1 //===------ CXXInheritance.h - C++ Inheritance ------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides routines that help analyzing C++ inheritance hierarchies.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
15 #define LLVM_CLANG_AST_CXXINHERITANCE_H
16 
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclarationName.h"
20 #include "clang/AST/Type.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include <cassert>
26 #include <list>
27 #include <map>
28 
29 namespace clang {
30 
31 class CXXBaseSpecifier;
32 class CXXMethodDecl;
33 class CXXRecordDecl;
34 class NamedDecl;
35 
36 /// \brief Represents an element in a path from a derived class to a
37 /// base class.
38 ///
39 /// Each step in the path references the link from a
40 /// derived class to one of its direct base classes, along with a
41 /// base "number" that identifies which base subobject of the
42 /// original derived class we are referencing.
43 struct CXXBasePathElement {
44   /// \brief The base specifier that states the link from a derived
45   /// class to a base class, which will be followed by this base
46   /// path element.
47   const CXXBaseSpecifier *Base;
48 
49   /// \brief The record decl of the class that the base is a base of.
50   const CXXRecordDecl *Class;
51 
52   /// \brief Identifies which base class subobject (of type
53   /// \c Base->getType()) this base path element refers to.
54   ///
55   /// This value is only valid if \c !Base->isVirtual(), because there
56   /// is no base numbering for the zero or one virtual bases of a
57   /// given type.
58   int SubobjectNumber;
59 };
60 
61 /// \brief Represents a path from a specific derived class
62 /// (which is not represented as part of the path) to a particular
63 /// (direct or indirect) base class subobject.
64 ///
65 /// Individual elements in the path are described by the \c CXXBasePathElement
66 /// structure, which captures both the link from a derived class to one of its
67 /// direct bases and identification describing which base class
68 /// subobject is being used.
69 class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
70 public:
CXXBasePath()71   CXXBasePath() : Access(AS_public) {}
72 
73   /// \brief The access along this inheritance path.  This is only
74   /// calculated when recording paths.  AS_none is a special value
75   /// used to indicate a path which permits no legal access.
76   AccessSpecifier Access;
77 
78   /// \brief The set of declarations found inside this base class
79   /// subobject.
80   DeclContext::lookup_result Decls;
81 
clear()82   void clear() {
83     SmallVectorImpl<CXXBasePathElement>::clear();
84     Access = AS_public;
85   }
86 };
87 
88 /// BasePaths - Represents the set of paths from a derived class to
89 /// one of its (direct or indirect) bases. For example, given the
90 /// following class hierarchy:
91 ///
92 /// @code
93 /// class A { };
94 /// class B : public A { };
95 /// class C : public A { };
96 /// class D : public B, public C{ };
97 /// @endcode
98 ///
99 /// There are two potential BasePaths to represent paths from D to a
100 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
101 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
102 /// refer to two different base class subobjects of the same type,
103 /// so the BasePaths object refers to an ambiguous path. On the
104 /// other hand, consider the following class hierarchy:
105 ///
106 /// @code
107 /// class A { };
108 /// class B : public virtual A { };
109 /// class C : public virtual A { };
110 /// class D : public B, public C{ };
111 /// @endcode
112 ///
113 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
114 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
115 /// refer to the same base class subobject of type A (the virtual
116 /// one), there is no ambiguity.
117 class CXXBasePaths {
118   /// \brief The type from which this search originated.
119   CXXRecordDecl *Origin;
120 
121   /// Paths - The actual set of paths that can be taken from the
122   /// derived class to the same base class.
123   std::list<CXXBasePath> Paths;
124 
125   /// ClassSubobjects - Records the class subobjects for each class
126   /// type that we've seen. The first element in the pair says
127   /// whether we found a path to a virtual base for that class type,
128   /// while the element contains the number of non-virtual base
129   /// class subobjects for that class type. The key of the map is
130   /// the cv-unqualified canonical type of the base class subobject.
131   llvm::SmallDenseMap<QualType, std::pair<bool, unsigned>, 8> ClassSubobjects;
132 
133   /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
134   /// ambiguous paths while it is looking for a path from a derived
135   /// type to a base type.
136   bool FindAmbiguities;
137 
138   /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
139   /// while it is determining whether there are paths from a derived
140   /// type to a base type.
141   bool RecordPaths;
142 
143   /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
144   /// if it finds a path that goes across a virtual base. The virtual class
145   /// is also recorded.
146   bool DetectVirtual;
147 
148   /// ScratchPath - A BasePath that is used by Sema::lookupInBases
149   /// to help build the set of paths.
150   CXXBasePath ScratchPath;
151 
152   /// DetectedVirtual - The base class that is virtual.
153   const RecordType *DetectedVirtual;
154 
155   /// \brief Array of the declarations that have been found. This
156   /// array is constructed only if needed, e.g., to iterate over the
157   /// results within LookupResult.
158   NamedDecl **DeclsFound;
159   unsigned NumDeclsFound;
160 
161   friend class CXXRecordDecl;
162 
163   void ComputeDeclsFound();
164 
165   bool lookupInBases(ASTContext &Context,
166                      const CXXRecordDecl *Record,
167                      CXXRecordDecl::BaseMatchesCallback *BaseMatches,
168                      void *UserData);
169 public:
170   typedef std::list<CXXBasePath>::iterator paths_iterator;
171   typedef std::list<CXXBasePath>::const_iterator const_paths_iterator;
172   typedef NamedDecl **decl_iterator;
173 
174   /// BasePaths - Construct a new BasePaths structure to record the
175   /// paths for a derived-to-base search.
176   explicit CXXBasePaths(bool FindAmbiguities = true,
177                         bool RecordPaths = true,
178                         bool DetectVirtual = true)
FindAmbiguities(FindAmbiguities)179     : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
180       DetectVirtual(DetectVirtual), DetectedVirtual(nullptr),
181       DeclsFound(nullptr), NumDeclsFound(0) { }
182 
~CXXBasePaths()183   ~CXXBasePaths() { delete [] DeclsFound; }
184 
begin()185   paths_iterator begin() { return Paths.begin(); }
end()186   paths_iterator end()   { return Paths.end(); }
begin()187   const_paths_iterator begin() const { return Paths.begin(); }
end()188   const_paths_iterator end()   const { return Paths.end(); }
189 
front()190   CXXBasePath&       front()       { return Paths.front(); }
front()191   const CXXBasePath& front() const { return Paths.front(); }
192 
193   typedef llvm::iterator_range<decl_iterator> decl_range;
194   decl_range found_decls();
195 
196   /// \brief Determine whether the path from the most-derived type to the
197   /// given base type is ambiguous (i.e., it refers to multiple subobjects of
198   /// the same base type).
199   bool isAmbiguous(CanQualType BaseType);
200 
201   /// \brief Whether we are finding multiple paths to detect ambiguities.
isFindingAmbiguities()202   bool isFindingAmbiguities() const { return FindAmbiguities; }
203 
204   /// \brief Whether we are recording paths.
isRecordingPaths()205   bool isRecordingPaths() const { return RecordPaths; }
206 
207   /// \brief Specify whether we should be recording paths or not.
setRecordingPaths(bool RP)208   void setRecordingPaths(bool RP) { RecordPaths = RP; }
209 
210   /// \brief Whether we are detecting virtual bases.
isDetectingVirtual()211   bool isDetectingVirtual() const { return DetectVirtual; }
212 
213   /// \brief The virtual base discovered on the path (if we are merely
214   /// detecting virtuals).
getDetectedVirtual()215   const RecordType* getDetectedVirtual() const {
216     return DetectedVirtual;
217   }
218 
219   /// \brief Retrieve the type from which this base-paths search
220   /// began
getOrigin()221   CXXRecordDecl *getOrigin() const { return Origin; }
setOrigin(CXXRecordDecl * Rec)222   void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
223 
224   /// \brief Clear the base-paths results.
225   void clear();
226 
227   /// \brief Swap this data structure's contents with another CXXBasePaths
228   /// object.
229   void swap(CXXBasePaths &Other);
230 };
231 
232 /// \brief Uniquely identifies a virtual method within a class
233 /// hierarchy by the method itself and a class subobject number.
234 struct UniqueVirtualMethod {
UniqueVirtualMethodUniqueVirtualMethod235   UniqueVirtualMethod()
236     : Method(nullptr), Subobject(0), InVirtualSubobject(nullptr) { }
237 
UniqueVirtualMethodUniqueVirtualMethod238   UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
239                       const CXXRecordDecl *InVirtualSubobject)
240     : Method(Method), Subobject(Subobject),
241       InVirtualSubobject(InVirtualSubobject) { }
242 
243   /// \brief The overriding virtual method.
244   CXXMethodDecl *Method;
245 
246   /// \brief The subobject in which the overriding virtual method
247   /// resides.
248   unsigned Subobject;
249 
250   /// \brief The virtual base class subobject of which this overridden
251   /// virtual method is a part. Note that this records the closest
252   /// derived virtual base class subobject.
253   const CXXRecordDecl *InVirtualSubobject;
254 
255   friend bool operator==(const UniqueVirtualMethod &X,
256                          const UniqueVirtualMethod &Y) {
257     return X.Method == Y.Method && X.Subobject == Y.Subobject &&
258       X.InVirtualSubobject == Y.InVirtualSubobject;
259   }
260 
261   friend bool operator!=(const UniqueVirtualMethod &X,
262                          const UniqueVirtualMethod &Y) {
263     return !(X == Y);
264   }
265 };
266 
267 /// \brief The set of methods that override a given virtual method in
268 /// each subobject where it occurs.
269 ///
270 /// The first part of the pair is the subobject in which the
271 /// overridden virtual function occurs, while the second part of the
272 /// pair is the virtual method that overrides it (including the
273 /// subobject in which that virtual function occurs).
274 class OverridingMethods {
275   typedef SmallVector<UniqueVirtualMethod, 4> ValuesT;
276   typedef llvm::MapVector<unsigned, ValuesT> MapType;
277   MapType Overrides;
278 
279 public:
280   // Iterate over the set of subobjects that have overriding methods.
281   typedef MapType::iterator iterator;
282   typedef MapType::const_iterator const_iterator;
begin()283   iterator begin() { return Overrides.begin(); }
begin()284   const_iterator begin() const { return Overrides.begin(); }
end()285   iterator end() { return Overrides.end(); }
end()286   const_iterator end() const { return Overrides.end(); }
size()287   unsigned size() const { return Overrides.size(); }
288 
289   // Iterate over the set of overriding virtual methods in a given
290   // subobject.
291   typedef SmallVectorImpl<UniqueVirtualMethod>::iterator
292     overriding_iterator;
293   typedef SmallVectorImpl<UniqueVirtualMethod>::const_iterator
294     overriding_const_iterator;
295 
296   // Add a new overriding method for a particular subobject.
297   void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
298 
299   // Add all of the overriding methods from "other" into overrides for
300   // this method. Used when merging the overrides from multiple base
301   // class subobjects.
302   void add(const OverridingMethods &Other);
303 
304   // Replace all overriding virtual methods in all subobjects with the
305   // given virtual method.
306   void replaceAll(UniqueVirtualMethod Overriding);
307 };
308 
309 /// \brief A mapping from each virtual member function to its set of
310 /// final overriders.
311 ///
312 /// Within a class hierarchy for a given derived class, each virtual
313 /// member function in that hierarchy has one or more "final
314 /// overriders" (C++ [class.virtual]p2). A final overrider for a
315 /// virtual function "f" is the virtual function that will actually be
316 /// invoked when dispatching a call to "f" through the
317 /// vtable. Well-formed classes have a single final overrider for each
318 /// virtual function; in abstract classes, the final overrider for at
319 /// least one virtual function is a pure virtual function. Due to
320 /// multiple, virtual inheritance, it is possible for a class to have
321 /// more than one final overrider. Athough this is an error (per C++
322 /// [class.virtual]p2), it is not considered an error here: the final
323 /// overrider map can represent multiple final overriders for a
324 /// method, and it is up to the client to determine whether they are
325 /// problem. For example, the following class \c D has two final
326 /// overriders for the virtual function \c A::f(), one in \c C and one
327 /// in \c D:
328 ///
329 /// \code
330 ///   struct A { virtual void f(); };
331 ///   struct B : virtual A { virtual void f(); };
332 ///   struct C : virtual A { virtual void f(); };
333 ///   struct D : B, C { };
334 /// \endcode
335 ///
336 /// This data structure contaings a mapping from every virtual
337 /// function *that does not override an existing virtual function* and
338 /// in every subobject where that virtual function occurs to the set
339 /// of virtual functions that override it. Thus, the same virtual
340 /// function \c A::f can actually occur in multiple subobjects of type
341 /// \c A due to multiple inheritance, and may be overriden by
342 /// different virtual functions in each, as in the following example:
343 ///
344 /// \code
345 ///   struct A { virtual void f(); };
346 ///   struct B : A { virtual void f(); };
347 ///   struct C : A { virtual void f(); };
348 ///   struct D : B, C { };
349 /// \endcode
350 ///
351 /// Unlike in the previous example, where the virtual functions \c
352 /// B::f and \c C::f both overrode \c A::f in the same subobject of
353 /// type \c A, in this example the two virtual functions both override
354 /// \c A::f but in *different* subobjects of type A. This is
355 /// represented by numbering the subobjects in which the overridden
356 /// and the overriding virtual member functions are located. Subobject
357 /// 0 represents the virtua base class subobject of that type, while
358 /// subobject numbers greater than 0 refer to non-virtual base class
359 /// subobjects of that type.
360 class CXXFinalOverriderMap
361   : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> { };
362 
363 /// \brief A set of all the primary bases for a class.
364 class CXXIndirectPrimaryBaseSet
365   : public llvm::SmallSet<const CXXRecordDecl*, 32> { };
366 
367 } // end namespace clang
368 
369 #endif
370