1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/Basic/CharInfo.h"
18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19 #include "clang/StaticAnalyzer/Core/Checker.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/raw_ostream.h"
27
28 using namespace clang;
29 using namespace ento;
30
31 namespace {
32 class CStringChecker : public Checker< eval::Call,
33 check::PreStmt<DeclStmt>,
34 check::LiveSymbols,
35 check::DeadSymbols,
36 check::RegionChanges
37 > {
38 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
39 BT_NotCString, BT_AdditionOverflow;
40
41 mutable const char *CurrentFunctionDescription;
42
43 public:
44 /// The filter is used to filter out the diagnostics which are not enabled by
45 /// the user.
46 struct CStringChecksFilter {
47 DefaultBool CheckCStringNullArg;
48 DefaultBool CheckCStringOutOfBounds;
49 DefaultBool CheckCStringBufferOverlap;
50 DefaultBool CheckCStringNotNullTerm;
51
52 CheckName CheckNameCStringNullArg;
53 CheckName CheckNameCStringOutOfBounds;
54 CheckName CheckNameCStringBufferOverlap;
55 CheckName CheckNameCStringNotNullTerm;
56 };
57
58 CStringChecksFilter Filter;
59
getTag()60 static void *getTag() { static int tag; return &tag; }
61
62 bool evalCall(const CallExpr *CE, CheckerContext &C) const;
63 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
64 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
65 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
66 bool wantsRegionChangeUpdate(ProgramStateRef state) const;
67
68 ProgramStateRef
69 checkRegionChanges(ProgramStateRef state,
70 const InvalidatedSymbols *,
71 ArrayRef<const MemRegion *> ExplicitRegions,
72 ArrayRef<const MemRegion *> Regions,
73 const CallEvent *Call) const;
74
75 typedef void (CStringChecker::*FnCheck)(CheckerContext &,
76 const CallExpr *) const;
77
78 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
79 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
80 void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
81 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
82 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
83 ProgramStateRef state,
84 const Expr *Size,
85 const Expr *Source,
86 const Expr *Dest,
87 bool Restricted = false,
88 bool IsMempcpy = false) const;
89
90 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
91
92 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
93 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
94 void evalstrLengthCommon(CheckerContext &C,
95 const CallExpr *CE,
96 bool IsStrnlen = false) const;
97
98 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
99 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
100 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
101 void evalStrcpyCommon(CheckerContext &C,
102 const CallExpr *CE,
103 bool returnEnd,
104 bool isBounded,
105 bool isAppending) const;
106
107 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
108 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
109
110 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
111 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
112 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
113 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
114 void evalStrcmpCommon(CheckerContext &C,
115 const CallExpr *CE,
116 bool isBounded = false,
117 bool ignoreCase = false) const;
118
119 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
120
121 // Utility methods
122 std::pair<ProgramStateRef , ProgramStateRef >
123 static assumeZero(CheckerContext &C,
124 ProgramStateRef state, SVal V, QualType Ty);
125
126 static ProgramStateRef setCStringLength(ProgramStateRef state,
127 const MemRegion *MR,
128 SVal strLength);
129 static SVal getCStringLengthForRegion(CheckerContext &C,
130 ProgramStateRef &state,
131 const Expr *Ex,
132 const MemRegion *MR,
133 bool hypothetical);
134 SVal getCStringLength(CheckerContext &C,
135 ProgramStateRef &state,
136 const Expr *Ex,
137 SVal Buf,
138 bool hypothetical = false) const;
139
140 const StringLiteral *getCStringLiteral(CheckerContext &C,
141 ProgramStateRef &state,
142 const Expr *expr,
143 SVal val) const;
144
145 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
146 ProgramStateRef state,
147 const Expr *Ex, SVal V,
148 bool IsSourceBuffer);
149
150 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
151 const MemRegion *MR);
152
153 // Re-usable checks
154 ProgramStateRef checkNonNull(CheckerContext &C,
155 ProgramStateRef state,
156 const Expr *S,
157 SVal l) const;
158 ProgramStateRef CheckLocation(CheckerContext &C,
159 ProgramStateRef state,
160 const Expr *S,
161 SVal l,
162 const char *message = nullptr) const;
163 ProgramStateRef CheckBufferAccess(CheckerContext &C,
164 ProgramStateRef state,
165 const Expr *Size,
166 const Expr *FirstBuf,
167 const Expr *SecondBuf,
168 const char *firstMessage = nullptr,
169 const char *secondMessage = nullptr,
170 bool WarnAboutSize = false) const;
171
CheckBufferAccess(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * Buf,const char * message=nullptr,bool WarnAboutSize=false) const172 ProgramStateRef CheckBufferAccess(CheckerContext &C,
173 ProgramStateRef state,
174 const Expr *Size,
175 const Expr *Buf,
176 const char *message = nullptr,
177 bool WarnAboutSize = false) const {
178 // This is a convenience override.
179 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
180 WarnAboutSize);
181 }
182 ProgramStateRef CheckOverlap(CheckerContext &C,
183 ProgramStateRef state,
184 const Expr *Size,
185 const Expr *First,
186 const Expr *Second) const;
187 void emitOverlapBug(CheckerContext &C,
188 ProgramStateRef state,
189 const Stmt *First,
190 const Stmt *Second) const;
191
192 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
193 ProgramStateRef state,
194 NonLoc left,
195 NonLoc right) const;
196 };
197
198 } //end anonymous namespace
199
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength,const MemRegion *,SVal)200 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
201
202 //===----------------------------------------------------------------------===//
203 // Individual checks and utility methods.
204 //===----------------------------------------------------------------------===//
205
206 std::pair<ProgramStateRef , ProgramStateRef >
207 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
208 QualType Ty) {
209 Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
210 if (!val)
211 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
212
213 SValBuilder &svalBuilder = C.getSValBuilder();
214 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
215 return state->assume(svalBuilder.evalEQ(state, *val, zero));
216 }
217
checkNonNull(CheckerContext & C,ProgramStateRef state,const Expr * S,SVal l) const218 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
219 ProgramStateRef state,
220 const Expr *S, SVal l) const {
221 // If a previous check has failed, propagate the failure.
222 if (!state)
223 return nullptr;
224
225 ProgramStateRef stateNull, stateNonNull;
226 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
227
228 if (stateNull && !stateNonNull) {
229 if (!Filter.CheckCStringNullArg)
230 return nullptr;
231
232 ExplodedNode *N = C.generateSink(stateNull);
233 if (!N)
234 return nullptr;
235
236 if (!BT_Null)
237 BT_Null.reset(new BuiltinBug(
238 Filter.CheckNameCStringNullArg, categories::UnixAPI,
239 "Null pointer argument in call to byte string function"));
240
241 SmallString<80> buf;
242 llvm::raw_svector_ostream os(buf);
243 assert(CurrentFunctionDescription);
244 os << "Null pointer argument in call to " << CurrentFunctionDescription;
245
246 // Generate a report for this bug.
247 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
248 BugReport *report = new BugReport(*BT, os.str(), N);
249
250 report->addRange(S->getSourceRange());
251 bugreporter::trackNullOrUndefValue(N, S, *report);
252 C.emitReport(report);
253 return nullptr;
254 }
255
256 // From here on, assume that the value is non-null.
257 assert(stateNonNull);
258 return stateNonNull;
259 }
260
261 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
CheckLocation(CheckerContext & C,ProgramStateRef state,const Expr * S,SVal l,const char * warningMsg) const262 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
263 ProgramStateRef state,
264 const Expr *S, SVal l,
265 const char *warningMsg) const {
266 // If a previous check has failed, propagate the failure.
267 if (!state)
268 return nullptr;
269
270 // Check for out of bound array element access.
271 const MemRegion *R = l.getAsRegion();
272 if (!R)
273 return state;
274
275 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
276 if (!ER)
277 return state;
278
279 assert(ER->getValueType() == C.getASTContext().CharTy &&
280 "CheckLocation should only be called with char* ElementRegions");
281
282 // Get the size of the array.
283 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
284 SValBuilder &svalBuilder = C.getSValBuilder();
285 SVal Extent =
286 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
287 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
288
289 // Get the index of the accessed element.
290 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
291
292 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
293 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
294 if (StOutBound && !StInBound) {
295 ExplodedNode *N = C.generateSink(StOutBound);
296 if (!N)
297 return nullptr;
298
299 if (!BT_Bounds) {
300 BT_Bounds.reset(new BuiltinBug(
301 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access",
302 "Byte string function accesses out-of-bound array element"));
303 }
304 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
305
306 // Generate a report for this bug.
307 BugReport *report;
308 if (warningMsg) {
309 report = new BugReport(*BT, warningMsg, N);
310 } else {
311 assert(CurrentFunctionDescription);
312 assert(CurrentFunctionDescription[0] != '\0');
313
314 SmallString<80> buf;
315 llvm::raw_svector_ostream os(buf);
316 os << toUppercase(CurrentFunctionDescription[0])
317 << &CurrentFunctionDescription[1]
318 << " accesses out-of-bound array element";
319 report = new BugReport(*BT, os.str(), N);
320 }
321
322 // FIXME: It would be nice to eventually make this diagnostic more clear,
323 // e.g., by referencing the original declaration or by saying *why* this
324 // reference is outside the range.
325
326 report->addRange(S->getSourceRange());
327 C.emitReport(report);
328 return nullptr;
329 }
330
331 // Array bound check succeeded. From this point forward the array bound
332 // should always succeed.
333 return StInBound;
334 }
335
CheckBufferAccess(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * FirstBuf,const Expr * SecondBuf,const char * firstMessage,const char * secondMessage,bool WarnAboutSize) const336 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
337 ProgramStateRef state,
338 const Expr *Size,
339 const Expr *FirstBuf,
340 const Expr *SecondBuf,
341 const char *firstMessage,
342 const char *secondMessage,
343 bool WarnAboutSize) const {
344 // If a previous check has failed, propagate the failure.
345 if (!state)
346 return nullptr;
347
348 SValBuilder &svalBuilder = C.getSValBuilder();
349 ASTContext &Ctx = svalBuilder.getContext();
350 const LocationContext *LCtx = C.getLocationContext();
351
352 QualType sizeTy = Size->getType();
353 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
354
355 // Check that the first buffer is non-null.
356 SVal BufVal = state->getSVal(FirstBuf, LCtx);
357 state = checkNonNull(C, state, FirstBuf, BufVal);
358 if (!state)
359 return nullptr;
360
361 // If out-of-bounds checking is turned off, skip the rest.
362 if (!Filter.CheckCStringOutOfBounds)
363 return state;
364
365 // Get the access length and make sure it is known.
366 // FIXME: This assumes the caller has already checked that the access length
367 // is positive. And that it's unsigned.
368 SVal LengthVal = state->getSVal(Size, LCtx);
369 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
370 if (!Length)
371 return state;
372
373 // Compute the offset of the last element to be accessed: size-1.
374 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
375 NonLoc LastOffset = svalBuilder
376 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
377
378 // Check that the first buffer is sufficiently long.
379 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
380 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
381 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
382
383 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
384 LastOffset, PtrTy);
385 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
386
387 // If the buffer isn't large enough, abort.
388 if (!state)
389 return nullptr;
390 }
391
392 // If there's a second buffer, check it as well.
393 if (SecondBuf) {
394 BufVal = state->getSVal(SecondBuf, LCtx);
395 state = checkNonNull(C, state, SecondBuf, BufVal);
396 if (!state)
397 return nullptr;
398
399 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
400 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
401 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
402
403 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
404 LastOffset, PtrTy);
405 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
406 }
407 }
408
409 // Large enough or not, return this state!
410 return state;
411 }
412
CheckOverlap(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * First,const Expr * Second) const413 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
414 ProgramStateRef state,
415 const Expr *Size,
416 const Expr *First,
417 const Expr *Second) const {
418 if (!Filter.CheckCStringBufferOverlap)
419 return state;
420
421 // Do a simple check for overlap: if the two arguments are from the same
422 // buffer, see if the end of the first is greater than the start of the second
423 // or vice versa.
424
425 // If a previous check has failed, propagate the failure.
426 if (!state)
427 return nullptr;
428
429 ProgramStateRef stateTrue, stateFalse;
430
431 // Get the buffer values and make sure they're known locations.
432 const LocationContext *LCtx = C.getLocationContext();
433 SVal firstVal = state->getSVal(First, LCtx);
434 SVal secondVal = state->getSVal(Second, LCtx);
435
436 Optional<Loc> firstLoc = firstVal.getAs<Loc>();
437 if (!firstLoc)
438 return state;
439
440 Optional<Loc> secondLoc = secondVal.getAs<Loc>();
441 if (!secondLoc)
442 return state;
443
444 // Are the two values the same?
445 SValBuilder &svalBuilder = C.getSValBuilder();
446 std::tie(stateTrue, stateFalse) =
447 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
448
449 if (stateTrue && !stateFalse) {
450 // If the values are known to be equal, that's automatically an overlap.
451 emitOverlapBug(C, stateTrue, First, Second);
452 return nullptr;
453 }
454
455 // assume the two expressions are not equal.
456 assert(stateFalse);
457 state = stateFalse;
458
459 // Which value comes first?
460 QualType cmpTy = svalBuilder.getConditionType();
461 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
462 *firstLoc, *secondLoc, cmpTy);
463 Optional<DefinedOrUnknownSVal> reverseTest =
464 reverse.getAs<DefinedOrUnknownSVal>();
465 if (!reverseTest)
466 return state;
467
468 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
469 if (stateTrue) {
470 if (stateFalse) {
471 // If we don't know which one comes first, we can't perform this test.
472 return state;
473 } else {
474 // Switch the values so that firstVal is before secondVal.
475 std::swap(firstLoc, secondLoc);
476
477 // Switch the Exprs as well, so that they still correspond.
478 std::swap(First, Second);
479 }
480 }
481
482 // Get the length, and make sure it too is known.
483 SVal LengthVal = state->getSVal(Size, LCtx);
484 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
485 if (!Length)
486 return state;
487
488 // Convert the first buffer's start address to char*.
489 // Bail out if the cast fails.
490 ASTContext &Ctx = svalBuilder.getContext();
491 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
492 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
493 First->getType());
494 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
495 if (!FirstStartLoc)
496 return state;
497
498 // Compute the end of the first buffer. Bail out if THAT fails.
499 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
500 *FirstStartLoc, *Length, CharPtrTy);
501 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
502 if (!FirstEndLoc)
503 return state;
504
505 // Is the end of the first buffer past the start of the second buffer?
506 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
507 *FirstEndLoc, *secondLoc, cmpTy);
508 Optional<DefinedOrUnknownSVal> OverlapTest =
509 Overlap.getAs<DefinedOrUnknownSVal>();
510 if (!OverlapTest)
511 return state;
512
513 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
514
515 if (stateTrue && !stateFalse) {
516 // Overlap!
517 emitOverlapBug(C, stateTrue, First, Second);
518 return nullptr;
519 }
520
521 // assume the two expressions don't overlap.
522 assert(stateFalse);
523 return stateFalse;
524 }
525
emitOverlapBug(CheckerContext & C,ProgramStateRef state,const Stmt * First,const Stmt * Second) const526 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
527 const Stmt *First, const Stmt *Second) const {
528 ExplodedNode *N = C.generateSink(state);
529 if (!N)
530 return;
531
532 if (!BT_Overlap)
533 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
534 categories::UnixAPI, "Improper arguments"));
535
536 // Generate a report for this bug.
537 BugReport *report =
538 new BugReport(*BT_Overlap,
539 "Arguments must not be overlapping buffers", N);
540 report->addRange(First->getSourceRange());
541 report->addRange(Second->getSourceRange());
542
543 C.emitReport(report);
544 }
545
checkAdditionOverflow(CheckerContext & C,ProgramStateRef state,NonLoc left,NonLoc right) const546 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
547 ProgramStateRef state,
548 NonLoc left,
549 NonLoc right) const {
550 // If out-of-bounds checking is turned off, skip the rest.
551 if (!Filter.CheckCStringOutOfBounds)
552 return state;
553
554 // If a previous check has failed, propagate the failure.
555 if (!state)
556 return nullptr;
557
558 SValBuilder &svalBuilder = C.getSValBuilder();
559 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
560
561 QualType sizeTy = svalBuilder.getContext().getSizeType();
562 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
563 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
564
565 SVal maxMinusRight;
566 if (right.getAs<nonloc::ConcreteInt>()) {
567 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
568 sizeTy);
569 } else {
570 // Try switching the operands. (The order of these two assignments is
571 // important!)
572 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
573 sizeTy);
574 left = right;
575 }
576
577 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
578 QualType cmpTy = svalBuilder.getConditionType();
579 // If left > max - right, we have an overflow.
580 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
581 *maxMinusRightNL, cmpTy);
582
583 ProgramStateRef stateOverflow, stateOkay;
584 std::tie(stateOverflow, stateOkay) =
585 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
586
587 if (stateOverflow && !stateOkay) {
588 // We have an overflow. Emit a bug report.
589 ExplodedNode *N = C.generateSink(stateOverflow);
590 if (!N)
591 return nullptr;
592
593 if (!BT_AdditionOverflow)
594 BT_AdditionOverflow.reset(
595 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
596 "Sum of expressions causes overflow"));
597
598 // This isn't a great error message, but this should never occur in real
599 // code anyway -- you'd have to create a buffer longer than a size_t can
600 // represent, which is sort of a contradiction.
601 const char *warning =
602 "This expression will create a string whose length is too big to "
603 "be represented as a size_t";
604
605 // Generate a report for this bug.
606 BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
607 C.emitReport(report);
608
609 return nullptr;
610 }
611
612 // From now on, assume an overflow didn't occur.
613 assert(stateOkay);
614 state = stateOkay;
615 }
616
617 return state;
618 }
619
setCStringLength(ProgramStateRef state,const MemRegion * MR,SVal strLength)620 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
621 const MemRegion *MR,
622 SVal strLength) {
623 assert(!strLength.isUndef() && "Attempt to set an undefined string length");
624
625 MR = MR->StripCasts();
626
627 switch (MR->getKind()) {
628 case MemRegion::StringRegionKind:
629 // FIXME: This can happen if we strcpy() into a string region. This is
630 // undefined [C99 6.4.5p6], but we should still warn about it.
631 return state;
632
633 case MemRegion::SymbolicRegionKind:
634 case MemRegion::AllocaRegionKind:
635 case MemRegion::VarRegionKind:
636 case MemRegion::FieldRegionKind:
637 case MemRegion::ObjCIvarRegionKind:
638 // These are the types we can currently track string lengths for.
639 break;
640
641 case MemRegion::ElementRegionKind:
642 // FIXME: Handle element regions by upper-bounding the parent region's
643 // string length.
644 return state;
645
646 default:
647 // Other regions (mostly non-data) can't have a reliable C string length.
648 // For now, just ignore the change.
649 // FIXME: These are rare but not impossible. We should output some kind of
650 // warning for things like strcpy((char[]){'a', 0}, "b");
651 return state;
652 }
653
654 if (strLength.isUnknown())
655 return state->remove<CStringLength>(MR);
656
657 return state->set<CStringLength>(MR, strLength);
658 }
659
getCStringLengthForRegion(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,const MemRegion * MR,bool hypothetical)660 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
661 ProgramStateRef &state,
662 const Expr *Ex,
663 const MemRegion *MR,
664 bool hypothetical) {
665 if (!hypothetical) {
666 // If there's a recorded length, go ahead and return it.
667 const SVal *Recorded = state->get<CStringLength>(MR);
668 if (Recorded)
669 return *Recorded;
670 }
671
672 // Otherwise, get a new symbol and update the state.
673 SValBuilder &svalBuilder = C.getSValBuilder();
674 QualType sizeTy = svalBuilder.getContext().getSizeType();
675 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
676 MR, Ex, sizeTy,
677 C.blockCount());
678
679 if (!hypothetical) {
680 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
681 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
682 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
683 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
684 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
685 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
686 fourInt);
687 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
688 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
689 maxLength, sizeTy);
690 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
691 }
692 state = state->set<CStringLength>(MR, strLength);
693 }
694
695 return strLength;
696 }
697
getCStringLength(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,SVal Buf,bool hypothetical) const698 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
699 const Expr *Ex, SVal Buf,
700 bool hypothetical) const {
701 const MemRegion *MR = Buf.getAsRegion();
702 if (!MR) {
703 // If we can't get a region, see if it's something we /know/ isn't a
704 // C string. In the context of locations, the only time we can issue such
705 // a warning is for labels.
706 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
707 if (!Filter.CheckCStringNotNullTerm)
708 return UndefinedVal();
709
710 if (ExplodedNode *N = C.addTransition(state)) {
711 if (!BT_NotCString)
712 BT_NotCString.reset(new BuiltinBug(
713 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
714 "Argument is not a null-terminated string."));
715
716 SmallString<120> buf;
717 llvm::raw_svector_ostream os(buf);
718 assert(CurrentFunctionDescription);
719 os << "Argument to " << CurrentFunctionDescription
720 << " is the address of the label '" << Label->getLabel()->getName()
721 << "', which is not a null-terminated string";
722
723 // Generate a report for this bug.
724 BugReport *report = new BugReport(*BT_NotCString, os.str(), N);
725
726 report->addRange(Ex->getSourceRange());
727 C.emitReport(report);
728 }
729 return UndefinedVal();
730
731 }
732
733 // If it's not a region and not a label, give up.
734 return UnknownVal();
735 }
736
737 // If we have a region, strip casts from it and see if we can figure out
738 // its length. For anything we can't figure out, just return UnknownVal.
739 MR = MR->StripCasts();
740
741 switch (MR->getKind()) {
742 case MemRegion::StringRegionKind: {
743 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
744 // so we can assume that the byte length is the correct C string length.
745 SValBuilder &svalBuilder = C.getSValBuilder();
746 QualType sizeTy = svalBuilder.getContext().getSizeType();
747 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
748 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
749 }
750 case MemRegion::SymbolicRegionKind:
751 case MemRegion::AllocaRegionKind:
752 case MemRegion::VarRegionKind:
753 case MemRegion::FieldRegionKind:
754 case MemRegion::ObjCIvarRegionKind:
755 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
756 case MemRegion::CompoundLiteralRegionKind:
757 // FIXME: Can we track this? Is it necessary?
758 return UnknownVal();
759 case MemRegion::ElementRegionKind:
760 // FIXME: How can we handle this? It's not good enough to subtract the
761 // offset from the base string length; consider "123\x00567" and &a[5].
762 return UnknownVal();
763 default:
764 // Other regions (mostly non-data) can't have a reliable C string length.
765 // In this case, an error is emitted and UndefinedVal is returned.
766 // The caller should always be prepared to handle this case.
767 if (!Filter.CheckCStringNotNullTerm)
768 return UndefinedVal();
769
770 if (ExplodedNode *N = C.addTransition(state)) {
771 if (!BT_NotCString)
772 BT_NotCString.reset(new BuiltinBug(
773 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
774 "Argument is not a null-terminated string."));
775
776 SmallString<120> buf;
777 llvm::raw_svector_ostream os(buf);
778
779 assert(CurrentFunctionDescription);
780 os << "Argument to " << CurrentFunctionDescription << " is ";
781
782 if (SummarizeRegion(os, C.getASTContext(), MR))
783 os << ", which is not a null-terminated string";
784 else
785 os << "not a null-terminated string";
786
787 // Generate a report for this bug.
788 BugReport *report = new BugReport(*BT_NotCString,
789 os.str(), N);
790
791 report->addRange(Ex->getSourceRange());
792 C.emitReport(report);
793 }
794
795 return UndefinedVal();
796 }
797 }
798
getCStringLiteral(CheckerContext & C,ProgramStateRef & state,const Expr * expr,SVal val) const799 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
800 ProgramStateRef &state, const Expr *expr, SVal val) const {
801
802 // Get the memory region pointed to by the val.
803 const MemRegion *bufRegion = val.getAsRegion();
804 if (!bufRegion)
805 return nullptr;
806
807 // Strip casts off the memory region.
808 bufRegion = bufRegion->StripCasts();
809
810 // Cast the memory region to a string region.
811 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
812 if (!strRegion)
813 return nullptr;
814
815 // Return the actual string in the string region.
816 return strRegion->getStringLiteral();
817 }
818
InvalidateBuffer(CheckerContext & C,ProgramStateRef state,const Expr * E,SVal V,bool IsSourceBuffer)819 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
820 ProgramStateRef state,
821 const Expr *E, SVal V,
822 bool IsSourceBuffer) {
823 Optional<Loc> L = V.getAs<Loc>();
824 if (!L)
825 return state;
826
827 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
828 // some assumptions about the value that CFRefCount can't. Even so, it should
829 // probably be refactored.
830 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
831 const MemRegion *R = MR->getRegion()->StripCasts();
832
833 // Are we dealing with an ElementRegion? If so, we should be invalidating
834 // the super-region.
835 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
836 R = ER->getSuperRegion();
837 // FIXME: What about layers of ElementRegions?
838 }
839
840 // Invalidate this region.
841 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
842
843 bool CausesPointerEscape = false;
844 RegionAndSymbolInvalidationTraits ITraits;
845 // Invalidate and escape only indirect regions accessible through the source
846 // buffer.
847 if (IsSourceBuffer) {
848 ITraits.setTrait(R,
849 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
850 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
851 CausesPointerEscape = true;
852 }
853
854 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
855 CausesPointerEscape, nullptr, nullptr,
856 &ITraits);
857 }
858
859 // If we have a non-region value by chance, just remove the binding.
860 // FIXME: is this necessary or correct? This handles the non-Region
861 // cases. Is it ever valid to store to these?
862 return state->killBinding(*L);
863 }
864
SummarizeRegion(raw_ostream & os,ASTContext & Ctx,const MemRegion * MR)865 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
866 const MemRegion *MR) {
867 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
868
869 switch (MR->getKind()) {
870 case MemRegion::FunctionTextRegionKind: {
871 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
872 if (FD)
873 os << "the address of the function '" << *FD << '\'';
874 else
875 os << "the address of a function";
876 return true;
877 }
878 case MemRegion::BlockTextRegionKind:
879 os << "block text";
880 return true;
881 case MemRegion::BlockDataRegionKind:
882 os << "a block";
883 return true;
884 case MemRegion::CXXThisRegionKind:
885 case MemRegion::CXXTempObjectRegionKind:
886 os << "a C++ temp object of type " << TVR->getValueType().getAsString();
887 return true;
888 case MemRegion::VarRegionKind:
889 os << "a variable of type" << TVR->getValueType().getAsString();
890 return true;
891 case MemRegion::FieldRegionKind:
892 os << "a field of type " << TVR->getValueType().getAsString();
893 return true;
894 case MemRegion::ObjCIvarRegionKind:
895 os << "an instance variable of type " << TVR->getValueType().getAsString();
896 return true;
897 default:
898 return false;
899 }
900 }
901
902 //===----------------------------------------------------------------------===//
903 // evaluation of individual function calls.
904 //===----------------------------------------------------------------------===//
905
evalCopyCommon(CheckerContext & C,const CallExpr * CE,ProgramStateRef state,const Expr * Size,const Expr * Dest,const Expr * Source,bool Restricted,bool IsMempcpy) const906 void CStringChecker::evalCopyCommon(CheckerContext &C,
907 const CallExpr *CE,
908 ProgramStateRef state,
909 const Expr *Size, const Expr *Dest,
910 const Expr *Source, bool Restricted,
911 bool IsMempcpy) const {
912 CurrentFunctionDescription = "memory copy function";
913
914 // See if the size argument is zero.
915 const LocationContext *LCtx = C.getLocationContext();
916 SVal sizeVal = state->getSVal(Size, LCtx);
917 QualType sizeTy = Size->getType();
918
919 ProgramStateRef stateZeroSize, stateNonZeroSize;
920 std::tie(stateZeroSize, stateNonZeroSize) =
921 assumeZero(C, state, sizeVal, sizeTy);
922
923 // Get the value of the Dest.
924 SVal destVal = state->getSVal(Dest, LCtx);
925
926 // If the size is zero, there won't be any actual memory access, so
927 // just bind the return value to the destination buffer and return.
928 if (stateZeroSize && !stateNonZeroSize) {
929 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
930 C.addTransition(stateZeroSize);
931 return;
932 }
933
934 // If the size can be nonzero, we have to check the other arguments.
935 if (stateNonZeroSize) {
936 state = stateNonZeroSize;
937
938 // Ensure the destination is not null. If it is NULL there will be a
939 // NULL pointer dereference.
940 state = checkNonNull(C, state, Dest, destVal);
941 if (!state)
942 return;
943
944 // Get the value of the Src.
945 SVal srcVal = state->getSVal(Source, LCtx);
946
947 // Ensure the source is not null. If it is NULL there will be a
948 // NULL pointer dereference.
949 state = checkNonNull(C, state, Source, srcVal);
950 if (!state)
951 return;
952
953 // Ensure the accesses are valid and that the buffers do not overlap.
954 const char * const writeWarning =
955 "Memory copy function overflows destination buffer";
956 state = CheckBufferAccess(C, state, Size, Dest, Source,
957 writeWarning, /* sourceWarning = */ nullptr);
958 if (Restricted)
959 state = CheckOverlap(C, state, Size, Dest, Source);
960
961 if (!state)
962 return;
963
964 // If this is mempcpy, get the byte after the last byte copied and
965 // bind the expr.
966 if (IsMempcpy) {
967 loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
968
969 // Get the length to copy.
970 if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
971 // Get the byte after the last byte copied.
972 SValBuilder &SvalBuilder = C.getSValBuilder();
973 ASTContext &Ctx = SvalBuilder.getContext();
974 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
975 loc::MemRegionVal DestRegCharVal = SvalBuilder.evalCast(destRegVal,
976 CharPtrTy, Dest->getType()).castAs<loc::MemRegionVal>();
977 SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
978 DestRegCharVal,
979 *lenValNonLoc,
980 Dest->getType());
981
982 // The byte after the last byte copied is the return value.
983 state = state->BindExpr(CE, LCtx, lastElement);
984 } else {
985 // If we don't know how much we copied, we can at least
986 // conjure a return value for later.
987 SVal result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
988 C.blockCount());
989 state = state->BindExpr(CE, LCtx, result);
990 }
991
992 } else {
993 // All other copies return the destination buffer.
994 // (Well, bcopy() has a void return type, but this won't hurt.)
995 state = state->BindExpr(CE, LCtx, destVal);
996 }
997
998 // Invalidate the destination (regular invalidation without pointer-escaping
999 // the address of the top-level region).
1000 // FIXME: Even if we can't perfectly model the copy, we should see if we
1001 // can use LazyCompoundVals to copy the source values into the destination.
1002 // This would probably remove any existing bindings past the end of the
1003 // copied region, but that's still an improvement over blank invalidation.
1004 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1005 /*IsSourceBuffer*/false);
1006
1007 // Invalidate the source (const-invalidation without const-pointer-escaping
1008 // the address of the top-level region).
1009 state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1010 /*IsSourceBuffer*/true);
1011
1012 C.addTransition(state);
1013 }
1014 }
1015
1016
evalMemcpy(CheckerContext & C,const CallExpr * CE) const1017 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1018 if (CE->getNumArgs() < 3)
1019 return;
1020
1021 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1022 // The return value is the address of the destination buffer.
1023 const Expr *Dest = CE->getArg(0);
1024 ProgramStateRef state = C.getState();
1025
1026 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1027 }
1028
evalMempcpy(CheckerContext & C,const CallExpr * CE) const1029 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1030 if (CE->getNumArgs() < 3)
1031 return;
1032
1033 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1034 // The return value is a pointer to the byte following the last written byte.
1035 const Expr *Dest = CE->getArg(0);
1036 ProgramStateRef state = C.getState();
1037
1038 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1039 }
1040
evalMemmove(CheckerContext & C,const CallExpr * CE) const1041 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1042 if (CE->getNumArgs() < 3)
1043 return;
1044
1045 // void *memmove(void *dst, const void *src, size_t n);
1046 // The return value is the address of the destination buffer.
1047 const Expr *Dest = CE->getArg(0);
1048 ProgramStateRef state = C.getState();
1049
1050 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1051 }
1052
evalBcopy(CheckerContext & C,const CallExpr * CE) const1053 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1054 if (CE->getNumArgs() < 3)
1055 return;
1056
1057 // void bcopy(const void *src, void *dst, size_t n);
1058 evalCopyCommon(C, CE, C.getState(),
1059 CE->getArg(2), CE->getArg(1), CE->getArg(0));
1060 }
1061
evalMemcmp(CheckerContext & C,const CallExpr * CE) const1062 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1063 if (CE->getNumArgs() < 3)
1064 return;
1065
1066 // int memcmp(const void *s1, const void *s2, size_t n);
1067 CurrentFunctionDescription = "memory comparison function";
1068
1069 const Expr *Left = CE->getArg(0);
1070 const Expr *Right = CE->getArg(1);
1071 const Expr *Size = CE->getArg(2);
1072
1073 ProgramStateRef state = C.getState();
1074 SValBuilder &svalBuilder = C.getSValBuilder();
1075
1076 // See if the size argument is zero.
1077 const LocationContext *LCtx = C.getLocationContext();
1078 SVal sizeVal = state->getSVal(Size, LCtx);
1079 QualType sizeTy = Size->getType();
1080
1081 ProgramStateRef stateZeroSize, stateNonZeroSize;
1082 std::tie(stateZeroSize, stateNonZeroSize) =
1083 assumeZero(C, state, sizeVal, sizeTy);
1084
1085 // If the size can be zero, the result will be 0 in that case, and we don't
1086 // have to check either of the buffers.
1087 if (stateZeroSize) {
1088 state = stateZeroSize;
1089 state = state->BindExpr(CE, LCtx,
1090 svalBuilder.makeZeroVal(CE->getType()));
1091 C.addTransition(state);
1092 }
1093
1094 // If the size can be nonzero, we have to check the other arguments.
1095 if (stateNonZeroSize) {
1096 state = stateNonZeroSize;
1097 // If we know the two buffers are the same, we know the result is 0.
1098 // First, get the two buffers' addresses. Another checker will have already
1099 // made sure they're not undefined.
1100 DefinedOrUnknownSVal LV =
1101 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1102 DefinedOrUnknownSVal RV =
1103 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1104
1105 // See if they are the same.
1106 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1107 ProgramStateRef StSameBuf, StNotSameBuf;
1108 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1109
1110 // If the two arguments might be the same buffer, we know the result is 0,
1111 // and we only need to check one size.
1112 if (StSameBuf) {
1113 state = StSameBuf;
1114 state = CheckBufferAccess(C, state, Size, Left);
1115 if (state) {
1116 state = StSameBuf->BindExpr(CE, LCtx,
1117 svalBuilder.makeZeroVal(CE->getType()));
1118 C.addTransition(state);
1119 }
1120 }
1121
1122 // If the two arguments might be different buffers, we have to check the
1123 // size of both of them.
1124 if (StNotSameBuf) {
1125 state = StNotSameBuf;
1126 state = CheckBufferAccess(C, state, Size, Left, Right);
1127 if (state) {
1128 // The return value is the comparison result, which we don't know.
1129 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1130 C.blockCount());
1131 state = state->BindExpr(CE, LCtx, CmpV);
1132 C.addTransition(state);
1133 }
1134 }
1135 }
1136 }
1137
evalstrLength(CheckerContext & C,const CallExpr * CE) const1138 void CStringChecker::evalstrLength(CheckerContext &C,
1139 const CallExpr *CE) const {
1140 if (CE->getNumArgs() < 1)
1141 return;
1142
1143 // size_t strlen(const char *s);
1144 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1145 }
1146
evalstrnLength(CheckerContext & C,const CallExpr * CE) const1147 void CStringChecker::evalstrnLength(CheckerContext &C,
1148 const CallExpr *CE) const {
1149 if (CE->getNumArgs() < 2)
1150 return;
1151
1152 // size_t strnlen(const char *s, size_t maxlen);
1153 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1154 }
1155
evalstrLengthCommon(CheckerContext & C,const CallExpr * CE,bool IsStrnlen) const1156 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1157 bool IsStrnlen) const {
1158 CurrentFunctionDescription = "string length function";
1159 ProgramStateRef state = C.getState();
1160 const LocationContext *LCtx = C.getLocationContext();
1161
1162 if (IsStrnlen) {
1163 const Expr *maxlenExpr = CE->getArg(1);
1164 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1165
1166 ProgramStateRef stateZeroSize, stateNonZeroSize;
1167 std::tie(stateZeroSize, stateNonZeroSize) =
1168 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1169
1170 // If the size can be zero, the result will be 0 in that case, and we don't
1171 // have to check the string itself.
1172 if (stateZeroSize) {
1173 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1174 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1175 C.addTransition(stateZeroSize);
1176 }
1177
1178 // If the size is GUARANTEED to be zero, we're done!
1179 if (!stateNonZeroSize)
1180 return;
1181
1182 // Otherwise, record the assumption that the size is nonzero.
1183 state = stateNonZeroSize;
1184 }
1185
1186 // Check that the string argument is non-null.
1187 const Expr *Arg = CE->getArg(0);
1188 SVal ArgVal = state->getSVal(Arg, LCtx);
1189
1190 state = checkNonNull(C, state, Arg, ArgVal);
1191
1192 if (!state)
1193 return;
1194
1195 SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1196
1197 // If the argument isn't a valid C string, there's no valid state to
1198 // transition to.
1199 if (strLength.isUndef())
1200 return;
1201
1202 DefinedOrUnknownSVal result = UnknownVal();
1203
1204 // If the check is for strnlen() then bind the return value to no more than
1205 // the maxlen value.
1206 if (IsStrnlen) {
1207 QualType cmpTy = C.getSValBuilder().getConditionType();
1208
1209 // It's a little unfortunate to be getting this again,
1210 // but it's not that expensive...
1211 const Expr *maxlenExpr = CE->getArg(1);
1212 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1213
1214 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1215 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1216
1217 if (strLengthNL && maxlenValNL) {
1218 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1219
1220 // Check if the strLength is greater than the maxlen.
1221 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1222 C.getSValBuilder()
1223 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1224 .castAs<DefinedOrUnknownSVal>());
1225
1226 if (stateStringTooLong && !stateStringNotTooLong) {
1227 // If the string is longer than maxlen, return maxlen.
1228 result = *maxlenValNL;
1229 } else if (stateStringNotTooLong && !stateStringTooLong) {
1230 // If the string is shorter than maxlen, return its length.
1231 result = *strLengthNL;
1232 }
1233 }
1234
1235 if (result.isUnknown()) {
1236 // If we don't have enough information for a comparison, there's
1237 // no guarantee the full string length will actually be returned.
1238 // All we know is the return value is the min of the string length
1239 // and the limit. This is better than nothing.
1240 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1241 C.blockCount());
1242 NonLoc resultNL = result.castAs<NonLoc>();
1243
1244 if (strLengthNL) {
1245 state = state->assume(C.getSValBuilder().evalBinOpNN(
1246 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1247 .castAs<DefinedOrUnknownSVal>(), true);
1248 }
1249
1250 if (maxlenValNL) {
1251 state = state->assume(C.getSValBuilder().evalBinOpNN(
1252 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1253 .castAs<DefinedOrUnknownSVal>(), true);
1254 }
1255 }
1256
1257 } else {
1258 // This is a plain strlen(), not strnlen().
1259 result = strLength.castAs<DefinedOrUnknownSVal>();
1260
1261 // If we don't know the length of the string, conjure a return
1262 // value, so it can be used in constraints, at least.
1263 if (result.isUnknown()) {
1264 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1265 C.blockCount());
1266 }
1267 }
1268
1269 // Bind the return value.
1270 assert(!result.isUnknown() && "Should have conjured a value by now");
1271 state = state->BindExpr(CE, LCtx, result);
1272 C.addTransition(state);
1273 }
1274
evalStrcpy(CheckerContext & C,const CallExpr * CE) const1275 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1276 if (CE->getNumArgs() < 2)
1277 return;
1278
1279 // char *strcpy(char *restrict dst, const char *restrict src);
1280 evalStrcpyCommon(C, CE,
1281 /* returnEnd = */ false,
1282 /* isBounded = */ false,
1283 /* isAppending = */ false);
1284 }
1285
evalStrncpy(CheckerContext & C,const CallExpr * CE) const1286 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1287 if (CE->getNumArgs() < 3)
1288 return;
1289
1290 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1291 evalStrcpyCommon(C, CE,
1292 /* returnEnd = */ false,
1293 /* isBounded = */ true,
1294 /* isAppending = */ false);
1295 }
1296
evalStpcpy(CheckerContext & C,const CallExpr * CE) const1297 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1298 if (CE->getNumArgs() < 2)
1299 return;
1300
1301 // char *stpcpy(char *restrict dst, const char *restrict src);
1302 evalStrcpyCommon(C, CE,
1303 /* returnEnd = */ true,
1304 /* isBounded = */ false,
1305 /* isAppending = */ false);
1306 }
1307
evalStrcat(CheckerContext & C,const CallExpr * CE) const1308 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1309 if (CE->getNumArgs() < 2)
1310 return;
1311
1312 //char *strcat(char *restrict s1, const char *restrict s2);
1313 evalStrcpyCommon(C, CE,
1314 /* returnEnd = */ false,
1315 /* isBounded = */ false,
1316 /* isAppending = */ true);
1317 }
1318
evalStrncat(CheckerContext & C,const CallExpr * CE) const1319 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1320 if (CE->getNumArgs() < 3)
1321 return;
1322
1323 //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1324 evalStrcpyCommon(C, CE,
1325 /* returnEnd = */ false,
1326 /* isBounded = */ true,
1327 /* isAppending = */ true);
1328 }
1329
evalStrcpyCommon(CheckerContext & C,const CallExpr * CE,bool returnEnd,bool isBounded,bool isAppending) const1330 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1331 bool returnEnd, bool isBounded,
1332 bool isAppending) const {
1333 CurrentFunctionDescription = "string copy function";
1334 ProgramStateRef state = C.getState();
1335 const LocationContext *LCtx = C.getLocationContext();
1336
1337 // Check that the destination is non-null.
1338 const Expr *Dst = CE->getArg(0);
1339 SVal DstVal = state->getSVal(Dst, LCtx);
1340
1341 state = checkNonNull(C, state, Dst, DstVal);
1342 if (!state)
1343 return;
1344
1345 // Check that the source is non-null.
1346 const Expr *srcExpr = CE->getArg(1);
1347 SVal srcVal = state->getSVal(srcExpr, LCtx);
1348 state = checkNonNull(C, state, srcExpr, srcVal);
1349 if (!state)
1350 return;
1351
1352 // Get the string length of the source.
1353 SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1354
1355 // If the source isn't a valid C string, give up.
1356 if (strLength.isUndef())
1357 return;
1358
1359 SValBuilder &svalBuilder = C.getSValBuilder();
1360 QualType cmpTy = svalBuilder.getConditionType();
1361 QualType sizeTy = svalBuilder.getContext().getSizeType();
1362
1363 // These two values allow checking two kinds of errors:
1364 // - actual overflows caused by a source that doesn't fit in the destination
1365 // - potential overflows caused by a bound that could exceed the destination
1366 SVal amountCopied = UnknownVal();
1367 SVal maxLastElementIndex = UnknownVal();
1368 const char *boundWarning = nullptr;
1369
1370 // If the function is strncpy, strncat, etc... it is bounded.
1371 if (isBounded) {
1372 // Get the max number of characters to copy.
1373 const Expr *lenExpr = CE->getArg(2);
1374 SVal lenVal = state->getSVal(lenExpr, LCtx);
1375
1376 // Protect against misdeclared strncpy().
1377 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1378
1379 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1380 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1381
1382 // If we know both values, we might be able to figure out how much
1383 // we're copying.
1384 if (strLengthNL && lenValNL) {
1385 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1386
1387 // Check if the max number to copy is less than the length of the src.
1388 // If the bound is equal to the source length, strncpy won't null-
1389 // terminate the result!
1390 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1391 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1392 .castAs<DefinedOrUnknownSVal>());
1393
1394 if (stateSourceTooLong && !stateSourceNotTooLong) {
1395 // Max number to copy is less than the length of the src, so the actual
1396 // strLength copied is the max number arg.
1397 state = stateSourceTooLong;
1398 amountCopied = lenVal;
1399
1400 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1401 // The source buffer entirely fits in the bound.
1402 state = stateSourceNotTooLong;
1403 amountCopied = strLength;
1404 }
1405 }
1406
1407 // We still want to know if the bound is known to be too large.
1408 if (lenValNL) {
1409 if (isAppending) {
1410 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1411
1412 // Get the string length of the destination. If the destination is
1413 // memory that can't have a string length, we shouldn't be copying
1414 // into it anyway.
1415 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1416 if (dstStrLength.isUndef())
1417 return;
1418
1419 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
1420 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1421 *lenValNL,
1422 *dstStrLengthNL,
1423 sizeTy);
1424 boundWarning = "Size argument is greater than the free space in the "
1425 "destination buffer";
1426 }
1427
1428 } else {
1429 // For strncpy, this is just checking that lenVal <= sizeof(dst)
1430 // (Yes, strncpy and strncat differ in how they treat termination.
1431 // strncat ALWAYS terminates, but strncpy doesn't.)
1432
1433 // We need a special case for when the copy size is zero, in which
1434 // case strncpy will do no work at all. Our bounds check uses n-1
1435 // as the last element accessed, so n == 0 is problematic.
1436 ProgramStateRef StateZeroSize, StateNonZeroSize;
1437 std::tie(StateZeroSize, StateNonZeroSize) =
1438 assumeZero(C, state, *lenValNL, sizeTy);
1439
1440 // If the size is known to be zero, we're done.
1441 if (StateZeroSize && !StateNonZeroSize) {
1442 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1443 C.addTransition(StateZeroSize);
1444 return;
1445 }
1446
1447 // Otherwise, go ahead and figure out the last element we'll touch.
1448 // We don't record the non-zero assumption here because we can't
1449 // be sure. We won't warn on a possible zero.
1450 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1451 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1452 one, sizeTy);
1453 boundWarning = "Size argument is greater than the length of the "
1454 "destination buffer";
1455 }
1456 }
1457
1458 // If we couldn't pin down the copy length, at least bound it.
1459 // FIXME: We should actually run this code path for append as well, but
1460 // right now it creates problems with constraints (since we can end up
1461 // trying to pass constraints from symbol to symbol).
1462 if (amountCopied.isUnknown() && !isAppending) {
1463 // Try to get a "hypothetical" string length symbol, which we can later
1464 // set as a real value if that turns out to be the case.
1465 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1466 assert(!amountCopied.isUndef());
1467
1468 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
1469 if (lenValNL) {
1470 // amountCopied <= lenVal
1471 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1472 *amountCopiedNL,
1473 *lenValNL,
1474 cmpTy);
1475 state = state->assume(
1476 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1477 if (!state)
1478 return;
1479 }
1480
1481 if (strLengthNL) {
1482 // amountCopied <= strlen(source)
1483 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1484 *amountCopiedNL,
1485 *strLengthNL,
1486 cmpTy);
1487 state = state->assume(
1488 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1489 if (!state)
1490 return;
1491 }
1492 }
1493 }
1494
1495 } else {
1496 // The function isn't bounded. The amount copied should match the length
1497 // of the source buffer.
1498 amountCopied = strLength;
1499 }
1500
1501 assert(state);
1502
1503 // This represents the number of characters copied into the destination
1504 // buffer. (It may not actually be the strlen if the destination buffer
1505 // is not terminated.)
1506 SVal finalStrLength = UnknownVal();
1507
1508 // If this is an appending function (strcat, strncat...) then set the
1509 // string length to strlen(src) + strlen(dst) since the buffer will
1510 // ultimately contain both.
1511 if (isAppending) {
1512 // Get the string length of the destination. If the destination is memory
1513 // that can't have a string length, we shouldn't be copying into it anyway.
1514 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1515 if (dstStrLength.isUndef())
1516 return;
1517
1518 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1519 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1520
1521 // If we know both string lengths, we might know the final string length.
1522 if (srcStrLengthNL && dstStrLengthNL) {
1523 // Make sure the two lengths together don't overflow a size_t.
1524 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1525 if (!state)
1526 return;
1527
1528 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1529 *dstStrLengthNL, sizeTy);
1530 }
1531
1532 // If we couldn't get a single value for the final string length,
1533 // we can at least bound it by the individual lengths.
1534 if (finalStrLength.isUnknown()) {
1535 // Try to get a "hypothetical" string length symbol, which we can later
1536 // set as a real value if that turns out to be the case.
1537 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1538 assert(!finalStrLength.isUndef());
1539
1540 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1541 if (srcStrLengthNL) {
1542 // finalStrLength >= srcStrLength
1543 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1544 *finalStrLengthNL,
1545 *srcStrLengthNL,
1546 cmpTy);
1547 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1548 true);
1549 if (!state)
1550 return;
1551 }
1552
1553 if (dstStrLengthNL) {
1554 // finalStrLength >= dstStrLength
1555 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1556 *finalStrLengthNL,
1557 *dstStrLengthNL,
1558 cmpTy);
1559 state =
1560 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1561 if (!state)
1562 return;
1563 }
1564 }
1565 }
1566
1567 } else {
1568 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1569 // the final string length will match the input string length.
1570 finalStrLength = amountCopied;
1571 }
1572
1573 // The final result of the function will either be a pointer past the last
1574 // copied element, or a pointer to the start of the destination buffer.
1575 SVal Result = (returnEnd ? UnknownVal() : DstVal);
1576
1577 assert(state);
1578
1579 // If the destination is a MemRegion, try to check for a buffer overflow and
1580 // record the new string length.
1581 if (Optional<loc::MemRegionVal> dstRegVal =
1582 DstVal.getAs<loc::MemRegionVal>()) {
1583 QualType ptrTy = Dst->getType();
1584
1585 // If we have an exact value on a bounded copy, use that to check for
1586 // overflows, rather than our estimate about how much is actually copied.
1587 if (boundWarning) {
1588 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1589 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1590 *maxLastNL, ptrTy);
1591 state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1592 boundWarning);
1593 if (!state)
1594 return;
1595 }
1596 }
1597
1598 // Then, if the final length is known...
1599 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1600 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1601 *knownStrLength, ptrTy);
1602
1603 // ...and we haven't checked the bound, we'll check the actual copy.
1604 if (!boundWarning) {
1605 const char * const warningMsg =
1606 "String copy function overflows destination buffer";
1607 state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1608 if (!state)
1609 return;
1610 }
1611
1612 // If this is a stpcpy-style copy, the last element is the return value.
1613 if (returnEnd)
1614 Result = lastElement;
1615 }
1616
1617 // Invalidate the destination (regular invalidation without pointer-escaping
1618 // the address of the top-level region). This must happen before we set the
1619 // C string length because invalidation will clear the length.
1620 // FIXME: Even if we can't perfectly model the copy, we should see if we
1621 // can use LazyCompoundVals to copy the source values into the destination.
1622 // This would probably remove any existing bindings past the end of the
1623 // string, but that's still an improvement over blank invalidation.
1624 state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1625 /*IsSourceBuffer*/false);
1626
1627 // Invalidate the source (const-invalidation without const-pointer-escaping
1628 // the address of the top-level region).
1629 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true);
1630
1631 // Set the C string length of the destination, if we know it.
1632 if (isBounded && !isAppending) {
1633 // strncpy is annoying in that it doesn't guarantee to null-terminate
1634 // the result string. If the original string didn't fit entirely inside
1635 // the bound (including the null-terminator), we don't know how long the
1636 // result is.
1637 if (amountCopied != strLength)
1638 finalStrLength = UnknownVal();
1639 }
1640 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1641 }
1642
1643 assert(state);
1644
1645 // If this is a stpcpy-style copy, but we were unable to check for a buffer
1646 // overflow, we still need a result. Conjure a return value.
1647 if (returnEnd && Result.isUnknown()) {
1648 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1649 }
1650
1651 // Set the return value.
1652 state = state->BindExpr(CE, LCtx, Result);
1653 C.addTransition(state);
1654 }
1655
evalStrcmp(CheckerContext & C,const CallExpr * CE) const1656 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1657 if (CE->getNumArgs() < 2)
1658 return;
1659
1660 //int strcmp(const char *s1, const char *s2);
1661 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1662 }
1663
evalStrncmp(CheckerContext & C,const CallExpr * CE) const1664 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1665 if (CE->getNumArgs() < 3)
1666 return;
1667
1668 //int strncmp(const char *s1, const char *s2, size_t n);
1669 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1670 }
1671
evalStrcasecmp(CheckerContext & C,const CallExpr * CE) const1672 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1673 const CallExpr *CE) const {
1674 if (CE->getNumArgs() < 2)
1675 return;
1676
1677 //int strcasecmp(const char *s1, const char *s2);
1678 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1679 }
1680
evalStrncasecmp(CheckerContext & C,const CallExpr * CE) const1681 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1682 const CallExpr *CE) const {
1683 if (CE->getNumArgs() < 3)
1684 return;
1685
1686 //int strncasecmp(const char *s1, const char *s2, size_t n);
1687 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1688 }
1689
evalStrcmpCommon(CheckerContext & C,const CallExpr * CE,bool isBounded,bool ignoreCase) const1690 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1691 bool isBounded, bool ignoreCase) const {
1692 CurrentFunctionDescription = "string comparison function";
1693 ProgramStateRef state = C.getState();
1694 const LocationContext *LCtx = C.getLocationContext();
1695
1696 // Check that the first string is non-null
1697 const Expr *s1 = CE->getArg(0);
1698 SVal s1Val = state->getSVal(s1, LCtx);
1699 state = checkNonNull(C, state, s1, s1Val);
1700 if (!state)
1701 return;
1702
1703 // Check that the second string is non-null.
1704 const Expr *s2 = CE->getArg(1);
1705 SVal s2Val = state->getSVal(s2, LCtx);
1706 state = checkNonNull(C, state, s2, s2Val);
1707 if (!state)
1708 return;
1709
1710 // Get the string length of the first string or give up.
1711 SVal s1Length = getCStringLength(C, state, s1, s1Val);
1712 if (s1Length.isUndef())
1713 return;
1714
1715 // Get the string length of the second string or give up.
1716 SVal s2Length = getCStringLength(C, state, s2, s2Val);
1717 if (s2Length.isUndef())
1718 return;
1719
1720 // If we know the two buffers are the same, we know the result is 0.
1721 // First, get the two buffers' addresses. Another checker will have already
1722 // made sure they're not undefined.
1723 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1724 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1725
1726 // See if they are the same.
1727 SValBuilder &svalBuilder = C.getSValBuilder();
1728 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1729 ProgramStateRef StSameBuf, StNotSameBuf;
1730 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1731
1732 // If the two arguments might be the same buffer, we know the result is 0,
1733 // and we only need to check one size.
1734 if (StSameBuf) {
1735 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1736 svalBuilder.makeZeroVal(CE->getType()));
1737 C.addTransition(StSameBuf);
1738
1739 // If the two arguments are GUARANTEED to be the same, we're done!
1740 if (!StNotSameBuf)
1741 return;
1742 }
1743
1744 assert(StNotSameBuf);
1745 state = StNotSameBuf;
1746
1747 // At this point we can go about comparing the two buffers.
1748 // For now, we only do this if they're both known string literals.
1749
1750 // Attempt to extract string literals from both expressions.
1751 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1752 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1753 bool canComputeResult = false;
1754
1755 if (s1StrLiteral && s2StrLiteral) {
1756 StringRef s1StrRef = s1StrLiteral->getString();
1757 StringRef s2StrRef = s2StrLiteral->getString();
1758
1759 if (isBounded) {
1760 // Get the max number of characters to compare.
1761 const Expr *lenExpr = CE->getArg(2);
1762 SVal lenVal = state->getSVal(lenExpr, LCtx);
1763
1764 // If the length is known, we can get the right substrings.
1765 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1766 // Create substrings of each to compare the prefix.
1767 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1768 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1769 canComputeResult = true;
1770 }
1771 } else {
1772 // This is a normal, unbounded strcmp.
1773 canComputeResult = true;
1774 }
1775
1776 if (canComputeResult) {
1777 // Real strcmp stops at null characters.
1778 size_t s1Term = s1StrRef.find('\0');
1779 if (s1Term != StringRef::npos)
1780 s1StrRef = s1StrRef.substr(0, s1Term);
1781
1782 size_t s2Term = s2StrRef.find('\0');
1783 if (s2Term != StringRef::npos)
1784 s2StrRef = s2StrRef.substr(0, s2Term);
1785
1786 // Use StringRef's comparison methods to compute the actual result.
1787 int result;
1788
1789 if (ignoreCase) {
1790 // Compare string 1 to string 2 the same way strcasecmp() does.
1791 result = s1StrRef.compare_lower(s2StrRef);
1792 } else {
1793 // Compare string 1 to string 2 the same way strcmp() does.
1794 result = s1StrRef.compare(s2StrRef);
1795 }
1796
1797 // Build the SVal of the comparison and bind the return value.
1798 SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1799 state = state->BindExpr(CE, LCtx, resultVal);
1800 }
1801 }
1802
1803 if (!canComputeResult) {
1804 // Conjure a symbolic value. It's the best we can do.
1805 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1806 C.blockCount());
1807 state = state->BindExpr(CE, LCtx, resultVal);
1808 }
1809
1810 // Record this as a possible path.
1811 C.addTransition(state);
1812 }
1813
evalStrsep(CheckerContext & C,const CallExpr * CE) const1814 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
1815 //char *strsep(char **stringp, const char *delim);
1816 if (CE->getNumArgs() < 2)
1817 return;
1818
1819 // Sanity: does the search string parameter match the return type?
1820 const Expr *SearchStrPtr = CE->getArg(0);
1821 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
1822 if (CharPtrTy.isNull() ||
1823 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
1824 return;
1825
1826 CurrentFunctionDescription = "strsep()";
1827 ProgramStateRef State = C.getState();
1828 const LocationContext *LCtx = C.getLocationContext();
1829
1830 // Check that the search string pointer is non-null (though it may point to
1831 // a null string).
1832 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
1833 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
1834 if (!State)
1835 return;
1836
1837 // Check that the delimiter string is non-null.
1838 const Expr *DelimStr = CE->getArg(1);
1839 SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
1840 State = checkNonNull(C, State, DelimStr, DelimStrVal);
1841 if (!State)
1842 return;
1843
1844 SValBuilder &SVB = C.getSValBuilder();
1845 SVal Result;
1846 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
1847 // Get the current value of the search string pointer, as a char*.
1848 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
1849
1850 // Invalidate the search string, representing the change of one delimiter
1851 // character to NUL.
1852 State = InvalidateBuffer(C, State, SearchStrPtr, Result,
1853 /*IsSourceBuffer*/false);
1854
1855 // Overwrite the search string pointer. The new value is either an address
1856 // further along in the same string, or NULL if there are no more tokens.
1857 State = State->bindLoc(*SearchStrLoc,
1858 SVB.conjureSymbolVal(getTag(), CE, LCtx, CharPtrTy,
1859 C.blockCount()));
1860 } else {
1861 assert(SearchStrVal.isUnknown());
1862 // Conjure a symbolic value. It's the best we can do.
1863 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1864 }
1865
1866 // Set the return value, and finish.
1867 State = State->BindExpr(CE, LCtx, Result);
1868 C.addTransition(State);
1869 }
1870
1871
1872 //===----------------------------------------------------------------------===//
1873 // The driver method, and other Checker callbacks.
1874 //===----------------------------------------------------------------------===//
1875
evalCall(const CallExpr * CE,CheckerContext & C) const1876 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1877 const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1878
1879 if (!FDecl)
1880 return false;
1881
1882 // FIXME: Poorly-factored string switches are slow.
1883 FnCheck evalFunction = nullptr;
1884 if (C.isCLibraryFunction(FDecl, "memcpy"))
1885 evalFunction = &CStringChecker::evalMemcpy;
1886 else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1887 evalFunction = &CStringChecker::evalMempcpy;
1888 else if (C.isCLibraryFunction(FDecl, "memcmp"))
1889 evalFunction = &CStringChecker::evalMemcmp;
1890 else if (C.isCLibraryFunction(FDecl, "memmove"))
1891 evalFunction = &CStringChecker::evalMemmove;
1892 else if (C.isCLibraryFunction(FDecl, "strcpy"))
1893 evalFunction = &CStringChecker::evalStrcpy;
1894 else if (C.isCLibraryFunction(FDecl, "strncpy"))
1895 evalFunction = &CStringChecker::evalStrncpy;
1896 else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1897 evalFunction = &CStringChecker::evalStpcpy;
1898 else if (C.isCLibraryFunction(FDecl, "strcat"))
1899 evalFunction = &CStringChecker::evalStrcat;
1900 else if (C.isCLibraryFunction(FDecl, "strncat"))
1901 evalFunction = &CStringChecker::evalStrncat;
1902 else if (C.isCLibraryFunction(FDecl, "strlen"))
1903 evalFunction = &CStringChecker::evalstrLength;
1904 else if (C.isCLibraryFunction(FDecl, "strnlen"))
1905 evalFunction = &CStringChecker::evalstrnLength;
1906 else if (C.isCLibraryFunction(FDecl, "strcmp"))
1907 evalFunction = &CStringChecker::evalStrcmp;
1908 else if (C.isCLibraryFunction(FDecl, "strncmp"))
1909 evalFunction = &CStringChecker::evalStrncmp;
1910 else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1911 evalFunction = &CStringChecker::evalStrcasecmp;
1912 else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1913 evalFunction = &CStringChecker::evalStrncasecmp;
1914 else if (C.isCLibraryFunction(FDecl, "strsep"))
1915 evalFunction = &CStringChecker::evalStrsep;
1916 else if (C.isCLibraryFunction(FDecl, "bcopy"))
1917 evalFunction = &CStringChecker::evalBcopy;
1918 else if (C.isCLibraryFunction(FDecl, "bcmp"))
1919 evalFunction = &CStringChecker::evalMemcmp;
1920
1921 // If the callee isn't a string function, let another checker handle it.
1922 if (!evalFunction)
1923 return false;
1924
1925 // Make sure each function sets its own description.
1926 // (But don't bother in a release build.)
1927 assert(!(CurrentFunctionDescription = nullptr));
1928
1929 // Check and evaluate the call.
1930 (this->*evalFunction)(C, CE);
1931
1932 // If the evaluate call resulted in no change, chain to the next eval call
1933 // handler.
1934 // Note, the custom CString evaluation calls assume that basic safety
1935 // properties are held. However, if the user chooses to turn off some of these
1936 // checks, we ignore the issues and leave the call evaluation to a generic
1937 // handler.
1938 if (!C.isDifferent())
1939 return false;
1940
1941 return true;
1942 }
1943
checkPreStmt(const DeclStmt * DS,CheckerContext & C) const1944 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1945 // Record string length for char a[] = "abc";
1946 ProgramStateRef state = C.getState();
1947
1948 for (const auto *I : DS->decls()) {
1949 const VarDecl *D = dyn_cast<VarDecl>(I);
1950 if (!D)
1951 continue;
1952
1953 // FIXME: Handle array fields of structs.
1954 if (!D->getType()->isArrayType())
1955 continue;
1956
1957 const Expr *Init = D->getInit();
1958 if (!Init)
1959 continue;
1960 if (!isa<StringLiteral>(Init))
1961 continue;
1962
1963 Loc VarLoc = state->getLValue(D, C.getLocationContext());
1964 const MemRegion *MR = VarLoc.getAsRegion();
1965 if (!MR)
1966 continue;
1967
1968 SVal StrVal = state->getSVal(Init, C.getLocationContext());
1969 assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1970 DefinedOrUnknownSVal strLength =
1971 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
1972
1973 state = state->set<CStringLength>(MR, strLength);
1974 }
1975
1976 C.addTransition(state);
1977 }
1978
wantsRegionChangeUpdate(ProgramStateRef state) const1979 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1980 CStringLengthTy Entries = state->get<CStringLength>();
1981 return !Entries.isEmpty();
1982 }
1983
1984 ProgramStateRef
checkRegionChanges(ProgramStateRef state,const InvalidatedSymbols *,ArrayRef<const MemRegion * > ExplicitRegions,ArrayRef<const MemRegion * > Regions,const CallEvent * Call) const1985 CStringChecker::checkRegionChanges(ProgramStateRef state,
1986 const InvalidatedSymbols *,
1987 ArrayRef<const MemRegion *> ExplicitRegions,
1988 ArrayRef<const MemRegion *> Regions,
1989 const CallEvent *Call) const {
1990 CStringLengthTy Entries = state->get<CStringLength>();
1991 if (Entries.isEmpty())
1992 return state;
1993
1994 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1995 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1996
1997 // First build sets for the changed regions and their super-regions.
1998 for (ArrayRef<const MemRegion *>::iterator
1999 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2000 const MemRegion *MR = *I;
2001 Invalidated.insert(MR);
2002
2003 SuperRegions.insert(MR);
2004 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2005 MR = SR->getSuperRegion();
2006 SuperRegions.insert(MR);
2007 }
2008 }
2009
2010 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2011
2012 // Then loop over the entries in the current state.
2013 for (CStringLengthTy::iterator I = Entries.begin(),
2014 E = Entries.end(); I != E; ++I) {
2015 const MemRegion *MR = I.getKey();
2016
2017 // Is this entry for a super-region of a changed region?
2018 if (SuperRegions.count(MR)) {
2019 Entries = F.remove(Entries, MR);
2020 continue;
2021 }
2022
2023 // Is this entry for a sub-region of a changed region?
2024 const MemRegion *Super = MR;
2025 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2026 Super = SR->getSuperRegion();
2027 if (Invalidated.count(Super)) {
2028 Entries = F.remove(Entries, MR);
2029 break;
2030 }
2031 }
2032 }
2033
2034 return state->set<CStringLength>(Entries);
2035 }
2036
checkLiveSymbols(ProgramStateRef state,SymbolReaper & SR) const2037 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2038 SymbolReaper &SR) const {
2039 // Mark all symbols in our string length map as valid.
2040 CStringLengthTy Entries = state->get<CStringLength>();
2041
2042 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2043 I != E; ++I) {
2044 SVal Len = I.getData();
2045
2046 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2047 se = Len.symbol_end(); si != se; ++si)
2048 SR.markInUse(*si);
2049 }
2050 }
2051
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const2052 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2053 CheckerContext &C) const {
2054 if (!SR.hasDeadSymbols())
2055 return;
2056
2057 ProgramStateRef state = C.getState();
2058 CStringLengthTy Entries = state->get<CStringLength>();
2059 if (Entries.isEmpty())
2060 return;
2061
2062 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2063 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2064 I != E; ++I) {
2065 SVal Len = I.getData();
2066 if (SymbolRef Sym = Len.getAsSymbol()) {
2067 if (SR.isDead(Sym))
2068 Entries = F.remove(Entries, I.getKey());
2069 }
2070 }
2071
2072 state = state->set<CStringLength>(Entries);
2073 C.addTransition(state);
2074 }
2075
2076 #define REGISTER_CHECKER(name) \
2077 void ento::register##name(CheckerManager &mgr) { \
2078 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \
2079 checker->Filter.Check##name = true; \
2080 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \
2081 }
2082
2083 REGISTER_CHECKER(CStringNullArg)
REGISTER_CHECKER(CStringOutOfBounds)2084 REGISTER_CHECKER(CStringOutOfBounds)
2085 REGISTER_CHECKER(CStringBufferOverlap)
2086 REGISTER_CHECKER(CStringNotNullTerm)
2087
2088 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
2089 registerCStringNullArg(Mgr);
2090 }
2091