1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30 DeclContext *CurContext) {
31 if (T.isNull())
32 return nullptr;
33
34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37 if (!Record->isDependentContext() ||
38 Record->isCurrentInstantiation(CurContext))
39 return Record;
40
41 return nullptr;
42 } else if (isa<InjectedClassNameType>(Ty))
43 return cast<InjectedClassNameType>(Ty)->getDecl();
44 else
45 return nullptr;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56 if (!T->isDependentType())
57 if (const TagType *Tag = T->getAs<TagType>())
58 return Tag->getDecl();
59
60 return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77 bool EnteringContext) {
78 if (!SS.isSet() || SS.isInvalid())
79 return nullptr;
80
81 NestedNameSpecifier *NNS = SS.getScopeRep();
82 if (NNS->isDependent()) {
83 // If this nested-name-specifier refers to the current
84 // instantiation, return its DeclContext.
85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86 return Record;
87
88 if (EnteringContext) {
89 const Type *NNSType = NNS->getAsType();
90 if (!NNSType) {
91 return nullptr;
92 }
93
94 // Look through type alias templates, per C++0x [temp.dep.type]p1.
95 NNSType = Context.getCanonicalType(NNSType);
96 if (const TemplateSpecializationType *SpecType
97 = NNSType->getAs<TemplateSpecializationType>()) {
98 // We are entering the context of the nested name specifier, so try to
99 // match the nested name specifier to either a primary class template
100 // or a class template partial specialization.
101 if (ClassTemplateDecl *ClassTemplate
102 = dyn_cast_or_null<ClassTemplateDecl>(
103 SpecType->getTemplateName().getAsTemplateDecl())) {
104 QualType ContextType
105 = Context.getCanonicalType(QualType(SpecType, 0));
106
107 // If the type of the nested name specifier is the same as the
108 // injected class name of the named class template, we're entering
109 // into that class template definition.
110 QualType Injected
111 = ClassTemplate->getInjectedClassNameSpecialization();
112 if (Context.hasSameType(Injected, ContextType))
113 return ClassTemplate->getTemplatedDecl();
114
115 // If the type of the nested name specifier is the same as the
116 // type of one of the class template's class template partial
117 // specializations, we're entering into the definition of that
118 // class template partial specialization.
119 if (ClassTemplatePartialSpecializationDecl *PartialSpec
120 = ClassTemplate->findPartialSpecialization(ContextType))
121 return PartialSpec;
122 }
123 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124 // The nested name specifier refers to a member of a class template.
125 return RecordT->getDecl();
126 }
127 }
128
129 return nullptr;
130 }
131
132 switch (NNS->getKind()) {
133 case NestedNameSpecifier::Identifier:
134 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136 case NestedNameSpecifier::Namespace:
137 return NNS->getAsNamespace();
138
139 case NestedNameSpecifier::NamespaceAlias:
140 return NNS->getAsNamespaceAlias()->getNamespace();
141
142 case NestedNameSpecifier::TypeSpec:
143 case NestedNameSpecifier::TypeSpecWithTemplate: {
144 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145 assert(Tag && "Non-tag type in nested-name-specifier");
146 return Tag->getDecl();
147 }
148
149 case NestedNameSpecifier::Global:
150 return Context.getTranslationUnitDecl();
151
152 case NestedNameSpecifier::Super:
153 return NNS->getAsRecordDecl();
154 }
155
156 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
157 }
158
isDependentScopeSpecifier(const CXXScopeSpec & SS)159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
160 if (!SS.isSet() || SS.isInvalid())
161 return false;
162
163 return SS.getScopeRep()->isDependent();
164 }
165
166 /// \brief If the given nested name specifier refers to the current
167 /// instantiation, return the declaration that corresponds to that
168 /// current instantiation (C++0x [temp.dep.type]p1).
169 ///
170 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
172 assert(getLangOpts().CPlusPlus && "Only callable in C++");
173 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
174
175 if (!NNS->getAsType())
176 return nullptr;
177
178 QualType T = QualType(NNS->getAsType(), 0);
179 return ::getCurrentInstantiationOf(T, CurContext);
180 }
181
182 /// \brief Require that the context specified by SS be complete.
183 ///
184 /// If SS refers to a type, this routine checks whether the type is
185 /// complete enough (or can be made complete enough) for name lookup
186 /// into the DeclContext. A type that is not yet completed can be
187 /// considered "complete enough" if it is a class/struct/union/enum
188 /// that is currently being defined. Or, if we have a type that names
189 /// a class template specialization that is not a complete type, we
190 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
192 DeclContext *DC) {
193 assert(DC && "given null context");
194
195 TagDecl *tag = dyn_cast<TagDecl>(DC);
196
197 // If this is a dependent type, then we consider it complete.
198 if (!tag || tag->isDependentContext())
199 return false;
200
201 // If we're currently defining this type, then lookup into the
202 // type is okay: don't complain that it isn't complete yet.
203 QualType type = Context.getTypeDeclType(tag);
204 const TagType *tagType = type->getAs<TagType>();
205 if (tagType && tagType->isBeingDefined())
206 return false;
207
208 SourceLocation loc = SS.getLastQualifierNameLoc();
209 if (loc.isInvalid()) loc = SS.getRange().getBegin();
210
211 // The type must be complete.
212 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
213 SS.getRange())) {
214 SS.SetInvalid(SS.getRange());
215 return true;
216 }
217
218 // Fixed enum types are complete, but they aren't valid as scopes
219 // until we see a definition, so awkwardly pull out this special
220 // case.
221 // FIXME: The definition might not be visible; complain if it is not.
222 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
223 if (!enumType || enumType->getDecl()->isCompleteDefinition())
224 return false;
225
226 // Try to instantiate the definition, if this is a specialization of an
227 // enumeration temploid.
228 EnumDecl *ED = enumType->getDecl();
229 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
230 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
231 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
232 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
233 TSK_ImplicitInstantiation)) {
234 SS.SetInvalid(SS.getRange());
235 return true;
236 }
237 return false;
238 }
239 }
240
241 Diag(loc, diag::err_incomplete_nested_name_spec)
242 << type << SS.getRange();
243 SS.SetInvalid(SS.getRange());
244 return true;
245 }
246
ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,CXXScopeSpec & SS)247 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
248 CXXScopeSpec &SS) {
249 SS.MakeGlobal(Context, CCLoc);
250 return false;
251 }
252
ActOnSuperScopeSpecifier(SourceLocation SuperLoc,SourceLocation ColonColonLoc,CXXScopeSpec & SS)253 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
254 SourceLocation ColonColonLoc,
255 CXXScopeSpec &SS) {
256 CXXRecordDecl *RD = nullptr;
257 for (Scope *S = getCurScope(); S; S = S->getParent()) {
258 if (S->isFunctionScope()) {
259 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
260 RD = MD->getParent();
261 break;
262 }
263 if (S->isClassScope()) {
264 RD = cast<CXXRecordDecl>(S->getEntity());
265 break;
266 }
267 }
268
269 if (!RD) {
270 Diag(SuperLoc, diag::err_invalid_super_scope);
271 return true;
272 } else if (RD->isLambda()) {
273 Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
274 return true;
275 } else if (RD->getNumBases() == 0) {
276 Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
277 return true;
278 }
279
280 SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
281 return false;
282 }
283
284 /// \brief Determines whether the given declaration is an valid acceptable
285 /// result for name lookup of a nested-name-specifier.
286 /// \param SD Declaration checked for nested-name-specifier.
287 /// \param IsExtension If not null and the declaration is accepted as an
288 /// extension, the pointed variable is assigned true.
isAcceptableNestedNameSpecifier(const NamedDecl * SD,bool * IsExtension)289 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
290 bool *IsExtension) {
291 if (!SD)
292 return false;
293
294 // Namespace and namespace aliases are fine.
295 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
296 return true;
297
298 if (!isa<TypeDecl>(SD))
299 return false;
300
301 // Determine whether we have a class (or, in C++11, an enum) or
302 // a typedef thereof. If so, build the nested-name-specifier.
303 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
304 if (T->isDependentType())
305 return true;
306 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
307 if (TD->getUnderlyingType()->isRecordType())
308 return true;
309 if (TD->getUnderlyingType()->isEnumeralType()) {
310 if (Context.getLangOpts().CPlusPlus11)
311 return true;
312 if (IsExtension)
313 *IsExtension = true;
314 }
315 } else if (isa<RecordDecl>(SD)) {
316 return true;
317 } else if (isa<EnumDecl>(SD)) {
318 if (Context.getLangOpts().CPlusPlus11)
319 return true;
320 if (IsExtension)
321 *IsExtension = true;
322 }
323
324 return false;
325 }
326
327 /// \brief If the given nested-name-specifier begins with a bare identifier
328 /// (e.g., Base::), perform name lookup for that identifier as a
329 /// nested-name-specifier within the given scope, and return the result of that
330 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)331 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
332 if (!S || !NNS)
333 return nullptr;
334
335 while (NNS->getPrefix())
336 NNS = NNS->getPrefix();
337
338 if (NNS->getKind() != NestedNameSpecifier::Identifier)
339 return nullptr;
340
341 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
342 LookupNestedNameSpecifierName);
343 LookupName(Found, S);
344 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
345
346 if (!Found.isSingleResult())
347 return nullptr;
348
349 NamedDecl *Result = Found.getFoundDecl();
350 if (isAcceptableNestedNameSpecifier(Result))
351 return Result;
352
353 return nullptr;
354 }
355
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)356 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
357 SourceLocation IdLoc,
358 IdentifierInfo &II,
359 ParsedType ObjectTypePtr) {
360 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
361 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
362
363 // Determine where to perform name lookup
364 DeclContext *LookupCtx = nullptr;
365 bool isDependent = false;
366 if (!ObjectType.isNull()) {
367 // This nested-name-specifier occurs in a member access expression, e.g.,
368 // x->B::f, and we are looking into the type of the object.
369 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
370 LookupCtx = computeDeclContext(ObjectType);
371 isDependent = ObjectType->isDependentType();
372 } else if (SS.isSet()) {
373 // This nested-name-specifier occurs after another nested-name-specifier,
374 // so long into the context associated with the prior nested-name-specifier.
375 LookupCtx = computeDeclContext(SS, false);
376 isDependent = isDependentScopeSpecifier(SS);
377 Found.setContextRange(SS.getRange());
378 }
379
380 if (LookupCtx) {
381 // Perform "qualified" name lookup into the declaration context we
382 // computed, which is either the type of the base of a member access
383 // expression or the declaration context associated with a prior
384 // nested-name-specifier.
385
386 // The declaration context must be complete.
387 if (!LookupCtx->isDependentContext() &&
388 RequireCompleteDeclContext(SS, LookupCtx))
389 return false;
390
391 LookupQualifiedName(Found, LookupCtx);
392 } else if (isDependent) {
393 return false;
394 } else {
395 LookupName(Found, S);
396 }
397 Found.suppressDiagnostics();
398
399 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
400 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
401
402 return false;
403 }
404
405 namespace {
406
407 // Callback to only accept typo corrections that can be a valid C++ member
408 // intializer: either a non-static field member or a base class.
409 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
410 public:
NestedNameSpecifierValidatorCCC(Sema & SRef)411 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
412 : SRef(SRef) {}
413
ValidateCandidate(const TypoCorrection & candidate)414 bool ValidateCandidate(const TypoCorrection &candidate) override {
415 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
416 }
417
418 private:
419 Sema &SRef;
420 };
421
422 }
423
424 /// \brief Build a new nested-name-specifier for "identifier::", as described
425 /// by ActOnCXXNestedNameSpecifier.
426 ///
427 /// \param S Scope in which the nested-name-specifier occurs.
428 /// \param Identifier Identifier in the sequence "identifier" "::".
429 /// \param IdentifierLoc Location of the \p Identifier.
430 /// \param CCLoc Location of "::" following Identifier.
431 /// \param ObjectType Type of postfix expression if the nested-name-specifier
432 /// occurs in construct like: <tt>ptr->nns::f</tt>.
433 /// \param EnteringContext If true, enter the context specified by the
434 /// nested-name-specifier.
435 /// \param SS Optional nested name specifier preceding the identifier.
436 /// \param ScopeLookupResult Provides the result of name lookup within the
437 /// scope of the nested-name-specifier that was computed at template
438 /// definition time.
439 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
440 /// error recovery and what kind of recovery is performed.
441 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
442 /// are allowed. The bool value pointed by this parameter is set to
443 /// 'true' if the identifier is treated as if it was followed by ':',
444 /// not '::'.
445 ///
446 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
447 /// that it contains an extra parameter \p ScopeLookupResult, which provides
448 /// the result of name lookup within the scope of the nested-name-specifier
449 /// that was computed at template definition time.
450 ///
451 /// If ErrorRecoveryLookup is true, then this call is used to improve error
452 /// recovery. This means that it should not emit diagnostics, it should
453 /// just return true on failure. It also means it should only return a valid
454 /// scope if it *knows* that the result is correct. It should not return in a
455 /// dependent context, for example. Nor will it extend \p SS with the scope
456 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)457 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
458 IdentifierInfo &Identifier,
459 SourceLocation IdentifierLoc,
460 SourceLocation CCLoc,
461 QualType ObjectType,
462 bool EnteringContext,
463 CXXScopeSpec &SS,
464 NamedDecl *ScopeLookupResult,
465 bool ErrorRecoveryLookup,
466 bool *IsCorrectedToColon) {
467 LookupResult Found(*this, &Identifier, IdentifierLoc,
468 LookupNestedNameSpecifierName);
469
470 // Determine where to perform name lookup
471 DeclContext *LookupCtx = nullptr;
472 bool isDependent = false;
473 if (IsCorrectedToColon)
474 *IsCorrectedToColon = false;
475 if (!ObjectType.isNull()) {
476 // This nested-name-specifier occurs in a member access expression, e.g.,
477 // x->B::f, and we are looking into the type of the object.
478 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
479 LookupCtx = computeDeclContext(ObjectType);
480 isDependent = ObjectType->isDependentType();
481 } else if (SS.isSet()) {
482 // This nested-name-specifier occurs after another nested-name-specifier,
483 // so look into the context associated with the prior nested-name-specifier.
484 LookupCtx = computeDeclContext(SS, EnteringContext);
485 isDependent = isDependentScopeSpecifier(SS);
486 Found.setContextRange(SS.getRange());
487 }
488
489 bool ObjectTypeSearchedInScope = false;
490 if (LookupCtx) {
491 // Perform "qualified" name lookup into the declaration context we
492 // computed, which is either the type of the base of a member access
493 // expression or the declaration context associated with a prior
494 // nested-name-specifier.
495
496 // The declaration context must be complete.
497 if (!LookupCtx->isDependentContext() &&
498 RequireCompleteDeclContext(SS, LookupCtx))
499 return true;
500
501 LookupQualifiedName(Found, LookupCtx);
502
503 if (!ObjectType.isNull() && Found.empty()) {
504 // C++ [basic.lookup.classref]p4:
505 // If the id-expression in a class member access is a qualified-id of
506 // the form
507 //
508 // class-name-or-namespace-name::...
509 //
510 // the class-name-or-namespace-name following the . or -> operator is
511 // looked up both in the context of the entire postfix-expression and in
512 // the scope of the class of the object expression. If the name is found
513 // only in the scope of the class of the object expression, the name
514 // shall refer to a class-name. If the name is found only in the
515 // context of the entire postfix-expression, the name shall refer to a
516 // class-name or namespace-name. [...]
517 //
518 // Qualified name lookup into a class will not find a namespace-name,
519 // so we do not need to diagnose that case specifically. However,
520 // this qualified name lookup may find nothing. In that case, perform
521 // unqualified name lookup in the given scope (if available) or
522 // reconstruct the result from when name lookup was performed at template
523 // definition time.
524 if (S)
525 LookupName(Found, S);
526 else if (ScopeLookupResult)
527 Found.addDecl(ScopeLookupResult);
528
529 ObjectTypeSearchedInScope = true;
530 }
531 } else if (!isDependent) {
532 // Perform unqualified name lookup in the current scope.
533 LookupName(Found, S);
534 }
535
536 // If we performed lookup into a dependent context and did not find anything,
537 // that's fine: just build a dependent nested-name-specifier.
538 if (Found.empty() && isDependent &&
539 !(LookupCtx && LookupCtx->isRecord() &&
540 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
541 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
542 // Don't speculate if we're just trying to improve error recovery.
543 if (ErrorRecoveryLookup)
544 return true;
545
546 // We were not able to compute the declaration context for a dependent
547 // base object type or prior nested-name-specifier, so this
548 // nested-name-specifier refers to an unknown specialization. Just build
549 // a dependent nested-name-specifier.
550 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
551 return false;
552 }
553
554 // FIXME: Deal with ambiguities cleanly.
555
556 if (Found.empty() && !ErrorRecoveryLookup) {
557 // If identifier is not found as class-name-or-namespace-name, but is found
558 // as other entity, don't look for typos.
559 LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
560 if (LookupCtx)
561 LookupQualifiedName(R, LookupCtx);
562 else if (S && !isDependent)
563 LookupName(R, S);
564 if (!R.empty()) {
565 // The identifier is found in ordinary lookup. If correction to colon is
566 // allowed, suggest replacement to ':'.
567 if (IsCorrectedToColon) {
568 *IsCorrectedToColon = true;
569 Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
570 << &Identifier << getLangOpts().CPlusPlus
571 << FixItHint::CreateReplacement(CCLoc, ":");
572 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
573 Diag(ND->getLocation(), diag::note_declared_at);
574 return true;
575 }
576 // Replacement '::' -> ':' is not allowed, just issue respective error.
577 Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
578 << &Identifier << getLangOpts().CPlusPlus;
579 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
580 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
581 return true;
582 }
583 }
584
585 if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
586 // We haven't found anything, and we're not recovering from a
587 // different kind of error, so look for typos.
588 DeclarationName Name = Found.getLookupName();
589 Found.clear();
590 if (TypoCorrection Corrected = CorrectTypo(
591 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
592 llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
593 CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
594 if (LookupCtx) {
595 bool DroppedSpecifier =
596 Corrected.WillReplaceSpecifier() &&
597 Name.getAsString() == Corrected.getAsString(getLangOpts());
598 if (DroppedSpecifier)
599 SS.clear();
600 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
601 << Name << LookupCtx << DroppedSpecifier
602 << SS.getRange());
603 } else
604 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
605 << Name);
606
607 if (NamedDecl *ND = Corrected.getCorrectionDecl())
608 Found.addDecl(ND);
609 Found.setLookupName(Corrected.getCorrection());
610 } else {
611 Found.setLookupName(&Identifier);
612 }
613 }
614
615 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
616 bool IsExtension = false;
617 bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
618 if (!AcceptSpec && IsExtension) {
619 AcceptSpec = true;
620 Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
621 }
622 if (AcceptSpec) {
623 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
624 !getLangOpts().CPlusPlus11) {
625 // C++03 [basic.lookup.classref]p4:
626 // [...] If the name is found in both contexts, the
627 // class-name-or-namespace-name shall refer to the same entity.
628 //
629 // We already found the name in the scope of the object. Now, look
630 // into the current scope (the scope of the postfix-expression) to
631 // see if we can find the same name there. As above, if there is no
632 // scope, reconstruct the result from the template instantiation itself.
633 //
634 // Note that C++11 does *not* perform this redundant lookup.
635 NamedDecl *OuterDecl;
636 if (S) {
637 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
638 LookupNestedNameSpecifierName);
639 LookupName(FoundOuter, S);
640 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
641 } else
642 OuterDecl = ScopeLookupResult;
643
644 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
645 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
646 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
647 !Context.hasSameType(
648 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
649 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
650 if (ErrorRecoveryLookup)
651 return true;
652
653 Diag(IdentifierLoc,
654 diag::err_nested_name_member_ref_lookup_ambiguous)
655 << &Identifier;
656 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
657 << ObjectType;
658 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
659
660 // Fall through so that we'll pick the name we found in the object
661 // type, since that's probably what the user wanted anyway.
662 }
663 }
664
665 if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
666 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
667
668 // If we're just performing this lookup for error-recovery purposes,
669 // don't extend the nested-name-specifier. Just return now.
670 if (ErrorRecoveryLookup)
671 return false;
672
673 // The use of a nested name specifier may trigger deprecation warnings.
674 DiagnoseUseOfDecl(SD, CCLoc);
675
676
677 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
678 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
679 return false;
680 }
681
682 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
683 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
684 return false;
685 }
686
687 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
688 TypeLocBuilder TLB;
689 if (isa<InjectedClassNameType>(T)) {
690 InjectedClassNameTypeLoc InjectedTL
691 = TLB.push<InjectedClassNameTypeLoc>(T);
692 InjectedTL.setNameLoc(IdentifierLoc);
693 } else if (isa<RecordType>(T)) {
694 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
695 RecordTL.setNameLoc(IdentifierLoc);
696 } else if (isa<TypedefType>(T)) {
697 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
698 TypedefTL.setNameLoc(IdentifierLoc);
699 } else if (isa<EnumType>(T)) {
700 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
701 EnumTL.setNameLoc(IdentifierLoc);
702 } else if (isa<TemplateTypeParmType>(T)) {
703 TemplateTypeParmTypeLoc TemplateTypeTL
704 = TLB.push<TemplateTypeParmTypeLoc>(T);
705 TemplateTypeTL.setNameLoc(IdentifierLoc);
706 } else if (isa<UnresolvedUsingType>(T)) {
707 UnresolvedUsingTypeLoc UnresolvedTL
708 = TLB.push<UnresolvedUsingTypeLoc>(T);
709 UnresolvedTL.setNameLoc(IdentifierLoc);
710 } else if (isa<SubstTemplateTypeParmType>(T)) {
711 SubstTemplateTypeParmTypeLoc TL
712 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
713 TL.setNameLoc(IdentifierLoc);
714 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
715 SubstTemplateTypeParmPackTypeLoc TL
716 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
717 TL.setNameLoc(IdentifierLoc);
718 } else {
719 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
720 }
721
722 if (T->isEnumeralType())
723 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
724
725 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
726 CCLoc);
727 return false;
728 }
729
730 // Otherwise, we have an error case. If we don't want diagnostics, just
731 // return an error now.
732 if (ErrorRecoveryLookup)
733 return true;
734
735 // If we didn't find anything during our lookup, try again with
736 // ordinary name lookup, which can help us produce better error
737 // messages.
738 if (Found.empty()) {
739 Found.clear(LookupOrdinaryName);
740 LookupName(Found, S);
741 }
742
743 // In Microsoft mode, if we are within a templated function and we can't
744 // resolve Identifier, then extend the SS with Identifier. This will have
745 // the effect of resolving Identifier during template instantiation.
746 // The goal is to be able to resolve a function call whose
747 // nested-name-specifier is located inside a dependent base class.
748 // Example:
749 //
750 // class C {
751 // public:
752 // static void foo2() { }
753 // };
754 // template <class T> class A { public: typedef C D; };
755 //
756 // template <class T> class B : public A<T> {
757 // public:
758 // void foo() { D::foo2(); }
759 // };
760 if (getLangOpts().MSVCCompat) {
761 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
762 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
763 CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
764 if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
765 Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
766 << &Identifier << ContainingClass;
767 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
768 return false;
769 }
770 }
771 }
772
773 if (!Found.empty()) {
774 if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
775 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
776 << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
777 else {
778 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
779 << &Identifier << getLangOpts().CPlusPlus;
780 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
781 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
782 }
783 } else if (SS.isSet())
784 Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
785 << SS.getRange();
786 else
787 Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
788
789 return true;
790 }
791
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)792 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
793 IdentifierInfo &Identifier,
794 SourceLocation IdentifierLoc,
795 SourceLocation CCLoc,
796 ParsedType ObjectType,
797 bool EnteringContext,
798 CXXScopeSpec &SS,
799 bool ErrorRecoveryLookup,
800 bool *IsCorrectedToColon) {
801 if (SS.isInvalid())
802 return true;
803
804 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
805 GetTypeFromParser(ObjectType),
806 EnteringContext, SS,
807 /*ScopeLookupResult=*/nullptr, false,
808 IsCorrectedToColon);
809 }
810
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)811 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
812 const DeclSpec &DS,
813 SourceLocation ColonColonLoc) {
814 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
815 return true;
816
817 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
818
819 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
820 if (!T->isDependentType() && !T->getAs<TagType>()) {
821 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
822 << T << getLangOpts().CPlusPlus;
823 return true;
824 }
825
826 TypeLocBuilder TLB;
827 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
828 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
829 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
830 ColonColonLoc);
831 return false;
832 }
833
834 /// IsInvalidUnlessNestedName - This method is used for error recovery
835 /// purposes to determine whether the specified identifier is only valid as
836 /// a nested name specifier, for example a namespace name. It is
837 /// conservatively correct to always return false from this method.
838 ///
839 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)840 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
841 IdentifierInfo &Identifier,
842 SourceLocation IdentifierLoc,
843 SourceLocation ColonLoc,
844 ParsedType ObjectType,
845 bool EnteringContext) {
846 if (SS.isInvalid())
847 return false;
848
849 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
850 GetTypeFromParser(ObjectType),
851 EnteringContext, SS,
852 /*ScopeLookupResult=*/nullptr, true);
853 }
854
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)855 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
856 CXXScopeSpec &SS,
857 SourceLocation TemplateKWLoc,
858 TemplateTy Template,
859 SourceLocation TemplateNameLoc,
860 SourceLocation LAngleLoc,
861 ASTTemplateArgsPtr TemplateArgsIn,
862 SourceLocation RAngleLoc,
863 SourceLocation CCLoc,
864 bool EnteringContext) {
865 if (SS.isInvalid())
866 return true;
867
868 // Translate the parser's template argument list in our AST format.
869 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
870 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
871
872 DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
873 if (DTN && DTN->isIdentifier()) {
874 // Handle a dependent template specialization for which we cannot resolve
875 // the template name.
876 assert(DTN->getQualifier() == SS.getScopeRep());
877 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
878 DTN->getQualifier(),
879 DTN->getIdentifier(),
880 TemplateArgs);
881
882 // Create source-location information for this type.
883 TypeLocBuilder Builder;
884 DependentTemplateSpecializationTypeLoc SpecTL
885 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
886 SpecTL.setElaboratedKeywordLoc(SourceLocation());
887 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
888 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
889 SpecTL.setTemplateNameLoc(TemplateNameLoc);
890 SpecTL.setLAngleLoc(LAngleLoc);
891 SpecTL.setRAngleLoc(RAngleLoc);
892 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
893 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
894
895 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
896 CCLoc);
897 return false;
898 }
899
900 TemplateDecl *TD = Template.get().getAsTemplateDecl();
901 if (Template.get().getAsOverloadedTemplate() || DTN ||
902 isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
903 SourceRange R(TemplateNameLoc, RAngleLoc);
904 if (SS.getRange().isValid())
905 R.setBegin(SS.getRange().getBegin());
906
907 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
908 << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
909 NoteAllFoundTemplates(Template.get());
910 return true;
911 }
912
913 // We were able to resolve the template name to an actual template.
914 // Build an appropriate nested-name-specifier.
915 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
916 TemplateArgs);
917 if (T.isNull())
918 return true;
919
920 // Alias template specializations can produce types which are not valid
921 // nested name specifiers.
922 if (!T->isDependentType() && !T->getAs<TagType>()) {
923 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
924 NoteAllFoundTemplates(Template.get());
925 return true;
926 }
927
928 // Provide source-location information for the template specialization type.
929 TypeLocBuilder Builder;
930 TemplateSpecializationTypeLoc SpecTL
931 = Builder.push<TemplateSpecializationTypeLoc>(T);
932 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
933 SpecTL.setTemplateNameLoc(TemplateNameLoc);
934 SpecTL.setLAngleLoc(LAngleLoc);
935 SpecTL.setRAngleLoc(RAngleLoc);
936 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
937 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
938
939
940 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
941 CCLoc);
942 return false;
943 }
944
945 namespace {
946 /// \brief A structure that stores a nested-name-specifier annotation,
947 /// including both the nested-name-specifier
948 struct NestedNameSpecifierAnnotation {
949 NestedNameSpecifier *NNS;
950 };
951 }
952
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)953 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
954 if (SS.isEmpty() || SS.isInvalid())
955 return nullptr;
956
957 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
958 SS.location_size()),
959 llvm::alignOf<NestedNameSpecifierAnnotation>());
960 NestedNameSpecifierAnnotation *Annotation
961 = new (Mem) NestedNameSpecifierAnnotation;
962 Annotation->NNS = SS.getScopeRep();
963 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
964 return Annotation;
965 }
966
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)967 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
968 SourceRange AnnotationRange,
969 CXXScopeSpec &SS) {
970 if (!AnnotationPtr) {
971 SS.SetInvalid(AnnotationRange);
972 return;
973 }
974
975 NestedNameSpecifierAnnotation *Annotation
976 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
977 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
978 }
979
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)980 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
981 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
982
983 NestedNameSpecifier *Qualifier = SS.getScopeRep();
984
985 // There are only two places a well-formed program may qualify a
986 // declarator: first, when defining a namespace or class member
987 // out-of-line, and second, when naming an explicitly-qualified
988 // friend function. The latter case is governed by
989 // C++03 [basic.lookup.unqual]p10:
990 // In a friend declaration naming a member function, a name used
991 // in the function declarator and not part of a template-argument
992 // in a template-id is first looked up in the scope of the member
993 // function's class. If it is not found, or if the name is part of
994 // a template-argument in a template-id, the look up is as
995 // described for unqualified names in the definition of the class
996 // granting friendship.
997 // i.e. we don't push a scope unless it's a class member.
998
999 switch (Qualifier->getKind()) {
1000 case NestedNameSpecifier::Global:
1001 case NestedNameSpecifier::Namespace:
1002 case NestedNameSpecifier::NamespaceAlias:
1003 // These are always namespace scopes. We never want to enter a
1004 // namespace scope from anything but a file context.
1005 return CurContext->getRedeclContext()->isFileContext();
1006
1007 case NestedNameSpecifier::Identifier:
1008 case NestedNameSpecifier::TypeSpec:
1009 case NestedNameSpecifier::TypeSpecWithTemplate:
1010 case NestedNameSpecifier::Super:
1011 // These are never namespace scopes.
1012 return true;
1013 }
1014
1015 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1016 }
1017
1018 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1019 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1020 /// After this method is called, according to [C++ 3.4.3p3], names should be
1021 /// looked up in the declarator-id's scope, until the declarator is parsed and
1022 /// ActOnCXXExitDeclaratorScope is called.
1023 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)1024 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1025 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1026
1027 if (SS.isInvalid()) return true;
1028
1029 DeclContext *DC = computeDeclContext(SS, true);
1030 if (!DC) return true;
1031
1032 // Before we enter a declarator's context, we need to make sure that
1033 // it is a complete declaration context.
1034 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1035 return true;
1036
1037 EnterDeclaratorContext(S, DC);
1038
1039 // Rebuild the nested name specifier for the new scope.
1040 if (DC->isDependentContext())
1041 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1042
1043 return false;
1044 }
1045
1046 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1047 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1048 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1049 /// Used to indicate that names should revert to being looked up in the
1050 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1051 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1052 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1053 if (SS.isInvalid())
1054 return;
1055 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1056 "exiting declarator scope we never really entered");
1057 ExitDeclaratorContext(S);
1058 }
1059