1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetRegisterInfo.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21
22 using namespace llvm;
23
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)24 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
25 regclass_iterator RCB, regclass_iterator RCE,
26 const char *const *SRINames,
27 const unsigned *SRILaneMasks,
28 unsigned SRICoveringLanes)
29 : InfoDesc(ID), SubRegIndexNames(SRINames),
30 SubRegIndexLaneMasks(SRILaneMasks),
31 RegClassBegin(RCB), RegClassEnd(RCE),
32 CoveringLanes(SRICoveringLanes) {
33 }
34
~TargetRegisterInfo()35 TargetRegisterInfo::~TargetRegisterInfo() {}
36
print(raw_ostream & OS) const37 void PrintReg::print(raw_ostream &OS) const {
38 if (!Reg)
39 OS << "%noreg";
40 else if (TargetRegisterInfo::isStackSlot(Reg))
41 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
42 else if (TargetRegisterInfo::isVirtualRegister(Reg))
43 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
44 else if (TRI && Reg < TRI->getNumRegs())
45 OS << '%' << TRI->getName(Reg);
46 else
47 OS << "%physreg" << Reg;
48 if (SubIdx) {
49 if (TRI)
50 OS << ':' << TRI->getSubRegIndexName(SubIdx);
51 else
52 OS << ":sub(" << SubIdx << ')';
53 }
54 }
55
print(raw_ostream & OS) const56 void PrintRegUnit::print(raw_ostream &OS) const {
57 // Generic printout when TRI is missing.
58 if (!TRI) {
59 OS << "Unit~" << Unit;
60 return;
61 }
62
63 // Check for invalid register units.
64 if (Unit >= TRI->getNumRegUnits()) {
65 OS << "BadUnit~" << Unit;
66 return;
67 }
68
69 // Normal units have at least one root.
70 MCRegUnitRootIterator Roots(Unit, TRI);
71 assert(Roots.isValid() && "Unit has no roots.");
72 OS << TRI->getName(*Roots);
73 for (++Roots; Roots.isValid(); ++Roots)
74 OS << '~' << TRI->getName(*Roots);
75 }
76
print(raw_ostream & OS) const77 void PrintVRegOrUnit::print(raw_ostream &OS) const {
78 if (TRI && TRI->isVirtualRegister(Unit)) {
79 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
80 return;
81 }
82 PrintRegUnit::print(OS);
83 }
84
85 /// getAllocatableClass - Return the maximal subclass of the given register
86 /// class that is alloctable, or NULL.
87 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const88 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
89 if (!RC || RC->isAllocatable())
90 return RC;
91
92 const unsigned *SubClass = RC->getSubClassMask();
93 for (unsigned Base = 0, BaseE = getNumRegClasses();
94 Base < BaseE; Base += 32) {
95 unsigned Idx = Base;
96 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
97 unsigned Offset = countTrailingZeros(Mask);
98 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
99 if (SubRC->isAllocatable())
100 return SubRC;
101 Mask >>= Offset;
102 Idx += Offset + 1;
103 }
104 }
105 return nullptr;
106 }
107
108 /// getMinimalPhysRegClass - Returns the Register Class of a physical
109 /// register of the given type, picking the most sub register class of
110 /// the right type that contains this physreg.
111 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const112 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
113 assert(isPhysicalRegister(reg) && "reg must be a physical register");
114
115 // Pick the most sub register class of the right type that contains
116 // this physreg.
117 const TargetRegisterClass* BestRC = nullptr;
118 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
119 const TargetRegisterClass* RC = *I;
120 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
121 (!BestRC || BestRC->hasSubClass(RC)))
122 BestRC = RC;
123 }
124
125 assert(BestRC && "Couldn't find the register class");
126 return BestRC;
127 }
128
129 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
130 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)131 static void getAllocatableSetForRC(const MachineFunction &MF,
132 const TargetRegisterClass *RC, BitVector &R){
133 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
134 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
135 for (unsigned i = 0; i != Order.size(); ++i)
136 R.set(Order[i]);
137 }
138
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const139 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
140 const TargetRegisterClass *RC) const {
141 BitVector Allocatable(getNumRegs());
142 if (RC) {
143 // A register class with no allocatable subclass returns an empty set.
144 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
145 if (SubClass)
146 getAllocatableSetForRC(MF, SubClass, Allocatable);
147 } else {
148 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
149 E = regclass_end(); I != E; ++I)
150 if ((*I)->isAllocatable())
151 getAllocatableSetForRC(MF, *I, Allocatable);
152 }
153
154 // Mask out the reserved registers
155 BitVector Reserved = getReservedRegs(MF);
156 Allocatable &= Reserved.flip();
157
158 return Allocatable;
159 }
160
161 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI)162 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
163 const uint32_t *B,
164 const TargetRegisterInfo *TRI) {
165 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
166 if (unsigned Common = *A++ & *B++)
167 return TRI->getRegClass(I + countTrailingZeros(Common));
168 return nullptr;
169 }
170
171 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B) const172 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
173 const TargetRegisterClass *B) const {
174 // First take care of the trivial cases.
175 if (A == B)
176 return A;
177 if (!A || !B)
178 return nullptr;
179
180 // Register classes are ordered topologically, so the largest common
181 // sub-class it the common sub-class with the smallest ID.
182 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
183 }
184
185 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const186 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
187 const TargetRegisterClass *B,
188 unsigned Idx) const {
189 assert(A && B && "Missing register class");
190 assert(Idx && "Bad sub-register index");
191
192 // Find Idx in the list of super-register indices.
193 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
194 if (RCI.getSubReg() == Idx)
195 // The bit mask contains all register classes that are projected into B
196 // by Idx. Find a class that is also a sub-class of A.
197 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
198 return nullptr;
199 }
200
201 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const202 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
203 const TargetRegisterClass *RCB, unsigned SubB,
204 unsigned &PreA, unsigned &PreB) const {
205 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
206
207 // Search all pairs of sub-register indices that project into RCA and RCB
208 // respectively. This is quadratic, but usually the sets are very small. On
209 // most targets like X86, there will only be a single sub-register index
210 // (e.g., sub_16bit projecting into GR16).
211 //
212 // The worst case is a register class like DPR on ARM.
213 // We have indices dsub_0..dsub_7 projecting into that class.
214 //
215 // It is very common that one register class is a sub-register of the other.
216 // Arrange for RCA to be the larger register so the answer will be found in
217 // the first iteration. This makes the search linear for the most common
218 // case.
219 const TargetRegisterClass *BestRC = nullptr;
220 unsigned *BestPreA = &PreA;
221 unsigned *BestPreB = &PreB;
222 if (RCA->getSize() < RCB->getSize()) {
223 std::swap(RCA, RCB);
224 std::swap(SubA, SubB);
225 std::swap(BestPreA, BestPreB);
226 }
227
228 // Also terminate the search one we have found a register class as small as
229 // RCA.
230 unsigned MinSize = RCA->getSize();
231
232 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
233 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
234 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
235 // Check if a common super-register class exists for this index pair.
236 const TargetRegisterClass *RC =
237 firstCommonClass(IA.getMask(), IB.getMask(), this);
238 if (!RC || RC->getSize() < MinSize)
239 continue;
240
241 // The indexes must compose identically: PreA+SubA == PreB+SubB.
242 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
243 if (FinalA != FinalB)
244 continue;
245
246 // Is RC a better candidate than BestRC?
247 if (BestRC && RC->getSize() >= BestRC->getSize())
248 continue;
249
250 // Yes, RC is the smallest super-register seen so far.
251 BestRC = RC;
252 *BestPreA = IA.getSubReg();
253 *BestPreB = IB.getSubReg();
254
255 // Bail early if we reached MinSize. We won't find a better candidate.
256 if (BestRC->getSize() == MinSize)
257 return BestRC;
258 }
259 }
260 return BestRC;
261 }
262
263 // Compute target-independent register allocator hints to help eliminate copies.
264 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM) const265 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
266 ArrayRef<MCPhysReg> Order,
267 SmallVectorImpl<MCPhysReg> &Hints,
268 const MachineFunction &MF,
269 const VirtRegMap *VRM) const {
270 const MachineRegisterInfo &MRI = MF.getRegInfo();
271 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
272
273 // Hints with HintType != 0 were set by target-dependent code.
274 // Such targets must provide their own implementation of
275 // TRI::getRegAllocationHints to interpret those hint types.
276 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
277
278 // Target-independent hints are either a physical or a virtual register.
279 unsigned Phys = Hint.second;
280 if (VRM && isVirtualRegister(Phys))
281 Phys = VRM->getPhys(Phys);
282
283 // Check that Phys is a valid hint in VirtReg's register class.
284 if (!isPhysicalRegister(Phys))
285 return;
286 if (MRI.isReserved(Phys))
287 return;
288 // Check that Phys is in the allocation order. We shouldn't heed hints
289 // from VirtReg's register class if they aren't in the allocation order. The
290 // target probably has a reason for removing the register.
291 if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
292 return;
293
294 // All clear, tell the register allocator to prefer this register.
295 Hints.push_back(Phys);
296 }
297
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 void
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)300 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
301 const TargetRegisterInfo *TRI) {
302 dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
303 }
304 #endif
305