1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include <sstream>
35 using namespace clang;
36 using namespace CodeGen;
37 
38 /***/
39 
ClangCallConvToLLVMCallConv(CallingConv CC)40 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
41   switch (CC) {
42   default: return llvm::CallingConv::C;
43   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
44   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
45   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
46   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
47   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
48   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
49   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
50   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
51   // TODO: Add support for __pascal to LLVM.
52   case CC_X86Pascal: return llvm::CallingConv::C;
53   // TODO: Add support for __vectorcall to LLVM.
54   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
55   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
56   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
57   }
58 }
59 
60 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
61 /// qualification.
62 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)63 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
64   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
65   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
66 }
67 
68 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)69 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
70   return MD->getType()->getCanonicalTypeUnqualified()
71            .getAs<FunctionProtoType>();
72 }
73 
74 /// Returns the "extra-canonicalized" return type, which discards
75 /// qualifiers on the return type.  Codegen doesn't care about them,
76 /// and it makes ABI code a little easier to be able to assume that
77 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)78 static CanQualType GetReturnType(QualType RetTy) {
79   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
80 }
81 
82 /// Arrange the argument and result information for a value of the given
83 /// unprototyped freestanding function type.
84 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)85 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
86   // When translating an unprototyped function type, always use a
87   // variadic type.
88   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
89                                  /*instanceMethod=*/false,
90                                  /*chainCall=*/false, None,
91                                  FTNP->getExtInfo(), RequiredArgs(0));
92 }
93 
94 /// Arrange the LLVM function layout for a value of the given function
95 /// type, on top of any implicit parameters already stored.
96 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)97 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
98                         SmallVectorImpl<CanQualType> &prefix,
99                         CanQual<FunctionProtoType> FTP) {
100   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
101   // FIXME: Kill copy.
102   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
103   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                      /*chainCall=*/false, prefix,
106                                      FTP->getExtInfo(), required);
107 }
108 
109 /// Arrange the argument and result information for a value of the
110 /// given freestanding function type.
111 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113   SmallVector<CanQualType, 16> argTypes;
114   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                    FTP);
116 }
117 
getCallingConventionForDecl(const Decl * D,bool IsWindows)118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119   // Set the appropriate calling convention for the Function.
120   if (D->hasAttr<StdCallAttr>())
121     return CC_X86StdCall;
122 
123   if (D->hasAttr<FastCallAttr>())
124     return CC_X86FastCall;
125 
126   if (D->hasAttr<ThisCallAttr>())
127     return CC_X86ThisCall;
128 
129   if (D->hasAttr<VectorCallAttr>())
130     return CC_X86VectorCall;
131 
132   if (D->hasAttr<PascalAttr>())
133     return CC_X86Pascal;
134 
135   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137 
138   if (D->hasAttr<IntelOclBiccAttr>())
139     return CC_IntelOclBicc;
140 
141   if (D->hasAttr<MSABIAttr>())
142     return IsWindows ? CC_C : CC_X86_64Win64;
143 
144   if (D->hasAttr<SysVABIAttr>())
145     return IsWindows ? CC_X86_64SysV : CC_C;
146 
147   return CC_C;
148 }
149 
150 /// Arrange the argument and result information for a call to an
151 /// unknown C++ non-static member function of the given abstract type.
152 /// (Zero value of RD means we don't have any meaningful "this" argument type,
153 ///  so fall back to a generic pointer type).
154 /// The member function must be an ordinary function, i.e. not a
155 /// constructor or destructor.
156 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP)157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                    const FunctionProtoType *FTP) {
159   SmallVector<CanQualType, 16> argTypes;
160 
161   // Add the 'this' pointer.
162   if (RD)
163     argTypes.push_back(GetThisType(Context, RD));
164   else
165     argTypes.push_back(Context.VoidPtrTy);
166 
167   return ::arrangeLLVMFunctionInfo(
168       *this, true, argTypes,
169       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187   }
188 
189   return arrangeFreeFunctionType(prototype);
190 }
191 
192 const CGFunctionInfo &
arrangeCXXStructorDeclaration(const CXXMethodDecl * MD,StructorType Type)193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                             StructorType Type) {
195 
196   SmallVector<CanQualType, 16> argTypes;
197   argTypes.push_back(GetThisType(Context, MD->getParent()));
198 
199   GlobalDecl GD;
200   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201     GD = GlobalDecl(CD, toCXXCtorType(Type));
202   } else {
203     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204     GD = GlobalDecl(DD, toCXXDtorType(Type));
205   }
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208 
209   // Add the formal parameters.
210   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
211 
212   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
213 
214   RequiredArgs required =
215       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
216 
217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
219                                ? argTypes.front()
220                                : TheCXXABI.hasMostDerivedReturn(GD)
221                                      ? CGM.getContext().VoidPtrTy
222                                      : Context.VoidTy;
223   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
224                                  /*chainCall=*/false, argTypes, extInfo,
225                                  required);
226 }
227 
228 /// Arrange a call to a C++ method, passing the given arguments.
229 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraArgs)230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                         const CXXConstructorDecl *D,
232                                         CXXCtorType CtorKind,
233                                         unsigned ExtraArgs) {
234   // FIXME: Kill copy.
235   SmallVector<CanQualType, 16> ArgTypes;
236   for (const auto &Arg : args)
237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238 
239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241   GlobalDecl GD(D, CtorKind);
242   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
243                                ? ArgTypes.front()
244                                : TheCXXABI.hasMostDerivedReturn(GD)
245                                      ? CGM.getContext().VoidPtrTy
246                                      : Context.VoidTy;
247 
248   FunctionType::ExtInfo Info = FPT->getExtInfo();
249   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
250                                  /*chainCall=*/false, ArgTypes, Info,
251                                  Required);
252 }
253 
254 /// Arrange the argument and result information for the declaration or
255 /// definition of the given function.
256 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)257 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
259     if (MD->isInstance())
260       return arrangeCXXMethodDeclaration(MD);
261 
262   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
263 
264   assert(isa<FunctionType>(FTy));
265 
266   // When declaring a function without a prototype, always use a
267   // non-variadic type.
268   if (isa<FunctionNoProtoType>(FTy)) {
269     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
270     return arrangeLLVMFunctionInfo(
271         noProto->getReturnType(), /*instanceMethod=*/false,
272         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
273   }
274 
275   assert(isa<FunctionProtoType>(FTy));
276   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
277 }
278 
279 /// Arrange the argument and result information for the declaration or
280 /// definition of an Objective-C method.
281 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)282 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
283   // It happens that this is the same as a call with no optional
284   // arguments, except also using the formal 'self' type.
285   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
286 }
287 
288 /// Arrange the argument and result information for the function type
289 /// through which to perform a send to the given Objective-C method,
290 /// using the given receiver type.  The receiver type is not always
291 /// the 'self' type of the method or even an Objective-C pointer type.
292 /// This is *not* the right method for actually performing such a
293 /// message send, due to the possibility of optional arguments.
294 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)295 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
296                                               QualType receiverType) {
297   SmallVector<CanQualType, 16> argTys;
298   argTys.push_back(Context.getCanonicalParamType(receiverType));
299   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
300   // FIXME: Kill copy?
301   for (const auto *I : MD->params()) {
302     argTys.push_back(Context.getCanonicalParamType(I->getType()));
303   }
304 
305   FunctionType::ExtInfo einfo;
306   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
307   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
308 
309   if (getContext().getLangOpts().ObjCAutoRefCount &&
310       MD->hasAttr<NSReturnsRetainedAttr>())
311     einfo = einfo.withProducesResult(true);
312 
313   RequiredArgs required =
314     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
315 
316   return arrangeLLVMFunctionInfo(
317       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
318       /*chainCall=*/false, argTys, einfo, required);
319 }
320 
321 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)322 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
323   // FIXME: Do we need to handle ObjCMethodDecl?
324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325 
326   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
327     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
328 
329   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
330     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
331 
332   return arrangeFunctionDeclaration(FD);
333 }
334 
335 /// Arrange a thunk that takes 'this' as the first parameter followed by
336 /// varargs.  Return a void pointer, regardless of the actual return type.
337 /// The body of the thunk will end in a musttail call to a function of the
338 /// correct type, and the caller will bitcast the function to the correct
339 /// prototype.
340 const CGFunctionInfo &
arrangeMSMemberPointerThunk(const CXXMethodDecl * MD)341 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
342   assert(MD->isVirtual() && "only virtual memptrs have thunks");
343   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
345   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
346                                  /*chainCall=*/false, ArgTys,
347                                  FTP->getExtInfo(), RequiredArgs(1));
348 }
349 
350 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)351 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
352                                    CXXCtorType CT) {
353   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
354 
355   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
356   SmallVector<CanQualType, 2> ArgTys;
357   const CXXRecordDecl *RD = CD->getParent();
358   ArgTys.push_back(GetThisType(Context, RD));
359   if (CT == Ctor_CopyingClosure)
360     ArgTys.push_back(*FTP->param_type_begin());
361   if (RD->getNumVBases() > 0)
362     ArgTys.push_back(Context.IntTy);
363   CallingConv CC = Context.getDefaultCallingConvention(
364       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
365   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
366                                  /*chainCall=*/false, ArgTys,
367                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
368 }
369 
370 /// Arrange a call as unto a free function, except possibly with an
371 /// additional number of formal parameters considered required.
372 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)373 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
374                             CodeGenModule &CGM,
375                             const CallArgList &args,
376                             const FunctionType *fnType,
377                             unsigned numExtraRequiredArgs,
378                             bool chainCall) {
379   assert(args.size() >= numExtraRequiredArgs);
380 
381   // In most cases, there are no optional arguments.
382   RequiredArgs required = RequiredArgs::All;
383 
384   // If we have a variadic prototype, the required arguments are the
385   // extra prefix plus the arguments in the prototype.
386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387     if (proto->isVariadic())
388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389 
390   // If we don't have a prototype at all, but we're supposed to
391   // explicitly use the variadic convention for unprototyped calls,
392   // treat all of the arguments as required but preserve the nominal
393   // possibility of variadics.
394   } else if (CGM.getTargetCodeGenInfo()
395                 .isNoProtoCallVariadic(args,
396                                        cast<FunctionNoProtoType>(fnType))) {
397     required = RequiredArgs(args.size());
398   }
399 
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> argTypes;
402   for (const auto &arg : args)
403     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
404   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
405                                      /*instanceMethod=*/false, chainCall,
406                                      argTypes, fnType->getExtInfo(), required);
407 }
408 
409 /// Figure out the rules for calling a function with the given formal
410 /// type using the given arguments.  The arguments are necessary
411 /// because the function might be unprototyped, in which case it's
412 /// target-dependent in crazy ways.
413 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)414 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
415                                       const FunctionType *fnType,
416                                       bool chainCall) {
417   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
418                                      chainCall ? 1 : 0, chainCall);
419 }
420 
421 /// A block function call is essentially a free-function call with an
422 /// extra implicit argument.
423 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)424 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
425                                        const FunctionType *fnType) {
426   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
427                                      /*chainCall=*/false);
428 }
429 
430 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)431 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
432                                       const CallArgList &args,
433                                       FunctionType::ExtInfo info,
434                                       RequiredArgs required) {
435   // FIXME: Kill copy.
436   SmallVector<CanQualType, 16> argTypes;
437   for (const auto &Arg : args)
438     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
439   return arrangeLLVMFunctionInfo(
440       GetReturnType(resultType), /*instanceMethod=*/false,
441       /*chainCall=*/false, argTypes, info, required);
442 }
443 
444 /// Arrange a call to a C++ method, passing the given arguments.
445 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)446 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
447                                    const FunctionProtoType *FPT,
448                                    RequiredArgs required) {
449   // FIXME: Kill copy.
450   SmallVector<CanQualType, 16> argTypes;
451   for (const auto &Arg : args)
452     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
453 
454   FunctionType::ExtInfo info = FPT->getExtInfo();
455   return arrangeLLVMFunctionInfo(
456       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
457       /*chainCall=*/false, argTypes, info, required);
458 }
459 
arrangeFreeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)460 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
461     QualType resultType, const FunctionArgList &args,
462     const FunctionType::ExtInfo &info, bool isVariadic) {
463   // FIXME: Kill copy.
464   SmallVector<CanQualType, 16> argTypes;
465   for (auto Arg : args)
466     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
467 
468   RequiredArgs required =
469     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
470   return arrangeLLVMFunctionInfo(
471       GetReturnType(resultType), /*instanceMethod=*/false,
472       /*chainCall=*/false, argTypes, info, required);
473 }
474 
arrangeNullaryFunction()475 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
476   return arrangeLLVMFunctionInfo(
477       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
478       None, FunctionType::ExtInfo(), RequiredArgs::All);
479 }
480 
481 /// Arrange the argument and result information for an abstract value
482 /// of a given function type.  This is the method which all of the
483 /// above functions ultimately defer to.
484 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)485 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
486                                       bool instanceMethod,
487                                       bool chainCall,
488                                       ArrayRef<CanQualType> argTypes,
489                                       FunctionType::ExtInfo info,
490                                       RequiredArgs required) {
491   assert(std::all_of(argTypes.begin(), argTypes.end(),
492                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
493 
494   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
495 
496   // Lookup or create unique function info.
497   llvm::FoldingSetNodeID ID;
498   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
499                           resultType, argTypes);
500 
501   void *insertPos = nullptr;
502   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
503   if (FI)
504     return *FI;
505 
506   // Construct the function info.  We co-allocate the ArgInfos.
507   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
508                               resultType, argTypes, required);
509   FunctionInfos.InsertNode(FI, insertPos);
510 
511   bool inserted = FunctionsBeingProcessed.insert(FI).second;
512   (void)inserted;
513   assert(inserted && "Recursively being processed?");
514 
515   // Compute ABI information.
516   getABIInfo().computeInfo(*FI);
517 
518   // Loop over all of the computed argument and return value info.  If any of
519   // them are direct or extend without a specified coerce type, specify the
520   // default now.
521   ABIArgInfo &retInfo = FI->getReturnInfo();
522   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
523     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
524 
525   for (auto &I : FI->arguments())
526     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
527       I.info.setCoerceToType(ConvertType(I.type));
528 
529   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
530   assert(erased && "Not in set?");
531 
532   return *FI;
533 }
534 
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)535 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
536                                        bool instanceMethod,
537                                        bool chainCall,
538                                        const FunctionType::ExtInfo &info,
539                                        CanQualType resultType,
540                                        ArrayRef<CanQualType> argTypes,
541                                        RequiredArgs required) {
542   void *buffer = operator new(sizeof(CGFunctionInfo) +
543                               sizeof(ArgInfo) * (argTypes.size() + 1));
544   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
545   FI->CallingConvention = llvmCC;
546   FI->EffectiveCallingConvention = llvmCC;
547   FI->ASTCallingConvention = info.getCC();
548   FI->InstanceMethod = instanceMethod;
549   FI->ChainCall = chainCall;
550   FI->NoReturn = info.getNoReturn();
551   FI->ReturnsRetained = info.getProducesResult();
552   FI->Required = required;
553   FI->HasRegParm = info.getHasRegParm();
554   FI->RegParm = info.getRegParm();
555   FI->ArgStruct = nullptr;
556   FI->NumArgs = argTypes.size();
557   FI->getArgsBuffer()[0].type = resultType;
558   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
559     FI->getArgsBuffer()[i + 1].type = argTypes[i];
560   return FI;
561 }
562 
563 /***/
564 
565 namespace {
566 // ABIArgInfo::Expand implementation.
567 
568 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
569 struct TypeExpansion {
570   enum TypeExpansionKind {
571     // Elements of constant arrays are expanded recursively.
572     TEK_ConstantArray,
573     // Record fields are expanded recursively (but if record is a union, only
574     // the field with the largest size is expanded).
575     TEK_Record,
576     // For complex types, real and imaginary parts are expanded recursively.
577     TEK_Complex,
578     // All other types are not expandable.
579     TEK_None
580   };
581 
582   const TypeExpansionKind Kind;
583 
TypeExpansion__anond5d483060111::TypeExpansion584   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anond5d483060111::TypeExpansion585   virtual ~TypeExpansion() {}
586 };
587 
588 struct ConstantArrayExpansion : TypeExpansion {
589   QualType EltTy;
590   uint64_t NumElts;
591 
ConstantArrayExpansion__anond5d483060111::ConstantArrayExpansion592   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
593       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anond5d483060111::ConstantArrayExpansion594   static bool classof(const TypeExpansion *TE) {
595     return TE->Kind == TEK_ConstantArray;
596   }
597 };
598 
599 struct RecordExpansion : TypeExpansion {
600   SmallVector<const CXXBaseSpecifier *, 1> Bases;
601 
602   SmallVector<const FieldDecl *, 1> Fields;
603 
RecordExpansion__anond5d483060111::RecordExpansion604   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
605                   SmallVector<const FieldDecl *, 1> &&Fields)
606       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
classof__anond5d483060111::RecordExpansion607   static bool classof(const TypeExpansion *TE) {
608     return TE->Kind == TEK_Record;
609   }
610 };
611 
612 struct ComplexExpansion : TypeExpansion {
613   QualType EltTy;
614 
ComplexExpansion__anond5d483060111::ComplexExpansion615   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anond5d483060111::ComplexExpansion616   static bool classof(const TypeExpansion *TE) {
617     return TE->Kind == TEK_Complex;
618   }
619 };
620 
621 struct NoExpansion : TypeExpansion {
NoExpansion__anond5d483060111::NoExpansion622   NoExpansion() : TypeExpansion(TEK_None) {}
classof__anond5d483060111::NoExpansion623   static bool classof(const TypeExpansion *TE) {
624     return TE->Kind == TEK_None;
625   }
626 };
627 }  // namespace
628 
629 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)630 getTypeExpansion(QualType Ty, const ASTContext &Context) {
631   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
632     return llvm::make_unique<ConstantArrayExpansion>(
633         AT->getElementType(), AT->getSize().getZExtValue());
634   }
635   if (const RecordType *RT = Ty->getAs<RecordType>()) {
636     SmallVector<const CXXBaseSpecifier *, 1> Bases;
637     SmallVector<const FieldDecl *, 1> Fields;
638     const RecordDecl *RD = RT->getDecl();
639     assert(!RD->hasFlexibleArrayMember() &&
640            "Cannot expand structure with flexible array.");
641     if (RD->isUnion()) {
642       // Unions can be here only in degenerative cases - all the fields are same
643       // after flattening. Thus we have to use the "largest" field.
644       const FieldDecl *LargestFD = nullptr;
645       CharUnits UnionSize = CharUnits::Zero();
646 
647       for (const auto *FD : RD->fields()) {
648         // Skip zero length bitfields.
649         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
650           continue;
651         assert(!FD->isBitField() &&
652                "Cannot expand structure with bit-field members.");
653         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
654         if (UnionSize < FieldSize) {
655           UnionSize = FieldSize;
656           LargestFD = FD;
657         }
658       }
659       if (LargestFD)
660         Fields.push_back(LargestFD);
661     } else {
662       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
663         assert(!CXXRD->isDynamicClass() &&
664                "cannot expand vtable pointers in dynamic classes");
665         for (const CXXBaseSpecifier &BS : CXXRD->bases())
666           Bases.push_back(&BS);
667       }
668 
669       for (const auto *FD : RD->fields()) {
670         // Skip zero length bitfields.
671         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
672           continue;
673         assert(!FD->isBitField() &&
674                "Cannot expand structure with bit-field members.");
675         Fields.push_back(FD);
676       }
677     }
678     return llvm::make_unique<RecordExpansion>(std::move(Bases),
679                                               std::move(Fields));
680   }
681   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
682     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
683   }
684   return llvm::make_unique<NoExpansion>();
685 }
686 
getExpansionSize(QualType Ty,const ASTContext & Context)687 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
688   auto Exp = getTypeExpansion(Ty, Context);
689   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
690     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
691   }
692   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
693     int Res = 0;
694     for (auto BS : RExp->Bases)
695       Res += getExpansionSize(BS->getType(), Context);
696     for (auto FD : RExp->Fields)
697       Res += getExpansionSize(FD->getType(), Context);
698     return Res;
699   }
700   if (isa<ComplexExpansion>(Exp.get()))
701     return 2;
702   assert(isa<NoExpansion>(Exp.get()));
703   return 1;
704 }
705 
706 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)707 CodeGenTypes::getExpandedTypes(QualType Ty,
708                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
709   auto Exp = getTypeExpansion(Ty, Context);
710   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
711     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
712       getExpandedTypes(CAExp->EltTy, TI);
713     }
714   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
715     for (auto BS : RExp->Bases)
716       getExpandedTypes(BS->getType(), TI);
717     for (auto FD : RExp->Fields)
718       getExpandedTypes(FD->getType(), TI);
719   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
720     llvm::Type *EltTy = ConvertType(CExp->EltTy);
721     *TI++ = EltTy;
722     *TI++ = EltTy;
723   } else {
724     assert(isa<NoExpansion>(Exp.get()));
725     *TI++ = ConvertType(Ty);
726   }
727 }
728 
ExpandTypeFromArgs(QualType Ty,LValue LV,SmallVectorImpl<llvm::Argument * >::iterator & AI)729 void CodeGenFunction::ExpandTypeFromArgs(
730     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
731   assert(LV.isSimple() &&
732          "Unexpected non-simple lvalue during struct expansion.");
733 
734   auto Exp = getTypeExpansion(Ty, getContext());
735   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
736     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
737       llvm::Value *EltAddr =
738           Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
739       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
740       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
741     }
742   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
743     llvm::Value *This = LV.getAddress();
744     for (const CXXBaseSpecifier *BS : RExp->Bases) {
745       // Perform a single step derived-to-base conversion.
746       llvm::Value *Base =
747           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
748                                 /*NullCheckValue=*/false, SourceLocation());
749       LValue SubLV = MakeAddrLValue(Base, BS->getType());
750 
751       // Recurse onto bases.
752       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
753     }
754     for (auto FD : RExp->Fields) {
755       // FIXME: What are the right qualifiers here?
756       LValue SubLV = EmitLValueForField(LV, FD);
757       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
758     }
759   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
760     llvm::Value *RealAddr =
761         Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
762     EmitStoreThroughLValue(RValue::get(*AI++),
763                            MakeAddrLValue(RealAddr, CExp->EltTy));
764     llvm::Value *ImagAddr =
765         Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
766     EmitStoreThroughLValue(RValue::get(*AI++),
767                            MakeAddrLValue(ImagAddr, CExp->EltTy));
768   } else {
769     assert(isa<NoExpansion>(Exp.get()));
770     EmitStoreThroughLValue(RValue::get(*AI++), LV);
771   }
772 }
773 
ExpandTypeToArgs(QualType Ty,RValue RV,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)774 void CodeGenFunction::ExpandTypeToArgs(
775     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
776     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
777   auto Exp = getTypeExpansion(Ty, getContext());
778   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
779     llvm::Value *Addr = RV.getAggregateAddr();
780     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
781       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
782       RValue EltRV =
783           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
784       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
785     }
786   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
787     llvm::Value *This = RV.getAggregateAddr();
788     for (const CXXBaseSpecifier *BS : RExp->Bases) {
789       // Perform a single step derived-to-base conversion.
790       llvm::Value *Base =
791           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
792                                 /*NullCheckValue=*/false, SourceLocation());
793       RValue BaseRV = RValue::getAggregate(Base);
794 
795       // Recurse onto bases.
796       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
797                        IRCallArgPos);
798     }
799 
800     LValue LV = MakeAddrLValue(This, Ty);
801     for (auto FD : RExp->Fields) {
802       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
803       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
804                        IRCallArgPos);
805     }
806   } else if (isa<ComplexExpansion>(Exp.get())) {
807     ComplexPairTy CV = RV.getComplexVal();
808     IRCallArgs[IRCallArgPos++] = CV.first;
809     IRCallArgs[IRCallArgPos++] = CV.second;
810   } else {
811     assert(isa<NoExpansion>(Exp.get()));
812     assert(RV.isScalar() &&
813            "Unexpected non-scalar rvalue during struct expansion.");
814 
815     // Insert a bitcast as needed.
816     llvm::Value *V = RV.getScalarVal();
817     if (IRCallArgPos < IRFuncTy->getNumParams() &&
818         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
819       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
820 
821     IRCallArgs[IRCallArgPos++] = V;
822   }
823 }
824 
825 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
826 /// accessing some number of bytes out of it, try to gep into the struct to get
827 /// at its inner goodness.  Dive as deep as possible without entering an element
828 /// with an in-memory size smaller than DstSize.
829 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)830 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
831                                    llvm::StructType *SrcSTy,
832                                    uint64_t DstSize, CodeGenFunction &CGF) {
833   // We can't dive into a zero-element struct.
834   if (SrcSTy->getNumElements() == 0) return SrcPtr;
835 
836   llvm::Type *FirstElt = SrcSTy->getElementType(0);
837 
838   // If the first elt is at least as large as what we're looking for, or if the
839   // first element is the same size as the whole struct, we can enter it. The
840   // comparison must be made on the store size and not the alloca size. Using
841   // the alloca size may overstate the size of the load.
842   uint64_t FirstEltSize =
843     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
844   if (FirstEltSize < DstSize &&
845       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
846     return SrcPtr;
847 
848   // GEP into the first element.
849   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
850 
851   // If the first element is a struct, recurse.
852   llvm::Type *SrcTy =
853     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
854   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
855     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
856 
857   return SrcPtr;
858 }
859 
860 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
861 /// are either integers or pointers.  This does a truncation of the value if it
862 /// is too large or a zero extension if it is too small.
863 ///
864 /// This behaves as if the value were coerced through memory, so on big-endian
865 /// targets the high bits are preserved in a truncation, while little-endian
866 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)867 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
868                                              llvm::Type *Ty,
869                                              CodeGenFunction &CGF) {
870   if (Val->getType() == Ty)
871     return Val;
872 
873   if (isa<llvm::PointerType>(Val->getType())) {
874     // If this is Pointer->Pointer avoid conversion to and from int.
875     if (isa<llvm::PointerType>(Ty))
876       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
877 
878     // Convert the pointer to an integer so we can play with its width.
879     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
880   }
881 
882   llvm::Type *DestIntTy = Ty;
883   if (isa<llvm::PointerType>(DestIntTy))
884     DestIntTy = CGF.IntPtrTy;
885 
886   if (Val->getType() != DestIntTy) {
887     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
888     if (DL.isBigEndian()) {
889       // Preserve the high bits on big-endian targets.
890       // That is what memory coercion does.
891       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
892       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
893 
894       if (SrcSize > DstSize) {
895         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
896         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
897       } else {
898         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
899         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
900       }
901     } else {
902       // Little-endian targets preserve the low bits. No shifts required.
903       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
904     }
905   }
906 
907   if (isa<llvm::PointerType>(Ty))
908     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
909   return Val;
910 }
911 
912 
913 
914 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
915 /// a pointer to an object of type \arg Ty.
916 ///
917 /// This safely handles the case when the src type is smaller than the
918 /// destination type; in this situation the values of bits which not
919 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)920 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
921                                       llvm::Type *Ty,
922                                       CodeGenFunction &CGF) {
923   llvm::Type *SrcTy =
924     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
925 
926   // If SrcTy and Ty are the same, just do a load.
927   if (SrcTy == Ty)
928     return CGF.Builder.CreateLoad(SrcPtr);
929 
930   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
931 
932   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
933     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
934     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
935   }
936 
937   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
938 
939   // If the source and destination are integer or pointer types, just do an
940   // extension or truncation to the desired type.
941   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
942       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
943     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
944     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
945   }
946 
947   // If load is legal, just bitcast the src pointer.
948   if (SrcSize >= DstSize) {
949     // Generally SrcSize is never greater than DstSize, since this means we are
950     // losing bits. However, this can happen in cases where the structure has
951     // additional padding, for example due to a user specified alignment.
952     //
953     // FIXME: Assert that we aren't truncating non-padding bits when have access
954     // to that information.
955     llvm::Value *Casted =
956       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
957     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
958     // FIXME: Use better alignment / avoid requiring aligned load.
959     Load->setAlignment(1);
960     return Load;
961   }
962 
963   // Otherwise do coercion through memory. This is stupid, but
964   // simple.
965   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
966   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
967   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
968   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
969   // FIXME: Use better alignment.
970   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
971       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
972       1, false);
973   return CGF.Builder.CreateLoad(Tmp);
974 }
975 
976 // Function to store a first-class aggregate into memory.  We prefer to
977 // store the elements rather than the aggregate to be more friendly to
978 // fast-isel.
979 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)980 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
981                           llvm::Value *DestPtr, bool DestIsVolatile,
982                           bool LowAlignment) {
983   // Prefer scalar stores to first-class aggregate stores.
984   if (llvm::StructType *STy =
985         dyn_cast<llvm::StructType>(Val->getType())) {
986     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
987       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
988       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
989       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
990                                                     DestIsVolatile);
991       if (LowAlignment)
992         SI->setAlignment(1);
993     }
994   } else {
995     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
996     if (LowAlignment)
997       SI->setAlignment(1);
998   }
999 }
1000 
1001 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1002 /// where the source and destination may have different types.
1003 ///
1004 /// This safely handles the case when the src type is larger than the
1005 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)1006 static void CreateCoercedStore(llvm::Value *Src,
1007                                llvm::Value *DstPtr,
1008                                bool DstIsVolatile,
1009                                CodeGenFunction &CGF) {
1010   llvm::Type *SrcTy = Src->getType();
1011   llvm::Type *DstTy =
1012     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1013   if (SrcTy == DstTy) {
1014     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1015     return;
1016   }
1017 
1018   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1019 
1020   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1021     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1022     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1023   }
1024 
1025   // If the source and destination are integer or pointer types, just do an
1026   // extension or truncation to the desired type.
1027   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1028       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1029     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1030     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1031     return;
1032   }
1033 
1034   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1035 
1036   // If store is legal, just bitcast the src pointer.
1037   if (SrcSize <= DstSize) {
1038     llvm::Value *Casted =
1039       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1040     // FIXME: Use better alignment / avoid requiring aligned store.
1041     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
1042   } else {
1043     // Otherwise do coercion through memory. This is stupid, but
1044     // simple.
1045 
1046     // Generally SrcSize is never greater than DstSize, since this means we are
1047     // losing bits. However, this can happen in cases where the structure has
1048     // additional padding, for example due to a user specified alignment.
1049     //
1050     // FIXME: Assert that we aren't truncating non-padding bits when have access
1051     // to that information.
1052     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1053     CGF.Builder.CreateStore(Src, Tmp);
1054     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1055     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1056     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1057     // FIXME: Use better alignment.
1058     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1059         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1060         1, false);
1061   }
1062 }
1063 
1064 namespace {
1065 
1066 /// Encapsulates information about the way function arguments from
1067 /// CGFunctionInfo should be passed to actual LLVM IR function.
1068 class ClangToLLVMArgMapping {
1069   static const unsigned InvalidIndex = ~0U;
1070   unsigned InallocaArgNo;
1071   unsigned SRetArgNo;
1072   unsigned TotalIRArgs;
1073 
1074   /// Arguments of LLVM IR function corresponding to single Clang argument.
1075   struct IRArgs {
1076     unsigned PaddingArgIndex;
1077     // Argument is expanded to IR arguments at positions
1078     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1079     unsigned FirstArgIndex;
1080     unsigned NumberOfArgs;
1081 
IRArgs__anond5d483060211::ClangToLLVMArgMapping::IRArgs1082     IRArgs()
1083         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1084           NumberOfArgs(0) {}
1085   };
1086 
1087   SmallVector<IRArgs, 8> ArgInfo;
1088 
1089 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1090   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1091                         bool OnlyRequiredArgs = false)
1092       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1093         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1094     construct(Context, FI, OnlyRequiredArgs);
1095   }
1096 
hasInallocaArg() const1097   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1098   unsigned getInallocaArgNo() const {
1099     assert(hasInallocaArg());
1100     return InallocaArgNo;
1101   }
1102 
hasSRetArg() const1103   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1104   unsigned getSRetArgNo() const {
1105     assert(hasSRetArg());
1106     return SRetArgNo;
1107   }
1108 
totalIRArgs() const1109   unsigned totalIRArgs() const { return TotalIRArgs; }
1110 
hasPaddingArg(unsigned ArgNo) const1111   bool hasPaddingArg(unsigned ArgNo) const {
1112     assert(ArgNo < ArgInfo.size());
1113     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1114   }
getPaddingArgNo(unsigned ArgNo) const1115   unsigned getPaddingArgNo(unsigned ArgNo) const {
1116     assert(hasPaddingArg(ArgNo));
1117     return ArgInfo[ArgNo].PaddingArgIndex;
1118   }
1119 
1120   /// Returns index of first IR argument corresponding to ArgNo, and their
1121   /// quantity.
getIRArgs(unsigned ArgNo) const1122   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1123     assert(ArgNo < ArgInfo.size());
1124     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1125                           ArgInfo[ArgNo].NumberOfArgs);
1126   }
1127 
1128 private:
1129   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1130                  bool OnlyRequiredArgs);
1131 };
1132 
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1133 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1134                                       const CGFunctionInfo &FI,
1135                                       bool OnlyRequiredArgs) {
1136   unsigned IRArgNo = 0;
1137   bool SwapThisWithSRet = false;
1138   const ABIArgInfo &RetAI = FI.getReturnInfo();
1139 
1140   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1141     SwapThisWithSRet = RetAI.isSRetAfterThis();
1142     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1143   }
1144 
1145   unsigned ArgNo = 0;
1146   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1147   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1148        ++I, ++ArgNo) {
1149     assert(I != FI.arg_end());
1150     QualType ArgType = I->type;
1151     const ABIArgInfo &AI = I->info;
1152     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1153     auto &IRArgs = ArgInfo[ArgNo];
1154 
1155     if (AI.getPaddingType())
1156       IRArgs.PaddingArgIndex = IRArgNo++;
1157 
1158     switch (AI.getKind()) {
1159     case ABIArgInfo::Extend:
1160     case ABIArgInfo::Direct: {
1161       // FIXME: handle sseregparm someday...
1162       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1163       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1164         IRArgs.NumberOfArgs = STy->getNumElements();
1165       } else {
1166         IRArgs.NumberOfArgs = 1;
1167       }
1168       break;
1169     }
1170     case ABIArgInfo::Indirect:
1171       IRArgs.NumberOfArgs = 1;
1172       break;
1173     case ABIArgInfo::Ignore:
1174     case ABIArgInfo::InAlloca:
1175       // ignore and inalloca doesn't have matching LLVM parameters.
1176       IRArgs.NumberOfArgs = 0;
1177       break;
1178     case ABIArgInfo::Expand: {
1179       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1180       break;
1181     }
1182     }
1183 
1184     if (IRArgs.NumberOfArgs > 0) {
1185       IRArgs.FirstArgIndex = IRArgNo;
1186       IRArgNo += IRArgs.NumberOfArgs;
1187     }
1188 
1189     // Skip over the sret parameter when it comes second.  We already handled it
1190     // above.
1191     if (IRArgNo == 1 && SwapThisWithSRet)
1192       IRArgNo++;
1193   }
1194   assert(ArgNo == ArgInfo.size());
1195 
1196   if (FI.usesInAlloca())
1197     InallocaArgNo = IRArgNo++;
1198 
1199   TotalIRArgs = IRArgNo;
1200 }
1201 }  // namespace
1202 
1203 /***/
1204 
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1205 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1206   return FI.getReturnInfo().isIndirect();
1207 }
1208 
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1209 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1210   return ReturnTypeUsesSRet(FI) &&
1211          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1212 }
1213 
ReturnTypeUsesFPRet(QualType ResultType)1214 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1215   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1216     switch (BT->getKind()) {
1217     default:
1218       return false;
1219     case BuiltinType::Float:
1220       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1221     case BuiltinType::Double:
1222       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1223     case BuiltinType::LongDouble:
1224       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1225     }
1226   }
1227 
1228   return false;
1229 }
1230 
ReturnTypeUsesFP2Ret(QualType ResultType)1231 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1232   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1233     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1234       if (BT->getKind() == BuiltinType::LongDouble)
1235         return getTarget().useObjCFP2RetForComplexLongDouble();
1236     }
1237   }
1238 
1239   return false;
1240 }
1241 
GetFunctionType(GlobalDecl GD)1242 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1243   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1244   return GetFunctionType(FI);
1245 }
1246 
1247 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1248 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1249 
1250   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1251   (void)Inserted;
1252   assert(Inserted && "Recursively being processed?");
1253 
1254   llvm::Type *resultType = nullptr;
1255   const ABIArgInfo &retAI = FI.getReturnInfo();
1256   switch (retAI.getKind()) {
1257   case ABIArgInfo::Expand:
1258     llvm_unreachable("Invalid ABI kind for return argument");
1259 
1260   case ABIArgInfo::Extend:
1261   case ABIArgInfo::Direct:
1262     resultType = retAI.getCoerceToType();
1263     break;
1264 
1265   case ABIArgInfo::InAlloca:
1266     if (retAI.getInAllocaSRet()) {
1267       // sret things on win32 aren't void, they return the sret pointer.
1268       QualType ret = FI.getReturnType();
1269       llvm::Type *ty = ConvertType(ret);
1270       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1271       resultType = llvm::PointerType::get(ty, addressSpace);
1272     } else {
1273       resultType = llvm::Type::getVoidTy(getLLVMContext());
1274     }
1275     break;
1276 
1277   case ABIArgInfo::Indirect: {
1278     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
1279     resultType = llvm::Type::getVoidTy(getLLVMContext());
1280     break;
1281   }
1282 
1283   case ABIArgInfo::Ignore:
1284     resultType = llvm::Type::getVoidTy(getLLVMContext());
1285     break;
1286   }
1287 
1288   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1289   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1290 
1291   // Add type for sret argument.
1292   if (IRFunctionArgs.hasSRetArg()) {
1293     QualType Ret = FI.getReturnType();
1294     llvm::Type *Ty = ConvertType(Ret);
1295     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1296     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1297         llvm::PointerType::get(Ty, AddressSpace);
1298   }
1299 
1300   // Add type for inalloca argument.
1301   if (IRFunctionArgs.hasInallocaArg()) {
1302     auto ArgStruct = FI.getArgStruct();
1303     assert(ArgStruct);
1304     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1305   }
1306 
1307   // Add in all of the required arguments.
1308   unsigned ArgNo = 0;
1309   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1310                                      ie = it + FI.getNumRequiredArgs();
1311   for (; it != ie; ++it, ++ArgNo) {
1312     const ABIArgInfo &ArgInfo = it->info;
1313 
1314     // Insert a padding type to ensure proper alignment.
1315     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1316       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1317           ArgInfo.getPaddingType();
1318 
1319     unsigned FirstIRArg, NumIRArgs;
1320     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1321 
1322     switch (ArgInfo.getKind()) {
1323     case ABIArgInfo::Ignore:
1324     case ABIArgInfo::InAlloca:
1325       assert(NumIRArgs == 0);
1326       break;
1327 
1328     case ABIArgInfo::Indirect: {
1329       assert(NumIRArgs == 1);
1330       // indirect arguments are always on the stack, which is addr space #0.
1331       llvm::Type *LTy = ConvertTypeForMem(it->type);
1332       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1333       break;
1334     }
1335 
1336     case ABIArgInfo::Extend:
1337     case ABIArgInfo::Direct: {
1338       // Fast-isel and the optimizer generally like scalar values better than
1339       // FCAs, so we flatten them if this is safe to do for this argument.
1340       llvm::Type *argType = ArgInfo.getCoerceToType();
1341       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1342       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1343         assert(NumIRArgs == st->getNumElements());
1344         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1345           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1346       } else {
1347         assert(NumIRArgs == 1);
1348         ArgTypes[FirstIRArg] = argType;
1349       }
1350       break;
1351     }
1352 
1353     case ABIArgInfo::Expand:
1354       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1355       getExpandedTypes(it->type, ArgTypesIter);
1356       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1357       break;
1358     }
1359   }
1360 
1361   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1362   assert(Erased && "Not in set?");
1363 
1364   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1365 }
1366 
GetFunctionTypeForVTable(GlobalDecl GD)1367 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1368   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1369   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1370 
1371   if (!isFuncTypeConvertible(FPT))
1372     return llvm::StructType::get(getLLVMContext());
1373 
1374   const CGFunctionInfo *Info;
1375   if (isa<CXXDestructorDecl>(MD))
1376     Info =
1377         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1378   else
1379     Info = &arrangeCXXMethodDeclaration(MD);
1380   return GetFunctionType(*Info);
1381 }
1382 
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv,bool AttrOnCallSite)1383 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1384                                            const Decl *TargetDecl,
1385                                            AttributeListType &PAL,
1386                                            unsigned &CallingConv,
1387                                            bool AttrOnCallSite) {
1388   llvm::AttrBuilder FuncAttrs;
1389   llvm::AttrBuilder RetAttrs;
1390   bool HasOptnone = false;
1391 
1392   CallingConv = FI.getEffectiveCallingConvention();
1393 
1394   if (FI.isNoReturn())
1395     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1396 
1397   // FIXME: handle sseregparm someday...
1398   if (TargetDecl) {
1399     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1400       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1401     if (TargetDecl->hasAttr<NoThrowAttr>())
1402       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1403     if (TargetDecl->hasAttr<NoReturnAttr>())
1404       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1405     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1406       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1407 
1408     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1409       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1410       if (FPT && FPT->isNothrow(getContext()))
1411         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1412       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1413       // These attributes are not inherited by overloads.
1414       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1415       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1416         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1417     }
1418 
1419     // 'const' and 'pure' attribute functions are also nounwind.
1420     if (TargetDecl->hasAttr<ConstAttr>()) {
1421       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1422       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1423     } else if (TargetDecl->hasAttr<PureAttr>()) {
1424       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1425       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1426     }
1427     if (TargetDecl->hasAttr<RestrictAttr>())
1428       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1429     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1430       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1431 
1432     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1433   }
1434 
1435   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1436   if (!HasOptnone) {
1437     if (CodeGenOpts.OptimizeSize)
1438       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1439     if (CodeGenOpts.OptimizeSize == 2)
1440       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1441   }
1442 
1443   if (CodeGenOpts.DisableRedZone)
1444     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1445   if (CodeGenOpts.NoImplicitFloat)
1446     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1447   if (CodeGenOpts.EnableSegmentedStacks &&
1448       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1449     FuncAttrs.addAttribute("split-stack");
1450 
1451   if (AttrOnCallSite) {
1452     // Attributes that should go on the call site only.
1453     if (!CodeGenOpts.SimplifyLibCalls)
1454       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1455   } else {
1456     // Attributes that should go on the function, but not the call site.
1457     if (!CodeGenOpts.DisableFPElim) {
1458       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1459     } else if (CodeGenOpts.OmitLeafFramePointer) {
1460       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1461       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1462     } else {
1463       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1464       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1465     }
1466 
1467     FuncAttrs.addAttribute("less-precise-fpmad",
1468                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1469     FuncAttrs.addAttribute("no-infs-fp-math",
1470                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1471     FuncAttrs.addAttribute("no-nans-fp-math",
1472                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1473     FuncAttrs.addAttribute("unsafe-fp-math",
1474                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1475     FuncAttrs.addAttribute("use-soft-float",
1476                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1477     FuncAttrs.addAttribute("stack-protector-buffer-size",
1478                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1479 
1480     if (!CodeGenOpts.StackRealignment)
1481       FuncAttrs.addAttribute("no-realign-stack");
1482 
1483     // Add target-cpu and target-features work if they differ from the defaults.
1484     std::string &CPU = getTarget().getTargetOpts().CPU;
1485     if (CPU != "" && CPU != getTarget().getTriple().getArchName())
1486       FuncAttrs.addAttribute("target-cpu", getTarget().getTargetOpts().CPU);
1487 
1488     // TODO: FeaturesAsWritten gets us the features on the command line,
1489     // for canonicalization purposes we might want to avoid putting features
1490     // in the target-features set if we know it'll be one of the default
1491     // features in the backend, e.g. corei7-avx and +avx.
1492     std::vector<std::string> &Features =
1493         getTarget().getTargetOpts().FeaturesAsWritten;
1494     if (!Features.empty()) {
1495       std::stringstream S;
1496       std::copy(Features.begin(), Features.end(),
1497                 std::ostream_iterator<std::string>(S, ","));
1498       // The drop_back gets rid of the trailing space.
1499       FuncAttrs.addAttribute("target-features",
1500                              StringRef(S.str()).drop_back(1));
1501     }
1502   }
1503 
1504   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1505 
1506   QualType RetTy = FI.getReturnType();
1507   const ABIArgInfo &RetAI = FI.getReturnInfo();
1508   switch (RetAI.getKind()) {
1509   case ABIArgInfo::Extend:
1510     if (RetTy->hasSignedIntegerRepresentation())
1511       RetAttrs.addAttribute(llvm::Attribute::SExt);
1512     else if (RetTy->hasUnsignedIntegerRepresentation())
1513       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1514     // FALL THROUGH
1515   case ABIArgInfo::Direct:
1516     if (RetAI.getInReg())
1517       RetAttrs.addAttribute(llvm::Attribute::InReg);
1518     break;
1519   case ABIArgInfo::Ignore:
1520     break;
1521 
1522   case ABIArgInfo::InAlloca:
1523   case ABIArgInfo::Indirect: {
1524     // inalloca and sret disable readnone and readonly
1525     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1526       .removeAttribute(llvm::Attribute::ReadNone);
1527     break;
1528   }
1529 
1530   case ABIArgInfo::Expand:
1531     llvm_unreachable("Invalid ABI kind for return argument");
1532   }
1533 
1534   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1535     QualType PTy = RefTy->getPointeeType();
1536     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1537       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1538                                         .getQuantity());
1539     else if (getContext().getTargetAddressSpace(PTy) == 0)
1540       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1541   }
1542 
1543   // Attach return attributes.
1544   if (RetAttrs.hasAttributes()) {
1545     PAL.push_back(llvm::AttributeSet::get(
1546         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1547   }
1548 
1549   // Attach attributes to sret.
1550   if (IRFunctionArgs.hasSRetArg()) {
1551     llvm::AttrBuilder SRETAttrs;
1552     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1553     if (RetAI.getInReg())
1554       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1555     PAL.push_back(llvm::AttributeSet::get(
1556         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1557   }
1558 
1559   // Attach attributes to inalloca argument.
1560   if (IRFunctionArgs.hasInallocaArg()) {
1561     llvm::AttrBuilder Attrs;
1562     Attrs.addAttribute(llvm::Attribute::InAlloca);
1563     PAL.push_back(llvm::AttributeSet::get(
1564         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1565   }
1566 
1567   unsigned ArgNo = 0;
1568   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1569                                           E = FI.arg_end();
1570        I != E; ++I, ++ArgNo) {
1571     QualType ParamType = I->type;
1572     const ABIArgInfo &AI = I->info;
1573     llvm::AttrBuilder Attrs;
1574 
1575     // Add attribute for padding argument, if necessary.
1576     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1577       if (AI.getPaddingInReg())
1578         PAL.push_back(llvm::AttributeSet::get(
1579             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1580             llvm::Attribute::InReg));
1581     }
1582 
1583     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1584     // have the corresponding parameter variable.  It doesn't make
1585     // sense to do it here because parameters are so messed up.
1586     switch (AI.getKind()) {
1587     case ABIArgInfo::Extend:
1588       if (ParamType->isSignedIntegerOrEnumerationType())
1589         Attrs.addAttribute(llvm::Attribute::SExt);
1590       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1591         Attrs.addAttribute(llvm::Attribute::ZExt);
1592       // FALL THROUGH
1593     case ABIArgInfo::Direct:
1594       if (ArgNo == 0 && FI.isChainCall())
1595         Attrs.addAttribute(llvm::Attribute::Nest);
1596       else if (AI.getInReg())
1597         Attrs.addAttribute(llvm::Attribute::InReg);
1598       break;
1599 
1600     case ABIArgInfo::Indirect:
1601       if (AI.getInReg())
1602         Attrs.addAttribute(llvm::Attribute::InReg);
1603 
1604       if (AI.getIndirectByVal())
1605         Attrs.addAttribute(llvm::Attribute::ByVal);
1606 
1607       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1608 
1609       // byval disables readnone and readonly.
1610       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1611         .removeAttribute(llvm::Attribute::ReadNone);
1612       break;
1613 
1614     case ABIArgInfo::Ignore:
1615     case ABIArgInfo::Expand:
1616       continue;
1617 
1618     case ABIArgInfo::InAlloca:
1619       // inalloca disables readnone and readonly.
1620       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1621           .removeAttribute(llvm::Attribute::ReadNone);
1622       continue;
1623     }
1624 
1625     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1626       QualType PTy = RefTy->getPointeeType();
1627       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1628         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1629                                        .getQuantity());
1630       else if (getContext().getTargetAddressSpace(PTy) == 0)
1631         Attrs.addAttribute(llvm::Attribute::NonNull);
1632     }
1633 
1634     if (Attrs.hasAttributes()) {
1635       unsigned FirstIRArg, NumIRArgs;
1636       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1637       for (unsigned i = 0; i < NumIRArgs; i++)
1638         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1639                                               FirstIRArg + i + 1, Attrs));
1640     }
1641   }
1642   assert(ArgNo == FI.arg_size());
1643 
1644   if (FuncAttrs.hasAttributes())
1645     PAL.push_back(llvm::
1646                   AttributeSet::get(getLLVMContext(),
1647                                     llvm::AttributeSet::FunctionIndex,
1648                                     FuncAttrs));
1649 }
1650 
1651 /// An argument came in as a promoted argument; demote it back to its
1652 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1653 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1654                                          const VarDecl *var,
1655                                          llvm::Value *value) {
1656   llvm::Type *varType = CGF.ConvertType(var->getType());
1657 
1658   // This can happen with promotions that actually don't change the
1659   // underlying type, like the enum promotions.
1660   if (value->getType() == varType) return value;
1661 
1662   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1663          && "unexpected promotion type");
1664 
1665   if (isa<llvm::IntegerType>(varType))
1666     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1667 
1668   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1669 }
1670 
1671 /// Returns the attribute (either parameter attribute, or function
1672 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)1673 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1674                                          QualType ArgType, unsigned ArgNo) {
1675   // FIXME: __attribute__((nonnull)) can also be applied to:
1676   //   - references to pointers, where the pointee is known to be
1677   //     nonnull (apparently a Clang extension)
1678   //   - transparent unions containing pointers
1679   // In the former case, LLVM IR cannot represent the constraint. In
1680   // the latter case, we have no guarantee that the transparent union
1681   // is in fact passed as a pointer.
1682   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1683     return nullptr;
1684   // First, check attribute on parameter itself.
1685   if (PVD) {
1686     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1687       return ParmNNAttr;
1688   }
1689   // Check function attributes.
1690   if (!FD)
1691     return nullptr;
1692   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1693     if (NNAttr->isNonNull(ArgNo))
1694       return NNAttr;
1695   }
1696   return nullptr;
1697 }
1698 
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1699 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1700                                          llvm::Function *Fn,
1701                                          const FunctionArgList &Args) {
1702   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1703     // Naked functions don't have prologues.
1704     return;
1705 
1706   // If this is an implicit-return-zero function, go ahead and
1707   // initialize the return value.  TODO: it might be nice to have
1708   // a more general mechanism for this that didn't require synthesized
1709   // return statements.
1710   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1711     if (FD->hasImplicitReturnZero()) {
1712       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1713       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1714       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1715       Builder.CreateStore(Zero, ReturnValue);
1716     }
1717   }
1718 
1719   // FIXME: We no longer need the types from FunctionArgList; lift up and
1720   // simplify.
1721 
1722   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1723   // Flattened function arguments.
1724   SmallVector<llvm::Argument *, 16> FnArgs;
1725   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1726   for (auto &Arg : Fn->args()) {
1727     FnArgs.push_back(&Arg);
1728   }
1729   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1730 
1731   // If we're using inalloca, all the memory arguments are GEPs off of the last
1732   // parameter, which is a pointer to the complete memory area.
1733   llvm::Value *ArgStruct = nullptr;
1734   if (IRFunctionArgs.hasInallocaArg()) {
1735     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1736     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1737   }
1738 
1739   // Name the struct return parameter.
1740   if (IRFunctionArgs.hasSRetArg()) {
1741     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1742     AI->setName("agg.result");
1743     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1744                                         llvm::Attribute::NoAlias));
1745   }
1746 
1747   // Track if we received the parameter as a pointer (indirect, byval, or
1748   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1749   // into a local alloca for us.
1750   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1751   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1752   SmallVector<ValueAndIsPtr, 16> ArgVals;
1753   ArgVals.reserve(Args.size());
1754 
1755   // Create a pointer value for every parameter declaration.  This usually
1756   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1757   // any cleanups or do anything that might unwind.  We do that separately, so
1758   // we can push the cleanups in the correct order for the ABI.
1759   assert(FI.arg_size() == Args.size() &&
1760          "Mismatch between function signature & arguments.");
1761   unsigned ArgNo = 0;
1762   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1763   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1764        i != e; ++i, ++info_it, ++ArgNo) {
1765     const VarDecl *Arg = *i;
1766     QualType Ty = info_it->type;
1767     const ABIArgInfo &ArgI = info_it->info;
1768 
1769     bool isPromoted =
1770       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1771 
1772     unsigned FirstIRArg, NumIRArgs;
1773     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1774 
1775     switch (ArgI.getKind()) {
1776     case ABIArgInfo::InAlloca: {
1777       assert(NumIRArgs == 0);
1778       llvm::Value *V =
1779           Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
1780                                   ArgI.getInAllocaFieldIndex(), Arg->getName());
1781       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1782       break;
1783     }
1784 
1785     case ABIArgInfo::Indirect: {
1786       assert(NumIRArgs == 1);
1787       llvm::Value *V = FnArgs[FirstIRArg];
1788 
1789       if (!hasScalarEvaluationKind(Ty)) {
1790         // Aggregates and complex variables are accessed by reference.  All we
1791         // need to do is realign the value, if requested
1792         if (ArgI.getIndirectRealign()) {
1793           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1794 
1795           // Copy from the incoming argument pointer to the temporary with the
1796           // appropriate alignment.
1797           //
1798           // FIXME: We should have a common utility for generating an aggregate
1799           // copy.
1800           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1801           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1802           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1803           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1804           Builder.CreateMemCpy(Dst,
1805                                Src,
1806                                llvm::ConstantInt::get(IntPtrTy,
1807                                                       Size.getQuantity()),
1808                                ArgI.getIndirectAlign(),
1809                                false);
1810           V = AlignedTemp;
1811         }
1812         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1813       } else {
1814         // Load scalar value from indirect argument.
1815         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1816         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1817                              Arg->getLocStart());
1818 
1819         if (isPromoted)
1820           V = emitArgumentDemotion(*this, Arg, V);
1821         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1822       }
1823       break;
1824     }
1825 
1826     case ABIArgInfo::Extend:
1827     case ABIArgInfo::Direct: {
1828 
1829       // If we have the trivial case, handle it with no muss and fuss.
1830       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1831           ArgI.getCoerceToType() == ConvertType(Ty) &&
1832           ArgI.getDirectOffset() == 0) {
1833         assert(NumIRArgs == 1);
1834         auto AI = FnArgs[FirstIRArg];
1835         llvm::Value *V = AI;
1836 
1837         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1838           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1839                              PVD->getFunctionScopeIndex()))
1840             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1841                                                 AI->getArgNo() + 1,
1842                                                 llvm::Attribute::NonNull));
1843 
1844           QualType OTy = PVD->getOriginalType();
1845           if (const auto *ArrTy =
1846               getContext().getAsConstantArrayType(OTy)) {
1847             // A C99 array parameter declaration with the static keyword also
1848             // indicates dereferenceability, and if the size is constant we can
1849             // use the dereferenceable attribute (which requires the size in
1850             // bytes).
1851             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1852               QualType ETy = ArrTy->getElementType();
1853               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1854               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1855                   ArrSize) {
1856                 llvm::AttrBuilder Attrs;
1857                 Attrs.addDereferenceableAttr(
1858                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1859                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1860                                                     AI->getArgNo() + 1, Attrs));
1861               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1862                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1863                                                     AI->getArgNo() + 1,
1864                                                     llvm::Attribute::NonNull));
1865               }
1866             }
1867           } else if (const auto *ArrTy =
1868                      getContext().getAsVariableArrayType(OTy)) {
1869             // For C99 VLAs with the static keyword, we don't know the size so
1870             // we can't use the dereferenceable attribute, but in addrspace(0)
1871             // we know that it must be nonnull.
1872             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1873                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1874               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1875                                                   AI->getArgNo() + 1,
1876                                                   llvm::Attribute::NonNull));
1877           }
1878 
1879           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1880           if (!AVAttr)
1881             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1882               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1883           if (AVAttr) {
1884             llvm::Value *AlignmentValue =
1885               EmitScalarExpr(AVAttr->getAlignment());
1886             llvm::ConstantInt *AlignmentCI =
1887               cast<llvm::ConstantInt>(AlignmentValue);
1888             unsigned Alignment =
1889               std::min((unsigned) AlignmentCI->getZExtValue(),
1890                        +llvm::Value::MaximumAlignment);
1891 
1892             llvm::AttrBuilder Attrs;
1893             Attrs.addAlignmentAttr(Alignment);
1894             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1895                                                 AI->getArgNo() + 1, Attrs));
1896           }
1897         }
1898 
1899         if (Arg->getType().isRestrictQualified())
1900           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1901                                               AI->getArgNo() + 1,
1902                                               llvm::Attribute::NoAlias));
1903 
1904         // Ensure the argument is the correct type.
1905         if (V->getType() != ArgI.getCoerceToType())
1906           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1907 
1908         if (isPromoted)
1909           V = emitArgumentDemotion(*this, Arg, V);
1910 
1911         if (const CXXMethodDecl *MD =
1912             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1913           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1914             V = CGM.getCXXABI().
1915                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1916         }
1917 
1918         // Because of merging of function types from multiple decls it is
1919         // possible for the type of an argument to not match the corresponding
1920         // type in the function type. Since we are codegening the callee
1921         // in here, add a cast to the argument type.
1922         llvm::Type *LTy = ConvertType(Arg->getType());
1923         if (V->getType() != LTy)
1924           V = Builder.CreateBitCast(V, LTy);
1925 
1926         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1927         break;
1928       }
1929 
1930       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1931 
1932       // The alignment we need to use is the max of the requested alignment for
1933       // the argument plus the alignment required by our access code below.
1934       unsigned AlignmentToUse =
1935         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1936       AlignmentToUse = std::max(AlignmentToUse,
1937                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1938 
1939       Alloca->setAlignment(AlignmentToUse);
1940       llvm::Value *V = Alloca;
1941       llvm::Value *Ptr = V;    // Pointer to store into.
1942 
1943       // If the value is offset in memory, apply the offset now.
1944       if (unsigned Offs = ArgI.getDirectOffset()) {
1945         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1946         Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
1947         Ptr = Builder.CreateBitCast(Ptr,
1948                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1949       }
1950 
1951       // Fast-isel and the optimizer generally like scalar values better than
1952       // FCAs, so we flatten them if this is safe to do for this argument.
1953       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1954       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
1955           STy->getNumElements() > 1) {
1956         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1957         llvm::Type *DstTy =
1958           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1959         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1960 
1961         if (SrcSize <= DstSize) {
1962           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1963 
1964           assert(STy->getNumElements() == NumIRArgs);
1965           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1966             auto AI = FnArgs[FirstIRArg + i];
1967             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1968             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
1969             Builder.CreateStore(AI, EltPtr);
1970           }
1971         } else {
1972           llvm::AllocaInst *TempAlloca =
1973             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1974           TempAlloca->setAlignment(AlignmentToUse);
1975           llvm::Value *TempV = TempAlloca;
1976 
1977           assert(STy->getNumElements() == NumIRArgs);
1978           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1979             auto AI = FnArgs[FirstIRArg + i];
1980             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1981             llvm::Value *EltPtr =
1982                 Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
1983             Builder.CreateStore(AI, EltPtr);
1984           }
1985 
1986           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1987         }
1988       } else {
1989         // Simple case, just do a coerced store of the argument into the alloca.
1990         assert(NumIRArgs == 1);
1991         auto AI = FnArgs[FirstIRArg];
1992         AI->setName(Arg->getName() + ".coerce");
1993         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1994       }
1995 
1996 
1997       // Match to what EmitParmDecl is expecting for this type.
1998       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1999         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
2000         if (isPromoted)
2001           V = emitArgumentDemotion(*this, Arg, V);
2002         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
2003       } else {
2004         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
2005       }
2006       break;
2007     }
2008 
2009     case ABIArgInfo::Expand: {
2010       // If this structure was expanded into multiple arguments then
2011       // we need to create a temporary and reconstruct it from the
2012       // arguments.
2013       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
2014       CharUnits Align = getContext().getDeclAlign(Arg);
2015       Alloca->setAlignment(Align.getQuantity());
2016       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
2017       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
2018 
2019       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2020       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2021       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2022       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2023         auto AI = FnArgs[FirstIRArg + i];
2024         AI->setName(Arg->getName() + "." + Twine(i));
2025       }
2026       break;
2027     }
2028 
2029     case ABIArgInfo::Ignore:
2030       assert(NumIRArgs == 0);
2031       // Initialize the local variable appropriately.
2032       if (!hasScalarEvaluationKind(Ty)) {
2033         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
2034       } else {
2035         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2036         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
2037       }
2038       break;
2039     }
2040   }
2041 
2042   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2043     for (int I = Args.size() - 1; I >= 0; --I)
2044       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2045                    I + 1);
2046   } else {
2047     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2048       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2049                    I + 1);
2050   }
2051 }
2052 
eraseUnusedBitCasts(llvm::Instruction * insn)2053 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2054   while (insn->use_empty()) {
2055     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2056     if (!bitcast) return;
2057 
2058     // This is "safe" because we would have used a ConstantExpr otherwise.
2059     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2060     bitcast->eraseFromParent();
2061   }
2062 }
2063 
2064 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2065 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2066                                                     llvm::Value *result) {
2067   // We must be immediately followed the cast.
2068   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2069   if (BB->empty()) return nullptr;
2070   if (&BB->back() != result) return nullptr;
2071 
2072   llvm::Type *resultType = result->getType();
2073 
2074   // result is in a BasicBlock and is therefore an Instruction.
2075   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2076 
2077   SmallVector<llvm::Instruction*,4> insnsToKill;
2078 
2079   // Look for:
2080   //  %generator = bitcast %type1* %generator2 to %type2*
2081   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2082     // We would have emitted this as a constant if the operand weren't
2083     // an Instruction.
2084     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2085 
2086     // Require the generator to be immediately followed by the cast.
2087     if (generator->getNextNode() != bitcast)
2088       return nullptr;
2089 
2090     insnsToKill.push_back(bitcast);
2091   }
2092 
2093   // Look for:
2094   //   %generator = call i8* @objc_retain(i8* %originalResult)
2095   // or
2096   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2097   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2098   if (!call) return nullptr;
2099 
2100   bool doRetainAutorelease;
2101 
2102   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2103     doRetainAutorelease = true;
2104   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2105                                           .objc_retainAutoreleasedReturnValue) {
2106     doRetainAutorelease = false;
2107 
2108     // If we emitted an assembly marker for this call (and the
2109     // ARCEntrypoints field should have been set if so), go looking
2110     // for that call.  If we can't find it, we can't do this
2111     // optimization.  But it should always be the immediately previous
2112     // instruction, unless we needed bitcasts around the call.
2113     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2114       llvm::Instruction *prev = call->getPrevNode();
2115       assert(prev);
2116       if (isa<llvm::BitCastInst>(prev)) {
2117         prev = prev->getPrevNode();
2118         assert(prev);
2119       }
2120       assert(isa<llvm::CallInst>(prev));
2121       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2122                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2123       insnsToKill.push_back(prev);
2124     }
2125   } else {
2126     return nullptr;
2127   }
2128 
2129   result = call->getArgOperand(0);
2130   insnsToKill.push_back(call);
2131 
2132   // Keep killing bitcasts, for sanity.  Note that we no longer care
2133   // about precise ordering as long as there's exactly one use.
2134   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2135     if (!bitcast->hasOneUse()) break;
2136     insnsToKill.push_back(bitcast);
2137     result = bitcast->getOperand(0);
2138   }
2139 
2140   // Delete all the unnecessary instructions, from latest to earliest.
2141   for (SmallVectorImpl<llvm::Instruction*>::iterator
2142          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2143     (*i)->eraseFromParent();
2144 
2145   // Do the fused retain/autorelease if we were asked to.
2146   if (doRetainAutorelease)
2147     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2148 
2149   // Cast back to the result type.
2150   return CGF.Builder.CreateBitCast(result, resultType);
2151 }
2152 
2153 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)2154 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2155                                           llvm::Value *result) {
2156   // This is only applicable to a method with an immutable 'self'.
2157   const ObjCMethodDecl *method =
2158     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2159   if (!method) return nullptr;
2160   const VarDecl *self = method->getSelfDecl();
2161   if (!self->getType().isConstQualified()) return nullptr;
2162 
2163   // Look for a retain call.
2164   llvm::CallInst *retainCall =
2165     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2166   if (!retainCall ||
2167       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2168     return nullptr;
2169 
2170   // Look for an ordinary load of 'self'.
2171   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2172   llvm::LoadInst *load =
2173     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2174   if (!load || load->isAtomic() || load->isVolatile() ||
2175       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2176     return nullptr;
2177 
2178   // Okay!  Burn it all down.  This relies for correctness on the
2179   // assumption that the retain is emitted as part of the return and
2180   // that thereafter everything is used "linearly".
2181   llvm::Type *resultType = result->getType();
2182   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2183   assert(retainCall->use_empty());
2184   retainCall->eraseFromParent();
2185   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2186 
2187   return CGF.Builder.CreateBitCast(load, resultType);
2188 }
2189 
2190 /// Emit an ARC autorelease of the result of a function.
2191 ///
2192 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2193 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2194                                             llvm::Value *result) {
2195   // If we're returning 'self', kill the initial retain.  This is a
2196   // heuristic attempt to "encourage correctness" in the really unfortunate
2197   // case where we have a return of self during a dealloc and we desperately
2198   // need to avoid the possible autorelease.
2199   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2200     return self;
2201 
2202   // At -O0, try to emit a fused retain/autorelease.
2203   if (CGF.shouldUseFusedARCCalls())
2204     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2205       return fused;
2206 
2207   return CGF.EmitARCAutoreleaseReturnValue(result);
2208 }
2209 
2210 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)2211 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2212   // If there are multiple uses of the return-value slot, just check
2213   // for something immediately preceding the IP.  Sometimes this can
2214   // happen with how we generate implicit-returns; it can also happen
2215   // with noreturn cleanups.
2216   if (!CGF.ReturnValue->hasOneUse()) {
2217     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2218     if (IP->empty()) return nullptr;
2219     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
2220     if (!store) return nullptr;
2221     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2222     assert(!store->isAtomic() && !store->isVolatile()); // see below
2223     return store;
2224   }
2225 
2226   llvm::StoreInst *store =
2227     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2228   if (!store) return nullptr;
2229 
2230   // These aren't actually possible for non-coerced returns, and we
2231   // only care about non-coerced returns on this code path.
2232   assert(!store->isAtomic() && !store->isVolatile());
2233 
2234   // Now do a first-and-dirty dominance check: just walk up the
2235   // single-predecessors chain from the current insertion point.
2236   llvm::BasicBlock *StoreBB = store->getParent();
2237   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2238   while (IP != StoreBB) {
2239     if (!(IP = IP->getSinglePredecessor()))
2240       return nullptr;
2241   }
2242 
2243   // Okay, the store's basic block dominates the insertion point; we
2244   // can do our thing.
2245   return store;
2246 }
2247 
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)2248 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2249                                          bool EmitRetDbgLoc,
2250                                          SourceLocation EndLoc) {
2251   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2252     // Naked functions don't have epilogues.
2253     Builder.CreateUnreachable();
2254     return;
2255   }
2256 
2257   // Functions with no result always return void.
2258   if (!ReturnValue) {
2259     Builder.CreateRetVoid();
2260     return;
2261   }
2262 
2263   llvm::DebugLoc RetDbgLoc;
2264   llvm::Value *RV = nullptr;
2265   QualType RetTy = FI.getReturnType();
2266   const ABIArgInfo &RetAI = FI.getReturnInfo();
2267 
2268   switch (RetAI.getKind()) {
2269   case ABIArgInfo::InAlloca:
2270     // Aggregrates get evaluated directly into the destination.  Sometimes we
2271     // need to return the sret value in a register, though.
2272     assert(hasAggregateEvaluationKind(RetTy));
2273     if (RetAI.getInAllocaSRet()) {
2274       llvm::Function::arg_iterator EI = CurFn->arg_end();
2275       --EI;
2276       llvm::Value *ArgStruct = EI;
2277       llvm::Value *SRet = Builder.CreateStructGEP(
2278           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2279       RV = Builder.CreateLoad(SRet, "sret");
2280     }
2281     break;
2282 
2283   case ABIArgInfo::Indirect: {
2284     auto AI = CurFn->arg_begin();
2285     if (RetAI.isSRetAfterThis())
2286       ++AI;
2287     switch (getEvaluationKind(RetTy)) {
2288     case TEK_Complex: {
2289       ComplexPairTy RT =
2290         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2291                           EndLoc);
2292       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2293                          /*isInit*/ true);
2294       break;
2295     }
2296     case TEK_Aggregate:
2297       // Do nothing; aggregrates get evaluated directly into the destination.
2298       break;
2299     case TEK_Scalar:
2300       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2301                         MakeNaturalAlignAddrLValue(AI, RetTy),
2302                         /*isInit*/ true);
2303       break;
2304     }
2305     break;
2306   }
2307 
2308   case ABIArgInfo::Extend:
2309   case ABIArgInfo::Direct:
2310     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2311         RetAI.getDirectOffset() == 0) {
2312       // The internal return value temp always will have pointer-to-return-type
2313       // type, just do a load.
2314 
2315       // If there is a dominating store to ReturnValue, we can elide
2316       // the load, zap the store, and usually zap the alloca.
2317       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
2318         // Reuse the debug location from the store unless there is
2319         // cleanup code to be emitted between the store and return
2320         // instruction.
2321         if (EmitRetDbgLoc && !AutoreleaseResult)
2322           RetDbgLoc = SI->getDebugLoc();
2323         // Get the stored value and nuke the now-dead store.
2324         RV = SI->getValueOperand();
2325         SI->eraseFromParent();
2326 
2327         // If that was the only use of the return value, nuke it as well now.
2328         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2329           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2330           ReturnValue = nullptr;
2331         }
2332 
2333       // Otherwise, we have to do a simple load.
2334       } else {
2335         RV = Builder.CreateLoad(ReturnValue);
2336       }
2337     } else {
2338       llvm::Value *V = ReturnValue;
2339       // If the value is offset in memory, apply the offset now.
2340       if (unsigned Offs = RetAI.getDirectOffset()) {
2341         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2342         V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
2343         V = Builder.CreateBitCast(V,
2344                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2345       }
2346 
2347       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2348     }
2349 
2350     // In ARC, end functions that return a retainable type with a call
2351     // to objc_autoreleaseReturnValue.
2352     if (AutoreleaseResult) {
2353       assert(getLangOpts().ObjCAutoRefCount &&
2354              !FI.isReturnsRetained() &&
2355              RetTy->isObjCRetainableType());
2356       RV = emitAutoreleaseOfResult(*this, RV);
2357     }
2358 
2359     break;
2360 
2361   case ABIArgInfo::Ignore:
2362     break;
2363 
2364   case ABIArgInfo::Expand:
2365     llvm_unreachable("Invalid ABI kind for return argument");
2366   }
2367 
2368   llvm::Instruction *Ret;
2369   if (RV) {
2370     if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2371       if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2372         SanitizerScope SanScope(this);
2373         llvm::Value *Cond = Builder.CreateICmpNE(
2374             RV, llvm::Constant::getNullValue(RV->getType()));
2375         llvm::Constant *StaticData[] = {
2376             EmitCheckSourceLocation(EndLoc),
2377             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2378         };
2379         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2380                   "nonnull_return", StaticData, None);
2381       }
2382     }
2383     Ret = Builder.CreateRet(RV);
2384   } else {
2385     Ret = Builder.CreateRetVoid();
2386   }
2387 
2388   if (RetDbgLoc)
2389     Ret->setDebugLoc(std::move(RetDbgLoc));
2390 }
2391 
isInAllocaArgument(CGCXXABI & ABI,QualType type)2392 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2393   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2394   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2395 }
2396 
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)2397 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2398   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2399   // placeholders.
2400   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2401   llvm::Value *Placeholder =
2402       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2403   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2404   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2405                                Ty.getQualifiers(),
2406                                AggValueSlot::IsNotDestructed,
2407                                AggValueSlot::DoesNotNeedGCBarriers,
2408                                AggValueSlot::IsNotAliased);
2409 }
2410 
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)2411 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2412                                           const VarDecl *param,
2413                                           SourceLocation loc) {
2414   // StartFunction converted the ABI-lowered parameter(s) into a
2415   // local alloca.  We need to turn that into an r-value suitable
2416   // for EmitCall.
2417   llvm::Value *local = GetAddrOfLocalVar(param);
2418 
2419   QualType type = param->getType();
2420 
2421   // For the most part, we just need to load the alloca, except:
2422   // 1) aggregate r-values are actually pointers to temporaries, and
2423   // 2) references to non-scalars are pointers directly to the aggregate.
2424   // I don't know why references to scalars are different here.
2425   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2426     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2427       return args.add(RValue::getAggregate(local), type);
2428 
2429     // Locals which are references to scalars are represented
2430     // with allocas holding the pointer.
2431     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2432   }
2433 
2434   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2435          "cannot emit delegate call arguments for inalloca arguments!");
2436 
2437   args.add(convertTempToRValue(local, type, loc), type);
2438 }
2439 
isProvablyNull(llvm::Value * addr)2440 static bool isProvablyNull(llvm::Value *addr) {
2441   return isa<llvm::ConstantPointerNull>(addr);
2442 }
2443 
isProvablyNonNull(llvm::Value * addr)2444 static bool isProvablyNonNull(llvm::Value *addr) {
2445   return isa<llvm::AllocaInst>(addr);
2446 }
2447 
2448 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)2449 static void emitWriteback(CodeGenFunction &CGF,
2450                           const CallArgList::Writeback &writeback) {
2451   const LValue &srcLV = writeback.Source;
2452   llvm::Value *srcAddr = srcLV.getAddress();
2453   assert(!isProvablyNull(srcAddr) &&
2454          "shouldn't have writeback for provably null argument");
2455 
2456   llvm::BasicBlock *contBB = nullptr;
2457 
2458   // If the argument wasn't provably non-null, we need to null check
2459   // before doing the store.
2460   bool provablyNonNull = isProvablyNonNull(srcAddr);
2461   if (!provablyNonNull) {
2462     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2463     contBB = CGF.createBasicBlock("icr.done");
2464 
2465     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2466     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2467     CGF.EmitBlock(writebackBB);
2468   }
2469 
2470   // Load the value to writeback.
2471   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2472 
2473   // Cast it back, in case we're writing an id to a Foo* or something.
2474   value = CGF.Builder.CreateBitCast(value,
2475                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2476                             "icr.writeback-cast");
2477 
2478   // Perform the writeback.
2479 
2480   // If we have a "to use" value, it's something we need to emit a use
2481   // of.  This has to be carefully threaded in: if it's done after the
2482   // release it's potentially undefined behavior (and the optimizer
2483   // will ignore it), and if it happens before the retain then the
2484   // optimizer could move the release there.
2485   if (writeback.ToUse) {
2486     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2487 
2488     // Retain the new value.  No need to block-copy here:  the block's
2489     // being passed up the stack.
2490     value = CGF.EmitARCRetainNonBlock(value);
2491 
2492     // Emit the intrinsic use here.
2493     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2494 
2495     // Load the old value (primitively).
2496     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2497 
2498     // Put the new value in place (primitively).
2499     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2500 
2501     // Release the old value.
2502     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2503 
2504   // Otherwise, we can just do a normal lvalue store.
2505   } else {
2506     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2507   }
2508 
2509   // Jump to the continuation block.
2510   if (!provablyNonNull)
2511     CGF.EmitBlock(contBB);
2512 }
2513 
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)2514 static void emitWritebacks(CodeGenFunction &CGF,
2515                            const CallArgList &args) {
2516   for (const auto &I : args.writebacks())
2517     emitWriteback(CGF, I);
2518 }
2519 
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)2520 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2521                                             const CallArgList &CallArgs) {
2522   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2523   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2524     CallArgs.getCleanupsToDeactivate();
2525   // Iterate in reverse to increase the likelihood of popping the cleanup.
2526   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2527          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2528     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2529     I->IsActiveIP->eraseFromParent();
2530   }
2531 }
2532 
maybeGetUnaryAddrOfOperand(const Expr * E)2533 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2534   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2535     if (uop->getOpcode() == UO_AddrOf)
2536       return uop->getSubExpr();
2537   return nullptr;
2538 }
2539 
2540 /// Emit an argument that's being passed call-by-writeback.  That is,
2541 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)2542 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2543                              const ObjCIndirectCopyRestoreExpr *CRE) {
2544   LValue srcLV;
2545 
2546   // Make an optimistic effort to emit the address as an l-value.
2547   // This can fail if the the argument expression is more complicated.
2548   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2549     srcLV = CGF.EmitLValue(lvExpr);
2550 
2551   // Otherwise, just emit it as a scalar.
2552   } else {
2553     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2554 
2555     QualType srcAddrType =
2556       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2557     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2558   }
2559   llvm::Value *srcAddr = srcLV.getAddress();
2560 
2561   // The dest and src types don't necessarily match in LLVM terms
2562   // because of the crazy ObjC compatibility rules.
2563 
2564   llvm::PointerType *destType =
2565     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2566 
2567   // If the address is a constant null, just pass the appropriate null.
2568   if (isProvablyNull(srcAddr)) {
2569     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2570              CRE->getType());
2571     return;
2572   }
2573 
2574   // Create the temporary.
2575   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2576                                            "icr.temp");
2577   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2578   // and that cleanup will be conditional if we can't prove that the l-value
2579   // isn't null, so we need to register a dominating point so that the cleanups
2580   // system will make valid IR.
2581   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2582 
2583   // Zero-initialize it if we're not doing a copy-initialization.
2584   bool shouldCopy = CRE->shouldCopy();
2585   if (!shouldCopy) {
2586     llvm::Value *null =
2587       llvm::ConstantPointerNull::get(
2588         cast<llvm::PointerType>(destType->getElementType()));
2589     CGF.Builder.CreateStore(null, temp);
2590   }
2591 
2592   llvm::BasicBlock *contBB = nullptr;
2593   llvm::BasicBlock *originBB = nullptr;
2594 
2595   // If the address is *not* known to be non-null, we need to switch.
2596   llvm::Value *finalArgument;
2597 
2598   bool provablyNonNull = isProvablyNonNull(srcAddr);
2599   if (provablyNonNull) {
2600     finalArgument = temp;
2601   } else {
2602     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2603 
2604     finalArgument = CGF.Builder.CreateSelect(isNull,
2605                                    llvm::ConstantPointerNull::get(destType),
2606                                              temp, "icr.argument");
2607 
2608     // If we need to copy, then the load has to be conditional, which
2609     // means we need control flow.
2610     if (shouldCopy) {
2611       originBB = CGF.Builder.GetInsertBlock();
2612       contBB = CGF.createBasicBlock("icr.cont");
2613       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2614       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2615       CGF.EmitBlock(copyBB);
2616       condEval.begin(CGF);
2617     }
2618   }
2619 
2620   llvm::Value *valueToUse = nullptr;
2621 
2622   // Perform a copy if necessary.
2623   if (shouldCopy) {
2624     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2625     assert(srcRV.isScalar());
2626 
2627     llvm::Value *src = srcRV.getScalarVal();
2628     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2629                                     "icr.cast");
2630 
2631     // Use an ordinary store, not a store-to-lvalue.
2632     CGF.Builder.CreateStore(src, temp);
2633 
2634     // If optimization is enabled, and the value was held in a
2635     // __strong variable, we need to tell the optimizer that this
2636     // value has to stay alive until we're doing the store back.
2637     // This is because the temporary is effectively unretained,
2638     // and so otherwise we can violate the high-level semantics.
2639     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2640         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2641       valueToUse = src;
2642     }
2643   }
2644 
2645   // Finish the control flow if we needed it.
2646   if (shouldCopy && !provablyNonNull) {
2647     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2648     CGF.EmitBlock(contBB);
2649 
2650     // Make a phi for the value to intrinsically use.
2651     if (valueToUse) {
2652       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2653                                                       "icr.to-use");
2654       phiToUse->addIncoming(valueToUse, copyBB);
2655       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2656                             originBB);
2657       valueToUse = phiToUse;
2658     }
2659 
2660     condEval.end(CGF);
2661   }
2662 
2663   args.addWriteback(srcLV, temp, valueToUse);
2664   args.add(RValue::get(finalArgument), CRE->getType());
2665 }
2666 
allocateArgumentMemory(CodeGenFunction & CGF)2667 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2668   assert(!StackBase && !StackCleanup.isValid());
2669 
2670   // Save the stack.
2671   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2672   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2673 
2674   // Control gets really tied up in landing pads, so we have to spill the
2675   // stacksave to an alloca to avoid violating SSA form.
2676   // TODO: This is dead if we never emit the cleanup.  We should create the
2677   // alloca and store lazily on the first cleanup emission.
2678   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2679   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2680   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2681   StackCleanup = CGF.EHStack.getInnermostEHScope();
2682   assert(StackCleanup.isValid());
2683 }
2684 
freeArgumentMemory(CodeGenFunction & CGF) const2685 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2686   if (StackBase) {
2687     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2688     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2689     // We could load StackBase from StackBaseMem, but in the non-exceptional
2690     // case we can skip it.
2691     CGF.Builder.CreateCall(F, StackBase);
2692   }
2693 }
2694 
emitNonNullArgCheck(CodeGenFunction & CGF,RValue RV,QualType ArgType,SourceLocation ArgLoc,const FunctionDecl * FD,unsigned ParmNum)2695 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
2696                                 QualType ArgType, SourceLocation ArgLoc,
2697                                 const FunctionDecl *FD, unsigned ParmNum) {
2698   if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2699     return;
2700   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2701   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2702   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2703   if (!NNAttr)
2704     return;
2705   CodeGenFunction::SanitizerScope SanScope(&CGF);
2706   assert(RV.isScalar());
2707   llvm::Value *V = RV.getScalarVal();
2708   llvm::Value *Cond =
2709       CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2710   llvm::Constant *StaticData[] = {
2711       CGF.EmitCheckSourceLocation(ArgLoc),
2712       CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
2713       llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
2714   };
2715   CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2716                 "nonnull_arg", StaticData, None);
2717 }
2718 
EmitCallArgs(CallArgList & Args,ArrayRef<QualType> ArgTypes,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const FunctionDecl * CalleeDecl,unsigned ParamsToSkip)2719 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2720                                    ArrayRef<QualType> ArgTypes,
2721                                    CallExpr::const_arg_iterator ArgBeg,
2722                                    CallExpr::const_arg_iterator ArgEnd,
2723                                    const FunctionDecl *CalleeDecl,
2724                                    unsigned ParamsToSkip) {
2725   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2726   // because arguments are destroyed left to right in the callee.
2727   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2728     // Insert a stack save if we're going to need any inalloca args.
2729     bool HasInAllocaArgs = false;
2730     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2731          I != E && !HasInAllocaArgs; ++I)
2732       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2733     if (HasInAllocaArgs) {
2734       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2735       Args.allocateArgumentMemory(*this);
2736     }
2737 
2738     // Evaluate each argument.
2739     size_t CallArgsStart = Args.size();
2740     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2741       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2742       EmitCallArg(Args, *Arg, ArgTypes[I]);
2743       emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2744                           CalleeDecl, ParamsToSkip + I);
2745     }
2746 
2747     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2748     // IR function.
2749     std::reverse(Args.begin() + CallArgsStart, Args.end());
2750     return;
2751   }
2752 
2753   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2754     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2755     assert(Arg != ArgEnd);
2756     EmitCallArg(Args, *Arg, ArgTypes[I]);
2757     emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2758                         CalleeDecl, ParamsToSkip + I);
2759   }
2760 }
2761 
2762 namespace {
2763 
2764 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
DestroyUnpassedArg__anond5d483060311::DestroyUnpassedArg2765   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2766       : Addr(Addr), Ty(Ty) {}
2767 
2768   llvm::Value *Addr;
2769   QualType Ty;
2770 
Emit__anond5d483060311::DestroyUnpassedArg2771   void Emit(CodeGenFunction &CGF, Flags flags) override {
2772     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2773     assert(!Dtor->isTrivial());
2774     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2775                               /*Delegating=*/false, Addr);
2776   }
2777 };
2778 
2779 }
2780 
2781 struct DisableDebugLocationUpdates {
2782   CodeGenFunction &CGF;
2783   bool disabledDebugInfo;
DisableDebugLocationUpdatesDisableDebugLocationUpdates2784   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2785     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2786       CGF.disableDebugInfo();
2787   }
~DisableDebugLocationUpdatesDisableDebugLocationUpdates2788   ~DisableDebugLocationUpdates() {
2789     if (disabledDebugInfo)
2790       CGF.enableDebugInfo();
2791   }
2792 };
2793 
EmitCallArg(CallArgList & args,const Expr * E,QualType type)2794 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2795                                   QualType type) {
2796   DisableDebugLocationUpdates Dis(*this, E);
2797   if (const ObjCIndirectCopyRestoreExpr *CRE
2798         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2799     assert(getLangOpts().ObjCAutoRefCount);
2800     assert(getContext().hasSameType(E->getType(), type));
2801     return emitWritebackArg(*this, args, CRE);
2802   }
2803 
2804   assert(type->isReferenceType() == E->isGLValue() &&
2805          "reference binding to unmaterialized r-value!");
2806 
2807   if (E->isGLValue()) {
2808     assert(E->getObjectKind() == OK_Ordinary);
2809     return args.add(EmitReferenceBindingToExpr(E), type);
2810   }
2811 
2812   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2813 
2814   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2815   // However, we still have to push an EH-only cleanup in case we unwind before
2816   // we make it to the call.
2817   if (HasAggregateEvalKind &&
2818       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2819     // If we're using inalloca, use the argument memory.  Otherwise, use a
2820     // temporary.
2821     AggValueSlot Slot;
2822     if (args.isUsingInAlloca())
2823       Slot = createPlaceholderSlot(*this, type);
2824     else
2825       Slot = CreateAggTemp(type, "agg.tmp");
2826 
2827     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2828     bool DestroyedInCallee =
2829         RD && RD->hasNonTrivialDestructor() &&
2830         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2831     if (DestroyedInCallee)
2832       Slot.setExternallyDestructed();
2833 
2834     EmitAggExpr(E, Slot);
2835     RValue RV = Slot.asRValue();
2836     args.add(RV, type);
2837 
2838     if (DestroyedInCallee) {
2839       // Create a no-op GEP between the placeholder and the cleanup so we can
2840       // RAUW it successfully.  It also serves as a marker of the first
2841       // instruction where the cleanup is active.
2842       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2843       // This unreachable is a temporary marker which will be removed later.
2844       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2845       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2846     }
2847     return;
2848   }
2849 
2850   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2851       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2852     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2853     assert(L.isSimple());
2854     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2855       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2856     } else {
2857       // We can't represent a misaligned lvalue in the CallArgList, so copy
2858       // to an aligned temporary now.
2859       llvm::Value *tmp = CreateMemTemp(type);
2860       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2861                         L.getAlignment());
2862       args.add(RValue::getAggregate(tmp), type);
2863     }
2864     return;
2865   }
2866 
2867   args.add(EmitAnyExprToTemp(E), type);
2868 }
2869 
getVarArgType(const Expr * Arg)2870 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2871   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2872   // implicitly widens null pointer constants that are arguments to varargs
2873   // functions to pointer-sized ints.
2874   if (!getTarget().getTriple().isOSWindows())
2875     return Arg->getType();
2876 
2877   if (Arg->getType()->isIntegerType() &&
2878       getContext().getTypeSize(Arg->getType()) <
2879           getContext().getTargetInfo().getPointerWidth(0) &&
2880       Arg->isNullPointerConstant(getContext(),
2881                                  Expr::NPC_ValueDependentIsNotNull)) {
2882     return getContext().getIntPtrType();
2883   }
2884 
2885   return Arg->getType();
2886 }
2887 
2888 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2889 // optimizer it can aggressively ignore unwind edges.
2890 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)2891 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2892   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2893       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2894     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2895                       CGM.getNoObjCARCExceptionsMetadata());
2896 }
2897 
2898 /// Emits a call to the given no-arguments nounwind runtime function.
2899 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2900 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2901                                          const llvm::Twine &name) {
2902   return EmitNounwindRuntimeCall(callee, None, name);
2903 }
2904 
2905 /// Emits a call to the given nounwind runtime function.
2906 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2907 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2908                                          ArrayRef<llvm::Value*> args,
2909                                          const llvm::Twine &name) {
2910   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2911   call->setDoesNotThrow();
2912   return call;
2913 }
2914 
2915 /// Emits a simple call (never an invoke) to the given no-arguments
2916 /// runtime function.
2917 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2918 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2919                                  const llvm::Twine &name) {
2920   return EmitRuntimeCall(callee, None, name);
2921 }
2922 
2923 /// Emits a simple call (never an invoke) to the given runtime
2924 /// function.
2925 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2926 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2927                                  ArrayRef<llvm::Value*> args,
2928                                  const llvm::Twine &name) {
2929   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2930   call->setCallingConv(getRuntimeCC());
2931   return call;
2932 }
2933 
2934 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)2935 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2936                                                ArrayRef<llvm::Value*> args) {
2937   if (getInvokeDest()) {
2938     llvm::InvokeInst *invoke =
2939       Builder.CreateInvoke(callee,
2940                            getUnreachableBlock(),
2941                            getInvokeDest(),
2942                            args);
2943     invoke->setDoesNotReturn();
2944     invoke->setCallingConv(getRuntimeCC());
2945   } else {
2946     llvm::CallInst *call = Builder.CreateCall(callee, args);
2947     call->setDoesNotReturn();
2948     call->setCallingConv(getRuntimeCC());
2949     Builder.CreateUnreachable();
2950   }
2951   PGO.setCurrentRegionUnreachable();
2952 }
2953 
2954 /// Emits a call or invoke instruction to the given nullary runtime
2955 /// function.
2956 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)2957 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2958                                          const Twine &name) {
2959   return EmitRuntimeCallOrInvoke(callee, None, name);
2960 }
2961 
2962 /// Emits a call or invoke instruction to the given runtime function.
2963 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)2964 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2965                                          ArrayRef<llvm::Value*> args,
2966                                          const Twine &name) {
2967   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2968   callSite.setCallingConv(getRuntimeCC());
2969   return callSite;
2970 }
2971 
2972 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const Twine & Name)2973 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2974                                   const Twine &Name) {
2975   return EmitCallOrInvoke(Callee, None, Name);
2976 }
2977 
2978 /// Emits a call or invoke instruction to the given function, depending
2979 /// on the current state of the EH stack.
2980 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)2981 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2982                                   ArrayRef<llvm::Value *> Args,
2983                                   const Twine &Name) {
2984   llvm::BasicBlock *InvokeDest = getInvokeDest();
2985 
2986   llvm::Instruction *Inst;
2987   if (!InvokeDest)
2988     Inst = Builder.CreateCall(Callee, Args, Name);
2989   else {
2990     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2991     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2992     EmitBlock(ContBB);
2993   }
2994 
2995   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2996   // optimizer it can aggressively ignore unwind edges.
2997   if (CGM.getLangOpts().ObjCAutoRefCount)
2998     AddObjCARCExceptionMetadata(Inst);
2999 
3000   return llvm::CallSite(Inst);
3001 }
3002 
3003 /// \brief Store a non-aggregate value to an address to initialize it.  For
3004 /// initialization, a non-atomic store will be used.
EmitInitStoreOfNonAggregate(CodeGenFunction & CGF,RValue Src,LValue Dst)3005 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3006                                         LValue Dst) {
3007   if (Src.isScalar())
3008     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3009   else
3010     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3011 }
3012 
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)3013 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3014                                                   llvm::Value *New) {
3015   DeferredReplacements.push_back(std::make_pair(Old, New));
3016 }
3017 
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)3018 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3019                                  llvm::Value *Callee,
3020                                  ReturnValueSlot ReturnValue,
3021                                  const CallArgList &CallArgs,
3022                                  const Decl *TargetDecl,
3023                                  llvm::Instruction **callOrInvoke) {
3024   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3025 
3026   // Handle struct-return functions by passing a pointer to the
3027   // location that we would like to return into.
3028   QualType RetTy = CallInfo.getReturnType();
3029   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3030 
3031   llvm::FunctionType *IRFuncTy =
3032     cast<llvm::FunctionType>(
3033                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3034 
3035   // If we're using inalloca, insert the allocation after the stack save.
3036   // FIXME: Do this earlier rather than hacking it in here!
3037   llvm::AllocaInst *ArgMemory = nullptr;
3038   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3039     llvm::Instruction *IP = CallArgs.getStackBase();
3040     llvm::AllocaInst *AI;
3041     if (IP) {
3042       IP = IP->getNextNode();
3043       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3044     } else {
3045       AI = CreateTempAlloca(ArgStruct, "argmem");
3046     }
3047     AI->setUsedWithInAlloca(true);
3048     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3049     ArgMemory = AI;
3050   }
3051 
3052   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3053   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3054 
3055   // If the call returns a temporary with struct return, create a temporary
3056   // alloca to hold the result, unless one is given to us.
3057   llvm::Value *SRetPtr = nullptr;
3058   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3059     SRetPtr = ReturnValue.getValue();
3060     if (!SRetPtr)
3061       SRetPtr = CreateMemTemp(RetTy);
3062     if (IRFunctionArgs.hasSRetArg()) {
3063       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3064     } else {
3065       llvm::Value *Addr =
3066           Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3067                                   RetAI.getInAllocaFieldIndex());
3068       Builder.CreateStore(SRetPtr, Addr);
3069     }
3070   }
3071 
3072   assert(CallInfo.arg_size() == CallArgs.size() &&
3073          "Mismatch between function signature & arguments.");
3074   unsigned ArgNo = 0;
3075   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3076   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3077        I != E; ++I, ++info_it, ++ArgNo) {
3078     const ABIArgInfo &ArgInfo = info_it->info;
3079     RValue RV = I->RV;
3080 
3081     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3082 
3083     // Insert a padding argument to ensure proper alignment.
3084     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3085       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3086           llvm::UndefValue::get(ArgInfo.getPaddingType());
3087 
3088     unsigned FirstIRArg, NumIRArgs;
3089     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3090 
3091     switch (ArgInfo.getKind()) {
3092     case ABIArgInfo::InAlloca: {
3093       assert(NumIRArgs == 0);
3094       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3095       if (RV.isAggregate()) {
3096         // Replace the placeholder with the appropriate argument slot GEP.
3097         llvm::Instruction *Placeholder =
3098             cast<llvm::Instruction>(RV.getAggregateAddr());
3099         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3100         Builder.SetInsertPoint(Placeholder);
3101         llvm::Value *Addr =
3102             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3103                                     ArgInfo.getInAllocaFieldIndex());
3104         Builder.restoreIP(IP);
3105         deferPlaceholderReplacement(Placeholder, Addr);
3106       } else {
3107         // Store the RValue into the argument struct.
3108         llvm::Value *Addr =
3109             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3110                                     ArgInfo.getInAllocaFieldIndex());
3111         unsigned AS = Addr->getType()->getPointerAddressSpace();
3112         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3113         // There are some cases where a trivial bitcast is not avoidable.  The
3114         // definition of a type later in a translation unit may change it's type
3115         // from {}* to (%struct.foo*)*.
3116         if (Addr->getType() != MemType)
3117           Addr = Builder.CreateBitCast(Addr, MemType);
3118         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3119         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3120       }
3121       break;
3122     }
3123 
3124     case ABIArgInfo::Indirect: {
3125       assert(NumIRArgs == 1);
3126       if (RV.isScalar() || RV.isComplex()) {
3127         // Make a temporary alloca to pass the argument.
3128         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3129         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3130           AI->setAlignment(ArgInfo.getIndirectAlign());
3131         IRCallArgs[FirstIRArg] = AI;
3132 
3133         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3134         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3135       } else {
3136         // We want to avoid creating an unnecessary temporary+copy here;
3137         // however, we need one in three cases:
3138         // 1. If the argument is not byval, and we are required to copy the
3139         //    source.  (This case doesn't occur on any common architecture.)
3140         // 2. If the argument is byval, RV is not sufficiently aligned, and
3141         //    we cannot force it to be sufficiently aligned.
3142         // 3. If the argument is byval, but RV is located in an address space
3143         //    different than that of the argument (0).
3144         llvm::Value *Addr = RV.getAggregateAddr();
3145         unsigned Align = ArgInfo.getIndirectAlign();
3146         const llvm::DataLayout *TD = &CGM.getDataLayout();
3147         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3148         const unsigned ArgAddrSpace =
3149             (FirstIRArg < IRFuncTy->getNumParams()
3150                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3151                  : 0);
3152         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3153             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3154              llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
3155             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3156           // Create an aligned temporary, and copy to it.
3157           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3158           if (Align > AI->getAlignment())
3159             AI->setAlignment(Align);
3160           IRCallArgs[FirstIRArg] = AI;
3161           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3162         } else {
3163           // Skip the extra memcpy call.
3164           IRCallArgs[FirstIRArg] = Addr;
3165         }
3166       }
3167       break;
3168     }
3169 
3170     case ABIArgInfo::Ignore:
3171       assert(NumIRArgs == 0);
3172       break;
3173 
3174     case ABIArgInfo::Extend:
3175     case ABIArgInfo::Direct: {
3176       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3177           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3178           ArgInfo.getDirectOffset() == 0) {
3179         assert(NumIRArgs == 1);
3180         llvm::Value *V;
3181         if (RV.isScalar())
3182           V = RV.getScalarVal();
3183         else
3184           V = Builder.CreateLoad(RV.getAggregateAddr());
3185 
3186         // We might have to widen integers, but we should never truncate.
3187         if (ArgInfo.getCoerceToType() != V->getType() &&
3188             V->getType()->isIntegerTy())
3189           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3190 
3191         // If the argument doesn't match, perform a bitcast to coerce it.  This
3192         // can happen due to trivial type mismatches.
3193         if (FirstIRArg < IRFuncTy->getNumParams() &&
3194             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3195           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3196         IRCallArgs[FirstIRArg] = V;
3197         break;
3198       }
3199 
3200       // FIXME: Avoid the conversion through memory if possible.
3201       llvm::Value *SrcPtr;
3202       if (RV.isScalar() || RV.isComplex()) {
3203         SrcPtr = CreateMemTemp(I->Ty, "coerce");
3204         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3205         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3206       } else
3207         SrcPtr = RV.getAggregateAddr();
3208 
3209       // If the value is offset in memory, apply the offset now.
3210       if (unsigned Offs = ArgInfo.getDirectOffset()) {
3211         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3212         SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
3213         SrcPtr = Builder.CreateBitCast(SrcPtr,
3214                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3215 
3216       }
3217 
3218       // Fast-isel and the optimizer generally like scalar values better than
3219       // FCAs, so we flatten them if this is safe to do for this argument.
3220       llvm::StructType *STy =
3221             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3222       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3223         llvm::Type *SrcTy =
3224           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3225         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3226         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3227 
3228         // If the source type is smaller than the destination type of the
3229         // coerce-to logic, copy the source value into a temp alloca the size
3230         // of the destination type to allow loading all of it. The bits past
3231         // the source value are left undef.
3232         if (SrcSize < DstSize) {
3233           llvm::AllocaInst *TempAlloca
3234             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3235           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3236           SrcPtr = TempAlloca;
3237         } else {
3238           SrcPtr = Builder.CreateBitCast(SrcPtr,
3239                                          llvm::PointerType::getUnqual(STy));
3240         }
3241 
3242         assert(NumIRArgs == STy->getNumElements());
3243         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3244           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
3245           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3246           // We don't know what we're loading from.
3247           LI->setAlignment(1);
3248           IRCallArgs[FirstIRArg + i] = LI;
3249         }
3250       } else {
3251         // In the simple case, just pass the coerced loaded value.
3252         assert(NumIRArgs == 1);
3253         IRCallArgs[FirstIRArg] =
3254             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
3255       }
3256 
3257       break;
3258     }
3259 
3260     case ABIArgInfo::Expand:
3261       unsigned IRArgPos = FirstIRArg;
3262       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3263       assert(IRArgPos == FirstIRArg + NumIRArgs);
3264       break;
3265     }
3266   }
3267 
3268   if (ArgMemory) {
3269     llvm::Value *Arg = ArgMemory;
3270     if (CallInfo.isVariadic()) {
3271       // When passing non-POD arguments by value to variadic functions, we will
3272       // end up with a variadic prototype and an inalloca call site.  In such
3273       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3274       // the callee.
3275       unsigned CalleeAS =
3276           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3277       Callee = Builder.CreateBitCast(
3278           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3279     } else {
3280       llvm::Type *LastParamTy =
3281           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3282       if (Arg->getType() != LastParamTy) {
3283 #ifndef NDEBUG
3284         // Assert that these structs have equivalent element types.
3285         llvm::StructType *FullTy = CallInfo.getArgStruct();
3286         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3287             cast<llvm::PointerType>(LastParamTy)->getElementType());
3288         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3289         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3290                                                 DE = DeclaredTy->element_end(),
3291                                                 FI = FullTy->element_begin();
3292              DI != DE; ++DI, ++FI)
3293           assert(*DI == *FI);
3294 #endif
3295         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3296       }
3297     }
3298     assert(IRFunctionArgs.hasInallocaArg());
3299     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3300   }
3301 
3302   if (!CallArgs.getCleanupsToDeactivate().empty())
3303     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3304 
3305   // If the callee is a bitcast of a function to a varargs pointer to function
3306   // type, check to see if we can remove the bitcast.  This handles some cases
3307   // with unprototyped functions.
3308   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3309     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3310       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3311       llvm::FunctionType *CurFT =
3312         cast<llvm::FunctionType>(CurPT->getElementType());
3313       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3314 
3315       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3316           ActualFT->getReturnType() == CurFT->getReturnType() &&
3317           ActualFT->getNumParams() == CurFT->getNumParams() &&
3318           ActualFT->getNumParams() == IRCallArgs.size() &&
3319           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3320         bool ArgsMatch = true;
3321         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3322           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3323             ArgsMatch = false;
3324             break;
3325           }
3326 
3327         // Strip the cast if we can get away with it.  This is a nice cleanup,
3328         // but also allows us to inline the function at -O0 if it is marked
3329         // always_inline.
3330         if (ArgsMatch)
3331           Callee = CalleeF;
3332       }
3333     }
3334 
3335   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3336   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3337     // Inalloca argument can have different type.
3338     if (IRFunctionArgs.hasInallocaArg() &&
3339         i == IRFunctionArgs.getInallocaArgNo())
3340       continue;
3341     if (i < IRFuncTy->getNumParams())
3342       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3343   }
3344 
3345   unsigned CallingConv;
3346   CodeGen::AttributeListType AttributeList;
3347   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3348                              CallingConv, true);
3349   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3350                                                      AttributeList);
3351 
3352   llvm::BasicBlock *InvokeDest = nullptr;
3353   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3354                           llvm::Attribute::NoUnwind) ||
3355       currentFunctionUsesSEHTry())
3356     InvokeDest = getInvokeDest();
3357 
3358   llvm::CallSite CS;
3359   if (!InvokeDest) {
3360     CS = Builder.CreateCall(Callee, IRCallArgs);
3361   } else {
3362     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3363     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3364     EmitBlock(Cont);
3365   }
3366   if (callOrInvoke)
3367     *callOrInvoke = CS.getInstruction();
3368 
3369   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3370       !CS.hasFnAttr(llvm::Attribute::NoInline))
3371     Attrs =
3372         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3373                            llvm::Attribute::AlwaysInline);
3374 
3375   // Disable inlining inside SEH __try blocks.
3376   if (isSEHTryScope())
3377     Attrs =
3378         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3379                            llvm::Attribute::NoInline);
3380 
3381   CS.setAttributes(Attrs);
3382   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3383 
3384   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3385   // optimizer it can aggressively ignore unwind edges.
3386   if (CGM.getLangOpts().ObjCAutoRefCount)
3387     AddObjCARCExceptionMetadata(CS.getInstruction());
3388 
3389   // If the call doesn't return, finish the basic block and clear the
3390   // insertion point; this allows the rest of IRgen to discard
3391   // unreachable code.
3392   if (CS.doesNotReturn()) {
3393     Builder.CreateUnreachable();
3394     Builder.ClearInsertionPoint();
3395 
3396     // FIXME: For now, emit a dummy basic block because expr emitters in
3397     // generally are not ready to handle emitting expressions at unreachable
3398     // points.
3399     EnsureInsertPoint();
3400 
3401     // Return a reasonable RValue.
3402     return GetUndefRValue(RetTy);
3403   }
3404 
3405   llvm::Instruction *CI = CS.getInstruction();
3406   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3407     CI->setName("call");
3408 
3409   // Emit any writebacks immediately.  Arguably this should happen
3410   // after any return-value munging.
3411   if (CallArgs.hasWritebacks())
3412     emitWritebacks(*this, CallArgs);
3413 
3414   // The stack cleanup for inalloca arguments has to run out of the normal
3415   // lexical order, so deactivate it and run it manually here.
3416   CallArgs.freeArgumentMemory(*this);
3417 
3418   RValue Ret = [&] {
3419     switch (RetAI.getKind()) {
3420     case ABIArgInfo::InAlloca:
3421     case ABIArgInfo::Indirect:
3422       return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3423 
3424     case ABIArgInfo::Ignore:
3425       // If we are ignoring an argument that had a result, make sure to
3426       // construct the appropriate return value for our caller.
3427       return GetUndefRValue(RetTy);
3428 
3429     case ABIArgInfo::Extend:
3430     case ABIArgInfo::Direct: {
3431       llvm::Type *RetIRTy = ConvertType(RetTy);
3432       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3433         switch (getEvaluationKind(RetTy)) {
3434         case TEK_Complex: {
3435           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3436           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3437           return RValue::getComplex(std::make_pair(Real, Imag));
3438         }
3439         case TEK_Aggregate: {
3440           llvm::Value *DestPtr = ReturnValue.getValue();
3441           bool DestIsVolatile = ReturnValue.isVolatile();
3442 
3443           if (!DestPtr) {
3444             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3445             DestIsVolatile = false;
3446           }
3447           BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3448           return RValue::getAggregate(DestPtr);
3449         }
3450         case TEK_Scalar: {
3451           // If the argument doesn't match, perform a bitcast to coerce it.  This
3452           // can happen due to trivial type mismatches.
3453           llvm::Value *V = CI;
3454           if (V->getType() != RetIRTy)
3455             V = Builder.CreateBitCast(V, RetIRTy);
3456           return RValue::get(V);
3457         }
3458         }
3459         llvm_unreachable("bad evaluation kind");
3460       }
3461 
3462       llvm::Value *DestPtr = ReturnValue.getValue();
3463       bool DestIsVolatile = ReturnValue.isVolatile();
3464 
3465       if (!DestPtr) {
3466         DestPtr = CreateMemTemp(RetTy, "coerce");
3467         DestIsVolatile = false;
3468       }
3469 
3470       // If the value is offset in memory, apply the offset now.
3471       llvm::Value *StorePtr = DestPtr;
3472       if (unsigned Offs = RetAI.getDirectOffset()) {
3473         StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3474         StorePtr =
3475             Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
3476         StorePtr = Builder.CreateBitCast(StorePtr,
3477                            llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3478       }
3479       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3480 
3481       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3482     }
3483 
3484     case ABIArgInfo::Expand:
3485       llvm_unreachable("Invalid ABI kind for return argument");
3486     }
3487 
3488     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3489   } ();
3490 
3491   if (Ret.isScalar() && TargetDecl) {
3492     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3493       llvm::Value *OffsetValue = nullptr;
3494       if (const auto *Offset = AA->getOffset())
3495         OffsetValue = EmitScalarExpr(Offset);
3496 
3497       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3498       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3499       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3500                               OffsetValue);
3501     }
3502   }
3503 
3504   return Ret;
3505 }
3506 
3507 /* VarArg handling */
3508 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)3509 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3510   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3511 }
3512