1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18
19 using namespace llvm;
20 using namespace llvm::PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 /// ShrinkDemandedConstant - Check to see if the specified operand of the
25 /// specified instruction is a constant integer. If so, check to see if there
26 /// are any bits set in the constant that are not demanded. If so, shrink the
27 /// constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29 APInt Demanded) {
30 assert(I && "No instruction?");
31 assert(OpNo < I->getNumOperands() && "Operand index too large");
32
33 // If the operand is not a constant integer, nothing to do.
34 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35 if (!OpC) return false;
36
37 // If there are no bits set that aren't demanded, nothing to do.
38 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39 if ((~Demanded & OpC->getValue()) == 0)
40 return false;
41
42 // This instruction is producing bits that are not demanded. Shrink the RHS.
43 Demanded &= OpC->getValue();
44 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45
46 // If either 'nsw' or 'nuw' is set and the constant is negative,
47 // removing *any* bits from the constant could make overflow occur.
48 // Remove 'nsw' and 'nuw' from the instruction in this case.
49 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
50 assert(OBO->getOpcode() == Instruction::Add);
51 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) {
52 if (OpC->getValue().isNegative()) {
53 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false);
54 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false);
55 }
56 }
57 }
58
59 return true;
60 }
61
62
63
64 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
65 /// SimplifyDemandedBits knows about. See if the instruction has any
66 /// properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)67 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
68 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
69 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
70 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
71
72 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
73 0, &Inst);
74 if (!V) return false;
75 if (V == &Inst) return true;
76 ReplaceInstUsesWith(Inst, V);
77 return true;
78 }
79
80 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
81 /// specified instruction operand if possible, updating it in place. It returns
82 /// true if it made any change and false otherwise.
SimplifyDemandedBits(Use & U,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)83 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
84 APInt &KnownZero, APInt &KnownOne,
85 unsigned Depth) {
86 Value *NewVal =
87 SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, KnownOne, Depth,
88 dyn_cast<Instruction>(U.getUser()));
89 if (!NewVal) return false;
90 U = NewVal;
91 return true;
92 }
93
94
95 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
96 /// value based on the demanded bits. When this function is called, it is known
97 /// that only the bits set in DemandedMask of the result of V are ever used
98 /// downstream. Consequently, depending on the mask and V, it may be possible
99 /// to replace V with a constant or one of its operands. In such cases, this
100 /// function does the replacement and returns true. In all other cases, it
101 /// returns false after analyzing the expression and setting KnownOne and known
102 /// to be one in the expression. KnownZero contains all the bits that are known
103 /// to be zero in the expression. These are provided to potentially allow the
104 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
105 /// the expression. KnownOne and KnownZero always follow the invariant that
106 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
107 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
108 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
109 /// and KnownOne must all be the same.
110 ///
111 /// This returns null if it did not change anything and it permits no
112 /// simplification. This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117 APInt &KnownZero, APInt &KnownOne,
118 unsigned Depth,
119 Instruction *CxtI) {
120 assert(V != nullptr && "Null pointer of Value???");
121 assert(Depth <= 6 && "Limit Search Depth");
122 uint32_t BitWidth = DemandedMask.getBitWidth();
123 Type *VTy = V->getType();
124 assert(
125 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
126 KnownZero.getBitWidth() == BitWidth &&
127 KnownOne.getBitWidth() == BitWidth &&
128 "Value *V, DemandedMask, KnownZero and KnownOne "
129 "must have same BitWidth");
130 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
131 // We know all of the bits for a constant!
132 KnownOne = CI->getValue() & DemandedMask;
133 KnownZero = ~KnownOne & DemandedMask;
134 return nullptr;
135 }
136 if (isa<ConstantPointerNull>(V)) {
137 // We know all of the bits for a constant!
138 KnownOne.clearAllBits();
139 KnownZero = DemandedMask;
140 return nullptr;
141 }
142
143 KnownZero.clearAllBits();
144 KnownOne.clearAllBits();
145 if (DemandedMask == 0) { // Not demanding any bits from V.
146 if (isa<UndefValue>(V))
147 return nullptr;
148 return UndefValue::get(VTy);
149 }
150
151 if (Depth == 6) // Limit search depth.
152 return nullptr;
153
154 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
155 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
156
157 Instruction *I = dyn_cast<Instruction>(V);
158 if (!I) {
159 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
160 return nullptr; // Only analyze instructions.
161 }
162
163 // If there are multiple uses of this value and we aren't at the root, then
164 // we can't do any simplifications of the operands, because DemandedMask
165 // only reflects the bits demanded by *one* of the users.
166 if (Depth != 0 && !I->hasOneUse()) {
167 // Despite the fact that we can't simplify this instruction in all User's
168 // context, we can at least compute the knownzero/knownone bits, and we can
169 // do simplifications that apply to *just* the one user if we know that
170 // this instruction has a simpler value in that context.
171 if (I->getOpcode() == Instruction::And) {
172 // If either the LHS or the RHS are Zero, the result is zero.
173 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
174 CxtI);
175 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
176 CxtI);
177
178 // If all of the demanded bits are known 1 on one side, return the other.
179 // These bits cannot contribute to the result of the 'and' in this
180 // context.
181 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
182 (DemandedMask & ~LHSKnownZero))
183 return I->getOperand(0);
184 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
185 (DemandedMask & ~RHSKnownZero))
186 return I->getOperand(1);
187
188 // If all of the demanded bits in the inputs are known zeros, return zero.
189 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
190 return Constant::getNullValue(VTy);
191
192 } else if (I->getOpcode() == Instruction::Or) {
193 // We can simplify (X|Y) -> X or Y in the user's context if we know that
194 // only bits from X or Y are demanded.
195
196 // If either the LHS or the RHS are One, the result is One.
197 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
198 CxtI);
199 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
200 CxtI);
201
202 // If all of the demanded bits are known zero on one side, return the
203 // other. These bits cannot contribute to the result of the 'or' in this
204 // context.
205 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
206 (DemandedMask & ~LHSKnownOne))
207 return I->getOperand(0);
208 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
209 (DemandedMask & ~RHSKnownOne))
210 return I->getOperand(1);
211
212 // If all of the potentially set bits on one side are known to be set on
213 // the other side, just use the 'other' side.
214 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
215 (DemandedMask & (~RHSKnownZero)))
216 return I->getOperand(0);
217 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
218 (DemandedMask & (~LHSKnownZero)))
219 return I->getOperand(1);
220 } else if (I->getOpcode() == Instruction::Xor) {
221 // We can simplify (X^Y) -> X or Y in the user's context if we know that
222 // only bits from X or Y are demanded.
223
224 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
225 CxtI);
226 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
227 CxtI);
228
229 // If all of the demanded bits are known zero on one side, return the
230 // other.
231 if ((DemandedMask & RHSKnownZero) == DemandedMask)
232 return I->getOperand(0);
233 if ((DemandedMask & LHSKnownZero) == DemandedMask)
234 return I->getOperand(1);
235 }
236
237 // Compute the KnownZero/KnownOne bits to simplify things downstream.
238 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
239 return nullptr;
240 }
241
242 // If this is the root being simplified, allow it to have multiple uses,
243 // just set the DemandedMask to all bits so that we can try to simplify the
244 // operands. This allows visitTruncInst (for example) to simplify the
245 // operand of a trunc without duplicating all the logic below.
246 if (Depth == 0 && !V->hasOneUse())
247 DemandedMask = APInt::getAllOnesValue(BitWidth);
248
249 switch (I->getOpcode()) {
250 default:
251 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
252 break;
253 case Instruction::And:
254 // If either the LHS or the RHS are Zero, the result is zero.
255 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
256 RHSKnownOne, Depth + 1) ||
257 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
258 LHSKnownZero, LHSKnownOne, Depth + 1))
259 return I;
260 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
261 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
262
263 // If the client is only demanding bits that we know, return the known
264 // constant.
265 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
266 (RHSKnownOne & LHSKnownOne))) == DemandedMask)
267 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
268
269 // If all of the demanded bits are known 1 on one side, return the other.
270 // These bits cannot contribute to the result of the 'and'.
271 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
272 (DemandedMask & ~LHSKnownZero))
273 return I->getOperand(0);
274 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
275 (DemandedMask & ~RHSKnownZero))
276 return I->getOperand(1);
277
278 // If all of the demanded bits in the inputs are known zeros, return zero.
279 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
280 return Constant::getNullValue(VTy);
281
282 // If the RHS is a constant, see if we can simplify it.
283 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
284 return I;
285
286 // Output known-1 bits are only known if set in both the LHS & RHS.
287 KnownOne = RHSKnownOne & LHSKnownOne;
288 // Output known-0 are known to be clear if zero in either the LHS | RHS.
289 KnownZero = RHSKnownZero | LHSKnownZero;
290 break;
291 case Instruction::Or:
292 // If either the LHS or the RHS are One, the result is One.
293 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
294 RHSKnownOne, Depth + 1) ||
295 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
296 LHSKnownZero, LHSKnownOne, Depth + 1))
297 return I;
298 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
299 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
300
301 // If the client is only demanding bits that we know, return the known
302 // constant.
303 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
304 (RHSKnownOne | LHSKnownOne))) == DemandedMask)
305 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
306
307 // If all of the demanded bits are known zero on one side, return the other.
308 // These bits cannot contribute to the result of the 'or'.
309 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
310 (DemandedMask & ~LHSKnownOne))
311 return I->getOperand(0);
312 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
313 (DemandedMask & ~RHSKnownOne))
314 return I->getOperand(1);
315
316 // If all of the potentially set bits on one side are known to be set on
317 // the other side, just use the 'other' side.
318 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
319 (DemandedMask & (~RHSKnownZero)))
320 return I->getOperand(0);
321 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
322 (DemandedMask & (~LHSKnownZero)))
323 return I->getOperand(1);
324
325 // If the RHS is a constant, see if we can simplify it.
326 if (ShrinkDemandedConstant(I, 1, DemandedMask))
327 return I;
328
329 // Output known-0 bits are only known if clear in both the LHS & RHS.
330 KnownZero = RHSKnownZero & LHSKnownZero;
331 // Output known-1 are known to be set if set in either the LHS | RHS.
332 KnownOne = RHSKnownOne | LHSKnownOne;
333 break;
334 case Instruction::Xor: {
335 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
336 RHSKnownOne, Depth + 1) ||
337 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
338 LHSKnownOne, Depth + 1))
339 return I;
340 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
341 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
342
343 // Output known-0 bits are known if clear or set in both the LHS & RHS.
344 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
345 (RHSKnownOne & LHSKnownOne);
346 // Output known-1 are known to be set if set in only one of the LHS, RHS.
347 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
348 (RHSKnownOne & LHSKnownZero);
349
350 // If the client is only demanding bits that we know, return the known
351 // constant.
352 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
353 return Constant::getIntegerValue(VTy, IKnownOne);
354
355 // If all of the demanded bits are known zero on one side, return the other.
356 // These bits cannot contribute to the result of the 'xor'.
357 if ((DemandedMask & RHSKnownZero) == DemandedMask)
358 return I->getOperand(0);
359 if ((DemandedMask & LHSKnownZero) == DemandedMask)
360 return I->getOperand(1);
361
362 // If all of the demanded bits are known to be zero on one side or the
363 // other, turn this into an *inclusive* or.
364 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
365 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
366 Instruction *Or =
367 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
368 I->getName());
369 return InsertNewInstWith(Or, *I);
370 }
371
372 // If all of the demanded bits on one side are known, and all of the set
373 // bits on that side are also known to be set on the other side, turn this
374 // into an AND, as we know the bits will be cleared.
375 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
376 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
377 // all known
378 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
379 Constant *AndC = Constant::getIntegerValue(VTy,
380 ~RHSKnownOne & DemandedMask);
381 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
382 return InsertNewInstWith(And, *I);
383 }
384 }
385
386 // If the RHS is a constant, see if we can simplify it.
387 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
388 if (ShrinkDemandedConstant(I, 1, DemandedMask))
389 return I;
390
391 // If our LHS is an 'and' and if it has one use, and if any of the bits we
392 // are flipping are known to be set, then the xor is just resetting those
393 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
394 // simplifying both of them.
395 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
396 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
397 isa<ConstantInt>(I->getOperand(1)) &&
398 isa<ConstantInt>(LHSInst->getOperand(1)) &&
399 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
400 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
401 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
402 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
403
404 Constant *AndC =
405 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
406 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
407 InsertNewInstWith(NewAnd, *I);
408
409 Constant *XorC =
410 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
411 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
412 return InsertNewInstWith(NewXor, *I);
413 }
414
415 // Output known-0 bits are known if clear or set in both the LHS & RHS.
416 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
417 // Output known-1 are known to be set if set in only one of the LHS, RHS.
418 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
419 break;
420 }
421 case Instruction::Select:
422 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
423 RHSKnownOne, Depth + 1) ||
424 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
425 LHSKnownOne, Depth + 1))
426 return I;
427 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
428 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
429
430 // If the operands are constants, see if we can simplify them.
431 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
432 ShrinkDemandedConstant(I, 2, DemandedMask))
433 return I;
434
435 // Only known if known in both the LHS and RHS.
436 KnownOne = RHSKnownOne & LHSKnownOne;
437 KnownZero = RHSKnownZero & LHSKnownZero;
438 break;
439 case Instruction::Trunc: {
440 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
441 DemandedMask = DemandedMask.zext(truncBf);
442 KnownZero = KnownZero.zext(truncBf);
443 KnownOne = KnownOne.zext(truncBf);
444 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
445 KnownOne, Depth + 1))
446 return I;
447 DemandedMask = DemandedMask.trunc(BitWidth);
448 KnownZero = KnownZero.trunc(BitWidth);
449 KnownOne = KnownOne.trunc(BitWidth);
450 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
451 break;
452 }
453 case Instruction::BitCast:
454 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
455 return nullptr; // vector->int or fp->int?
456
457 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
458 if (VectorType *SrcVTy =
459 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
460 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
461 // Don't touch a bitcast between vectors of different element counts.
462 return nullptr;
463 } else
464 // Don't touch a scalar-to-vector bitcast.
465 return nullptr;
466 } else if (I->getOperand(0)->getType()->isVectorTy())
467 // Don't touch a vector-to-scalar bitcast.
468 return nullptr;
469
470 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
471 KnownOne, Depth + 1))
472 return I;
473 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
474 break;
475 case Instruction::ZExt: {
476 // Compute the bits in the result that are not present in the input.
477 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
478
479 DemandedMask = DemandedMask.trunc(SrcBitWidth);
480 KnownZero = KnownZero.trunc(SrcBitWidth);
481 KnownOne = KnownOne.trunc(SrcBitWidth);
482 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
483 KnownOne, Depth + 1))
484 return I;
485 DemandedMask = DemandedMask.zext(BitWidth);
486 KnownZero = KnownZero.zext(BitWidth);
487 KnownOne = KnownOne.zext(BitWidth);
488 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
489 // The top bits are known to be zero.
490 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
491 break;
492 }
493 case Instruction::SExt: {
494 // Compute the bits in the result that are not present in the input.
495 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
496
497 APInt InputDemandedBits = DemandedMask &
498 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
499
500 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
501 // If any of the sign extended bits are demanded, we know that the sign
502 // bit is demanded.
503 if ((NewBits & DemandedMask) != 0)
504 InputDemandedBits.setBit(SrcBitWidth-1);
505
506 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
507 KnownZero = KnownZero.trunc(SrcBitWidth);
508 KnownOne = KnownOne.trunc(SrcBitWidth);
509 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
510 KnownOne, Depth + 1))
511 return I;
512 InputDemandedBits = InputDemandedBits.zext(BitWidth);
513 KnownZero = KnownZero.zext(BitWidth);
514 KnownOne = KnownOne.zext(BitWidth);
515 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
516
517 // If the sign bit of the input is known set or clear, then we know the
518 // top bits of the result.
519
520 // If the input sign bit is known zero, or if the NewBits are not demanded
521 // convert this into a zero extension.
522 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
523 // Convert to ZExt cast
524 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
525 return InsertNewInstWith(NewCast, *I);
526 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
527 KnownOne |= NewBits;
528 }
529 break;
530 }
531 case Instruction::Add: {
532 // Figure out what the input bits are. If the top bits of the and result
533 // are not demanded, then the add doesn't demand them from its input
534 // either.
535 unsigned NLZ = DemandedMask.countLeadingZeros();
536
537 // If there is a constant on the RHS, there are a variety of xformations
538 // we can do.
539 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
540 // If null, this should be simplified elsewhere. Some of the xforms here
541 // won't work if the RHS is zero.
542 if (RHS->isZero())
543 break;
544
545 // If the top bit of the output is demanded, demand everything from the
546 // input. Otherwise, we demand all the input bits except NLZ top bits.
547 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
548
549 // Find information about known zero/one bits in the input.
550 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
551 LHSKnownZero, LHSKnownOne, Depth + 1))
552 return I;
553
554 // If the RHS of the add has bits set that can't affect the input, reduce
555 // the constant.
556 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
557 return I;
558
559 // Avoid excess work.
560 if (LHSKnownZero == 0 && LHSKnownOne == 0)
561 break;
562
563 // Turn it into OR if input bits are zero.
564 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
565 Instruction *Or =
566 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
567 I->getName());
568 return InsertNewInstWith(Or, *I);
569 }
570
571 // We can say something about the output known-zero and known-one bits,
572 // depending on potential carries from the input constant and the
573 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
574 // bits set and the RHS constant is 0x01001, then we know we have a known
575 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
576
577 // To compute this, we first compute the potential carry bits. These are
578 // the bits which may be modified. I'm not aware of a better way to do
579 // this scan.
580 const APInt &RHSVal = RHS->getValue();
581 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
582
583 // Now that we know which bits have carries, compute the known-1/0 sets.
584
585 // Bits are known one if they are known zero in one operand and one in the
586 // other, and there is no input carry.
587 KnownOne = ((LHSKnownZero & RHSVal) |
588 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
589
590 // Bits are known zero if they are known zero in both operands and there
591 // is no input carry.
592 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
593 } else {
594 // If the high-bits of this ADD are not demanded, then it does not demand
595 // the high bits of its LHS or RHS.
596 if (DemandedMask[BitWidth-1] == 0) {
597 // Right fill the mask of bits for this ADD to demand the most
598 // significant bit and all those below it.
599 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
600 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
601 LHSKnownZero, LHSKnownOne, Depth + 1) ||
602 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
603 LHSKnownZero, LHSKnownOne, Depth + 1))
604 return I;
605 }
606 }
607 break;
608 }
609 case Instruction::Sub:
610 // If the high-bits of this SUB are not demanded, then it does not demand
611 // the high bits of its LHS or RHS.
612 if (DemandedMask[BitWidth-1] == 0) {
613 // Right fill the mask of bits for this SUB to demand the most
614 // significant bit and all those below it.
615 uint32_t NLZ = DemandedMask.countLeadingZeros();
616 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
617 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
618 LHSKnownZero, LHSKnownOne, Depth + 1) ||
619 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
620 LHSKnownZero, LHSKnownOne, Depth + 1))
621 return I;
622 }
623
624 // Otherwise just hand the sub off to computeKnownBits to fill in
625 // the known zeros and ones.
626 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
627
628 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
629 // zero.
630 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
631 APInt I0 = C0->getValue();
632 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
633 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
634 return InsertNewInstWith(Xor, *I);
635 }
636 }
637 break;
638 case Instruction::Shl:
639 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
640 {
641 Value *VarX; ConstantInt *C1;
642 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
643 Instruction *Shr = cast<Instruction>(I->getOperand(0));
644 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
645 KnownZero, KnownOne);
646 if (R)
647 return R;
648 }
649 }
650
651 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
652 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
653
654 // If the shift is NUW/NSW, then it does demand the high bits.
655 ShlOperator *IOp = cast<ShlOperator>(I);
656 if (IOp->hasNoSignedWrap())
657 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
658 else if (IOp->hasNoUnsignedWrap())
659 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
660
661 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
662 KnownOne, Depth + 1))
663 return I;
664 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
665 KnownZero <<= ShiftAmt;
666 KnownOne <<= ShiftAmt;
667 // low bits known zero.
668 if (ShiftAmt)
669 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
670 }
671 break;
672 case Instruction::LShr:
673 // For a logical shift right
674 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
675 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
676
677 // Unsigned shift right.
678 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
679
680 // If the shift is exact, then it does demand the low bits (and knows that
681 // they are zero).
682 if (cast<LShrOperator>(I)->isExact())
683 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
684
685 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
686 KnownOne, Depth + 1))
687 return I;
688 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
689 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
690 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
691 if (ShiftAmt) {
692 // Compute the new bits that are at the top now.
693 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
694 KnownZero |= HighBits; // high bits known zero.
695 }
696 }
697 break;
698 case Instruction::AShr:
699 // If this is an arithmetic shift right and only the low-bit is set, we can
700 // always convert this into a logical shr, even if the shift amount is
701 // variable. The low bit of the shift cannot be an input sign bit unless
702 // the shift amount is >= the size of the datatype, which is undefined.
703 if (DemandedMask == 1) {
704 // Perform the logical shift right.
705 Instruction *NewVal = BinaryOperator::CreateLShr(
706 I->getOperand(0), I->getOperand(1), I->getName());
707 return InsertNewInstWith(NewVal, *I);
708 }
709
710 // If the sign bit is the only bit demanded by this ashr, then there is no
711 // need to do it, the shift doesn't change the high bit.
712 if (DemandedMask.isSignBit())
713 return I->getOperand(0);
714
715 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
716 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
717
718 // Signed shift right.
719 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
720 // If any of the "high bits" are demanded, we should set the sign bit as
721 // demanded.
722 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
723 DemandedMaskIn.setBit(BitWidth-1);
724
725 // If the shift is exact, then it does demand the low bits (and knows that
726 // they are zero).
727 if (cast<AShrOperator>(I)->isExact())
728 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
729
730 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
731 KnownOne, Depth + 1))
732 return I;
733 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
734 // Compute the new bits that are at the top now.
735 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
736 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
737 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
738
739 // Handle the sign bits.
740 APInt SignBit(APInt::getSignBit(BitWidth));
741 // Adjust to where it is now in the mask.
742 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
743
744 // If the input sign bit is known to be zero, or if none of the top bits
745 // are demanded, turn this into an unsigned shift right.
746 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
747 (HighBits & ~DemandedMask) == HighBits) {
748 // Perform the logical shift right.
749 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
750 SA, I->getName());
751 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
752 return InsertNewInstWith(NewVal, *I);
753 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
754 KnownOne |= HighBits;
755 }
756 }
757 break;
758 case Instruction::SRem:
759 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
760 // X % -1 demands all the bits because we don't want to introduce
761 // INT_MIN % -1 (== undef) by accident.
762 if (Rem->isAllOnesValue())
763 break;
764 APInt RA = Rem->getValue().abs();
765 if (RA.isPowerOf2()) {
766 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
767 return I->getOperand(0);
768
769 APInt LowBits = RA - 1;
770 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
771 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
772 LHSKnownOne, Depth + 1))
773 return I;
774
775 // The low bits of LHS are unchanged by the srem.
776 KnownZero = LHSKnownZero & LowBits;
777 KnownOne = LHSKnownOne & LowBits;
778
779 // If LHS is non-negative or has all low bits zero, then the upper bits
780 // are all zero.
781 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
782 KnownZero |= ~LowBits;
783
784 // If LHS is negative and not all low bits are zero, then the upper bits
785 // are all one.
786 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
787 KnownOne |= ~LowBits;
788
789 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
790 }
791 }
792
793 // The sign bit is the LHS's sign bit, except when the result of the
794 // remainder is zero.
795 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
796 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
797 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
798 CxtI);
799 // If it's known zero, our sign bit is also zero.
800 if (LHSKnownZero.isNegative())
801 KnownZero.setBit(KnownZero.getBitWidth() - 1);
802 }
803 break;
804 case Instruction::URem: {
805 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
806 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
807 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
808 KnownOne2, Depth + 1) ||
809 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
810 KnownOne2, Depth + 1))
811 return I;
812
813 unsigned Leaders = KnownZero2.countLeadingOnes();
814 Leaders = std::max(Leaders,
815 KnownZero2.countLeadingOnes());
816 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
817 break;
818 }
819 case Instruction::Call:
820 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
821 switch (II->getIntrinsicID()) {
822 default: break;
823 case Intrinsic::bswap: {
824 // If the only bits demanded come from one byte of the bswap result,
825 // just shift the input byte into position to eliminate the bswap.
826 unsigned NLZ = DemandedMask.countLeadingZeros();
827 unsigned NTZ = DemandedMask.countTrailingZeros();
828
829 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
830 // we need all the bits down to bit 8. Likewise, round NLZ. If we
831 // have 14 leading zeros, round to 8.
832 NLZ &= ~7;
833 NTZ &= ~7;
834 // If we need exactly one byte, we can do this transformation.
835 if (BitWidth-NLZ-NTZ == 8) {
836 unsigned ResultBit = NTZ;
837 unsigned InputBit = BitWidth-NTZ-8;
838
839 // Replace this with either a left or right shift to get the byte into
840 // the right place.
841 Instruction *NewVal;
842 if (InputBit > ResultBit)
843 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
844 ConstantInt::get(I->getType(), InputBit-ResultBit));
845 else
846 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
847 ConstantInt::get(I->getType(), ResultBit-InputBit));
848 NewVal->takeName(I);
849 return InsertNewInstWith(NewVal, *I);
850 }
851
852 // TODO: Could compute known zero/one bits based on the input.
853 break;
854 }
855 case Intrinsic::x86_sse42_crc32_64_64:
856 KnownZero = APInt::getHighBitsSet(64, 32);
857 return nullptr;
858 }
859 }
860 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
861 break;
862 }
863
864 // If the client is only demanding bits that we know, return the known
865 // constant.
866 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
867 return Constant::getIntegerValue(VTy, KnownOne);
868 return nullptr;
869 }
870
871 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
872 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
873 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
874 /// of "C2-C1".
875 ///
876 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
877 /// ..., bn}, without considering the specific value X is holding.
878 /// This transformation is legal iff one of following conditions is hold:
879 /// 1) All the bit in S are 0, in this case E1 == E2.
880 /// 2) We don't care those bits in S, per the input DemandedMask.
881 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
882 /// rest bits.
883 ///
884 /// Currently we only test condition 2).
885 ///
886 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
887 /// not successful.
SimplifyShrShlDemandedBits(Instruction * Shr,Instruction * Shl,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne)888 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
889 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
890
891 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
892 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
893 if (!ShlOp1 || !ShrOp1)
894 return nullptr; // Noop.
895
896 Value *VarX = Shr->getOperand(0);
897 Type *Ty = VarX->getType();
898 unsigned BitWidth = Ty->getIntegerBitWidth();
899 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
900 return nullptr; // Undef.
901
902 unsigned ShlAmt = ShlOp1.getZExtValue();
903 unsigned ShrAmt = ShrOp1.getZExtValue();
904
905 KnownOne.clearAllBits();
906 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
907 KnownZero &= DemandedMask;
908
909 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
910 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
911
912 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
913 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
914 (BitMask1.ashr(ShrAmt) << ShlAmt);
915
916 if (ShrAmt <= ShlAmt) {
917 BitMask2 <<= (ShlAmt - ShrAmt);
918 } else {
919 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
920 BitMask2.ashr(ShrAmt - ShlAmt);
921 }
922
923 // Check if condition-2 (see the comment to this function) is satified.
924 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
925 if (ShrAmt == ShlAmt)
926 return VarX;
927
928 if (!Shr->hasOneUse())
929 return nullptr;
930
931 BinaryOperator *New;
932 if (ShrAmt < ShlAmt) {
933 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
934 New = BinaryOperator::CreateShl(VarX, Amt);
935 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
936 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
937 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
938 } else {
939 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
940 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
941 BinaryOperator::CreateAShr(VarX, Amt);
942 if (cast<BinaryOperator>(Shr)->isExact())
943 New->setIsExact(true);
944 }
945
946 return InsertNewInstWith(New, *Shl);
947 }
948
949 return nullptr;
950 }
951
952 /// SimplifyDemandedVectorElts - The specified value produces a vector with
953 /// any number of elements. DemandedElts contains the set of elements that are
954 /// actually used by the caller. This method analyzes which elements of the
955 /// operand are undef and returns that information in UndefElts.
956 ///
957 /// If the information about demanded elements can be used to simplify the
958 /// operation, the operation is simplified, then the resultant value is
959 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)960 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
961 APInt &UndefElts,
962 unsigned Depth) {
963 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
964 APInt EltMask(APInt::getAllOnesValue(VWidth));
965 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
966
967 if (isa<UndefValue>(V)) {
968 // If the entire vector is undefined, just return this info.
969 UndefElts = EltMask;
970 return nullptr;
971 }
972
973 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
974 UndefElts = EltMask;
975 return UndefValue::get(V->getType());
976 }
977
978 UndefElts = 0;
979
980 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
981 if (Constant *C = dyn_cast<Constant>(V)) {
982 // Check if this is identity. If so, return 0 since we are not simplifying
983 // anything.
984 if (DemandedElts.isAllOnesValue())
985 return nullptr;
986
987 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
988 Constant *Undef = UndefValue::get(EltTy);
989
990 SmallVector<Constant*, 16> Elts;
991 for (unsigned i = 0; i != VWidth; ++i) {
992 if (!DemandedElts[i]) { // If not demanded, set to undef.
993 Elts.push_back(Undef);
994 UndefElts.setBit(i);
995 continue;
996 }
997
998 Constant *Elt = C->getAggregateElement(i);
999 if (!Elt) return nullptr;
1000
1001 if (isa<UndefValue>(Elt)) { // Already undef.
1002 Elts.push_back(Undef);
1003 UndefElts.setBit(i);
1004 } else { // Otherwise, defined.
1005 Elts.push_back(Elt);
1006 }
1007 }
1008
1009 // If we changed the constant, return it.
1010 Constant *NewCV = ConstantVector::get(Elts);
1011 return NewCV != C ? NewCV : nullptr;
1012 }
1013
1014 // Limit search depth.
1015 if (Depth == 10)
1016 return nullptr;
1017
1018 // If multiple users are using the root value, proceed with
1019 // simplification conservatively assuming that all elements
1020 // are needed.
1021 if (!V->hasOneUse()) {
1022 // Quit if we find multiple users of a non-root value though.
1023 // They'll be handled when it's their turn to be visited by
1024 // the main instcombine process.
1025 if (Depth != 0)
1026 // TODO: Just compute the UndefElts information recursively.
1027 return nullptr;
1028
1029 // Conservatively assume that all elements are needed.
1030 DemandedElts = EltMask;
1031 }
1032
1033 Instruction *I = dyn_cast<Instruction>(V);
1034 if (!I) return nullptr; // Only analyze instructions.
1035
1036 bool MadeChange = false;
1037 APInt UndefElts2(VWidth, 0);
1038 Value *TmpV;
1039 switch (I->getOpcode()) {
1040 default: break;
1041
1042 case Instruction::InsertElement: {
1043 // If this is a variable index, we don't know which element it overwrites.
1044 // demand exactly the same input as we produce.
1045 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1046 if (!Idx) {
1047 // Note that we can't propagate undef elt info, because we don't know
1048 // which elt is getting updated.
1049 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1050 UndefElts2, Depth + 1);
1051 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1052 break;
1053 }
1054
1055 // If this is inserting an element that isn't demanded, remove this
1056 // insertelement.
1057 unsigned IdxNo = Idx->getZExtValue();
1058 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1059 Worklist.Add(I);
1060 return I->getOperand(0);
1061 }
1062
1063 // Otherwise, the element inserted overwrites whatever was there, so the
1064 // input demanded set is simpler than the output set.
1065 APInt DemandedElts2 = DemandedElts;
1066 DemandedElts2.clearBit(IdxNo);
1067 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1068 UndefElts, Depth + 1);
1069 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1070
1071 // The inserted element is defined.
1072 UndefElts.clearBit(IdxNo);
1073 break;
1074 }
1075 case Instruction::ShuffleVector: {
1076 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1077 uint64_t LHSVWidth =
1078 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1079 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1080 for (unsigned i = 0; i < VWidth; i++) {
1081 if (DemandedElts[i]) {
1082 unsigned MaskVal = Shuffle->getMaskValue(i);
1083 if (MaskVal != -1u) {
1084 assert(MaskVal < LHSVWidth * 2 &&
1085 "shufflevector mask index out of range!");
1086 if (MaskVal < LHSVWidth)
1087 LeftDemanded.setBit(MaskVal);
1088 else
1089 RightDemanded.setBit(MaskVal - LHSVWidth);
1090 }
1091 }
1092 }
1093
1094 APInt UndefElts4(LHSVWidth, 0);
1095 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1096 UndefElts4, Depth + 1);
1097 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1098
1099 APInt UndefElts3(LHSVWidth, 0);
1100 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1101 UndefElts3, Depth + 1);
1102 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1103
1104 bool NewUndefElts = false;
1105 for (unsigned i = 0; i < VWidth; i++) {
1106 unsigned MaskVal = Shuffle->getMaskValue(i);
1107 if (MaskVal == -1u) {
1108 UndefElts.setBit(i);
1109 } else if (!DemandedElts[i]) {
1110 NewUndefElts = true;
1111 UndefElts.setBit(i);
1112 } else if (MaskVal < LHSVWidth) {
1113 if (UndefElts4[MaskVal]) {
1114 NewUndefElts = true;
1115 UndefElts.setBit(i);
1116 }
1117 } else {
1118 if (UndefElts3[MaskVal - LHSVWidth]) {
1119 NewUndefElts = true;
1120 UndefElts.setBit(i);
1121 }
1122 }
1123 }
1124
1125 if (NewUndefElts) {
1126 // Add additional discovered undefs.
1127 SmallVector<Constant*, 16> Elts;
1128 for (unsigned i = 0; i < VWidth; ++i) {
1129 if (UndefElts[i])
1130 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1131 else
1132 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1133 Shuffle->getMaskValue(i)));
1134 }
1135 I->setOperand(2, ConstantVector::get(Elts));
1136 MadeChange = true;
1137 }
1138 break;
1139 }
1140 case Instruction::Select: {
1141 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1142 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1143 for (unsigned i = 0; i < VWidth; i++) {
1144 if (CV->getAggregateElement(i)->isNullValue())
1145 LeftDemanded.clearBit(i);
1146 else
1147 RightDemanded.clearBit(i);
1148 }
1149 }
1150
1151 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1152 Depth + 1);
1153 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1154
1155 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1156 UndefElts2, Depth + 1);
1157 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1158
1159 // Output elements are undefined if both are undefined.
1160 UndefElts &= UndefElts2;
1161 break;
1162 }
1163 case Instruction::BitCast: {
1164 // Vector->vector casts only.
1165 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1166 if (!VTy) break;
1167 unsigned InVWidth = VTy->getNumElements();
1168 APInt InputDemandedElts(InVWidth, 0);
1169 unsigned Ratio;
1170
1171 if (VWidth == InVWidth) {
1172 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1173 // elements as are demanded of us.
1174 Ratio = 1;
1175 InputDemandedElts = DemandedElts;
1176 } else if (VWidth > InVWidth) {
1177 // Untested so far.
1178 break;
1179
1180 // If there are more elements in the result than there are in the source,
1181 // then an input element is live if any of the corresponding output
1182 // elements are live.
1183 Ratio = VWidth/InVWidth;
1184 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1185 if (DemandedElts[OutIdx])
1186 InputDemandedElts.setBit(OutIdx/Ratio);
1187 }
1188 } else {
1189 // Untested so far.
1190 break;
1191
1192 // If there are more elements in the source than there are in the result,
1193 // then an input element is live if the corresponding output element is
1194 // live.
1195 Ratio = InVWidth/VWidth;
1196 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1197 if (DemandedElts[InIdx/Ratio])
1198 InputDemandedElts.setBit(InIdx);
1199 }
1200
1201 // div/rem demand all inputs, because they don't want divide by zero.
1202 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1203 UndefElts2, Depth + 1);
1204 if (TmpV) {
1205 I->setOperand(0, TmpV);
1206 MadeChange = true;
1207 }
1208
1209 UndefElts = UndefElts2;
1210 if (VWidth > InVWidth) {
1211 llvm_unreachable("Unimp");
1212 // If there are more elements in the result than there are in the source,
1213 // then an output element is undef if the corresponding input element is
1214 // undef.
1215 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1216 if (UndefElts2[OutIdx/Ratio])
1217 UndefElts.setBit(OutIdx);
1218 } else if (VWidth < InVWidth) {
1219 llvm_unreachable("Unimp");
1220 // If there are more elements in the source than there are in the result,
1221 // then a result element is undef if all of the corresponding input
1222 // elements are undef.
1223 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1224 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1225 if (!UndefElts2[InIdx]) // Not undef?
1226 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1227 }
1228 break;
1229 }
1230 case Instruction::And:
1231 case Instruction::Or:
1232 case Instruction::Xor:
1233 case Instruction::Add:
1234 case Instruction::Sub:
1235 case Instruction::Mul:
1236 // div/rem demand all inputs, because they don't want divide by zero.
1237 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1238 Depth + 1);
1239 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1240 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1241 UndefElts2, Depth + 1);
1242 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1243
1244 // Output elements are undefined if both are undefined. Consider things
1245 // like undef&0. The result is known zero, not undef.
1246 UndefElts &= UndefElts2;
1247 break;
1248 case Instruction::FPTrunc:
1249 case Instruction::FPExt:
1250 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1251 Depth + 1);
1252 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1253 break;
1254
1255 case Instruction::Call: {
1256 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1257 if (!II) break;
1258 switch (II->getIntrinsicID()) {
1259 default: break;
1260
1261 // Binary vector operations that work column-wise. A dest element is a
1262 // function of the corresponding input elements from the two inputs.
1263 case Intrinsic::x86_sse_sub_ss:
1264 case Intrinsic::x86_sse_mul_ss:
1265 case Intrinsic::x86_sse_min_ss:
1266 case Intrinsic::x86_sse_max_ss:
1267 case Intrinsic::x86_sse2_sub_sd:
1268 case Intrinsic::x86_sse2_mul_sd:
1269 case Intrinsic::x86_sse2_min_sd:
1270 case Intrinsic::x86_sse2_max_sd:
1271 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1272 UndefElts, Depth + 1);
1273 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1274 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1275 UndefElts2, Depth + 1);
1276 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1277
1278 // If only the low elt is demanded and this is a scalarizable intrinsic,
1279 // scalarize it now.
1280 if (DemandedElts == 1) {
1281 switch (II->getIntrinsicID()) {
1282 default: break;
1283 case Intrinsic::x86_sse_sub_ss:
1284 case Intrinsic::x86_sse_mul_ss:
1285 case Intrinsic::x86_sse2_sub_sd:
1286 case Intrinsic::x86_sse2_mul_sd:
1287 // TODO: Lower MIN/MAX/ABS/etc
1288 Value *LHS = II->getArgOperand(0);
1289 Value *RHS = II->getArgOperand(1);
1290 // Extract the element as scalars.
1291 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1292 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1293 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1294 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1295
1296 switch (II->getIntrinsicID()) {
1297 default: llvm_unreachable("Case stmts out of sync!");
1298 case Intrinsic::x86_sse_sub_ss:
1299 case Intrinsic::x86_sse2_sub_sd:
1300 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1301 II->getName()), *II);
1302 break;
1303 case Intrinsic::x86_sse_mul_ss:
1304 case Intrinsic::x86_sse2_mul_sd:
1305 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1306 II->getName()), *II);
1307 break;
1308 }
1309
1310 Instruction *New =
1311 InsertElementInst::Create(
1312 UndefValue::get(II->getType()), TmpV,
1313 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1314 II->getName());
1315 InsertNewInstWith(New, *II);
1316 return New;
1317 }
1318 }
1319
1320 // Output elements are undefined if both are undefined. Consider things
1321 // like undef&0. The result is known zero, not undef.
1322 UndefElts &= UndefElts2;
1323 break;
1324 }
1325 break;
1326 }
1327 }
1328 return MadeChange ? I : nullptr;
1329 }
1330