1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegAllocRegistry.h"
29 #include "llvm/CodeGen/RegisterClassInfo.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 #include <algorithm>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "regalloc"
41
42 STATISTIC(NumStores, "Number of stores added");
43 STATISTIC(NumLoads , "Number of loads added");
44 STATISTIC(NumCopies, "Number of copies coalesced");
45
46 static RegisterRegAlloc
47 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
48
49 namespace {
50 class RAFast : public MachineFunctionPass {
51 public:
52 static char ID;
RAFast()53 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
54 isBulkSpilling(false) {}
55 private:
56 MachineFunction *MF;
57 MachineRegisterInfo *MRI;
58 const TargetRegisterInfo *TRI;
59 const TargetInstrInfo *TII;
60 RegisterClassInfo RegClassInfo;
61
62 // Basic block currently being allocated.
63 MachineBasicBlock *MBB;
64
65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66 // values are spilled.
67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69 // Everything we know about a live virtual register.
70 struct LiveReg {
71 MachineInstr *LastUse; // Last instr to use reg.
72 unsigned VirtReg; // Virtual register number.
73 unsigned PhysReg; // Currently held here.
74 unsigned short LastOpNum; // OpNum on LastUse.
75 bool Dirty; // Register needs spill.
76
LiveReg__anonb64cd7cd0111::RAFast::LiveReg77 explicit LiveReg(unsigned v)
78 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){}
79
getSparseSetIndex__anonb64cd7cd0111::RAFast::LiveReg80 unsigned getSparseSetIndex() const {
81 return TargetRegisterInfo::virtReg2Index(VirtReg);
82 }
83 };
84
85 typedef SparseSet<LiveReg> LiveRegMap;
86
87 // LiveVirtRegs - This map contains entries for each virtual register
88 // that is currently available in a physical register.
89 LiveRegMap LiveVirtRegs;
90
91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93 // RegState - Track the state of a physical register.
94 enum RegState {
95 // A disabled register is not available for allocation, but an alias may
96 // be in use. A register can only be moved out of the disabled state if
97 // all aliases are disabled.
98 regDisabled,
99
100 // A free register is not currently in use and can be allocated
101 // immediately without checking aliases.
102 regFree,
103
104 // A reserved register has been assigned explicitly (e.g., setting up a
105 // call parameter), and it remains reserved until it is used.
106 regReserved
107
108 // A register state may also be a virtual register number, indication that
109 // the physical register is currently allocated to a virtual register. In
110 // that case, LiveVirtRegs contains the inverse mapping.
111 };
112
113 // PhysRegState - One of the RegState enums, or a virtreg.
114 std::vector<unsigned> PhysRegState;
115
116 // Set of register units.
117 typedef SparseSet<unsigned> UsedInInstrSet;
118
119 // Set of register units that are used in the current instruction, and so
120 // cannot be allocated.
121 UsedInInstrSet UsedInInstr;
122
123 // Mark a physreg as used in this instruction.
markRegUsedInInstr(unsigned PhysReg)124 void markRegUsedInInstr(unsigned PhysReg) {
125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126 UsedInInstr.insert(*Units);
127 }
128
129 // Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(unsigned PhysReg) const130 bool isRegUsedInInstr(unsigned PhysReg) const {
131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132 if (UsedInInstr.count(*Units))
133 return true;
134 return false;
135 }
136
137 // SkippedInstrs - Descriptors of instructions whose clobber list was
138 // ignored because all registers were spilled. It is still necessary to
139 // mark all the clobbered registers as used by the function.
140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143 // completely after spilling all live registers. LiveRegMap entries should
144 // not be erased.
145 bool isBulkSpilling;
146
147 enum : unsigned {
148 spillClean = 1,
149 spillDirty = 100,
150 spillImpossible = ~0u
151 };
152 public:
getPassName() const153 const char *getPassName() const override {
154 return "Fast Register Allocator";
155 }
156
getAnalysisUsage(AnalysisUsage & AU) const157 void getAnalysisUsage(AnalysisUsage &AU) const override {
158 AU.setPreservesCFG();
159 MachineFunctionPass::getAnalysisUsage(AU);
160 }
161
162 private:
163 bool runOnMachineFunction(MachineFunction &Fn) override;
164 void AllocateBasicBlock();
165 void handleThroughOperands(MachineInstr *MI,
166 SmallVectorImpl<unsigned> &VirtDead);
167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168 bool isLastUseOfLocalReg(MachineOperand&);
169
170 void addKillFlag(const LiveReg&);
171 void killVirtReg(LiveRegMap::iterator);
172 void killVirtReg(unsigned VirtReg);
173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176 void usePhysReg(MachineOperand&);
177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178 unsigned calcSpillCost(unsigned PhysReg) const;
179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
findLiveVirtReg(unsigned VirtReg)180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182 }
findLiveVirtReg(unsigned VirtReg) const183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185 }
186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188 unsigned Hint);
189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190 unsigned VirtReg, unsigned Hint);
191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192 unsigned VirtReg, unsigned Hint);
193 void spillAll(MachineBasicBlock::iterator MI);
194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195 };
196 char RAFast::ID = 0;
197 }
198
199 /// getStackSpaceFor - This allocates space for the specified virtual register
200 /// to be held on the stack.
getStackSpaceFor(unsigned VirtReg,const TargetRegisterClass * RC)201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202 // Find the location Reg would belong...
203 int SS = StackSlotForVirtReg[VirtReg];
204 if (SS != -1)
205 return SS; // Already has space allocated?
206
207 // Allocate a new stack object for this spill location...
208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209 RC->getAlignment());
210
211 // Assign the slot.
212 StackSlotForVirtReg[VirtReg] = FrameIdx;
213 return FrameIdx;
214 }
215
216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217 /// its virtual register, and it is guaranteed to be a block-local register.
218 ///
isLastUseOfLocalReg(MachineOperand & MO)219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220 // If the register has ever been spilled or reloaded, we conservatively assume
221 // it is a global register used in multiple blocks.
222 if (StackSlotForVirtReg[MO.getReg()] != -1)
223 return false;
224
225 // Check that the use/def chain has exactly one operand - MO.
226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227 if (&*I != &MO)
228 return false;
229 return ++I == MRI->reg_nodbg_end();
230 }
231
232 /// addKillFlag - Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)233 void RAFast::addKillFlag(const LiveReg &LR) {
234 if (!LR.LastUse) return;
235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237 if (MO.getReg() == LR.PhysReg)
238 MO.setIsKill();
239 else
240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241 }
242 }
243
244 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(LiveRegMap::iterator LRI)245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246 addKillFlag(*LRI);
247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248 "Broken RegState mapping");
249 PhysRegState[LRI->PhysReg] = regFree;
250 // Erase from LiveVirtRegs unless we're spilling in bulk.
251 if (!isBulkSpilling)
252 LiveVirtRegs.erase(LRI);
253 }
254
255 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(unsigned VirtReg)256 void RAFast::killVirtReg(unsigned VirtReg) {
257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258 "killVirtReg needs a virtual register");
259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260 if (LRI != LiveVirtRegs.end())
261 killVirtReg(LRI);
262 }
263
264 /// spillVirtReg - This method spills the value specified by VirtReg into the
265 /// corresponding stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,unsigned VirtReg)266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268 "Spilling a physical register is illegal!");
269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271 spillVirtReg(MI, LRI);
272 }
273
274 /// spillVirtReg - Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveRegMap::iterator LRI)275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276 LiveRegMap::iterator LRI) {
277 LiveReg &LR = *LRI;
278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280 if (LR.Dirty) {
281 // If this physreg is used by the instruction, we want to kill it on the
282 // instruction, not on the spill.
283 bool SpillKill = LR.LastUse != MI;
284 LR.Dirty = false;
285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286 << " in " << PrintReg(LR.PhysReg, TRI));
287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288 int FI = getStackSpaceFor(LRI->VirtReg, RC);
289 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291 ++NumStores; // Update statistics
292
293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294 // identify spilled location as the place to find corresponding variable's
295 // value.
296 SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297 LiveDbgValueMap[LRI->VirtReg];
298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299 MachineInstr *DBG = LRIDbgValues[li];
300 const MDNode *Var = DBG->getDebugVariable();
301 const MDNode *Expr = DBG->getDebugExpression();
302 bool IsIndirect = DBG->isIndirectDebugValue();
303 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
304 DebugLoc DL = DBG->getDebugLoc();
305 assert(cast<MDLocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
306 "Expected inlined-at fields to agree");
307 MachineInstr *NewDV =
308 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
309 .addFrameIndex(FI)
310 .addImm(Offset)
311 .addMetadata(Var)
312 .addMetadata(Expr);
313 assert(NewDV->getParent() == MBB && "dangling parent pointer");
314 (void)NewDV;
315 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
316 }
317 // Now this register is spilled there is should not be any DBG_VALUE
318 // pointing to this register because they are all pointing to spilled value
319 // now.
320 LRIDbgValues.clear();
321 if (SpillKill)
322 LR.LastUse = nullptr; // Don't kill register again
323 }
324 killVirtReg(LRI);
325 }
326
327 /// spillAll - Spill all dirty virtregs without killing them.
spillAll(MachineBasicBlock::iterator MI)328 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329 if (LiveVirtRegs.empty()) return;
330 isBulkSpilling = true;
331 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332 // of spilling here is deterministic, if arbitrary.
333 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
334 i != e; ++i)
335 spillVirtReg(MI, i);
336 LiveVirtRegs.clear();
337 isBulkSpilling = false;
338 }
339
340 /// usePhysReg - Handle the direct use of a physical register.
341 /// Check that the register is not used by a virtreg.
342 /// Kill the physreg, marking it free.
343 /// This may add implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)344 void RAFast::usePhysReg(MachineOperand &MO) {
345 unsigned PhysReg = MO.getReg();
346 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347 "Bad usePhysReg operand");
348 markRegUsedInInstr(PhysReg);
349 switch (PhysRegState[PhysReg]) {
350 case regDisabled:
351 break;
352 case regReserved:
353 PhysRegState[PhysReg] = regFree;
354 // Fall through
355 case regFree:
356 MO.setIsKill();
357 return;
358 default:
359 // The physreg was allocated to a virtual register. That means the value we
360 // wanted has been clobbered.
361 llvm_unreachable("Instruction uses an allocated register");
362 }
363
364 // Maybe a superregister is reserved?
365 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366 unsigned Alias = *AI;
367 switch (PhysRegState[Alias]) {
368 case regDisabled:
369 break;
370 case regReserved:
371 // Either PhysReg is a subregister of Alias and we mark the
372 // whole register as free, or PhysReg is the superregister of
373 // Alias and we mark all the aliases as disabled before freeing
374 // PhysReg.
375 // In the latter case, since PhysReg was disabled, this means that
376 // its value is defined only by physical sub-registers. This check
377 // is performed by the assert of the default case in this loop.
378 // Note: The value of the superregister may only be partial
379 // defined, that is why regDisabled is a valid state for aliases.
380 assert((TRI->isSuperRegister(PhysReg, Alias) ||
381 TRI->isSuperRegister(Alias, PhysReg)) &&
382 "Instruction is not using a subregister of a reserved register");
383 // Fall through.
384 case regFree:
385 if (TRI->isSuperRegister(PhysReg, Alias)) {
386 // Leave the superregister in the working set.
387 PhysRegState[Alias] = regFree;
388 MO.getParent()->addRegisterKilled(Alias, TRI, true);
389 return;
390 }
391 // Some other alias was in the working set - clear it.
392 PhysRegState[Alias] = regDisabled;
393 break;
394 default:
395 llvm_unreachable("Instruction uses an alias of an allocated register");
396 }
397 }
398
399 // All aliases are disabled, bring register into working set.
400 PhysRegState[PhysReg] = regFree;
401 MO.setIsKill();
402 }
403
404 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
405 /// virtregs. This is very similar to defineVirtReg except the physreg is
406 /// reserved instead of allocated.
definePhysReg(MachineInstr * MI,unsigned PhysReg,RegState NewState)407 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
408 RegState NewState) {
409 markRegUsedInInstr(PhysReg);
410 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
411 case regDisabled:
412 break;
413 default:
414 spillVirtReg(MI, VirtReg);
415 // Fall through.
416 case regFree:
417 case regReserved:
418 PhysRegState[PhysReg] = NewState;
419 return;
420 }
421
422 // This is a disabled register, disable all aliases.
423 PhysRegState[PhysReg] = NewState;
424 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
425 unsigned Alias = *AI;
426 switch (unsigned VirtReg = PhysRegState[Alias]) {
427 case regDisabled:
428 break;
429 default:
430 spillVirtReg(MI, VirtReg);
431 // Fall through.
432 case regFree:
433 case regReserved:
434 PhysRegState[Alias] = regDisabled;
435 if (TRI->isSuperRegister(PhysReg, Alias))
436 return;
437 break;
438 }
439 }
440 }
441
442
443 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
444 // aliases so it is free for allocation.
445 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
446 // can be allocated directly.
447 // Returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(unsigned PhysReg) const448 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
449 if (isRegUsedInInstr(PhysReg)) {
450 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
451 return spillImpossible;
452 }
453 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
454 case regDisabled:
455 break;
456 case regFree:
457 return 0;
458 case regReserved:
459 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
460 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
461 return spillImpossible;
462 default: {
463 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
464 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
465 return I->Dirty ? spillDirty : spillClean;
466 }
467 }
468
469 // This is a disabled register, add up cost of aliases.
470 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
471 unsigned Cost = 0;
472 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
473 unsigned Alias = *AI;
474 switch (unsigned VirtReg = PhysRegState[Alias]) {
475 case regDisabled:
476 break;
477 case regFree:
478 ++Cost;
479 break;
480 case regReserved:
481 return spillImpossible;
482 default: {
483 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
484 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
485 Cost += I->Dirty ? spillDirty : spillClean;
486 break;
487 }
488 }
489 }
490 return Cost;
491 }
492
493
494 /// assignVirtToPhysReg - This method updates local state so that we know
495 /// that PhysReg is the proper container for VirtReg now. The physical
496 /// register must not be used for anything else when this is called.
497 ///
assignVirtToPhysReg(LiveReg & LR,unsigned PhysReg)498 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
499 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
500 << PrintReg(PhysReg, TRI) << "\n");
501 PhysRegState[PhysReg] = LR.VirtReg;
502 assert(!LR.PhysReg && "Already assigned a physreg");
503 LR.PhysReg = PhysReg;
504 }
505
506 RAFast::LiveRegMap::iterator
assignVirtToPhysReg(unsigned VirtReg,unsigned PhysReg)507 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
508 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
509 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
510 assignVirtToPhysReg(*LRI, PhysReg);
511 return LRI;
512 }
513
514 /// allocVirtReg - Allocate a physical register for VirtReg.
allocVirtReg(MachineInstr * MI,LiveRegMap::iterator LRI,unsigned Hint)515 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
516 LiveRegMap::iterator LRI,
517 unsigned Hint) {
518 const unsigned VirtReg = LRI->VirtReg;
519
520 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
521 "Can only allocate virtual registers");
522
523 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
524
525 // Ignore invalid hints.
526 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
527 !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
528 Hint = 0;
529
530 // Take hint when possible.
531 if (Hint) {
532 // Ignore the hint if we would have to spill a dirty register.
533 unsigned Cost = calcSpillCost(Hint);
534 if (Cost < spillDirty) {
535 if (Cost)
536 definePhysReg(MI, Hint, regFree);
537 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
538 // That invalidates LRI, so run a new lookup for VirtReg.
539 return assignVirtToPhysReg(VirtReg, Hint);
540 }
541 }
542
543 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
544
545 // First try to find a completely free register.
546 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
547 unsigned PhysReg = *I;
548 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
549 assignVirtToPhysReg(*LRI, PhysReg);
550 return LRI;
551 }
552 }
553
554 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
555 << TRI->getRegClassName(RC) << "\n");
556
557 unsigned BestReg = 0, BestCost = spillImpossible;
558 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
559 unsigned Cost = calcSpillCost(*I);
560 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
561 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
562 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
563 // Cost is 0 when all aliases are already disabled.
564 if (Cost == 0) {
565 assignVirtToPhysReg(*LRI, *I);
566 return LRI;
567 }
568 if (Cost < BestCost)
569 BestReg = *I, BestCost = Cost;
570 }
571
572 if (BestReg) {
573 definePhysReg(MI, BestReg, regFree);
574 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
575 // That invalidates LRI, so run a new lookup for VirtReg.
576 return assignVirtToPhysReg(VirtReg, BestReg);
577 }
578
579 // Nothing we can do. Report an error and keep going with a bad allocation.
580 if (MI->isInlineAsm())
581 MI->emitError("inline assembly requires more registers than available");
582 else
583 MI->emitError("ran out of registers during register allocation");
584 definePhysReg(MI, *AO.begin(), regFree);
585 return assignVirtToPhysReg(VirtReg, *AO.begin());
586 }
587
588 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
589 RAFast::LiveRegMap::iterator
defineVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)590 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
591 unsigned VirtReg, unsigned Hint) {
592 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
593 "Not a virtual register");
594 LiveRegMap::iterator LRI;
595 bool New;
596 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
597 if (New) {
598 // If there is no hint, peek at the only use of this register.
599 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
600 MRI->hasOneNonDBGUse(VirtReg)) {
601 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
602 // It's a copy, use the destination register as a hint.
603 if (UseMI.isCopyLike())
604 Hint = UseMI.getOperand(0).getReg();
605 }
606 LRI = allocVirtReg(MI, LRI, Hint);
607 } else if (LRI->LastUse) {
608 // Redefining a live register - kill at the last use, unless it is this
609 // instruction defining VirtReg multiple times.
610 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
611 addKillFlag(*LRI);
612 }
613 assert(LRI->PhysReg && "Register not assigned");
614 LRI->LastUse = MI;
615 LRI->LastOpNum = OpNum;
616 LRI->Dirty = true;
617 markRegUsedInInstr(LRI->PhysReg);
618 return LRI;
619 }
620
621 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
622 RAFast::LiveRegMap::iterator
reloadVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)623 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
624 unsigned VirtReg, unsigned Hint) {
625 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
626 "Not a virtual register");
627 LiveRegMap::iterator LRI;
628 bool New;
629 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
630 MachineOperand &MO = MI->getOperand(OpNum);
631 if (New) {
632 LRI = allocVirtReg(MI, LRI, Hint);
633 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
634 int FrameIndex = getStackSpaceFor(VirtReg, RC);
635 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
636 << PrintReg(LRI->PhysReg, TRI) << "\n");
637 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
638 ++NumLoads;
639 } else if (LRI->Dirty) {
640 if (isLastUseOfLocalReg(MO)) {
641 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
642 if (MO.isUse())
643 MO.setIsKill();
644 else
645 MO.setIsDead();
646 } else if (MO.isKill()) {
647 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
648 MO.setIsKill(false);
649 } else if (MO.isDead()) {
650 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
651 MO.setIsDead(false);
652 }
653 } else if (MO.isKill()) {
654 // We must remove kill flags from uses of reloaded registers because the
655 // register would be killed immediately, and there might be a second use:
656 // %foo = OR %x<kill>, %x
657 // This would cause a second reload of %x into a different register.
658 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
659 MO.setIsKill(false);
660 } else if (MO.isDead()) {
661 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
662 MO.setIsDead(false);
663 }
664 assert(LRI->PhysReg && "Register not assigned");
665 LRI->LastUse = MI;
666 LRI->LastOpNum = OpNum;
667 markRegUsedInInstr(LRI->PhysReg);
668 return LRI;
669 }
670
671 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
672 // subregs. This may invalidate any operand pointers.
673 // Return true if the operand kills its register.
setPhysReg(MachineInstr * MI,unsigned OpNum,unsigned PhysReg)674 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
675 MachineOperand &MO = MI->getOperand(OpNum);
676 bool Dead = MO.isDead();
677 if (!MO.getSubReg()) {
678 MO.setReg(PhysReg);
679 return MO.isKill() || Dead;
680 }
681
682 // Handle subregister index.
683 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
684 MO.setSubReg(0);
685
686 // A kill flag implies killing the full register. Add corresponding super
687 // register kill.
688 if (MO.isKill()) {
689 MI->addRegisterKilled(PhysReg, TRI, true);
690 return true;
691 }
692
693 // A <def,read-undef> of a sub-register requires an implicit def of the full
694 // register.
695 if (MO.isDef() && MO.isUndef())
696 MI->addRegisterDefined(PhysReg, TRI);
697
698 return Dead;
699 }
700
701 // Handle special instruction operand like early clobbers and tied ops when
702 // there are additional physreg defines.
handleThroughOperands(MachineInstr * MI,SmallVectorImpl<unsigned> & VirtDead)703 void RAFast::handleThroughOperands(MachineInstr *MI,
704 SmallVectorImpl<unsigned> &VirtDead) {
705 DEBUG(dbgs() << "Scanning for through registers:");
706 SmallSet<unsigned, 8> ThroughRegs;
707 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
708 MachineOperand &MO = MI->getOperand(i);
709 if (!MO.isReg()) continue;
710 unsigned Reg = MO.getReg();
711 if (!TargetRegisterInfo::isVirtualRegister(Reg))
712 continue;
713 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
714 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
715 if (ThroughRegs.insert(Reg).second)
716 DEBUG(dbgs() << ' ' << PrintReg(Reg));
717 }
718 }
719
720 // If any physreg defines collide with preallocated through registers,
721 // we must spill and reallocate.
722 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
723 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
724 MachineOperand &MO = MI->getOperand(i);
725 if (!MO.isReg() || !MO.isDef()) continue;
726 unsigned Reg = MO.getReg();
727 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
728 markRegUsedInInstr(Reg);
729 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
730 if (ThroughRegs.count(PhysRegState[*AI]))
731 definePhysReg(MI, *AI, regFree);
732 }
733 }
734
735 SmallVector<unsigned, 8> PartialDefs;
736 DEBUG(dbgs() << "Allocating tied uses.\n");
737 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
738 MachineOperand &MO = MI->getOperand(i);
739 if (!MO.isReg()) continue;
740 unsigned Reg = MO.getReg();
741 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
742 if (MO.isUse()) {
743 unsigned DefIdx = 0;
744 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
745 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
746 << DefIdx << ".\n");
747 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
748 unsigned PhysReg = LRI->PhysReg;
749 setPhysReg(MI, i, PhysReg);
750 // Note: we don't update the def operand yet. That would cause the normal
751 // def-scan to attempt spilling.
752 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
753 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
754 // Reload the register, but don't assign to the operand just yet.
755 // That would confuse the later phys-def processing pass.
756 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
757 PartialDefs.push_back(LRI->PhysReg);
758 }
759 }
760
761 DEBUG(dbgs() << "Allocating early clobbers.\n");
762 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
763 MachineOperand &MO = MI->getOperand(i);
764 if (!MO.isReg()) continue;
765 unsigned Reg = MO.getReg();
766 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
767 if (!MO.isEarlyClobber())
768 continue;
769 // Note: defineVirtReg may invalidate MO.
770 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
771 unsigned PhysReg = LRI->PhysReg;
772 if (setPhysReg(MI, i, PhysReg))
773 VirtDead.push_back(Reg);
774 }
775
776 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
777 UsedInInstr.clear();
778 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
779 MachineOperand &MO = MI->getOperand(i);
780 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
781 unsigned Reg = MO.getReg();
782 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
783 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
784 << " as used in instr\n");
785 markRegUsedInInstr(Reg);
786 }
787
788 // Also mark PartialDefs as used to avoid reallocation.
789 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
790 markRegUsedInInstr(PartialDefs[i]);
791 }
792
AllocateBasicBlock()793 void RAFast::AllocateBasicBlock() {
794 DEBUG(dbgs() << "\nAllocating " << *MBB);
795
796 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
797 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
798
799 MachineBasicBlock::iterator MII = MBB->begin();
800
801 // Add live-in registers as live.
802 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
803 E = MBB->livein_end(); I != E; ++I)
804 if (MRI->isAllocatable(*I))
805 definePhysReg(MII, *I, regReserved);
806
807 SmallVector<unsigned, 8> VirtDead;
808 SmallVector<MachineInstr*, 32> Coalesced;
809
810 // Otherwise, sequentially allocate each instruction in the MBB.
811 while (MII != MBB->end()) {
812 MachineInstr *MI = MII++;
813 const MCInstrDesc &MCID = MI->getDesc();
814 DEBUG({
815 dbgs() << "\n>> " << *MI << "Regs:";
816 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
817 if (PhysRegState[Reg] == regDisabled) continue;
818 dbgs() << " " << TRI->getName(Reg);
819 switch(PhysRegState[Reg]) {
820 case regFree:
821 break;
822 case regReserved:
823 dbgs() << "*";
824 break;
825 default: {
826 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
827 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
828 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
829 if (I->Dirty)
830 dbgs() << "*";
831 assert(I->PhysReg == Reg && "Bad inverse map");
832 break;
833 }
834 }
835 }
836 dbgs() << '\n';
837 // Check that LiveVirtRegs is the inverse.
838 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
839 e = LiveVirtRegs.end(); i != e; ++i) {
840 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
841 "Bad map key");
842 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
843 "Bad map value");
844 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
845 }
846 });
847
848 // Debug values are not allowed to change codegen in any way.
849 if (MI->isDebugValue()) {
850 bool ScanDbgValue = true;
851 while (ScanDbgValue) {
852 ScanDbgValue = false;
853 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
854 MachineOperand &MO = MI->getOperand(i);
855 if (!MO.isReg()) continue;
856 unsigned Reg = MO.getReg();
857 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
858 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
859 if (LRI != LiveVirtRegs.end())
860 setPhysReg(MI, i, LRI->PhysReg);
861 else {
862 int SS = StackSlotForVirtReg[Reg];
863 if (SS == -1) {
864 // We can't allocate a physreg for a DebugValue, sorry!
865 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
866 MO.setReg(0);
867 }
868 else {
869 // Modify DBG_VALUE now that the value is in a spill slot.
870 bool IsIndirect = MI->isIndirectDebugValue();
871 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
872 const MDNode *Var = MI->getDebugVariable();
873 const MDNode *Expr = MI->getDebugExpression();
874 DebugLoc DL = MI->getDebugLoc();
875 MachineBasicBlock *MBB = MI->getParent();
876 assert(
877 cast<MDLocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
878 "Expected inlined-at fields to agree");
879 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
880 TII->get(TargetOpcode::DBG_VALUE))
881 .addFrameIndex(SS)
882 .addImm(Offset)
883 .addMetadata(Var)
884 .addMetadata(Expr);
885 DEBUG(dbgs() << "Modifying debug info due to spill:"
886 << "\t" << *NewDV);
887 // Scan NewDV operands from the beginning.
888 MI = NewDV;
889 ScanDbgValue = true;
890 break;
891 }
892 }
893 LiveDbgValueMap[Reg].push_back(MI);
894 }
895 }
896 // Next instruction.
897 continue;
898 }
899
900 // If this is a copy, we may be able to coalesce.
901 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
902 if (MI->isCopy()) {
903 CopyDst = MI->getOperand(0).getReg();
904 CopySrc = MI->getOperand(1).getReg();
905 CopyDstSub = MI->getOperand(0).getSubReg();
906 CopySrcSub = MI->getOperand(1).getSubReg();
907 }
908
909 // Track registers used by instruction.
910 UsedInInstr.clear();
911
912 // First scan.
913 // Mark physreg uses and early clobbers as used.
914 // Find the end of the virtreg operands
915 unsigned VirtOpEnd = 0;
916 bool hasTiedOps = false;
917 bool hasEarlyClobbers = false;
918 bool hasPartialRedefs = false;
919 bool hasPhysDefs = false;
920 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
921 MachineOperand &MO = MI->getOperand(i);
922 // Make sure MRI knows about registers clobbered by regmasks.
923 if (MO.isRegMask()) {
924 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
925 continue;
926 }
927 if (!MO.isReg()) continue;
928 unsigned Reg = MO.getReg();
929 if (!Reg) continue;
930 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
931 VirtOpEnd = i+1;
932 if (MO.isUse()) {
933 hasTiedOps = hasTiedOps ||
934 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
935 } else {
936 if (MO.isEarlyClobber())
937 hasEarlyClobbers = true;
938 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
939 hasPartialRedefs = true;
940 }
941 continue;
942 }
943 if (!MRI->isAllocatable(Reg)) continue;
944 if (MO.isUse()) {
945 usePhysReg(MO);
946 } else if (MO.isEarlyClobber()) {
947 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
948 regFree : regReserved);
949 hasEarlyClobbers = true;
950 } else
951 hasPhysDefs = true;
952 }
953
954 // The instruction may have virtual register operands that must be allocated
955 // the same register at use-time and def-time: early clobbers and tied
956 // operands. If there are also physical defs, these registers must avoid
957 // both physical defs and uses, making them more constrained than normal
958 // operands.
959 // Similarly, if there are multiple defs and tied operands, we must make
960 // sure the same register is allocated to uses and defs.
961 // We didn't detect inline asm tied operands above, so just make this extra
962 // pass for all inline asm.
963 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
964 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
965 handleThroughOperands(MI, VirtDead);
966 // Don't attempt coalescing when we have funny stuff going on.
967 CopyDst = 0;
968 // Pretend we have early clobbers so the use operands get marked below.
969 // This is not necessary for the common case of a single tied use.
970 hasEarlyClobbers = true;
971 }
972
973 // Second scan.
974 // Allocate virtreg uses.
975 for (unsigned i = 0; i != VirtOpEnd; ++i) {
976 MachineOperand &MO = MI->getOperand(i);
977 if (!MO.isReg()) continue;
978 unsigned Reg = MO.getReg();
979 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
980 if (MO.isUse()) {
981 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
982 unsigned PhysReg = LRI->PhysReg;
983 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
984 if (setPhysReg(MI, i, PhysReg))
985 killVirtReg(LRI);
986 }
987 }
988
989 for (UsedInInstrSet::iterator
990 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
991 MRI->setRegUnitUsed(*I);
992
993 // Track registers defined by instruction - early clobbers and tied uses at
994 // this point.
995 UsedInInstr.clear();
996 if (hasEarlyClobbers) {
997 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
998 MachineOperand &MO = MI->getOperand(i);
999 if (!MO.isReg()) continue;
1000 unsigned Reg = MO.getReg();
1001 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1002 // Look for physreg defs and tied uses.
1003 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
1004 markRegUsedInInstr(Reg);
1005 }
1006 }
1007
1008 unsigned DefOpEnd = MI->getNumOperands();
1009 if (MI->isCall()) {
1010 // Spill all virtregs before a call. This serves two purposes: 1. If an
1011 // exception is thrown, the landing pad is going to expect to find
1012 // registers in their spill slots, and 2. we don't have to wade through
1013 // all the <imp-def> operands on the call instruction.
1014 DefOpEnd = VirtOpEnd;
1015 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1016 spillAll(MI);
1017
1018 // The imp-defs are skipped below, but we still need to mark those
1019 // registers as used by the function.
1020 SkippedInstrs.insert(&MCID);
1021 }
1022
1023 // Third scan.
1024 // Allocate defs and collect dead defs.
1025 for (unsigned i = 0; i != DefOpEnd; ++i) {
1026 MachineOperand &MO = MI->getOperand(i);
1027 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1028 continue;
1029 unsigned Reg = MO.getReg();
1030
1031 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1032 if (!MRI->isAllocatable(Reg)) continue;
1033 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1034 continue;
1035 }
1036 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1037 unsigned PhysReg = LRI->PhysReg;
1038 if (setPhysReg(MI, i, PhysReg)) {
1039 VirtDead.push_back(Reg);
1040 CopyDst = 0; // cancel coalescing;
1041 } else
1042 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1043 }
1044
1045 // Kill dead defs after the scan to ensure that multiple defs of the same
1046 // register are allocated identically. We didn't need to do this for uses
1047 // because we are crerating our own kill flags, and they are always at the
1048 // last use.
1049 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1050 killVirtReg(VirtDead[i]);
1051 VirtDead.clear();
1052
1053 for (UsedInInstrSet::iterator
1054 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1055 MRI->setRegUnitUsed(*I);
1056
1057 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1058 DEBUG(dbgs() << "-- coalescing: " << *MI);
1059 Coalesced.push_back(MI);
1060 } else {
1061 DEBUG(dbgs() << "<< " << *MI);
1062 }
1063 }
1064
1065 // Spill all physical registers holding virtual registers now.
1066 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1067 spillAll(MBB->getFirstTerminator());
1068
1069 // Erase all the coalesced copies. We are delaying it until now because
1070 // LiveVirtRegs might refer to the instrs.
1071 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1072 MBB->erase(Coalesced[i]);
1073 NumCopies += Coalesced.size();
1074
1075 DEBUG(MBB->dump());
1076 }
1077
1078 /// runOnMachineFunction - Register allocate the whole function
1079 ///
runOnMachineFunction(MachineFunction & Fn)1080 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1081 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1082 << "********** Function: " << Fn.getName() << '\n');
1083 MF = &Fn;
1084 MRI = &MF->getRegInfo();
1085 TRI = MF->getSubtarget().getRegisterInfo();
1086 TII = MF->getSubtarget().getInstrInfo();
1087 MRI->freezeReservedRegs(Fn);
1088 RegClassInfo.runOnMachineFunction(Fn);
1089 UsedInInstr.clear();
1090 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1091
1092 assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1093
1094 // initialize the virtual->physical register map to have a 'null'
1095 // mapping for all virtual registers
1096 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1097 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1098
1099 // Loop over all of the basic blocks, eliminating virtual register references
1100 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1101 MBBi != MBBe; ++MBBi) {
1102 MBB = &*MBBi;
1103 AllocateBasicBlock();
1104 }
1105
1106 // Add the clobber lists for all the instructions we skipped earlier.
1107 for (const MCInstrDesc *Desc : SkippedInstrs)
1108 if (const uint16_t *Defs = Desc->getImplicitDefs())
1109 while (*Defs)
1110 MRI->setPhysRegUsed(*Defs++);
1111
1112 // All machine operands and other references to virtual registers have been
1113 // replaced. Remove the virtual registers.
1114 MRI->clearVirtRegs();
1115
1116 SkippedInstrs.clear();
1117 StackSlotForVirtReg.clear();
1118 LiveDbgValueMap.clear();
1119 return true;
1120 }
1121
createFastRegisterAllocator()1122 FunctionPass *llvm::createFastRegisterAllocator() {
1123 return new RAFast();
1124 }
1125