
681 rsa->p = BN_new();
682 rsa->q = BN_new();
683 rsa->dmp1 = BN_new();
684 rsa->dmq1 = BN_new();
685 rsa->iqmp = BN_new();
686 if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 ==
687 NULL || rsa->iqmp == NULL) {
688 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
689 goto err;
690 }
691
692 /* φ(n) = n - (p + q) + 1 =>
693 * n - totient + 1 = p + q */
694 if (!BN_sub(p_plus_q, rsa->n, totient) ||
695 !BN_add_word(p_plus_q, 1) ||
696 /* p - q = sqrt((p+q)^2 - 4n) */
697 !BN_sqr(rem, p_plus_q, ctx) ||
698 !BN_lshift(multiple, rsa->n, 2) ||
699 !BN_sub(rem, rem, multiple) ||
700 !BN_sqrt(p_minus_q, rem, ctx) ||
701 /* q is 1/2 (p+q)-(p-q) */
702 !BN_sub(rsa->q, p_plus_q, p_minus_q) ||
703 !BN_rshift1(rsa->q, rsa->q) ||
704 !BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) ||
705 !BN_mul(multiple, rsa->p, rsa->q, ctx)) {
706 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
707 goto err;
708 }
709
710 if (BN_cmp(multiple, rsa->n) != 0) {
711 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_INTERNAL_ERROR);
712 goto err;
713 }
714
715 if (!BN_sub(rem, rsa->p, BN_value_one()) ||
716 !BN_mod(rsa->dmp1, rsa->d, rem, ctx) ||
717 !BN_sub(rem, rsa->q, BN_value_one()) ||
718 !BN_mod(rsa->dmq1, rsa->d, rem, ctx) ||
719 !BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
720 OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
721 goto err;
722 }
723
724 ok = 1;
725
726 err:
727 BN_CTX_end(ctx);
728 BN_CTX_free(ctx);
729 if (!ok) {
730 bn_free_and_null(&rsa->p);
731 bn_free_and_null(&rsa->q);
732 bn_free_and_null(&rsa->dmp1);
733 bn_free_and_null(&rsa->dmq1);
734 bn_free_and_null(&rsa->iqmp);
735 }
736 return ok;
737 }
738
RSA_private_transform(RSA * rsa,uint8_t * out,const uint8_t * in,size_t len)739 int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
740 size_t len) {
741 if (rsa->meth->private_transform) {
742 return rsa->meth->private_transform(rsa, out, in, len);
743 }
744
745 return RSA_default_method.private_transform(rsa, out, in, len);
746 }
747
RSA_blinding_on(RSA * rsa,BN_CTX * ctx)748 int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
749 return 1;
750 }
751