1 //===- ThreadSafetyCommon.h ------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Parts of thread safety analysis that are not specific to thread safety
11 // itself have been factored into classes here, where they can be potentially
12 // used by other analyses.  Currently these include:
13 //
14 // * Generalize clang CFG visitors.
15 // * Conversion of the clang CFG to SSA form.
16 // * Translation of clang Exprs to TIL SExprs
17 //
18 // UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYCOMMON_H
23 #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYCOMMON_H
24 
25 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
26 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
27 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
28 #include "clang/Analysis/AnalysisContext.h"
29 #include "clang/Basic/OperatorKinds.h"
30 #include <memory>
31 #include <ostream>
32 #include <sstream>
33 #include <vector>
34 
35 
36 namespace clang {
37 namespace threadSafety {
38 
39 
40 // Various helper functions on til::SExpr
41 namespace sx {
42 
equals(const til::SExpr * E1,const til::SExpr * E2)43 inline bool equals(const til::SExpr *E1, const til::SExpr *E2) {
44   return til::EqualsComparator::compareExprs(E1, E2);
45 }
46 
matches(const til::SExpr * E1,const til::SExpr * E2)47 inline bool matches(const til::SExpr *E1, const til::SExpr *E2) {
48   // We treat a top-level wildcard as the "univsersal" lock.
49   // It matches everything for the purpose of checking locks, but not
50   // for unlocking them.
51   if (isa<til::Wildcard>(E1))
52     return isa<til::Wildcard>(E2);
53   if (isa<til::Wildcard>(E2))
54     return isa<til::Wildcard>(E1);
55 
56   return til::MatchComparator::compareExprs(E1, E2);
57 }
58 
partiallyMatches(const til::SExpr * E1,const til::SExpr * E2)59 inline bool partiallyMatches(const til::SExpr *E1, const til::SExpr *E2) {
60   const auto *PE1 = dyn_cast_or_null<til::Project>(E1);
61   if (!PE1)
62     return false;
63   const auto *PE2 = dyn_cast_or_null<til::Project>(E2);
64   if (!PE2)
65     return false;
66   return PE1->clangDecl() == PE2->clangDecl();
67 }
68 
toString(const til::SExpr * E)69 inline std::string toString(const til::SExpr *E) {
70   std::stringstream ss;
71   til::StdPrinter::print(E, ss);
72   return ss.str();
73 }
74 
75 }  // end namespace sx
76 
77 
78 
79 // This class defines the interface of a clang CFG Visitor.
80 // CFGWalker will invoke the following methods.
81 // Note that methods are not virtual; the visitor is templatized.
82 class CFGVisitor {
83   // Enter the CFG for Decl D, and perform any initial setup operations.
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)84   void enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First) {}
85 
86   // Enter a CFGBlock.
enterCFGBlock(const CFGBlock * B)87   void enterCFGBlock(const CFGBlock *B) {}
88 
89   // Returns true if this visitor implements handlePredecessor
visitPredecessors()90   bool visitPredecessors() { return true; }
91 
92   // Process a predecessor edge.
handlePredecessor(const CFGBlock * Pred)93   void handlePredecessor(const CFGBlock *Pred) {}
94 
95   // Process a successor back edge to a previously visited block.
handlePredecessorBackEdge(const CFGBlock * Pred)96   void handlePredecessorBackEdge(const CFGBlock *Pred) {}
97 
98   // Called just before processing statements.
enterCFGBlockBody(const CFGBlock * B)99   void enterCFGBlockBody(const CFGBlock *B) {}
100 
101   // Process an ordinary statement.
handleStatement(const Stmt * S)102   void handleStatement(const Stmt *S) {}
103 
104   // Process a destructor call
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)105   void handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD) {}
106 
107   // Called after all statements have been handled.
exitCFGBlockBody(const CFGBlock * B)108   void exitCFGBlockBody(const CFGBlock *B) {}
109 
110   // Return true
visitSuccessors()111   bool visitSuccessors() { return true; }
112 
113   // Process a successor edge.
handleSuccessor(const CFGBlock * Succ)114   void handleSuccessor(const CFGBlock *Succ) {}
115 
116   // Process a successor back edge to a previously visited block.
handleSuccessorBackEdge(const CFGBlock * Succ)117   void handleSuccessorBackEdge(const CFGBlock *Succ) {}
118 
119   // Leave a CFGBlock.
exitCFGBlock(const CFGBlock * B)120   void exitCFGBlock(const CFGBlock *B) {}
121 
122   // Leave the CFG, and perform any final cleanup operations.
exitCFG(const CFGBlock * Last)123   void exitCFG(const CFGBlock *Last) {}
124 };
125 
126 
127 // Walks the clang CFG, and invokes methods on a given CFGVisitor.
128 class CFGWalker {
129 public:
CFGWalker()130   CFGWalker() : CFGraph(nullptr), ACtx(nullptr), SortedGraph(nullptr) {}
131 
132   // Initialize the CFGWalker.  This setup only needs to be done once, even
133   // if there are multiple passes over the CFG.
init(AnalysisDeclContext & AC)134   bool init(AnalysisDeclContext &AC) {
135     ACtx = &AC;
136     CFGraph = AC.getCFG();
137     if (!CFGraph)
138       return false;
139 
140     // Ignore anonymous functions.
141     if (!dyn_cast_or_null<NamedDecl>(AC.getDecl()))
142       return false;
143 
144     SortedGraph = AC.getAnalysis<PostOrderCFGView>();
145     if (!SortedGraph)
146       return false;
147 
148     return true;
149   }
150 
151   // Traverse the CFG, calling methods on V as appropriate.
152   template <class Visitor>
walk(Visitor & V)153   void walk(Visitor &V) {
154     PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
155 
156     V.enterCFG(CFGraph, getDecl(), &CFGraph->getEntry());
157 
158     for (const auto *CurrBlock : *SortedGraph) {
159       VisitedBlocks.insert(CurrBlock);
160 
161       V.enterCFGBlock(CurrBlock);
162 
163       // Process predecessors, handling back edges last
164       if (V.visitPredecessors()) {
165         SmallVector<CFGBlock*, 4> BackEdges;
166         // Process successors
167         for (CFGBlock::const_pred_iterator SI = CurrBlock->pred_begin(),
168                                            SE = CurrBlock->pred_end();
169              SI != SE; ++SI) {
170           if (*SI == nullptr)
171             continue;
172 
173           if (!VisitedBlocks.alreadySet(*SI)) {
174             BackEdges.push_back(*SI);
175             continue;
176           }
177           V.handlePredecessor(*SI);
178         }
179 
180         for (auto *Blk : BackEdges)
181           V.handlePredecessorBackEdge(Blk);
182       }
183 
184       V.enterCFGBlockBody(CurrBlock);
185 
186       // Process statements
187       for (const auto &BI : *CurrBlock) {
188         switch (BI.getKind()) {
189         case CFGElement::Statement: {
190           V.handleStatement(BI.castAs<CFGStmt>().getStmt());
191           break;
192         }
193         case CFGElement::AutomaticObjectDtor: {
194           CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
195           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
196               AD.getDestructorDecl(ACtx->getASTContext()));
197           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
198           V.handleDestructorCall(VD, DD);
199           break;
200         }
201         default:
202           break;
203         }
204       }
205 
206       V.exitCFGBlockBody(CurrBlock);
207 
208       // Process successors, handling back edges first.
209       if (V.visitSuccessors()) {
210         SmallVector<CFGBlock*, 8> ForwardEdges;
211 
212         // Process successors
213         for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
214                                            SE = CurrBlock->succ_end();
215              SI != SE; ++SI) {
216           if (*SI == nullptr)
217             continue;
218 
219           if (!VisitedBlocks.alreadySet(*SI)) {
220             ForwardEdges.push_back(*SI);
221             continue;
222           }
223           V.handleSuccessorBackEdge(*SI);
224         }
225 
226         for (auto *Blk : ForwardEdges)
227           V.handleSuccessor(Blk);
228       }
229 
230       V.exitCFGBlock(CurrBlock);
231     }
232     V.exitCFG(&CFGraph->getExit());
233   }
234 
getGraph()235   const CFG *getGraph() const { return CFGraph; }
getGraph()236   CFG *getGraph() { return CFGraph; }
237 
getDecl()238   const NamedDecl *getDecl() const {
239     return dyn_cast<NamedDecl>(ACtx->getDecl());
240   }
241 
getSortedGraph()242   const PostOrderCFGView *getSortedGraph() const { return SortedGraph; }
243 
244 private:
245   CFG *CFGraph;
246   AnalysisDeclContext *ACtx;
247   PostOrderCFGView *SortedGraph;
248 };
249 
250 
251 
252 
253 class CapabilityExpr {
254   // TODO: move this back into ThreadSafety.cpp
255   // This is specific to thread safety.  It is here because
256   // translateAttrExpr needs it, but that should be moved too.
257 
258 private:
259   const til::SExpr* CapExpr;   ///< The capability expression.
260   bool Negated;                ///< True if this is a negative capability
261 
262 public:
CapabilityExpr(const til::SExpr * E,bool Neg)263   CapabilityExpr(const til::SExpr *E, bool Neg) : CapExpr(E), Negated(Neg) {}
264 
sexpr()265   const til::SExpr* sexpr()    const { return CapExpr; }
negative()266   bool              negative() const { return Negated; }
267 
268   CapabilityExpr operator!() const {
269     return CapabilityExpr(CapExpr, !Negated);
270   }
271 
equals(const CapabilityExpr & other)272   bool equals(const CapabilityExpr &other) const {
273     return (Negated == other.Negated) && sx::equals(CapExpr, other.CapExpr);
274   }
275 
matches(const CapabilityExpr & other)276   bool matches(const CapabilityExpr &other) const {
277     return (Negated == other.Negated) && sx::matches(CapExpr, other.CapExpr);
278   }
279 
matchesUniv(const CapabilityExpr & CapE)280   bool matchesUniv(const CapabilityExpr &CapE) const {
281     return isUniversal() || matches(CapE);
282   }
283 
partiallyMatches(const CapabilityExpr & other)284   bool partiallyMatches(const CapabilityExpr &other) const {
285     return (Negated == other.Negated) &&
286             sx::partiallyMatches(CapExpr, other.CapExpr);
287   }
288 
valueDecl()289   const ValueDecl* valueDecl() const {
290     if (Negated)
291       return nullptr;
292     if (auto *P = dyn_cast<til::Project>(CapExpr))
293       return P->clangDecl();
294     return nullptr;
295   }
296 
toString()297   std::string toString() const {
298     if (Negated)
299       return "!" + sx::toString(CapExpr);
300     return sx::toString(CapExpr);
301   }
302 
shouldIgnore()303   bool shouldIgnore() const { return CapExpr == nullptr; }
304 
isInvalid()305   bool isInvalid() const { return sexpr() && isa<til::Undefined>(sexpr()); }
306 
isUniversal()307   bool isUniversal() const { return sexpr() && isa<til::Wildcard>(sexpr()); }
308 };
309 
310 
311 
312 // Translate clang::Expr to til::SExpr.
313 class SExprBuilder {
314 public:
315   /// \brief Encapsulates the lexical context of a function call.  The lexical
316   /// context includes the arguments to the call, including the implicit object
317   /// argument.  When an attribute containing a mutex expression is attached to
318   /// a method, the expression may refer to formal parameters of the method.
319   /// Actual arguments must be substituted for formal parameters to derive
320   /// the appropriate mutex expression in the lexical context where the function
321   /// is called.  PrevCtx holds the context in which the arguments themselves
322   /// should be evaluated; multiple calling contexts can be chained together
323   /// by the lock_returned attribute.
324   struct CallingContext {
325     CallingContext  *Prev;      // The previous context; or 0 if none.
326     const NamedDecl *AttrDecl;  // The decl to which the attr is attached.
327     const Expr *SelfArg;        // Implicit object argument -- e.g. 'this'
328     unsigned NumArgs;           // Number of funArgs
329     const Expr *const *FunArgs; // Function arguments
330     bool SelfArrow;             // is Self referred to with -> or .?
331 
332     CallingContext(CallingContext *P, const NamedDecl *D = nullptr)
PrevCallingContext333         : Prev(P), AttrDecl(D), SelfArg(nullptr),
334           NumArgs(0), FunArgs(nullptr), SelfArrow(false)
335     {}
336   };
337 
SExprBuilder(til::MemRegionRef A)338   SExprBuilder(til::MemRegionRef A)
339       : Arena(A), SelfVar(nullptr), Scfg(nullptr), CurrentBB(nullptr),
340         CurrentBlockInfo(nullptr) {
341     // FIXME: we don't always have a self-variable.
342     SelfVar = new (Arena) til::Variable(nullptr);
343     SelfVar->setKind(til::Variable::VK_SFun);
344   }
345 
346   // Translate a clang expression in an attribute to a til::SExpr.
347   // Constructs the context from D, DeclExp, and SelfDecl.
348   CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D,
349                                    const Expr *DeclExp, VarDecl *SelfD=nullptr);
350 
351   CapabilityExpr translateAttrExpr(const Expr *AttrExp, CallingContext *Ctx);
352 
353   // Translate a clang statement or expression to a TIL expression.
354   // Also performs substitution of variables; Ctx provides the context.
355   // Dispatches on the type of S.
356   til::SExpr *translate(const Stmt *S, CallingContext *Ctx);
357   til::SCFG  *buildCFG(CFGWalker &Walker);
358 
359   til::SExpr *lookupStmt(const Stmt *S);
360 
lookupBlock(const CFGBlock * B)361   til::BasicBlock *lookupBlock(const CFGBlock *B) {
362     return BlockMap[B->getBlockID()];
363   }
364 
getCFG()365   const til::SCFG *getCFG() const { return Scfg; }
getCFG()366   til::SCFG *getCFG() { return Scfg; }
367 
368 private:
369   til::SExpr *translateDeclRefExpr(const DeclRefExpr *DRE,
370                                    CallingContext *Ctx) ;
371   til::SExpr *translateCXXThisExpr(const CXXThisExpr *TE, CallingContext *Ctx);
372   til::SExpr *translateMemberExpr(const MemberExpr *ME, CallingContext *Ctx);
373   til::SExpr *translateCallExpr(const CallExpr *CE, CallingContext *Ctx,
374                                 const Expr *SelfE = nullptr);
375   til::SExpr *translateCXXMemberCallExpr(const CXXMemberCallExpr *ME,
376                                          CallingContext *Ctx);
377   til::SExpr *translateCXXOperatorCallExpr(const CXXOperatorCallExpr *OCE,
378                                            CallingContext *Ctx);
379   til::SExpr *translateUnaryOperator(const UnaryOperator *UO,
380                                      CallingContext *Ctx);
381   til::SExpr *translateBinOp(til::TIL_BinaryOpcode Op,
382                              const BinaryOperator *BO,
383                              CallingContext *Ctx, bool Reverse = false);
384   til::SExpr *translateBinAssign(til::TIL_BinaryOpcode Op,
385                                  const BinaryOperator *BO,
386                                  CallingContext *Ctx, bool Assign = false);
387   til::SExpr *translateBinaryOperator(const BinaryOperator *BO,
388                                       CallingContext *Ctx);
389   til::SExpr *translateCastExpr(const CastExpr *CE, CallingContext *Ctx);
390   til::SExpr *translateArraySubscriptExpr(const ArraySubscriptExpr *E,
391                                           CallingContext *Ctx);
392   til::SExpr *translateAbstractConditionalOperator(
393       const AbstractConditionalOperator *C, CallingContext *Ctx);
394 
395   til::SExpr *translateDeclStmt(const DeclStmt *S, CallingContext *Ctx);
396 
397   // Map from statements in the clang CFG to SExprs in the til::SCFG.
398   typedef llvm::DenseMap<const Stmt*, til::SExpr*> StatementMap;
399 
400   // Map from clang local variables to indices in a LVarDefinitionMap.
401   typedef llvm::DenseMap<const ValueDecl *, unsigned> LVarIndexMap;
402 
403   // Map from local variable indices to SSA variables (or constants).
404   typedef std::pair<const ValueDecl *, til::SExpr *> NameVarPair;
405   typedef CopyOnWriteVector<NameVarPair> LVarDefinitionMap;
406 
407   struct BlockInfo {
408     LVarDefinitionMap ExitMap;
409     bool HasBackEdges;
410     unsigned UnprocessedSuccessors;   // Successors yet to be processed
411     unsigned ProcessedPredecessors;   // Predecessors already processed
412 
BlockInfoBlockInfo413     BlockInfo()
414         : HasBackEdges(false), UnprocessedSuccessors(0),
415           ProcessedPredecessors(0) {}
BlockInfoBlockInfo416     BlockInfo(BlockInfo &&RHS)
417         : ExitMap(std::move(RHS.ExitMap)),
418           HasBackEdges(RHS.HasBackEdges),
419           UnprocessedSuccessors(RHS.UnprocessedSuccessors),
420           ProcessedPredecessors(RHS.ProcessedPredecessors) {}
421 
422     BlockInfo &operator=(BlockInfo &&RHS) {
423       if (this != &RHS) {
424         ExitMap = std::move(RHS.ExitMap);
425         HasBackEdges = RHS.HasBackEdges;
426         UnprocessedSuccessors = RHS.UnprocessedSuccessors;
427         ProcessedPredecessors = RHS.ProcessedPredecessors;
428       }
429       return *this;
430     }
431 
432   private:
433     BlockInfo(const BlockInfo &) = delete;
434     void operator=(const BlockInfo &) = delete;
435   };
436 
437   // We implement the CFGVisitor API
438   friend class CFGWalker;
439 
440   void enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First);
441   void enterCFGBlock(const CFGBlock *B);
visitPredecessors()442   bool visitPredecessors() { return true; }
443   void handlePredecessor(const CFGBlock *Pred);
444   void handlePredecessorBackEdge(const CFGBlock *Pred);
445   void enterCFGBlockBody(const CFGBlock *B);
446   void handleStatement(const Stmt *S);
447   void handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD);
448   void exitCFGBlockBody(const CFGBlock *B);
visitSuccessors()449   bool visitSuccessors() { return true; }
450   void handleSuccessor(const CFGBlock *Succ);
451   void handleSuccessorBackEdge(const CFGBlock *Succ);
452   void exitCFGBlock(const CFGBlock *B);
453   void exitCFG(const CFGBlock *Last);
454 
insertStmt(const Stmt * S,til::SExpr * E)455   void insertStmt(const Stmt *S, til::SExpr *E) {
456     SMap.insert(std::make_pair(S, E));
457   }
458   til::SExpr *getCurrentLVarDefinition(const ValueDecl *VD);
459 
460   til::SExpr *addStatement(til::SExpr *E, const Stmt *S,
461                            const ValueDecl *VD = nullptr);
462   til::SExpr *lookupVarDecl(const ValueDecl *VD);
463   til::SExpr *addVarDecl(const ValueDecl *VD, til::SExpr *E);
464   til::SExpr *updateVarDecl(const ValueDecl *VD, til::SExpr *E);
465 
466   void makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E);
467   void mergeEntryMap(LVarDefinitionMap Map);
468   void mergeEntryMapBackEdge();
469   void mergePhiNodesBackEdge(const CFGBlock *Blk);
470 
471 private:
472   // Set to true when parsing capability expressions, which get translated
473   // inaccurately in order to hack around smart pointers etc.
474   static const bool CapabilityExprMode = true;
475 
476   til::MemRegionRef Arena;
477   til::Variable *SelfVar;       // Variable to use for 'this'.  May be null.
478 
479   til::SCFG *Scfg;
480   StatementMap SMap;                       // Map from Stmt to TIL Variables
481   LVarIndexMap LVarIdxMap;                 // Indices of clang local vars.
482   std::vector<til::BasicBlock *> BlockMap; // Map from clang to til BBs.
483   std::vector<BlockInfo> BBInfo;           // Extra information per BB.
484                                            // Indexed by clang BlockID.
485 
486   LVarDefinitionMap CurrentLVarMap;
487   std::vector<til::Phi*>   CurrentArguments;
488   std::vector<til::SExpr*> CurrentInstructions;
489   std::vector<til::Phi*>   IncompleteArgs;
490   til::BasicBlock *CurrentBB;
491   BlockInfo *CurrentBlockInfo;
492 };
493 
494 
495 // Dump an SCFG to llvm::errs().
496 void printSCFG(CFGWalker &Walker);
497 
498 
499 } // end namespace threadSafety
500 
501 } // end namespace clang
502 
503 #endif  // LLVM_CLANG_THREAD_SAFETY_COMMON_H
504