1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 
19 using namespace llvm;
20 using namespace llvm::PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 /// ShrinkDemandedConstant - Check to see if the specified operand of the
25 /// specified instruction is a constant integer.  If so, check to see if there
26 /// are any bits set in the constant that are not demanded.  If so, shrink the
27 /// constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29                                    APInt Demanded) {
30   assert(I && "No instruction?");
31   assert(OpNo < I->getNumOperands() && "Operand index too large");
32 
33   // If the operand is not a constant integer, nothing to do.
34   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35   if (!OpC) return false;
36 
37   // If there are no bits set that aren't demanded, nothing to do.
38   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39   if ((~Demanded & OpC->getValue()) == 0)
40     return false;
41 
42   // This instruction is producing bits that are not demanded. Shrink the RHS.
43   Demanded &= OpC->getValue();
44   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45 
46   // If either 'nsw' or 'nuw' is set and the constant is negative,
47   // removing *any* bits from the constant could make overflow occur.
48   // Remove 'nsw' and 'nuw' from the instruction in this case.
49   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
50     assert(OBO->getOpcode() == Instruction::Add);
51     if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) {
52       if (OpC->getValue().isNegative()) {
53         cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false);
54         cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false);
55       }
56     }
57   }
58 
59   return true;
60 }
61 
62 
63 
64 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
65 /// SimplifyDemandedBits knows about.  See if the instruction has any
66 /// properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)67 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
68   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
69   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
70   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
71 
72   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
73                                      0, &Inst);
74   if (!V) return false;
75   if (V == &Inst) return true;
76   ReplaceInstUsesWith(Inst, V);
77   return true;
78 }
79 
80 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
81 /// specified instruction operand if possible, updating it in place.  It returns
82 /// true if it made any change and false otherwise.
SimplifyDemandedBits(Use & U,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)83 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
84                                         APInt &KnownZero, APInt &KnownOne,
85                                         unsigned Depth) {
86   Value *NewVal =
87       SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, KnownOne, Depth,
88                               dyn_cast<Instruction>(U.getUser()));
89   if (!NewVal) return false;
90   U = NewVal;
91   return true;
92 }
93 
94 
95 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
96 /// value based on the demanded bits.  When this function is called, it is known
97 /// that only the bits set in DemandedMask of the result of V are ever used
98 /// downstream. Consequently, depending on the mask and V, it may be possible
99 /// to replace V with a constant or one of its operands. In such cases, this
100 /// function does the replacement and returns true. In all other cases, it
101 /// returns false after analyzing the expression and setting KnownOne and known
102 /// to be one in the expression.  KnownZero contains all the bits that are known
103 /// to be zero in the expression. These are provided to potentially allow the
104 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
105 /// the expression. KnownOne and KnownZero always follow the invariant that
106 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
107 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
108 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
109 /// and KnownOne must all be the same.
110 ///
111 /// This returns null if it did not change anything and it permits no
112 /// simplification.  This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117                                              APInt &KnownZero, APInt &KnownOne,
118                                              unsigned Depth,
119                                              Instruction *CxtI) {
120   assert(V != nullptr && "Null pointer of Value???");
121   assert(Depth <= 6 && "Limit Search Depth");
122   uint32_t BitWidth = DemandedMask.getBitWidth();
123   Type *VTy = V->getType();
124   assert(
125       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
126       KnownZero.getBitWidth() == BitWidth &&
127       KnownOne.getBitWidth() == BitWidth &&
128       "Value *V, DemandedMask, KnownZero and KnownOne "
129       "must have same BitWidth");
130   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
131     // We know all of the bits for a constant!
132     KnownOne = CI->getValue() & DemandedMask;
133     KnownZero = ~KnownOne & DemandedMask;
134     return nullptr;
135   }
136   if (isa<ConstantPointerNull>(V)) {
137     // We know all of the bits for a constant!
138     KnownOne.clearAllBits();
139     KnownZero = DemandedMask;
140     return nullptr;
141   }
142 
143   KnownZero.clearAllBits();
144   KnownOne.clearAllBits();
145   if (DemandedMask == 0) {   // Not demanding any bits from V.
146     if (isa<UndefValue>(V))
147       return nullptr;
148     return UndefValue::get(VTy);
149   }
150 
151   if (Depth == 6)        // Limit search depth.
152     return nullptr;
153 
154   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
155   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
156 
157   Instruction *I = dyn_cast<Instruction>(V);
158   if (!I) {
159     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
160     return nullptr;        // Only analyze instructions.
161   }
162 
163   // If there are multiple uses of this value and we aren't at the root, then
164   // we can't do any simplifications of the operands, because DemandedMask
165   // only reflects the bits demanded by *one* of the users.
166   if (Depth != 0 && !I->hasOneUse()) {
167     // Despite the fact that we can't simplify this instruction in all User's
168     // context, we can at least compute the knownzero/knownone bits, and we can
169     // do simplifications that apply to *just* the one user if we know that
170     // this instruction has a simpler value in that context.
171     if (I->getOpcode() == Instruction::And) {
172       // If either the LHS or the RHS are Zero, the result is zero.
173       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
174                        CxtI);
175       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
176                        CxtI);
177 
178       // If all of the demanded bits are known 1 on one side, return the other.
179       // These bits cannot contribute to the result of the 'and' in this
180       // context.
181       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
182           (DemandedMask & ~LHSKnownZero))
183         return I->getOperand(0);
184       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
185           (DemandedMask & ~RHSKnownZero))
186         return I->getOperand(1);
187 
188       // If all of the demanded bits in the inputs are known zeros, return zero.
189       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
190         return Constant::getNullValue(VTy);
191 
192     } else if (I->getOpcode() == Instruction::Or) {
193       // We can simplify (X|Y) -> X or Y in the user's context if we know that
194       // only bits from X or Y are demanded.
195 
196       // If either the LHS or the RHS are One, the result is One.
197       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
198                        CxtI);
199       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
200                        CxtI);
201 
202       // If all of the demanded bits are known zero on one side, return the
203       // other.  These bits cannot contribute to the result of the 'or' in this
204       // context.
205       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
206           (DemandedMask & ~LHSKnownOne))
207         return I->getOperand(0);
208       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
209           (DemandedMask & ~RHSKnownOne))
210         return I->getOperand(1);
211 
212       // If all of the potentially set bits on one side are known to be set on
213       // the other side, just use the 'other' side.
214       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
215           (DemandedMask & (~RHSKnownZero)))
216         return I->getOperand(0);
217       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
218           (DemandedMask & (~LHSKnownZero)))
219         return I->getOperand(1);
220     } else if (I->getOpcode() == Instruction::Xor) {
221       // We can simplify (X^Y) -> X or Y in the user's context if we know that
222       // only bits from X or Y are demanded.
223 
224       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
225                        CxtI);
226       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
227                        CxtI);
228 
229       // If all of the demanded bits are known zero on one side, return the
230       // other.
231       if ((DemandedMask & RHSKnownZero) == DemandedMask)
232         return I->getOperand(0);
233       if ((DemandedMask & LHSKnownZero) == DemandedMask)
234         return I->getOperand(1);
235     }
236 
237     // Compute the KnownZero/KnownOne bits to simplify things downstream.
238     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
239     return nullptr;
240   }
241 
242   // If this is the root being simplified, allow it to have multiple uses,
243   // just set the DemandedMask to all bits so that we can try to simplify the
244   // operands.  This allows visitTruncInst (for example) to simplify the
245   // operand of a trunc without duplicating all the logic below.
246   if (Depth == 0 && !V->hasOneUse())
247     DemandedMask = APInt::getAllOnesValue(BitWidth);
248 
249   switch (I->getOpcode()) {
250   default:
251     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
252     break;
253   case Instruction::And:
254     // If either the LHS or the RHS are Zero, the result is zero.
255     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
256                              RHSKnownOne, Depth + 1) ||
257         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
258                              LHSKnownZero, LHSKnownOne, Depth + 1))
259       return I;
260     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
261     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
262 
263     // If the client is only demanding bits that we know, return the known
264     // constant.
265     if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
266                          (RHSKnownOne & LHSKnownOne))) == DemandedMask)
267       return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
268 
269     // If all of the demanded bits are known 1 on one side, return the other.
270     // These bits cannot contribute to the result of the 'and'.
271     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
272         (DemandedMask & ~LHSKnownZero))
273       return I->getOperand(0);
274     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
275         (DemandedMask & ~RHSKnownZero))
276       return I->getOperand(1);
277 
278     // If all of the demanded bits in the inputs are known zeros, return zero.
279     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
280       return Constant::getNullValue(VTy);
281 
282     // If the RHS is a constant, see if we can simplify it.
283     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
284       return I;
285 
286     // Output known-1 bits are only known if set in both the LHS & RHS.
287     KnownOne = RHSKnownOne & LHSKnownOne;
288     // Output known-0 are known to be clear if zero in either the LHS | RHS.
289     KnownZero = RHSKnownZero | LHSKnownZero;
290     break;
291   case Instruction::Or:
292     // If either the LHS or the RHS are One, the result is One.
293     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
294                              RHSKnownOne, Depth + 1) ||
295         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
296                              LHSKnownZero, LHSKnownOne, Depth + 1))
297       return I;
298     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
299     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
300 
301     // If the client is only demanding bits that we know, return the known
302     // constant.
303     if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
304                          (RHSKnownOne | LHSKnownOne))) == DemandedMask)
305       return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
306 
307     // If all of the demanded bits are known zero on one side, return the other.
308     // These bits cannot contribute to the result of the 'or'.
309     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
310         (DemandedMask & ~LHSKnownOne))
311       return I->getOperand(0);
312     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
313         (DemandedMask & ~RHSKnownOne))
314       return I->getOperand(1);
315 
316     // If all of the potentially set bits on one side are known to be set on
317     // the other side, just use the 'other' side.
318     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
319         (DemandedMask & (~RHSKnownZero)))
320       return I->getOperand(0);
321     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
322         (DemandedMask & (~LHSKnownZero)))
323       return I->getOperand(1);
324 
325     // If the RHS is a constant, see if we can simplify it.
326     if (ShrinkDemandedConstant(I, 1, DemandedMask))
327       return I;
328 
329     // Output known-0 bits are only known if clear in both the LHS & RHS.
330     KnownZero = RHSKnownZero & LHSKnownZero;
331     // Output known-1 are known to be set if set in either the LHS | RHS.
332     KnownOne = RHSKnownOne | LHSKnownOne;
333     break;
334   case Instruction::Xor: {
335     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
336                              RHSKnownOne, Depth + 1) ||
337         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
338                              LHSKnownOne, Depth + 1))
339       return I;
340     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
341     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
342 
343     // Output known-0 bits are known if clear or set in both the LHS & RHS.
344     APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
345                        (RHSKnownOne & LHSKnownOne);
346     // Output known-1 are known to be set if set in only one of the LHS, RHS.
347     APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
348                        (RHSKnownOne & LHSKnownZero);
349 
350     // If the client is only demanding bits that we know, return the known
351     // constant.
352     if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
353       return Constant::getIntegerValue(VTy, IKnownOne);
354 
355     // If all of the demanded bits are known zero on one side, return the other.
356     // These bits cannot contribute to the result of the 'xor'.
357     if ((DemandedMask & RHSKnownZero) == DemandedMask)
358       return I->getOperand(0);
359     if ((DemandedMask & LHSKnownZero) == DemandedMask)
360       return I->getOperand(1);
361 
362     // If all of the demanded bits are known to be zero on one side or the
363     // other, turn this into an *inclusive* or.
364     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
365     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
366       Instruction *Or =
367         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
368                                  I->getName());
369       return InsertNewInstWith(Or, *I);
370     }
371 
372     // If all of the demanded bits on one side are known, and all of the set
373     // bits on that side are also known to be set on the other side, turn this
374     // into an AND, as we know the bits will be cleared.
375     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
376     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
377       // all known
378       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
379         Constant *AndC = Constant::getIntegerValue(VTy,
380                                                    ~RHSKnownOne & DemandedMask);
381         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
382         return InsertNewInstWith(And, *I);
383       }
384     }
385 
386     // If the RHS is a constant, see if we can simplify it.
387     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
388     if (ShrinkDemandedConstant(I, 1, DemandedMask))
389       return I;
390 
391     // If our LHS is an 'and' and if it has one use, and if any of the bits we
392     // are flipping are known to be set, then the xor is just resetting those
393     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
394     // simplifying both of them.
395     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
396       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
397           isa<ConstantInt>(I->getOperand(1)) &&
398           isa<ConstantInt>(LHSInst->getOperand(1)) &&
399           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
400         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
401         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
402         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
403 
404         Constant *AndC =
405           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
406         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
407         InsertNewInstWith(NewAnd, *I);
408 
409         Constant *XorC =
410           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
411         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
412         return InsertNewInstWith(NewXor, *I);
413       }
414 
415     // Output known-0 bits are known if clear or set in both the LHS & RHS.
416     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
417     // Output known-1 are known to be set if set in only one of the LHS, RHS.
418     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
419     break;
420   }
421   case Instruction::Select:
422     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
423                              RHSKnownOne, Depth + 1) ||
424         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
425                              LHSKnownOne, Depth + 1))
426       return I;
427     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
428     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
429 
430     // If the operands are constants, see if we can simplify them.
431     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
432         ShrinkDemandedConstant(I, 2, DemandedMask))
433       return I;
434 
435     // Only known if known in both the LHS and RHS.
436     KnownOne = RHSKnownOne & LHSKnownOne;
437     KnownZero = RHSKnownZero & LHSKnownZero;
438     break;
439   case Instruction::Trunc: {
440     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
441     DemandedMask = DemandedMask.zext(truncBf);
442     KnownZero = KnownZero.zext(truncBf);
443     KnownOne = KnownOne.zext(truncBf);
444     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
445                              KnownOne, Depth + 1))
446       return I;
447     DemandedMask = DemandedMask.trunc(BitWidth);
448     KnownZero = KnownZero.trunc(BitWidth);
449     KnownOne = KnownOne.trunc(BitWidth);
450     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
451     break;
452   }
453   case Instruction::BitCast:
454     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
455       return nullptr;  // vector->int or fp->int?
456 
457     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
458       if (VectorType *SrcVTy =
459             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
460         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
461           // Don't touch a bitcast between vectors of different element counts.
462           return nullptr;
463       } else
464         // Don't touch a scalar-to-vector bitcast.
465         return nullptr;
466     } else if (I->getOperand(0)->getType()->isVectorTy())
467       // Don't touch a vector-to-scalar bitcast.
468       return nullptr;
469 
470     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
471                              KnownOne, Depth + 1))
472       return I;
473     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
474     break;
475   case Instruction::ZExt: {
476     // Compute the bits in the result that are not present in the input.
477     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
478 
479     DemandedMask = DemandedMask.trunc(SrcBitWidth);
480     KnownZero = KnownZero.trunc(SrcBitWidth);
481     KnownOne = KnownOne.trunc(SrcBitWidth);
482     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
483                              KnownOne, Depth + 1))
484       return I;
485     DemandedMask = DemandedMask.zext(BitWidth);
486     KnownZero = KnownZero.zext(BitWidth);
487     KnownOne = KnownOne.zext(BitWidth);
488     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
489     // The top bits are known to be zero.
490     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
491     break;
492   }
493   case Instruction::SExt: {
494     // Compute the bits in the result that are not present in the input.
495     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
496 
497     APInt InputDemandedBits = DemandedMask &
498                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
499 
500     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
501     // If any of the sign extended bits are demanded, we know that the sign
502     // bit is demanded.
503     if ((NewBits & DemandedMask) != 0)
504       InputDemandedBits.setBit(SrcBitWidth-1);
505 
506     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
507     KnownZero = KnownZero.trunc(SrcBitWidth);
508     KnownOne = KnownOne.trunc(SrcBitWidth);
509     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
510                              KnownOne, Depth + 1))
511       return I;
512     InputDemandedBits = InputDemandedBits.zext(BitWidth);
513     KnownZero = KnownZero.zext(BitWidth);
514     KnownOne = KnownOne.zext(BitWidth);
515     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
516 
517     // If the sign bit of the input is known set or clear, then we know the
518     // top bits of the result.
519 
520     // If the input sign bit is known zero, or if the NewBits are not demanded
521     // convert this into a zero extension.
522     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
523       // Convert to ZExt cast
524       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
525       return InsertNewInstWith(NewCast, *I);
526     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
527       KnownOne |= NewBits;
528     }
529     break;
530   }
531   case Instruction::Add: {
532     // Figure out what the input bits are.  If the top bits of the and result
533     // are not demanded, then the add doesn't demand them from its input
534     // either.
535     unsigned NLZ = DemandedMask.countLeadingZeros();
536 
537     // If there is a constant on the RHS, there are a variety of xformations
538     // we can do.
539     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
540       // If null, this should be simplified elsewhere.  Some of the xforms here
541       // won't work if the RHS is zero.
542       if (RHS->isZero())
543         break;
544 
545       // If the top bit of the output is demanded, demand everything from the
546       // input.  Otherwise, we demand all the input bits except NLZ top bits.
547       APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
548 
549       // Find information about known zero/one bits in the input.
550       if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
551                                LHSKnownZero, LHSKnownOne, Depth + 1))
552         return I;
553 
554       // If the RHS of the add has bits set that can't affect the input, reduce
555       // the constant.
556       if (ShrinkDemandedConstant(I, 1, InDemandedBits))
557         return I;
558 
559       // Avoid excess work.
560       if (LHSKnownZero == 0 && LHSKnownOne == 0)
561         break;
562 
563       // Turn it into OR if input bits are zero.
564       if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
565         Instruction *Or =
566           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
567                                    I->getName());
568         return InsertNewInstWith(Or, *I);
569       }
570 
571       // We can say something about the output known-zero and known-one bits,
572       // depending on potential carries from the input constant and the
573       // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
574       // bits set and the RHS constant is 0x01001, then we know we have a known
575       // one mask of 0x00001 and a known zero mask of 0xE0F0E.
576 
577       // To compute this, we first compute the potential carry bits.  These are
578       // the bits which may be modified.  I'm not aware of a better way to do
579       // this scan.
580       const APInt &RHSVal = RHS->getValue();
581       APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
582 
583       // Now that we know which bits have carries, compute the known-1/0 sets.
584 
585       // Bits are known one if they are known zero in one operand and one in the
586       // other, and there is no input carry.
587       KnownOne = ((LHSKnownZero & RHSVal) |
588                   (LHSKnownOne & ~RHSVal)) & ~CarryBits;
589 
590       // Bits are known zero if they are known zero in both operands and there
591       // is no input carry.
592       KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
593     } else {
594       // If the high-bits of this ADD are not demanded, then it does not demand
595       // the high bits of its LHS or RHS.
596       if (DemandedMask[BitWidth-1] == 0) {
597         // Right fill the mask of bits for this ADD to demand the most
598         // significant bit and all those below it.
599         APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
600         if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
601                                  LHSKnownZero, LHSKnownOne, Depth + 1) ||
602             SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
603                                  LHSKnownZero, LHSKnownOne, Depth + 1))
604           return I;
605       }
606     }
607     break;
608   }
609   case Instruction::Sub:
610     // If the high-bits of this SUB are not demanded, then it does not demand
611     // the high bits of its LHS or RHS.
612     if (DemandedMask[BitWidth-1] == 0) {
613       // Right fill the mask of bits for this SUB to demand the most
614       // significant bit and all those below it.
615       uint32_t NLZ = DemandedMask.countLeadingZeros();
616       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
617       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
618                                LHSKnownZero, LHSKnownOne, Depth + 1) ||
619           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
620                                LHSKnownZero, LHSKnownOne, Depth + 1))
621         return I;
622     }
623 
624     // Otherwise just hand the sub off to computeKnownBits to fill in
625     // the known zeros and ones.
626     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
627 
628     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
629     // zero.
630     if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
631       APInt I0 = C0->getValue();
632       if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
633         Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
634         return InsertNewInstWith(Xor, *I);
635       }
636     }
637     break;
638   case Instruction::Shl:
639     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
640       {
641         Value *VarX; ConstantInt *C1;
642         if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
643           Instruction *Shr = cast<Instruction>(I->getOperand(0));
644           Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
645                                                 KnownZero, KnownOne);
646           if (R)
647             return R;
648         }
649       }
650 
651       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
652       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
653 
654       // If the shift is NUW/NSW, then it does demand the high bits.
655       ShlOperator *IOp = cast<ShlOperator>(I);
656       if (IOp->hasNoSignedWrap())
657         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
658       else if (IOp->hasNoUnsignedWrap())
659         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
660 
661       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
662                                KnownOne, Depth + 1))
663         return I;
664       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
665       KnownZero <<= ShiftAmt;
666       KnownOne  <<= ShiftAmt;
667       // low bits known zero.
668       if (ShiftAmt)
669         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
670     }
671     break;
672   case Instruction::LShr:
673     // For a logical shift right
674     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
675       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
676 
677       // Unsigned shift right.
678       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
679 
680       // If the shift is exact, then it does demand the low bits (and knows that
681       // they are zero).
682       if (cast<LShrOperator>(I)->isExact())
683         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
684 
685       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
686                                KnownOne, Depth + 1))
687         return I;
688       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
689       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
690       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
691       if (ShiftAmt) {
692         // Compute the new bits that are at the top now.
693         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
694         KnownZero |= HighBits;  // high bits known zero.
695       }
696     }
697     break;
698   case Instruction::AShr:
699     // If this is an arithmetic shift right and only the low-bit is set, we can
700     // always convert this into a logical shr, even if the shift amount is
701     // variable.  The low bit of the shift cannot be an input sign bit unless
702     // the shift amount is >= the size of the datatype, which is undefined.
703     if (DemandedMask == 1) {
704       // Perform the logical shift right.
705       Instruction *NewVal = BinaryOperator::CreateLShr(
706                         I->getOperand(0), I->getOperand(1), I->getName());
707       return InsertNewInstWith(NewVal, *I);
708     }
709 
710     // If the sign bit is the only bit demanded by this ashr, then there is no
711     // need to do it, the shift doesn't change the high bit.
712     if (DemandedMask.isSignBit())
713       return I->getOperand(0);
714 
715     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
716       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
717 
718       // Signed shift right.
719       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
720       // If any of the "high bits" are demanded, we should set the sign bit as
721       // demanded.
722       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
723         DemandedMaskIn.setBit(BitWidth-1);
724 
725       // If the shift is exact, then it does demand the low bits (and knows that
726       // they are zero).
727       if (cast<AShrOperator>(I)->isExact())
728         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
729 
730       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
731                                KnownOne, Depth + 1))
732         return I;
733       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
734       // Compute the new bits that are at the top now.
735       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
736       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
737       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
738 
739       // Handle the sign bits.
740       APInt SignBit(APInt::getSignBit(BitWidth));
741       // Adjust to where it is now in the mask.
742       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
743 
744       // If the input sign bit is known to be zero, or if none of the top bits
745       // are demanded, turn this into an unsigned shift right.
746       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
747           (HighBits & ~DemandedMask) == HighBits) {
748         // Perform the logical shift right.
749         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
750                                                             SA, I->getName());
751         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
752         return InsertNewInstWith(NewVal, *I);
753       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
754         KnownOne |= HighBits;
755       }
756     }
757     break;
758   case Instruction::SRem:
759     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
760       // X % -1 demands all the bits because we don't want to introduce
761       // INT_MIN % -1 (== undef) by accident.
762       if (Rem->isAllOnesValue())
763         break;
764       APInt RA = Rem->getValue().abs();
765       if (RA.isPowerOf2()) {
766         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
767           return I->getOperand(0);
768 
769         APInt LowBits = RA - 1;
770         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
771         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
772                                  LHSKnownOne, Depth + 1))
773           return I;
774 
775         // The low bits of LHS are unchanged by the srem.
776         KnownZero = LHSKnownZero & LowBits;
777         KnownOne = LHSKnownOne & LowBits;
778 
779         // If LHS is non-negative or has all low bits zero, then the upper bits
780         // are all zero.
781         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
782           KnownZero |= ~LowBits;
783 
784         // If LHS is negative and not all low bits are zero, then the upper bits
785         // are all one.
786         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
787           KnownOne |= ~LowBits;
788 
789         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
790       }
791     }
792 
793     // The sign bit is the LHS's sign bit, except when the result of the
794     // remainder is zero.
795     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
796       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
797       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
798                        CxtI);
799       // If it's known zero, our sign bit is also zero.
800       if (LHSKnownZero.isNegative())
801         KnownZero.setBit(KnownZero.getBitWidth() - 1);
802     }
803     break;
804   case Instruction::URem: {
805     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
806     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
807     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
808                              KnownOne2, Depth + 1) ||
809         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
810                              KnownOne2, Depth + 1))
811       return I;
812 
813     unsigned Leaders = KnownZero2.countLeadingOnes();
814     Leaders = std::max(Leaders,
815                        KnownZero2.countLeadingOnes());
816     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
817     break;
818   }
819   case Instruction::Call:
820     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
821       switch (II->getIntrinsicID()) {
822       default: break;
823       case Intrinsic::bswap: {
824         // If the only bits demanded come from one byte of the bswap result,
825         // just shift the input byte into position to eliminate the bswap.
826         unsigned NLZ = DemandedMask.countLeadingZeros();
827         unsigned NTZ = DemandedMask.countTrailingZeros();
828 
829         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
830         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
831         // have 14 leading zeros, round to 8.
832         NLZ &= ~7;
833         NTZ &= ~7;
834         // If we need exactly one byte, we can do this transformation.
835         if (BitWidth-NLZ-NTZ == 8) {
836           unsigned ResultBit = NTZ;
837           unsigned InputBit = BitWidth-NTZ-8;
838 
839           // Replace this with either a left or right shift to get the byte into
840           // the right place.
841           Instruction *NewVal;
842           if (InputBit > ResultBit)
843             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
844                     ConstantInt::get(I->getType(), InputBit-ResultBit));
845           else
846             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
847                     ConstantInt::get(I->getType(), ResultBit-InputBit));
848           NewVal->takeName(I);
849           return InsertNewInstWith(NewVal, *I);
850         }
851 
852         // TODO: Could compute known zero/one bits based on the input.
853         break;
854       }
855       case Intrinsic::x86_sse42_crc32_64_64:
856         KnownZero = APInt::getHighBitsSet(64, 32);
857         return nullptr;
858       }
859     }
860     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
861     break;
862   }
863 
864   // If the client is only demanding bits that we know, return the known
865   // constant.
866   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
867     return Constant::getIntegerValue(VTy, KnownOne);
868   return nullptr;
869 }
870 
871 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
872 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
873 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
874 /// of "C2-C1".
875 ///
876 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
877 /// ..., bn}, without considering the specific value X is holding.
878 /// This transformation is legal iff one of following conditions is hold:
879 ///  1) All the bit in S are 0, in this case E1 == E2.
880 ///  2) We don't care those bits in S, per the input DemandedMask.
881 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
882 ///     rest bits.
883 ///
884 /// Currently we only test condition 2).
885 ///
886 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
887 /// not successful.
SimplifyShrShlDemandedBits(Instruction * Shr,Instruction * Shl,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne)888 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
889   Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
890 
891   const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
892   const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
893   if (!ShlOp1 || !ShrOp1)
894       return nullptr; // Noop.
895 
896   Value *VarX = Shr->getOperand(0);
897   Type *Ty = VarX->getType();
898   unsigned BitWidth = Ty->getIntegerBitWidth();
899   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
900     return nullptr; // Undef.
901 
902   unsigned ShlAmt = ShlOp1.getZExtValue();
903   unsigned ShrAmt = ShrOp1.getZExtValue();
904 
905   KnownOne.clearAllBits();
906   KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
907   KnownZero &= DemandedMask;
908 
909   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
910   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
911 
912   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
913   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
914                       (BitMask1.ashr(ShrAmt) << ShlAmt);
915 
916   if (ShrAmt <= ShlAmt) {
917     BitMask2 <<= (ShlAmt - ShrAmt);
918   } else {
919     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
920                         BitMask2.ashr(ShrAmt - ShlAmt);
921   }
922 
923   // Check if condition-2 (see the comment to this function) is satified.
924   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
925     if (ShrAmt == ShlAmt)
926       return VarX;
927 
928     if (!Shr->hasOneUse())
929       return nullptr;
930 
931     BinaryOperator *New;
932     if (ShrAmt < ShlAmt) {
933       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
934       New = BinaryOperator::CreateShl(VarX, Amt);
935       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
936       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
937       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
938     } else {
939       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
940       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
941                      BinaryOperator::CreateAShr(VarX, Amt);
942       if (cast<BinaryOperator>(Shr)->isExact())
943         New->setIsExact(true);
944     }
945 
946     return InsertNewInstWith(New, *Shl);
947   }
948 
949   return nullptr;
950 }
951 
952 /// SimplifyDemandedVectorElts - The specified value produces a vector with
953 /// any number of elements. DemandedElts contains the set of elements that are
954 /// actually used by the caller.  This method analyzes which elements of the
955 /// operand are undef and returns that information in UndefElts.
956 ///
957 /// If the information about demanded elements can be used to simplify the
958 /// operation, the operation is simplified, then the resultant value is
959 /// returned.  This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)960 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
961                                                 APInt &UndefElts,
962                                                 unsigned Depth) {
963   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
964   APInt EltMask(APInt::getAllOnesValue(VWidth));
965   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
966 
967   if (isa<UndefValue>(V)) {
968     // If the entire vector is undefined, just return this info.
969     UndefElts = EltMask;
970     return nullptr;
971   }
972 
973   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
974     UndefElts = EltMask;
975     return UndefValue::get(V->getType());
976   }
977 
978   UndefElts = 0;
979 
980   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
981   if (Constant *C = dyn_cast<Constant>(V)) {
982     // Check if this is identity. If so, return 0 since we are not simplifying
983     // anything.
984     if (DemandedElts.isAllOnesValue())
985       return nullptr;
986 
987     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
988     Constant *Undef = UndefValue::get(EltTy);
989 
990     SmallVector<Constant*, 16> Elts;
991     for (unsigned i = 0; i != VWidth; ++i) {
992       if (!DemandedElts[i]) {   // If not demanded, set to undef.
993         Elts.push_back(Undef);
994         UndefElts.setBit(i);
995         continue;
996       }
997 
998       Constant *Elt = C->getAggregateElement(i);
999       if (!Elt) return nullptr;
1000 
1001       if (isa<UndefValue>(Elt)) {   // Already undef.
1002         Elts.push_back(Undef);
1003         UndefElts.setBit(i);
1004       } else {                               // Otherwise, defined.
1005         Elts.push_back(Elt);
1006       }
1007     }
1008 
1009     // If we changed the constant, return it.
1010     Constant *NewCV = ConstantVector::get(Elts);
1011     return NewCV != C ? NewCV : nullptr;
1012   }
1013 
1014   // Limit search depth.
1015   if (Depth == 10)
1016     return nullptr;
1017 
1018   // If multiple users are using the root value, proceed with
1019   // simplification conservatively assuming that all elements
1020   // are needed.
1021   if (!V->hasOneUse()) {
1022     // Quit if we find multiple users of a non-root value though.
1023     // They'll be handled when it's their turn to be visited by
1024     // the main instcombine process.
1025     if (Depth != 0)
1026       // TODO: Just compute the UndefElts information recursively.
1027       return nullptr;
1028 
1029     // Conservatively assume that all elements are needed.
1030     DemandedElts = EltMask;
1031   }
1032 
1033   Instruction *I = dyn_cast<Instruction>(V);
1034   if (!I) return nullptr;        // Only analyze instructions.
1035 
1036   bool MadeChange = false;
1037   APInt UndefElts2(VWidth, 0);
1038   Value *TmpV;
1039   switch (I->getOpcode()) {
1040   default: break;
1041 
1042   case Instruction::InsertElement: {
1043     // If this is a variable index, we don't know which element it overwrites.
1044     // demand exactly the same input as we produce.
1045     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1046     if (!Idx) {
1047       // Note that we can't propagate undef elt info, because we don't know
1048       // which elt is getting updated.
1049       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1050                                         UndefElts2, Depth + 1);
1051       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1052       break;
1053     }
1054 
1055     // If this is inserting an element that isn't demanded, remove this
1056     // insertelement.
1057     unsigned IdxNo = Idx->getZExtValue();
1058     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1059       Worklist.Add(I);
1060       return I->getOperand(0);
1061     }
1062 
1063     // Otherwise, the element inserted overwrites whatever was there, so the
1064     // input demanded set is simpler than the output set.
1065     APInt DemandedElts2 = DemandedElts;
1066     DemandedElts2.clearBit(IdxNo);
1067     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1068                                       UndefElts, Depth + 1);
1069     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1070 
1071     // The inserted element is defined.
1072     UndefElts.clearBit(IdxNo);
1073     break;
1074   }
1075   case Instruction::ShuffleVector: {
1076     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1077     uint64_t LHSVWidth =
1078       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1079     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1080     for (unsigned i = 0; i < VWidth; i++) {
1081       if (DemandedElts[i]) {
1082         unsigned MaskVal = Shuffle->getMaskValue(i);
1083         if (MaskVal != -1u) {
1084           assert(MaskVal < LHSVWidth * 2 &&
1085                  "shufflevector mask index out of range!");
1086           if (MaskVal < LHSVWidth)
1087             LeftDemanded.setBit(MaskVal);
1088           else
1089             RightDemanded.setBit(MaskVal - LHSVWidth);
1090         }
1091       }
1092     }
1093 
1094     APInt UndefElts4(LHSVWidth, 0);
1095     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1096                                       UndefElts4, Depth + 1);
1097     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1098 
1099     APInt UndefElts3(LHSVWidth, 0);
1100     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1101                                       UndefElts3, Depth + 1);
1102     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1103 
1104     bool NewUndefElts = false;
1105     for (unsigned i = 0; i < VWidth; i++) {
1106       unsigned MaskVal = Shuffle->getMaskValue(i);
1107       if (MaskVal == -1u) {
1108         UndefElts.setBit(i);
1109       } else if (!DemandedElts[i]) {
1110         NewUndefElts = true;
1111         UndefElts.setBit(i);
1112       } else if (MaskVal < LHSVWidth) {
1113         if (UndefElts4[MaskVal]) {
1114           NewUndefElts = true;
1115           UndefElts.setBit(i);
1116         }
1117       } else {
1118         if (UndefElts3[MaskVal - LHSVWidth]) {
1119           NewUndefElts = true;
1120           UndefElts.setBit(i);
1121         }
1122       }
1123     }
1124 
1125     if (NewUndefElts) {
1126       // Add additional discovered undefs.
1127       SmallVector<Constant*, 16> Elts;
1128       for (unsigned i = 0; i < VWidth; ++i) {
1129         if (UndefElts[i])
1130           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1131         else
1132           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1133                                           Shuffle->getMaskValue(i)));
1134       }
1135       I->setOperand(2, ConstantVector::get(Elts));
1136       MadeChange = true;
1137     }
1138     break;
1139   }
1140   case Instruction::Select: {
1141     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1142     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1143       for (unsigned i = 0; i < VWidth; i++) {
1144         if (CV->getAggregateElement(i)->isNullValue())
1145           LeftDemanded.clearBit(i);
1146         else
1147           RightDemanded.clearBit(i);
1148       }
1149     }
1150 
1151     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1152                                       Depth + 1);
1153     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1154 
1155     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1156                                       UndefElts2, Depth + 1);
1157     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1158 
1159     // Output elements are undefined if both are undefined.
1160     UndefElts &= UndefElts2;
1161     break;
1162   }
1163   case Instruction::BitCast: {
1164     // Vector->vector casts only.
1165     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1166     if (!VTy) break;
1167     unsigned InVWidth = VTy->getNumElements();
1168     APInt InputDemandedElts(InVWidth, 0);
1169     unsigned Ratio;
1170 
1171     if (VWidth == InVWidth) {
1172       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1173       // elements as are demanded of us.
1174       Ratio = 1;
1175       InputDemandedElts = DemandedElts;
1176     } else if (VWidth > InVWidth) {
1177       // Untested so far.
1178       break;
1179 
1180       // If there are more elements in the result than there are in the source,
1181       // then an input element is live if any of the corresponding output
1182       // elements are live.
1183       Ratio = VWidth/InVWidth;
1184       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1185         if (DemandedElts[OutIdx])
1186           InputDemandedElts.setBit(OutIdx/Ratio);
1187       }
1188     } else {
1189       // Untested so far.
1190       break;
1191 
1192       // If there are more elements in the source than there are in the result,
1193       // then an input element is live if the corresponding output element is
1194       // live.
1195       Ratio = InVWidth/VWidth;
1196       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1197         if (DemandedElts[InIdx/Ratio])
1198           InputDemandedElts.setBit(InIdx);
1199     }
1200 
1201     // div/rem demand all inputs, because they don't want divide by zero.
1202     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1203                                       UndefElts2, Depth + 1);
1204     if (TmpV) {
1205       I->setOperand(0, TmpV);
1206       MadeChange = true;
1207     }
1208 
1209     UndefElts = UndefElts2;
1210     if (VWidth > InVWidth) {
1211       llvm_unreachable("Unimp");
1212       // If there are more elements in the result than there are in the source,
1213       // then an output element is undef if the corresponding input element is
1214       // undef.
1215       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1216         if (UndefElts2[OutIdx/Ratio])
1217           UndefElts.setBit(OutIdx);
1218     } else if (VWidth < InVWidth) {
1219       llvm_unreachable("Unimp");
1220       // If there are more elements in the source than there are in the result,
1221       // then a result element is undef if all of the corresponding input
1222       // elements are undef.
1223       UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1224       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1225         if (!UndefElts2[InIdx])            // Not undef?
1226           UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1227     }
1228     break;
1229   }
1230   case Instruction::And:
1231   case Instruction::Or:
1232   case Instruction::Xor:
1233   case Instruction::Add:
1234   case Instruction::Sub:
1235   case Instruction::Mul:
1236     // div/rem demand all inputs, because they don't want divide by zero.
1237     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1238                                       Depth + 1);
1239     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1240     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1241                                       UndefElts2, Depth + 1);
1242     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1243 
1244     // Output elements are undefined if both are undefined.  Consider things
1245     // like undef&0.  The result is known zero, not undef.
1246     UndefElts &= UndefElts2;
1247     break;
1248   case Instruction::FPTrunc:
1249   case Instruction::FPExt:
1250     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1251                                       Depth + 1);
1252     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1253     break;
1254 
1255   case Instruction::Call: {
1256     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1257     if (!II) break;
1258     switch (II->getIntrinsicID()) {
1259     default: break;
1260 
1261     // Binary vector operations that work column-wise.  A dest element is a
1262     // function of the corresponding input elements from the two inputs.
1263     case Intrinsic::x86_sse_sub_ss:
1264     case Intrinsic::x86_sse_mul_ss:
1265     case Intrinsic::x86_sse_min_ss:
1266     case Intrinsic::x86_sse_max_ss:
1267     case Intrinsic::x86_sse2_sub_sd:
1268     case Intrinsic::x86_sse2_mul_sd:
1269     case Intrinsic::x86_sse2_min_sd:
1270     case Intrinsic::x86_sse2_max_sd:
1271       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1272                                         UndefElts, Depth + 1);
1273       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1274       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1275                                         UndefElts2, Depth + 1);
1276       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1277 
1278       // If only the low elt is demanded and this is a scalarizable intrinsic,
1279       // scalarize it now.
1280       if (DemandedElts == 1) {
1281         switch (II->getIntrinsicID()) {
1282         default: break;
1283         case Intrinsic::x86_sse_sub_ss:
1284         case Intrinsic::x86_sse_mul_ss:
1285         case Intrinsic::x86_sse2_sub_sd:
1286         case Intrinsic::x86_sse2_mul_sd:
1287           // TODO: Lower MIN/MAX/ABS/etc
1288           Value *LHS = II->getArgOperand(0);
1289           Value *RHS = II->getArgOperand(1);
1290           // Extract the element as scalars.
1291           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1292             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1293           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1294             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1295 
1296           switch (II->getIntrinsicID()) {
1297           default: llvm_unreachable("Case stmts out of sync!");
1298           case Intrinsic::x86_sse_sub_ss:
1299           case Intrinsic::x86_sse2_sub_sd:
1300             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1301                                                         II->getName()), *II);
1302             break;
1303           case Intrinsic::x86_sse_mul_ss:
1304           case Intrinsic::x86_sse2_mul_sd:
1305             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1306                                                          II->getName()), *II);
1307             break;
1308           }
1309 
1310           Instruction *New =
1311             InsertElementInst::Create(
1312               UndefValue::get(II->getType()), TmpV,
1313               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1314                                       II->getName());
1315           InsertNewInstWith(New, *II);
1316           return New;
1317         }
1318       }
1319 
1320       // Output elements are undefined if both are undefined.  Consider things
1321       // like undef&0.  The result is known zero, not undef.
1322       UndefElts &= UndefElts2;
1323       break;
1324     }
1325     break;
1326   }
1327   }
1328   return MadeChange ? I : nullptr;
1329 }
1330