1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/rsa.h>
58 
59 #include <string.h>
60 
61 #include <openssl/bn.h>
62 #include <openssl/engine.h>
63 #include <openssl/err.h>
64 #include <openssl/ex_data.h>
65 #include <openssl/mem.h>
66 #include <openssl/obj.h>
67 #include <openssl/thread.h>
68 
69 #include "internal.h"
70 #include "../internal.h"
71 
72 
73 extern const RSA_METHOD RSA_default_method;
74 
75 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
76 
RSA_new(void)77 RSA *RSA_new(void) { return RSA_new_method(NULL); }
78 
RSA_new_method(const ENGINE * engine)79 RSA *RSA_new_method(const ENGINE *engine) {
80   RSA *rsa = (RSA *)OPENSSL_malloc(sizeof(RSA));
81   if (rsa == NULL) {
82     OPENSSL_PUT_ERROR(RSA, RSA_new_method, ERR_R_MALLOC_FAILURE);
83     return NULL;
84   }
85 
86   memset(rsa, 0, sizeof(RSA));
87 
88   if (engine) {
89     rsa->meth = ENGINE_get_RSA_method(engine);
90   }
91 
92   if (rsa->meth == NULL) {
93     rsa->meth = (RSA_METHOD*) &RSA_default_method;
94   }
95   METHOD_ref(rsa->meth);
96 
97   rsa->references = 1;
98   rsa->flags = rsa->meth->flags;
99   CRYPTO_MUTEX_init(&rsa->lock);
100 
101   if (!CRYPTO_new_ex_data(&g_ex_data_class, rsa, &rsa->ex_data)) {
102     METHOD_unref(rsa->meth);
103     OPENSSL_free(rsa);
104     return NULL;
105   }
106 
107   if (rsa->meth->init && !rsa->meth->init(rsa)) {
108     CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
109     METHOD_unref(rsa->meth);
110     OPENSSL_free(rsa);
111     return NULL;
112   }
113 
114   return rsa;
115 }
116 
RSA_free(RSA * rsa)117 void RSA_free(RSA *rsa) {
118   unsigned u;
119 
120   if (rsa == NULL) {
121     return;
122   }
123 
124   if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
125     return;
126   }
127 
128   if (rsa->meth->finish) {
129     rsa->meth->finish(rsa);
130   }
131   METHOD_unref(rsa->meth);
132 
133   CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
134 
135   BN_clear_free(rsa->n);
136   BN_clear_free(rsa->e);
137   BN_clear_free(rsa->d);
138   BN_clear_free(rsa->p);
139   BN_clear_free(rsa->q);
140   BN_clear_free(rsa->dmp1);
141   BN_clear_free(rsa->dmq1);
142   BN_clear_free(rsa->iqmp);
143   for (u = 0; u < rsa->num_blindings; u++) {
144     BN_BLINDING_free(rsa->blindings[u]);
145   }
146   OPENSSL_free(rsa->blindings);
147   OPENSSL_free(rsa->blindings_inuse);
148   CRYPTO_MUTEX_cleanup(&rsa->lock);
149   OPENSSL_free(rsa);
150 }
151 
RSA_up_ref(RSA * rsa)152 int RSA_up_ref(RSA *rsa) {
153   CRYPTO_refcount_inc(&rsa->references);
154   return 1;
155 }
156 
RSA_generate_key_ex(RSA * rsa,int bits,BIGNUM * e_value,BN_GENCB * cb)157 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
158   if (rsa->meth->keygen) {
159     return rsa->meth->keygen(rsa, bits, e_value, cb);
160   }
161 
162   return RSA_default_method.keygen(rsa, bits, e_value, cb);
163 }
164 
RSA_encrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)165 int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
166                 const uint8_t *in, size_t in_len, int padding) {
167   if (rsa->meth->encrypt) {
168     return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding);
169   }
170 
171   return RSA_default_method.encrypt(rsa, out_len, out, max_out, in, in_len,
172                                     padding);
173 }
174 
RSA_public_encrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)175 int RSA_public_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
176                        int padding) {
177   size_t out_len;
178 
179   if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
180     return -1;
181   }
182 
183   return out_len;
184 }
185 
RSA_sign_raw(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)186 int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
187                  const uint8_t *in, size_t in_len, int padding) {
188   if (rsa->meth->sign_raw) {
189     return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
190   }
191 
192   return RSA_default_method.sign_raw(rsa, out_len, out, max_out, in, in_len,
193                                      padding);
194 }
195 
RSA_private_encrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)196 int RSA_private_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
197                         int padding) {
198   size_t out_len;
199 
200   if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
201     return -1;
202   }
203 
204   return out_len;
205 }
206 
RSA_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)207 int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
208                 const uint8_t *in, size_t in_len, int padding) {
209   if (rsa->meth->decrypt) {
210     return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
211   }
212 
213   return RSA_default_method.decrypt(rsa, out_len, out, max_out, in, in_len,
214                                     padding);
215 }
216 
RSA_private_decrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)217 int RSA_private_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
218                         int padding) {
219   size_t out_len;
220 
221   if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
222     return -1;
223   }
224 
225   return out_len;
226 }
227 
RSA_verify_raw(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)228 int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
229                    const uint8_t *in, size_t in_len, int padding) {
230   if (rsa->meth->verify_raw) {
231     return rsa->meth->verify_raw(rsa, out_len, out, max_out, in, in_len, padding);
232   }
233 
234   return RSA_default_method.verify_raw(rsa, out_len, out, max_out, in, in_len,
235                                        padding);
236 }
237 
RSA_public_decrypt(int flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)238 int RSA_public_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
239                        int padding) {
240   size_t out_len;
241 
242   if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
243     return -1;
244   }
245 
246   return out_len;
247 }
248 
RSA_size(const RSA * rsa)249 unsigned RSA_size(const RSA *rsa) {
250   if (rsa->meth->size) {
251     return rsa->meth->size(rsa);
252   }
253 
254   return RSA_default_method.size(rsa);
255 }
256 
RSA_is_opaque(const RSA * rsa)257 int RSA_is_opaque(const RSA *rsa) {
258   return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
259 }
260 
RSA_supports_digest(const RSA * rsa,const EVP_MD * md)261 int RSA_supports_digest(const RSA *rsa, const EVP_MD *md) {
262   if (rsa->meth && rsa->meth->supports_digest) {
263     return rsa->meth->supports_digest(rsa, md);
264   }
265   return 1;
266 }
267 
RSA_get_ex_new_index(long argl,void * argp,CRYPTO_EX_new * new_func,CRYPTO_EX_dup * dup_func,CRYPTO_EX_free * free_func)268 int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
269                          CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
270   int index;
271   if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, new_func,
272                                dup_func, free_func)) {
273     return -1;
274   }
275   return index;
276 }
277 
RSA_set_ex_data(RSA * d,int idx,void * arg)278 int RSA_set_ex_data(RSA *d, int idx, void *arg) {
279   return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
280 }
281 
RSA_get_ex_data(const RSA * d,int idx)282 void *RSA_get_ex_data(const RSA *d, int idx) {
283   return CRYPTO_get_ex_data(&d->ex_data, idx);
284 }
285 
286 /* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
287  * the length of an MD5 and SHA1 hash. */
288 static const unsigned SSL_SIG_LENGTH = 36;
289 
290 /* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
291  * to be signed with PKCS#1. */
292 struct pkcs1_sig_prefix {
293   /* nid identifies the hash function. */
294   int nid;
295   /* len is the number of bytes of |bytes| which are valid. */
296   uint8_t len;
297   /* bytes contains the DER bytes. */
298   uint8_t bytes[19];
299 };
300 
301 /* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
302  * different hash functions. */
303 static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
304     {
305      NID_md5,
306      18,
307      {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
308       0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
309     },
310     {
311      NID_sha1,
312      15,
313      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
314       0x00, 0x04, 0x14},
315     },
316     {
317      NID_sha224,
318      19,
319      {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
320       0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
321     },
322     {
323      NID_sha256,
324      19,
325      {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
326       0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
327     },
328     {
329      NID_sha384,
330      19,
331      {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
332       0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
333     },
334     {
335      NID_sha512,
336      19,
337      {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
338       0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
339     },
340     {
341      NID_undef, 0, {0},
342     },
343 };
344 
345 /* TODO(fork): mostly new code, needs careful review. */
346 
347 /* pkcs1_prefixed_msg builds a PKCS#1, prefixed version of |msg| for the given
348  * hash function and sets |out_msg| to point to it. On successful return,
349  * |*out_msg| may be allocated memory and, if so, |*is_alloced| will be 1. */
pkcs1_prefixed_msg(uint8_t ** out_msg,size_t * out_msg_len,int * is_alloced,int hash_nid,const uint8_t * msg,size_t msg_len)350 static int pkcs1_prefixed_msg(uint8_t **out_msg, size_t *out_msg_len,
351                               int *is_alloced, int hash_nid, const uint8_t *msg,
352                               size_t msg_len) {
353   unsigned i;
354 
355   if (hash_nid == NID_md5_sha1) {
356     /* Special case: SSL signature, just check the length. */
357     if (msg_len != SSL_SIG_LENGTH) {
358       OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_INVALID_MESSAGE_LENGTH);
359       return 0;
360     }
361 
362     *out_msg = (uint8_t*) msg;
363     *out_msg_len = SSL_SIG_LENGTH;
364     *is_alloced = 0;
365     return 1;
366   }
367 
368   for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
369     const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
370     if (sig_prefix->nid != hash_nid) {
371       continue;
372     }
373 
374     const uint8_t* prefix = sig_prefix->bytes;
375     unsigned prefix_len = sig_prefix->len;
376     unsigned signed_msg_len;
377     uint8_t *signed_msg;
378 
379     signed_msg_len = prefix_len + msg_len;
380     if (signed_msg_len < prefix_len) {
381       OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_TOO_LONG);
382       return 0;
383     }
384 
385     signed_msg = OPENSSL_malloc(signed_msg_len);
386     if (!signed_msg) {
387       OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, ERR_R_MALLOC_FAILURE);
388       return 0;
389     }
390 
391     memcpy(signed_msg, prefix, prefix_len);
392     memcpy(signed_msg + prefix_len, msg, msg_len);
393 
394     *out_msg = signed_msg;
395     *out_msg_len = signed_msg_len;
396     *is_alloced = 1;
397 
398     return 1;
399   }
400 
401   OPENSSL_PUT_ERROR(RSA, pkcs1_prefixed_msg, RSA_R_UNKNOWN_ALGORITHM_TYPE);
402   return 0;
403 }
404 
RSA_sign(int hash_nid,const uint8_t * in,unsigned in_len,uint8_t * out,unsigned * out_len,RSA * rsa)405 int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
406              unsigned *out_len, RSA *rsa) {
407   const unsigned rsa_size = RSA_size(rsa);
408   int ret = 0;
409   uint8_t *signed_msg;
410   size_t signed_msg_len;
411   int signed_msg_is_alloced = 0;
412   size_t size_t_out_len;
413 
414   if (rsa->meth->sign) {
415     return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
416   }
417 
418   if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
419                           hash_nid, in, in_len)) {
420     return 0;
421   }
422 
423   if (rsa_size < RSA_PKCS1_PADDING_SIZE ||
424       signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) {
425     OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
426     goto finish;
427   }
428 
429   if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
430                    signed_msg_len, RSA_PKCS1_PADDING)) {
431     *out_len = size_t_out_len;
432     ret = 1;
433   }
434 
435 finish:
436   if (signed_msg_is_alloced) {
437     OPENSSL_free(signed_msg);
438   }
439   return ret;
440 }
441 
RSA_verify(int hash_nid,const uint8_t * msg,size_t msg_len,const uint8_t * sig,size_t sig_len,RSA * rsa)442 int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
443                const uint8_t *sig, size_t sig_len, RSA *rsa) {
444   const size_t rsa_size = RSA_size(rsa);
445   uint8_t *buf = NULL;
446   int ret = 0;
447   uint8_t *signed_msg = NULL;
448   size_t signed_msg_len, len;
449   int signed_msg_is_alloced = 0;
450 
451   if (rsa->meth->verify) {
452     return rsa->meth->verify(hash_nid, msg, msg_len, sig, sig_len, rsa);
453   }
454 
455   if (sig_len != rsa_size) {
456     OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_WRONG_SIGNATURE_LENGTH);
457     return 0;
458   }
459 
460   if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
461     OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_INVALID_MESSAGE_LENGTH);
462     return 0;
463   }
464 
465   buf = OPENSSL_malloc(rsa_size);
466   if (!buf) {
467     OPENSSL_PUT_ERROR(RSA, RSA_verify, ERR_R_MALLOC_FAILURE);
468     return 0;
469   }
470 
471   if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
472                       RSA_PKCS1_PADDING)) {
473     goto out;
474   }
475 
476   if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
477                           hash_nid, msg, msg_len)) {
478     goto out;
479   }
480 
481   if (len != signed_msg_len || CRYPTO_memcmp(buf, signed_msg, len) != 0) {
482     OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_BAD_SIGNATURE);
483     goto out;
484   }
485 
486   ret = 1;
487 
488 out:
489   OPENSSL_free(buf);
490   if (signed_msg_is_alloced) {
491     OPENSSL_free(signed_msg);
492   }
493   return ret;
494 }
495 
bn_free_and_null(BIGNUM ** bn)496 static void bn_free_and_null(BIGNUM **bn) {
497   BN_free(*bn);
498   *bn = NULL;
499 }
500 
RSA_check_key(const RSA * key)501 int RSA_check_key(const RSA *key) {
502   BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp;
503   BN_CTX *ctx;
504   int ok = 0, has_crt_values;
505 
506   if (RSA_is_opaque(key)) {
507     /* Opaque keys can't be checked. */
508     return 1;
509   }
510 
511   if ((key->p != NULL) != (key->q != NULL)) {
512     OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
513     return 0;
514   }
515 
516   if (!key->n || !key->e) {
517     OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_VALUE_MISSING);
518     return 0;
519   }
520 
521   if (!key->d || !key->p) {
522     /* For a public key, or without p and q, there's nothing that can be
523      * checked. */
524     return 1;
525   }
526 
527   ctx = BN_CTX_new();
528   if (ctx == NULL) {
529     OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_R_MALLOC_FAILURE);
530     return 0;
531   }
532 
533   BN_init(&n);
534   BN_init(&pm1);
535   BN_init(&qm1);
536   BN_init(&lcm);
537   BN_init(&gcd);
538   BN_init(&de);
539   BN_init(&dmp1);
540   BN_init(&dmq1);
541   BN_init(&iqmp);
542 
543   if (/* n = pq */
544       !BN_mul(&n, key->p, key->q, ctx) ||
545       /* lcm = lcm(p-1, q-1) */
546       !BN_sub(&pm1, key->p, BN_value_one()) ||
547       !BN_sub(&qm1, key->q, BN_value_one()) ||
548       !BN_mul(&lcm, &pm1, &qm1, ctx) ||
549       !BN_gcd(&gcd, &pm1, &qm1, ctx) ||
550       !BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
551       /* de = d*e mod lcm(p-1, q-1) */
552       !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
553     OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
554     goto out;
555   }
556 
557   if (BN_cmp(&n, key->n) != 0) {
558     OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_N_NOT_EQUAL_P_Q);
559     goto out;
560   }
561 
562   if (!BN_is_one(&de)) {
563     OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_D_E_NOT_CONGRUENT_TO_1);
564     goto out;
565   }
566 
567   has_crt_values = key->dmp1 != NULL;
568   if (has_crt_values != (key->dmq1 != NULL) ||
569       has_crt_values != (key->iqmp != NULL)) {
570     OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
571     goto out;
572   }
573 
574   if (has_crt_values) {
575     if (/* dmp1 = d mod (p-1) */
576         !BN_mod(&dmp1, key->d, &pm1, ctx) ||
577         /* dmq1 = d mod (q-1) */
578         !BN_mod(&dmq1, key->d, &qm1, ctx) ||
579         /* iqmp = q^-1 mod p */
580         !BN_mod_inverse(&iqmp, key->q, key->p, ctx)) {
581       OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
582       goto out;
583     }
584 
585     if (BN_cmp(&dmp1, key->dmp1) != 0 ||
586         BN_cmp(&dmq1, key->dmq1) != 0 ||
587         BN_cmp(&iqmp, key->iqmp) != 0) {
588       OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_CRT_VALUES_INCORRECT);
589       goto out;
590     }
591   }
592 
593   ok = 1;
594 
595 out:
596   BN_free(&n);
597   BN_free(&pm1);
598   BN_free(&qm1);
599   BN_free(&lcm);
600   BN_free(&gcd);
601   BN_free(&de);
602   BN_free(&dmp1);
603   BN_free(&dmq1);
604   BN_free(&iqmp);
605   BN_CTX_free(ctx);
606 
607   return ok;
608 }
609 
RSA_recover_crt_params(RSA * rsa)610 int RSA_recover_crt_params(RSA *rsa) {
611   BN_CTX *ctx;
612   BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q;
613   int ok = 0;
614 
615   if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) {
616     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_EMPTY_PUBLIC_KEY);
617     return 0;
618   }
619 
620   if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) {
621     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params,
622                       RSA_R_CRT_PARAMS_ALREADY_GIVEN);
623     return 0;
624   }
625 
626   /* This uses the algorithm from section 9B of the RSA paper:
627    * http://people.csail.mit.edu/rivest/Rsapaper.pdf */
628 
629   ctx = BN_CTX_new();
630   if (ctx == NULL) {
631     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
632     return 0;
633   }
634 
635   BN_CTX_start(ctx);
636   totient = BN_CTX_get(ctx);
637   rem = BN_CTX_get(ctx);
638   multiple = BN_CTX_get(ctx);
639   p_plus_q = BN_CTX_get(ctx);
640   p_minus_q = BN_CTX_get(ctx);
641 
642   if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL ||
643       p_minus_q == NULL) {
644     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
645     goto err;
646   }
647 
648   /* ed-1 is a small multiple of φ(n). */
649   if (!BN_mul(totient, rsa->e, rsa->d, ctx) ||
650       !BN_sub_word(totient, 1) ||
651       /* φ(n) =
652        * pq - p - q + 1 =
653        * n - (p + q) + 1
654        *
655        * Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very
656        * close. But, when we calculate the quotient, we'll be truncating it
657        * because we discard the remainder. Thus (ed-1)/multiple will be >= n,
658        * which the totient cannot be. So we add one to the estimate.
659        *
660        * Consider ed-1 as:
661        *
662        * multiple * (n - (p+q) + 1) =
663        * multiple*n - multiple*(p+q) + multiple
664        *
665        * When we divide by n, the first term becomes multiple and, since
666        * multiple and p+q is tiny compared to n, the second and third terms can
667        * be ignored. Thus I claim that subtracting one from the estimate is
668        * sufficient. */
669       !BN_div(multiple, NULL, totient, rsa->n, ctx) ||
670       !BN_add_word(multiple, 1) ||
671       !BN_div(totient, rem, totient, multiple, ctx)) {
672     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
673     goto err;
674   }
675 
676   if (!BN_is_zero(rem)) {
677     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_BAD_RSA_PARAMETERS);
678     goto err;
679   }
680 
681   rsa->p = BN_new();
682   rsa->q = BN_new();
683   rsa->dmp1 = BN_new();
684   rsa->dmq1 = BN_new();
685   rsa->iqmp = BN_new();
686   if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 ==
687       NULL || rsa->iqmp == NULL) {
688     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
689     goto err;
690   }
691 
692   /* φ(n) = n - (p + q) + 1 =>
693    * n - totient + 1 = p + q */
694   if (!BN_sub(p_plus_q, rsa->n, totient) ||
695       !BN_add_word(p_plus_q, 1) ||
696       /* p - q = sqrt((p+q)^2 - 4n) */
697       !BN_sqr(rem, p_plus_q, ctx) ||
698       !BN_lshift(multiple, rsa->n, 2) ||
699       !BN_sub(rem, rem, multiple) ||
700       !BN_sqrt(p_minus_q, rem, ctx) ||
701       /* q is 1/2 (p+q)-(p-q) */
702       !BN_sub(rsa->q, p_plus_q, p_minus_q) ||
703       !BN_rshift1(rsa->q, rsa->q) ||
704       !BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) ||
705       !BN_mul(multiple, rsa->p, rsa->q, ctx)) {
706     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
707     goto err;
708   }
709 
710   if (BN_cmp(multiple, rsa->n) != 0) {
711     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_INTERNAL_ERROR);
712     goto err;
713   }
714 
715   if (!BN_sub(rem, rsa->p, BN_value_one()) ||
716       !BN_mod(rsa->dmp1, rsa->d, rem, ctx) ||
717       !BN_sub(rem, rsa->q, BN_value_one()) ||
718       !BN_mod(rsa->dmq1, rsa->d, rem, ctx) ||
719       !BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
720     OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
721     goto err;
722   }
723 
724   ok = 1;
725 
726 err:
727   BN_CTX_end(ctx);
728   BN_CTX_free(ctx);
729   if (!ok) {
730     bn_free_and_null(&rsa->p);
731     bn_free_and_null(&rsa->q);
732     bn_free_and_null(&rsa->dmp1);
733     bn_free_and_null(&rsa->dmq1);
734     bn_free_and_null(&rsa->iqmp);
735   }
736   return ok;
737 }
738 
RSA_private_transform(RSA * rsa,uint8_t * out,const uint8_t * in,size_t len)739 int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
740                           size_t len) {
741   if (rsa->meth->private_transform) {
742     return rsa->meth->private_transform(rsa, out, in, len);
743   }
744 
745   return RSA_default_method.private_transform(rsa, out, in, len);
746 }
747 
RSA_blinding_on(RSA * rsa,BN_CTX * ctx)748 int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
749   return 1;
750 }
751