1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkTypes_DEFINED
9 #define SkTypes_DEFINED
10
11 #include "SkPreConfig.h"
12 #include "SkUserConfig.h"
13 #include "SkPostConfig.h"
14 #include <stdint.h>
15 #include <sys/types.h>
16
17 #if defined(SK_ARM_HAS_NEON)
18 #include <arm_neon.h>
19 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
20 #include <immintrin.h>
21 #endif
22
23 /** \file SkTypes.h
24 */
25
26 /** See SkGraphics::GetVersion() to retrieve these at runtime
27 */
28 #define SKIA_VERSION_MAJOR 1
29 #define SKIA_VERSION_MINOR 0
30 #define SKIA_VERSION_PATCH 0
31
32 /*
33 memory wrappers to be implemented by the porting layer (platform)
34 */
35
36 /** Called internally if we run out of memory. The platform implementation must
37 not return, but should either throw an exception or otherwise exit.
38 */
39 SK_API extern void sk_out_of_memory(void);
40 /** Called internally if we hit an unrecoverable error.
41 The platform implementation must not return, but should either throw
42 an exception or otherwise exit.
43 */
44 SK_API extern void sk_throw(void);
45
46 enum {
47 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
48 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
49 };
50 /** Return a block of memory (at least 4-byte aligned) of at least the
51 specified size. If the requested memory cannot be returned, either
52 return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
53 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
54 */
55 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
56 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
57 */
58 SK_API extern void* sk_malloc_throw(size_t size);
59 /** Same as standard realloc(), but this one never returns null on failure. It will throw
60 an exception if it fails.
61 */
62 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
63 /** Free memory returned by sk_malloc(). It is safe to pass null.
64 */
65 SK_API extern void sk_free(void*);
66
67 /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
68 */
69 SK_API extern void* sk_calloc(size_t size);
70
71 /** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
72 */
73 SK_API extern void* sk_calloc_throw(size_t size);
74
75 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
sk_bzero(void * buffer,size_t size)76 static inline void sk_bzero(void* buffer, size_t size) {
77 memset(buffer, 0, size);
78 }
79
80 ///////////////////////////////////////////////////////////////////////////////
81
82 #ifdef override_GLOBAL_NEW
83 #include <new>
84
new(size_t size)85 inline void* operator new(size_t size) {
86 return sk_malloc_throw(size);
87 }
88
delete(void * p)89 inline void operator delete(void* p) {
90 sk_free(p);
91 }
92 #endif
93
94 ///////////////////////////////////////////////////////////////////////////////
95
96 #define SK_INIT_TO_AVOID_WARNING = 0
97
98 #ifndef SkDebugf
99 SK_API void SkDebugf(const char format[], ...);
100 #endif
101
102 #ifdef SK_DEBUG
103 #define SkASSERT(cond) SK_ALWAYSBREAK(cond)
104 #define SkDEBUGFAIL(message) SkASSERT(false && message)
105 #define SkDEBUGCODE(code) code
106 #define SkDECLAREPARAM(type, var) , type var
107 #define SkPARAM(var) , var
108 // #define SkDEBUGF(args ) SkDebugf##args
109 #define SkDEBUGF(args ) SkDebugf args
110 #define SkAssertResult(cond) SkASSERT(cond)
111 #else
112 #define SkASSERT(cond)
113 #define SkDEBUGFAIL(message)
114 #define SkDEBUGCODE(code)
115 #define SkDEBUGF(args)
116 #define SkDECLAREPARAM(type, var)
117 #define SkPARAM(var)
118
119 // unlike SkASSERT, this guy executes its condition in the non-debug build
120 #define SkAssertResult(cond) cond
121 #endif
122
123 #define SkFAIL(message) SK_ALWAYSBREAK(false && message)
124
125 // We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
126 // So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
127 // and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
128 #define SkASSERTF(cond, fmt, ...) SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
129
130 #ifdef SK_DEVELOPER
131 #define SkDEVCODE(code) code
132 #else
133 #define SkDEVCODE(code)
134 #endif
135
136 #ifdef SK_IGNORE_TO_STRING
137 #define SK_TO_STRING_NONVIRT()
138 #define SK_TO_STRING_VIRT()
139 #define SK_TO_STRING_PUREVIRT()
140 #define SK_TO_STRING_OVERRIDE()
141 #else
142 // the 'toString' helper functions convert Sk* objects to human-readable
143 // form in developer mode
144 #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
145 #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
146 #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
147 #define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override;
148 #endif
149
150 template <bool>
151 struct SkCompileAssert {
152 };
153
154 // Uses static_cast<bool>(expr) instead of bool(expr) due to
155 // https://connect.microsoft.com/VisualStudio/feedback/details/832915
156
157 // The extra parentheses in SkCompileAssert<(...)> are a work around for
158 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
159 // which was fixed in gcc 4.8.2.
160 #define SK_COMPILE_ASSERT(expr, msg) \
161 typedef SkCompileAssert<(static_cast<bool>(expr))> \
162 msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
163
164 /*
165 * Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab
166 *
167 * SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
168 *
169 */
170 #define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
171 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y
172
173 /*
174 * Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current
175 * line number. Easy way to construct
176 * unique names for local functions or
177 * variables.
178 */
179 #define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__)
180
181 /**
182 * For some classes, it's almost always an error to instantiate one without a name, e.g.
183 * {
184 * SkAutoMutexAcquire(&mutex);
185 * <some code>
186 * }
187 * In this case, the writer meant to hold mutex while the rest of the code in the block runs,
188 * but instead the mutex is acquired and then immediately released. The correct usage is
189 * {
190 * SkAutoMutexAcquire lock(&mutex);
191 * <some code>
192 * }
193 *
194 * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
195 * like this:
196 * class classname {
197 * <your class>
198 * };
199 * #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
200 *
201 * This won't work with templates, and you must inline the class' constructors and destructors.
202 * Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
203 */
204 #define SK_REQUIRE_LOCAL_VAR(classname) \
205 SK_COMPILE_ASSERT(false, missing_name_for_##classname)
206
207 ///////////////////////////////////////////////////////////////////////
208
209 /**
210 * Fast type for signed 8 bits. Use for parameter passing and local variables,
211 * not for storage.
212 */
213 typedef int S8CPU;
214
215 /**
216 * Fast type for unsigned 8 bits. Use for parameter passing and local
217 * variables, not for storage
218 */
219 typedef unsigned U8CPU;
220
221 /**
222 * Fast type for signed 16 bits. Use for parameter passing and local variables,
223 * not for storage
224 */
225 typedef int S16CPU;
226
227 /**
228 * Fast type for unsigned 16 bits. Use for parameter passing and local
229 * variables, not for storage
230 */
231 typedef unsigned U16CPU;
232
233 /**
234 * Meant to be faster than bool (doesn't promise to be 0 or 1,
235 * just 0 or non-zero
236 */
237 typedef int SkBool;
238
239 /**
240 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1
241 */
242 typedef uint8_t SkBool8;
243
244 #ifdef SK_DEBUG
245 SK_API int8_t SkToS8(intmax_t);
246 SK_API uint8_t SkToU8(uintmax_t);
247 SK_API int16_t SkToS16(intmax_t);
248 SK_API uint16_t SkToU16(uintmax_t);
249 SK_API int32_t SkToS32(intmax_t);
250 SK_API uint32_t SkToU32(uintmax_t);
251 SK_API int SkToInt(intmax_t);
252 SK_API unsigned SkToUInt(uintmax_t);
253 SK_API size_t SkToSizeT(uintmax_t);
254 SK_API off_t SkToOffT(intmax_t x);
255 #else
256 #define SkToS8(x) ((int8_t)(x))
257 #define SkToU8(x) ((uint8_t)(x))
258 #define SkToS16(x) ((int16_t)(x))
259 #define SkToU16(x) ((uint16_t)(x))
260 #define SkToS32(x) ((int32_t)(x))
261 #define SkToU32(x) ((uint32_t)(x))
262 #define SkToInt(x) ((int)(x))
263 #define SkToUInt(x) ((unsigned)(x))
264 #define SkToSizeT(x) ((size_t)(x))
265 #define SkToOffT(x) ((off_t)(x))
266 #endif
267
268 /** Returns 0 or 1 based on the condition
269 */
270 #define SkToBool(cond) ((cond) != 0)
271
272 #define SK_MaxS16 32767
273 #define SK_MinS16 -32767
274 #define SK_MaxU16 0xFFFF
275 #define SK_MinU16 0
276 #define SK_MaxS32 0x7FFFFFFF
277 #define SK_MinS32 -SK_MaxS32
278 #define SK_MaxU32 0xFFFFFFFF
279 #define SK_MinU32 0
280 #define SK_NaN32 (1 << 31)
281
282 /** Returns true if the value can be represented with signed 16bits
283 */
SkIsS16(long x)284 static inline bool SkIsS16(long x) {
285 return (int16_t)x == x;
286 }
287
288 /** Returns true if the value can be represented with unsigned 16bits
289 */
SkIsU16(long x)290 static inline bool SkIsU16(long x) {
291 return (uint16_t)x == x;
292 }
293
294 //////////////////////////////////////////////////////////////////////////////
295 #ifndef SK_OFFSETOF
296 #define SK_OFFSETOF(type, field) (size_t)((char*)&(((type*)1)->field) - (char*)1)
297 #endif
298
299 /** Returns the number of entries in an array (not a pointer) */
300 template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N];
301 #define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array)))
302
303 #define SkAlign2(x) (((x) + 1) >> 1 << 1)
304 #define SkIsAlign2(x) (0 == ((x) & 1))
305
306 #define SkAlign4(x) (((x) + 3) >> 2 << 2)
307 #define SkIsAlign4(x) (0 == ((x) & 3))
308
309 #define SkAlign8(x) (((x) + 7) >> 3 << 3)
310 #define SkIsAlign8(x) (0 == ((x) & 7))
311
312 #define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x))
313 #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
314
315 typedef uint32_t SkFourByteTag;
316 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
317
318 /** 32 bit integer to hold a unicode value
319 */
320 typedef int32_t SkUnichar;
321 /** 32 bit value to hold a millisecond count
322 */
323 typedef uint32_t SkMSec;
324 /** 1 second measured in milliseconds
325 */
326 #define SK_MSec1 1000
327 /** maximum representable milliseconds
328 */
329 #define SK_MSecMax 0x7FFFFFFF
330 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
331 */
332 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
333 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
334 */
335 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
336
337 /** The generation IDs in Skia reserve 0 has an invalid marker.
338 */
339 #define SK_InvalidGenID 0
340 /** The unique IDs in Skia reserve 0 has an invalid marker.
341 */
342 #define SK_InvalidUniqueID 0
343
344 /****************************************************************************
345 The rest of these only build with C++
346 */
347 #ifdef __cplusplus
348
349 /** Faster than SkToBool for integral conditions. Returns 0 or 1
350 */
Sk32ToBool(uint32_t n)351 static inline int Sk32ToBool(uint32_t n) {
352 return (n | (0-n)) >> 31;
353 }
354
355 /** Generic swap function. Classes with efficient swaps should specialize this function to take
356 their fast path. This function is used by SkTSort. */
SkTSwap(T & a,T & b)357 template <typename T> inline void SkTSwap(T& a, T& b) {
358 T c(a);
359 a = b;
360 b = c;
361 }
362
SkAbs32(int32_t value)363 static inline int32_t SkAbs32(int32_t value) {
364 SkASSERT(value != SK_NaN32); // The most negative int32_t can't be negated.
365 if (value < 0) {
366 value = -value;
367 }
368 return value;
369 }
370
SkTAbs(T value)371 template <typename T> inline T SkTAbs(T value) {
372 if (value < 0) {
373 value = -value;
374 }
375 return value;
376 }
377
SkMax32(int32_t a,int32_t b)378 static inline int32_t SkMax32(int32_t a, int32_t b) {
379 if (a < b)
380 a = b;
381 return a;
382 }
383
SkMin32(int32_t a,int32_t b)384 static inline int32_t SkMin32(int32_t a, int32_t b) {
385 if (a > b)
386 a = b;
387 return a;
388 }
389
SkTMin(const T & a,const T & b)390 template <typename T> const T& SkTMin(const T& a, const T& b) {
391 return (a < b) ? a : b;
392 }
393
SkTMax(const T & a,const T & b)394 template <typename T> const T& SkTMax(const T& a, const T& b) {
395 return (b < a) ? a : b;
396 }
397
SkSign32(int32_t a)398 static inline int32_t SkSign32(int32_t a) {
399 return (a >> 31) | ((unsigned) -a >> 31);
400 }
401
SkFastMin32(int32_t value,int32_t max)402 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
403 if (value > max) {
404 value = max;
405 }
406 return value;
407 }
408
SkTPin(const T & x,const T & min,const T & max)409 template <typename T> static inline const T& SkTPin(const T& x, const T& min, const T& max) {
410 return SkTMax(SkTMin(x, max), min);
411 }
412
413 /** Returns signed 32 bit value pinned between min and max, inclusively. */
SkPin32(int32_t value,int32_t min,int32_t max)414 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
415 return SkTPin(value, min, max);
416 }
417
SkSetClearShift(uint32_t bits,bool cond,unsigned shift)418 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
419 unsigned shift) {
420 SkASSERT((int)cond == 0 || (int)cond == 1);
421 return (bits & ~(1 << shift)) | ((int)cond << shift);
422 }
423
SkSetClearMask(uint32_t bits,bool cond,uint32_t mask)424 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
425 uint32_t mask) {
426 return cond ? bits | mask : bits & ~mask;
427 }
428
429 ///////////////////////////////////////////////////////////////////////////////
430
431 /** Use to combine multiple bits in a bitmask in a type safe way.
432 */
433 template <typename T>
SkTBitOr(T a,T b)434 T SkTBitOr(T a, T b) {
435 return (T)(a | b);
436 }
437
438 /**
439 * Use to cast a pointer to a different type, and maintaining strict-aliasing
440 */
SkTCast(const void * ptr)441 template <typename Dst> Dst SkTCast(const void* ptr) {
442 union {
443 const void* src;
444 Dst dst;
445 } data;
446 data.src = ptr;
447 return data.dst;
448 }
449
450 //////////////////////////////////////////////////////////////////////////////
451
452 /** \class SkNoncopyable
453
454 SkNoncopyable is the base class for objects that do not want to
455 be copied. It hides its copy-constructor and its assignment-operator.
456 */
457 class SK_API SkNoncopyable {
458 public:
SkNoncopyable()459 SkNoncopyable() {}
460
461 private:
462 SkNoncopyable(const SkNoncopyable&);
463 SkNoncopyable& operator=(const SkNoncopyable&);
464 };
465
466 class SkAutoFree : SkNoncopyable {
467 public:
SkAutoFree()468 SkAutoFree() : fPtr(NULL) {}
SkAutoFree(void * ptr)469 explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree()470 ~SkAutoFree() { sk_free(fPtr); }
471
472 /** Return the currently allocate buffer, or null
473 */
get()474 void* get() const { return fPtr; }
475
476 /** Assign a new ptr allocated with sk_malloc (or null), and return the
477 previous ptr. Note it is the caller's responsibility to sk_free the
478 returned ptr.
479 */
set(void * ptr)480 void* set(void* ptr) {
481 void* prev = fPtr;
482 fPtr = ptr;
483 return prev;
484 }
485
486 /** Transfer ownership of the current ptr to the caller, setting the
487 internal reference to null. Note the caller is reponsible for calling
488 sk_free on the returned address.
489 */
detach()490 void* detach() { return this->set(NULL); }
491
492 /** Free the current buffer, and set the internal reference to NULL. Same
493 as calling sk_free(detach())
494 */
free()495 void free() {
496 sk_free(fPtr);
497 fPtr = NULL;
498 }
499
500 private:
501 void* fPtr;
502 // illegal
503 SkAutoFree(const SkAutoFree&);
504 SkAutoFree& operator=(const SkAutoFree&);
505 };
506 #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
507
508 /**
509 * Manage an allocated block of heap memory. This object is the sole manager of
510 * the lifetime of the block, so the caller must not call sk_free() or delete
511 * on the block, unless detach() was called.
512 */
513 class SkAutoMalloc : SkNoncopyable {
514 public:
515 explicit SkAutoMalloc(size_t size = 0) {
516 fPtr = size ? sk_malloc_throw(size) : NULL;
517 fSize = size;
518 }
519
~SkAutoMalloc()520 ~SkAutoMalloc() {
521 sk_free(fPtr);
522 }
523
524 /**
525 * Passed to reset to specify what happens if the requested size is smaller
526 * than the current size (and the current block was dynamically allocated).
527 */
528 enum OnShrink {
529 /**
530 * If the requested size is smaller than the current size, and the
531 * current block is dynamically allocated, free the old block and
532 * malloc a new block of the smaller size.
533 */
534 kAlloc_OnShrink,
535
536 /**
537 * If the requested size is smaller than the current size, and the
538 * current block is dynamically allocated, just return the old
539 * block.
540 */
541 kReuse_OnShrink
542 };
543
544 /**
545 * Reallocates the block to a new size. The ptr may or may not change.
546 */
547 void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) {
548 if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
549 if (didChangeAlloc) {
550 *didChangeAlloc = false;
551 }
552 return fPtr;
553 }
554
555 sk_free(fPtr);
556 fPtr = size ? sk_malloc_throw(size) : NULL;
557 fSize = size;
558 if (didChangeAlloc) {
559 *didChangeAlloc = true;
560 }
561
562 return fPtr;
563 }
564
565 /**
566 * Releases the block back to the heap
567 */
free()568 void free() {
569 this->reset(0);
570 }
571
572 /**
573 * Return the allocated block.
574 */
get()575 void* get() { return fPtr; }
get()576 const void* get() const { return fPtr; }
577
578 /** Transfer ownership of the current ptr to the caller, setting the
579 internal reference to null. Note the caller is reponsible for calling
580 sk_free on the returned address.
581 */
detach()582 void* detach() {
583 void* ptr = fPtr;
584 fPtr = NULL;
585 fSize = 0;
586 return ptr;
587 }
588
589 private:
590 void* fPtr;
591 size_t fSize; // can be larger than the requested size (see kReuse)
592 };
593 #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
594
595 /**
596 * Manage an allocated block of memory. If the requested size is <= kSize, then
597 * the allocation will come from the stack rather than the heap. This object
598 * is the sole manager of the lifetime of the block, so the caller must not
599 * call sk_free() or delete on the block.
600 */
601 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
602 public:
603 /**
604 * Creates initially empty storage. get() returns a ptr, but it is to
605 * a zero-byte allocation. Must call reset(size) to return an allocated
606 * block.
607 */
SkAutoSMalloc()608 SkAutoSMalloc() {
609 fPtr = fStorage;
610 fSize = kSize;
611 }
612
613 /**
614 * Allocate a block of the specified size. If size <= kSize, then the
615 * allocation will come from the stack, otherwise it will be dynamically
616 * allocated.
617 */
SkAutoSMalloc(size_t size)618 explicit SkAutoSMalloc(size_t size) {
619 fPtr = fStorage;
620 fSize = kSize;
621 this->reset(size);
622 }
623
624 /**
625 * Free the allocated block (if any). If the block was small enought to
626 * have been allocated on the stack (size <= kSize) then this does nothing.
627 */
~SkAutoSMalloc()628 ~SkAutoSMalloc() {
629 if (fPtr != (void*)fStorage) {
630 sk_free(fPtr);
631 }
632 }
633
634 /**
635 * Return the allocated block. May return non-null even if the block is
636 * of zero size. Since this may be on the stack or dynamically allocated,
637 * the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
638 * to manage it.
639 */
get()640 void* get() const { return fPtr; }
641
642 /**
643 * Return a new block of the requested size, freeing (as necessary) any
644 * previously allocated block. As with the constructor, if size <= kSize
645 * then the return block may be allocated locally, rather than from the
646 * heap.
647 */
648 void* reset(size_t size,
649 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
650 bool* didChangeAlloc = NULL) {
651 size = (size < kSize) ? kSize : size;
652 bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
653 if (didChangeAlloc) {
654 *didChangeAlloc = alloc;
655 }
656 if (alloc) {
657 if (fPtr != (void*)fStorage) {
658 sk_free(fPtr);
659 }
660
661 if (size == kSize) {
662 SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
663 fPtr = fStorage;
664 } else {
665 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
666 }
667
668 fSize = size;
669 }
670 SkASSERT(fSize >= size && fSize >= kSize);
671 SkASSERT((fPtr == fStorage) || fSize > kSize);
672 return fPtr;
673 }
674
675 private:
676 void* fPtr;
677 size_t fSize; // can be larger than the requested size (see kReuse)
678 uint32_t fStorage[(kSize + 3) >> 2];
679 };
680 // Can't guard the constructor because it's a template class.
681
682 #endif /* C++ */
683
684 #endif
685