1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24 
25 namespace llvm {
26   class X86RegisterInfo;
27   class X86Subtarget;
28 
29 namespace X86 {
30   // X86 specific condition code. These correspond to X86_*_COND in
31   // X86InstrInfo.td. They must be kept in synch.
32   enum CondCode {
33     COND_A  = 0,
34     COND_AE = 1,
35     COND_B  = 2,
36     COND_BE = 3,
37     COND_E  = 4,
38     COND_G  = 5,
39     COND_GE = 6,
40     COND_L  = 7,
41     COND_LE = 8,
42     COND_NE = 9,
43     COND_NO = 10,
44     COND_NP = 11,
45     COND_NS = 12,
46     COND_O  = 13,
47     COND_P  = 14,
48     COND_S  = 15,
49     LAST_VALID_COND = COND_S,
50 
51     // Artificial condition codes. These are used by AnalyzeBranch
52     // to indicate a block terminated with two conditional branches to
53     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
54     // which can't be represented on x86 with a single condition. These
55     // are never used in MachineInstrs.
56     COND_NE_OR_P,
57     COND_NP_OR_E,
58 
59     COND_INVALID
60   };
61 
62   // Turn condition code into conditional branch opcode.
63   unsigned GetCondBranchFromCond(CondCode CC);
64 
65   /// \brief Return a set opcode for the given condition and whether it has
66   /// a memory operand.
67   unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
68 
69   /// \brief Return a cmov opcode for the given condition, register size in
70   /// bytes, and operand type.
71   unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
72                            bool HasMemoryOperand = false);
73 
74   // Turn CMov opcode into condition code.
75   CondCode getCondFromCMovOpc(unsigned Opc);
76 
77   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
78   /// e.g. turning COND_E to COND_NE.
79   CondCode GetOppositeBranchCondition(CondCode CC);
80 }  // end namespace X86;
81 
82 
83 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
84 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)85 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
86   switch (TargetFlag) {
87   case X86II::MO_DLLIMPORT: // dllimport stub.
88   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
89   case X86II::MO_GOT:       // normal GOT reference.
90   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
91   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
92   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
93     return true;
94   default:
95     return false;
96   }
97 }
98 
99 /// isGlobalRelativeToPICBase - Return true if the specified global value
100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
103   switch (TargetFlag) {
104   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
105   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
106   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
107   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
108   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
109   case X86II::MO_TLVP:                           // ??? Pretty sure..
110     return true;
111   default:
112     return false;
113   }
114 }
115 
isScale(const MachineOperand & MO)116 inline static bool isScale(const MachineOperand &MO) {
117   return MO.isImm() &&
118     (MO.getImm() == 1 || MO.getImm() == 2 ||
119      MO.getImm() == 4 || MO.getImm() == 8);
120 }
121 
isLeaMem(const MachineInstr * MI,unsigned Op)122 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
123   if (MI->getOperand(Op).isFI()) return true;
124   return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
125     MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
126     isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
127     MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
128     (MI->getOperand(Op+X86::AddrDisp).isImm() ||
129      MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
130      MI->getOperand(Op+X86::AddrDisp).isCPI() ||
131      MI->getOperand(Op+X86::AddrDisp).isJTI());
132 }
133 
isMem(const MachineInstr * MI,unsigned Op)134 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
135   if (MI->getOperand(Op).isFI()) return true;
136   return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
137     MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
138     isLeaMem(MI, Op);
139 }
140 
141 class X86InstrInfo final : public X86GenInstrInfo {
142   X86Subtarget &Subtarget;
143   const X86RegisterInfo RI;
144 
145   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
146   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
147   ///
148   typedef DenseMap<unsigned,
149                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
150   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
151   RegOp2MemOpTableType RegOp2MemOpTable0;
152   RegOp2MemOpTableType RegOp2MemOpTable1;
153   RegOp2MemOpTableType RegOp2MemOpTable2;
154   RegOp2MemOpTableType RegOp2MemOpTable3;
155   RegOp2MemOpTableType RegOp2MemOpTable4;
156 
157   /// MemOp2RegOpTable - Load / store unfolding opcode map.
158   ///
159   typedef DenseMap<unsigned,
160                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
161   MemOp2RegOpTableType MemOp2RegOpTable;
162 
163   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
164                             MemOp2RegOpTableType &M2RTable,
165                             unsigned RegOp, unsigned MemOp, unsigned Flags);
166 
167   virtual void anchor();
168 
169 public:
170   explicit X86InstrInfo(X86Subtarget &STI);
171 
172   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
173   /// such, whenever a client has an instance of instruction info, it should
174   /// always be able to get register info as well (through this method).
175   ///
getRegisterInfo()176   const X86RegisterInfo &getRegisterInfo() const { return RI; }
177 
178   /// getSPAdjust - This returns the stack pointer adjustment made by
179   /// this instruction. For x86, we need to handle more complex call
180   /// sequences involving PUSHes.
181   int getSPAdjust(const MachineInstr *MI) const override;
182 
183   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
184   /// extension instruction. That is, it's like a copy where it's legal for the
185   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
186   /// true, then it's expected the pre-extension value is available as a subreg
187   /// of the result register. This also returns the sub-register index in
188   /// SubIdx.
189   bool isCoalescableExtInstr(const MachineInstr &MI,
190                              unsigned &SrcReg, unsigned &DstReg,
191                              unsigned &SubIdx) const override;
192 
193   unsigned isLoadFromStackSlot(const MachineInstr *MI,
194                                int &FrameIndex) const override;
195   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
196   /// stack locations as well.  This uses a heuristic so it isn't
197   /// reliable for correctness.
198   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
199                                      int &FrameIndex) const override;
200 
201   unsigned isStoreToStackSlot(const MachineInstr *MI,
202                               int &FrameIndex) const override;
203   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
204   /// stack locations as well.  This uses a heuristic so it isn't
205   /// reliable for correctness.
206   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
207                                     int &FrameIndex) const override;
208 
209   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
210                                          AliasAnalysis *AA) const override;
211   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
212                      unsigned DestReg, unsigned SubIdx,
213                      const MachineInstr *Orig,
214                      const TargetRegisterInfo &TRI) const override;
215 
216   /// Given an operand within a MachineInstr, insert preceding code to put it
217   /// into the right format for a particular kind of LEA instruction. This may
218   /// involve using an appropriate super-register instead (with an implicit use
219   /// of the original) or creating a new virtual register and inserting COPY
220   /// instructions to get the data into the right class.
221   ///
222   /// Reference parameters are set to indicate how caller should add this
223   /// operand to the LEA instruction.
224   bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
225                       unsigned LEAOpcode, bool AllowSP,
226                       unsigned &NewSrc, bool &isKill,
227                       bool &isUndef, MachineOperand &ImplicitOp) const;
228 
229   /// convertToThreeAddress - This method must be implemented by targets that
230   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
231   /// may be able to convert a two-address instruction into a true
232   /// three-address instruction on demand.  This allows the X86 target (for
233   /// example) to convert ADD and SHL instructions into LEA instructions if they
234   /// would require register copies due to two-addressness.
235   ///
236   /// This method returns a null pointer if the transformation cannot be
237   /// performed, otherwise it returns the new instruction.
238   ///
239   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
240                                       MachineBasicBlock::iterator &MBBI,
241                                       LiveVariables *LV) const override;
242 
243   /// commuteInstruction - We have a few instructions that must be hacked on to
244   /// commute them.
245   ///
246   MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
247 
248   bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
249                              unsigned &SrcOpIdx2) const override;
250 
251   // Branch analysis.
252   bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
253   bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
254                      MachineBasicBlock *&FBB,
255                      SmallVectorImpl<MachineOperand> &Cond,
256                      bool AllowModify) const override;
257   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
258   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
259                         MachineBasicBlock *FBB,
260                         const SmallVectorImpl<MachineOperand> &Cond,
261                         DebugLoc DL) const override;
262   bool canInsertSelect(const MachineBasicBlock&,
263                        const SmallVectorImpl<MachineOperand> &Cond,
264                        unsigned, unsigned, int&, int&, int&) const override;
265   void insertSelect(MachineBasicBlock &MBB,
266                     MachineBasicBlock::iterator MI, DebugLoc DL,
267                     unsigned DstReg,
268                     const SmallVectorImpl<MachineOperand> &Cond,
269                     unsigned TrueReg, unsigned FalseReg) const override;
270   void copyPhysReg(MachineBasicBlock &MBB,
271                    MachineBasicBlock::iterator MI, DebugLoc DL,
272                    unsigned DestReg, unsigned SrcReg,
273                    bool KillSrc) const override;
274   void storeRegToStackSlot(MachineBasicBlock &MBB,
275                            MachineBasicBlock::iterator MI,
276                            unsigned SrcReg, bool isKill, int FrameIndex,
277                            const TargetRegisterClass *RC,
278                            const TargetRegisterInfo *TRI) const override;
279 
280   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
281                       SmallVectorImpl<MachineOperand> &Addr,
282                       const TargetRegisterClass *RC,
283                       MachineInstr::mmo_iterator MMOBegin,
284                       MachineInstr::mmo_iterator MMOEnd,
285                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
286 
287   void loadRegFromStackSlot(MachineBasicBlock &MBB,
288                             MachineBasicBlock::iterator MI,
289                             unsigned DestReg, int FrameIndex,
290                             const TargetRegisterClass *RC,
291                             const TargetRegisterInfo *TRI) const override;
292 
293   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
294                        SmallVectorImpl<MachineOperand> &Addr,
295                        const TargetRegisterClass *RC,
296                        MachineInstr::mmo_iterator MMOBegin,
297                        MachineInstr::mmo_iterator MMOEnd,
298                        SmallVectorImpl<MachineInstr*> &NewMIs) const;
299 
300   bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
301 
302   /// foldMemoryOperand - If this target supports it, fold a load or store of
303   /// the specified stack slot into the specified machine instruction for the
304   /// specified operand(s).  If this is possible, the target should perform the
305   /// folding and return true, otherwise it should return false.  If it folds
306   /// the instruction, it is likely that the MachineInstruction the iterator
307   /// references has been changed.
308   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
309                                       ArrayRef<unsigned> Ops,
310                                       int FrameIndex) const override;
311 
312   /// foldMemoryOperand - Same as the previous version except it allows folding
313   /// of any load and store from / to any address, not just from a specific
314   /// stack slot.
315   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
316                                       ArrayRef<unsigned> Ops,
317                                       MachineInstr *LoadMI) const override;
318 
319   /// canFoldMemoryOperand - Returns true if the specified load / store is
320   /// folding is possible.
321   bool canFoldMemoryOperand(const MachineInstr *,
322                             ArrayRef<unsigned>) const override;
323 
324   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
325   /// a store or a load and a store into two or more instruction. If this is
326   /// possible, returns true as well as the new instructions by reference.
327   bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
328                          unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
329                          SmallVectorImpl<MachineInstr*> &NewMIs) const override;
330 
331   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
332                            SmallVectorImpl<SDNode*> &NewNodes) const override;
333 
334   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
335   /// instruction after load / store are unfolded from an instruction of the
336   /// specified opcode. It returns zero if the specified unfolding is not
337   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
338   /// index of the operand which will hold the register holding the loaded
339   /// value.
340   unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
341                               bool UnfoldLoad, bool UnfoldStore,
342                               unsigned *LoadRegIndex = nullptr) const override;
343 
344   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
345   /// to determine if two loads are loading from the same base address. It
346   /// should only return true if the base pointers are the same and the
347   /// only differences between the two addresses are the offset. It also returns
348   /// the offsets by reference.
349   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
350                                int64_t &Offset2) const override;
351 
352   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
353   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
354   /// be scheduled togther. On some targets if two loads are loading from
355   /// addresses in the same cache line, it's better if they are scheduled
356   /// together. This function takes two integers that represent the load offsets
357   /// from the common base address. It returns true if it decides it's desirable
358   /// to schedule the two loads together. "NumLoads" is the number of loads that
359   /// have already been scheduled after Load1.
360   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
361                                int64_t Offset1, int64_t Offset2,
362                                unsigned NumLoads) const override;
363 
364   bool shouldScheduleAdjacent(MachineInstr* First,
365                               MachineInstr *Second) const override;
366 
367   void getNoopForMachoTarget(MCInst &NopInst) const override;
368 
369   bool
370   ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
371 
372   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
373   /// instruction that defines the specified register class.
374   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
375 
376   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
377   /// would clobber the EFLAGS condition register. Note the result may be
378   /// conservative. If it cannot definitely determine the safety after visiting
379   /// a few instructions in each direction it assumes it's not safe.
380   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
381                              MachineBasicBlock::iterator I) const;
382 
isX86_64ExtendedReg(const MachineOperand & MO)383   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
384     if (!MO.isReg()) return false;
385     return X86II::isX86_64ExtendedReg(MO.getReg());
386   }
387 
388   /// getGlobalBaseReg - Return a virtual register initialized with the
389   /// the global base register value. Output instructions required to
390   /// initialize the register in the function entry block, if necessary.
391   ///
392   unsigned getGlobalBaseReg(MachineFunction *MF) const;
393 
394   std::pair<uint16_t, uint16_t>
395   getExecutionDomain(const MachineInstr *MI) const override;
396 
397   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
398 
399   unsigned
400     getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
401                                  const TargetRegisterInfo *TRI) const override;
402   unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
403                                 const TargetRegisterInfo *TRI) const override;
404   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
405                                  const TargetRegisterInfo *TRI) const override;
406 
407   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
408                                       unsigned OpNum,
409                                       ArrayRef<MachineOperand> MOs,
410                                       unsigned Size, unsigned Alignment,
411                                       bool AllowCommute) const;
412 
413   void
414   getUnconditionalBranch(MCInst &Branch,
415                          const MCSymbolRefExpr *BranchTarget) const override;
416 
417   void getTrap(MCInst &MI) const override;
418 
419   unsigned getJumpInstrTableEntryBound() const override;
420 
421   bool isHighLatencyDef(int opc) const override;
422 
423   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
424                              const MachineRegisterInfo *MRI,
425                              const MachineInstr *DefMI, unsigned DefIdx,
426                              const MachineInstr *UseMI,
427                              unsigned UseIdx) const override;
428 
429   /// analyzeCompare - For a comparison instruction, return the source registers
430   /// in SrcReg and SrcReg2 if having two register operands, and the value it
431   /// compares against in CmpValue. Return true if the comparison instruction
432   /// can be analyzed.
433   bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
434                       unsigned &SrcReg2, int &CmpMask,
435                       int &CmpValue) const override;
436 
437   /// optimizeCompareInstr - Check if there exists an earlier instruction that
438   /// operates on the same source operands and sets flags in the same way as
439   /// Compare; remove Compare if possible.
440   bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
441                             unsigned SrcReg2, int CmpMask, int CmpValue,
442                             const MachineRegisterInfo *MRI) const override;
443 
444   /// optimizeLoadInstr - Try to remove the load by folding it to a register
445   /// operand at the use. We fold the load instructions if and only if the
446   /// def and use are in the same BB. We only look at one load and see
447   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
448   /// defined by the load we are trying to fold. DefMI returns the machine
449   /// instruction that defines FoldAsLoadDefReg, and the function returns
450   /// the machine instruction generated due to folding.
451   MachineInstr* optimizeLoadInstr(MachineInstr *MI,
452                                   const MachineRegisterInfo *MRI,
453                                   unsigned &FoldAsLoadDefReg,
454                                   MachineInstr *&DefMI) const override;
455 
456 private:
457   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
458                                               MachineFunction::iterator &MFI,
459                                               MachineBasicBlock::iterator &MBBI,
460                                               LiveVariables *LV) const;
461 
462   /// isFrameOperand - Return true and the FrameIndex if the specified
463   /// operand and follow operands form a reference to the stack frame.
464   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
465                       int &FrameIndex) const;
466 };
467 
468 } // End llvm namespace
469 
470 #endif
471