1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/MemoryBuiltins.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/IR/Statepoint.h"
21 #include "llvm/Transforms/Utils/BuildLibCalls.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
24 using namespace llvm;
25 using namespace PatternMatch;
26
27 #define DEBUG_TYPE "instcombine"
28
29 STATISTIC(NumSimplified, "Number of library calls simplified");
30
31 /// getPromotedType - Return the specified type promoted as it would be to pass
32 /// though a va_arg area.
getPromotedType(Type * Ty)33 static Type *getPromotedType(Type *Ty) {
34 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
35 if (ITy->getBitWidth() < 32)
36 return Type::getInt32Ty(Ty->getContext());
37 }
38 return Ty;
39 }
40
41 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
42 /// single scalar element, like {{{type}}} or [1 x type], return type.
reduceToSingleValueType(Type * T)43 static Type *reduceToSingleValueType(Type *T) {
44 while (!T->isSingleValueType()) {
45 if (StructType *STy = dyn_cast<StructType>(T)) {
46 if (STy->getNumElements() == 1)
47 T = STy->getElementType(0);
48 else
49 break;
50 } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
51 if (ATy->getNumElements() == 1)
52 T = ATy->getElementType();
53 else
54 break;
55 } else
56 break;
57 }
58
59 return T;
60 }
61
SimplifyMemTransfer(MemIntrinsic * MI)62 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
63 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
64 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
65 unsigned MinAlign = std::min(DstAlign, SrcAlign);
66 unsigned CopyAlign = MI->getAlignment();
67
68 if (CopyAlign < MinAlign) {
69 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
70 MinAlign, false));
71 return MI;
72 }
73
74 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
75 // load/store.
76 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
77 if (!MemOpLength) return nullptr;
78
79 // Source and destination pointer types are always "i8*" for intrinsic. See
80 // if the size is something we can handle with a single primitive load/store.
81 // A single load+store correctly handles overlapping memory in the memmove
82 // case.
83 uint64_t Size = MemOpLength->getLimitedValue();
84 assert(Size && "0-sized memory transferring should be removed already.");
85
86 if (Size > 8 || (Size&(Size-1)))
87 return nullptr; // If not 1/2/4/8 bytes, exit.
88
89 // Use an integer load+store unless we can find something better.
90 unsigned SrcAddrSp =
91 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
92 unsigned DstAddrSp =
93 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
94
95 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
96 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
97 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
98
99 // Memcpy forces the use of i8* for the source and destination. That means
100 // that if you're using memcpy to move one double around, you'll get a cast
101 // from double* to i8*. We'd much rather use a double load+store rather than
102 // an i64 load+store, here because this improves the odds that the source or
103 // dest address will be promotable. See if we can find a better type than the
104 // integer datatype.
105 Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
106 MDNode *CopyMD = nullptr;
107 if (StrippedDest != MI->getArgOperand(0)) {
108 Type *SrcETy = cast<PointerType>(StrippedDest->getType())
109 ->getElementType();
110 if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
111 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
112 // down through these levels if so.
113 SrcETy = reduceToSingleValueType(SrcETy);
114
115 if (SrcETy->isSingleValueType()) {
116 NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
117 NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
118
119 // If the memcpy has metadata describing the members, see if we can
120 // get the TBAA tag describing our copy.
121 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
122 if (M->getNumOperands() == 3 && M->getOperand(0) &&
123 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
124 mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
125 M->getOperand(1) &&
126 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
127 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
128 Size &&
129 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
130 CopyMD = cast<MDNode>(M->getOperand(2));
131 }
132 }
133 }
134 }
135
136 // If the memcpy/memmove provides better alignment info than we can
137 // infer, use it.
138 SrcAlign = std::max(SrcAlign, CopyAlign);
139 DstAlign = std::max(DstAlign, CopyAlign);
140
141 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
142 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
143 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
144 L->setAlignment(SrcAlign);
145 if (CopyMD)
146 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
147 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
148 S->setAlignment(DstAlign);
149 if (CopyMD)
150 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
151
152 // Set the size of the copy to 0, it will be deleted on the next iteration.
153 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
154 return MI;
155 }
156
SimplifyMemSet(MemSetInst * MI)157 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
158 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
159 if (MI->getAlignment() < Alignment) {
160 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
161 Alignment, false));
162 return MI;
163 }
164
165 // Extract the length and alignment and fill if they are constant.
166 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
167 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
168 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
169 return nullptr;
170 uint64_t Len = LenC->getLimitedValue();
171 Alignment = MI->getAlignment();
172 assert(Len && "0-sized memory setting should be removed already.");
173
174 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
175 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
176 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
177
178 Value *Dest = MI->getDest();
179 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
180 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
181 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
182
183 // Alignment 0 is identity for alignment 1 for memset, but not store.
184 if (Alignment == 0) Alignment = 1;
185
186 // Extract the fill value and store.
187 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
188 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
189 MI->isVolatile());
190 S->setAlignment(Alignment);
191
192 // Set the size of the copy to 0, it will be deleted on the next iteration.
193 MI->setLength(Constant::getNullValue(LenC->getType()));
194 return MI;
195 }
196
197 return nullptr;
198 }
199
SimplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)200 static Value *SimplifyX86insertps(const IntrinsicInst &II,
201 InstCombiner::BuilderTy &Builder) {
202 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
203 VectorType *VecTy = cast<VectorType>(II.getType());
204 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
205
206 // The immediate permute control byte looks like this:
207 // [3:0] - zero mask for each 32-bit lane
208 // [5:4] - select one 32-bit destination lane
209 // [7:6] - select one 32-bit source lane
210
211 uint8_t Imm = CInt->getZExtValue();
212 uint8_t ZMask = Imm & 0xf;
213 uint8_t DestLane = (Imm >> 4) & 0x3;
214 uint8_t SourceLane = (Imm >> 6) & 0x3;
215
216 // If all zero mask bits are set, this was just a weird way to
217 // generate a zero vector.
218 if (ZMask == 0xf)
219 return ZeroVector;
220
221 // TODO: Model this case as two shuffles or a 'logical and' plus shuffle?
222 if (ZMask)
223 return nullptr;
224
225 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
226
227 // If we're not zeroing anything, this is a single shuffle.
228 // Replace the selected destination lane with the selected source lane.
229 // For all other lanes, pass the first source bits through.
230 int ShuffleMask[4] = { 0, 1, 2, 3 };
231 ShuffleMask[DestLane] = SourceLane + 4;
232
233 return Builder.CreateShuffleVector(II.getArgOperand(0), II.getArgOperand(1),
234 ShuffleMask);
235 }
236 return nullptr;
237 }
238
239 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
240 /// source vectors, unless a zero bit is set. If a zero bit is set,
241 /// then ignore that half of the mask and clear that half of the vector.
SimplifyX86vperm2(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)242 static Value *SimplifyX86vperm2(const IntrinsicInst &II,
243 InstCombiner::BuilderTy &Builder) {
244 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
245 VectorType *VecTy = cast<VectorType>(II.getType());
246 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
247
248 // The immediate permute control byte looks like this:
249 // [1:0] - select 128 bits from sources for low half of destination
250 // [2] - ignore
251 // [3] - zero low half of destination
252 // [5:4] - select 128 bits from sources for high half of destination
253 // [6] - ignore
254 // [7] - zero high half of destination
255
256 uint8_t Imm = CInt->getZExtValue();
257
258 bool LowHalfZero = Imm & 0x08;
259 bool HighHalfZero = Imm & 0x80;
260
261 // If both zero mask bits are set, this was just a weird way to
262 // generate a zero vector.
263 if (LowHalfZero && HighHalfZero)
264 return ZeroVector;
265
266 // If 0 or 1 zero mask bits are set, this is a simple shuffle.
267 unsigned NumElts = VecTy->getNumElements();
268 unsigned HalfSize = NumElts / 2;
269 SmallVector<int, 8> ShuffleMask(NumElts);
270
271 // The high bit of the selection field chooses the 1st or 2nd operand.
272 bool LowInputSelect = Imm & 0x02;
273 bool HighInputSelect = Imm & 0x20;
274
275 // The low bit of the selection field chooses the low or high half
276 // of the selected operand.
277 bool LowHalfSelect = Imm & 0x01;
278 bool HighHalfSelect = Imm & 0x10;
279
280 // Determine which operand(s) are actually in use for this instruction.
281 Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
282 Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
283
284 // If needed, replace operands based on zero mask.
285 V0 = LowHalfZero ? ZeroVector : V0;
286 V1 = HighHalfZero ? ZeroVector : V1;
287
288 // Permute low half of result.
289 unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
290 for (unsigned i = 0; i < HalfSize; ++i)
291 ShuffleMask[i] = StartIndex + i;
292
293 // Permute high half of result.
294 StartIndex = HighHalfSelect ? HalfSize : 0;
295 StartIndex += NumElts;
296 for (unsigned i = 0; i < HalfSize; ++i)
297 ShuffleMask[i + HalfSize] = StartIndex + i;
298
299 return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
300 }
301 return nullptr;
302 }
303
304 /// visitCallInst - CallInst simplification. This mostly only handles folding
305 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
306 /// the heavy lifting.
307 ///
visitCallInst(CallInst & CI)308 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
309 if (isFreeCall(&CI, TLI))
310 return visitFree(CI);
311
312 // If the caller function is nounwind, mark the call as nounwind, even if the
313 // callee isn't.
314 if (CI.getParent()->getParent()->doesNotThrow() &&
315 !CI.doesNotThrow()) {
316 CI.setDoesNotThrow();
317 return &CI;
318 }
319
320 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
321 if (!II) return visitCallSite(&CI);
322
323 // Intrinsics cannot occur in an invoke, so handle them here instead of in
324 // visitCallSite.
325 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
326 bool Changed = false;
327
328 // memmove/cpy/set of zero bytes is a noop.
329 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
330 if (NumBytes->isNullValue())
331 return EraseInstFromFunction(CI);
332
333 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
334 if (CI->getZExtValue() == 1) {
335 // Replace the instruction with just byte operations. We would
336 // transform other cases to loads/stores, but we don't know if
337 // alignment is sufficient.
338 }
339 }
340
341 // No other transformations apply to volatile transfers.
342 if (MI->isVolatile())
343 return nullptr;
344
345 // If we have a memmove and the source operation is a constant global,
346 // then the source and dest pointers can't alias, so we can change this
347 // into a call to memcpy.
348 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
349 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
350 if (GVSrc->isConstant()) {
351 Module *M = CI.getParent()->getParent()->getParent();
352 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
353 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
354 CI.getArgOperand(1)->getType(),
355 CI.getArgOperand(2)->getType() };
356 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
357 Changed = true;
358 }
359 }
360
361 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
362 // memmove(x,x,size) -> noop.
363 if (MTI->getSource() == MTI->getDest())
364 return EraseInstFromFunction(CI);
365 }
366
367 // If we can determine a pointer alignment that is bigger than currently
368 // set, update the alignment.
369 if (isa<MemTransferInst>(MI)) {
370 if (Instruction *I = SimplifyMemTransfer(MI))
371 return I;
372 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
373 if (Instruction *I = SimplifyMemSet(MSI))
374 return I;
375 }
376
377 if (Changed) return II;
378 }
379
380 switch (II->getIntrinsicID()) {
381 default: break;
382 case Intrinsic::objectsize: {
383 uint64_t Size;
384 if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
385 return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
386 return nullptr;
387 }
388 case Intrinsic::bswap: {
389 Value *IIOperand = II->getArgOperand(0);
390 Value *X = nullptr;
391
392 // bswap(bswap(x)) -> x
393 if (match(IIOperand, m_BSwap(m_Value(X))))
394 return ReplaceInstUsesWith(CI, X);
395
396 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
397 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
398 unsigned C = X->getType()->getPrimitiveSizeInBits() -
399 IIOperand->getType()->getPrimitiveSizeInBits();
400 Value *CV = ConstantInt::get(X->getType(), C);
401 Value *V = Builder->CreateLShr(X, CV);
402 return new TruncInst(V, IIOperand->getType());
403 }
404 break;
405 }
406
407 case Intrinsic::powi:
408 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
409 // powi(x, 0) -> 1.0
410 if (Power->isZero())
411 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
412 // powi(x, 1) -> x
413 if (Power->isOne())
414 return ReplaceInstUsesWith(CI, II->getArgOperand(0));
415 // powi(x, -1) -> 1/x
416 if (Power->isAllOnesValue())
417 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
418 II->getArgOperand(0));
419 }
420 break;
421 case Intrinsic::cttz: {
422 // If all bits below the first known one are known zero,
423 // this value is constant.
424 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
425 // FIXME: Try to simplify vectors of integers.
426 if (!IT) break;
427 uint32_t BitWidth = IT->getBitWidth();
428 APInt KnownZero(BitWidth, 0);
429 APInt KnownOne(BitWidth, 0);
430 computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
431 unsigned TrailingZeros = KnownOne.countTrailingZeros();
432 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
433 if ((Mask & KnownZero) == Mask)
434 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
435 APInt(BitWidth, TrailingZeros)));
436
437 }
438 break;
439 case Intrinsic::ctlz: {
440 // If all bits above the first known one are known zero,
441 // this value is constant.
442 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
443 // FIXME: Try to simplify vectors of integers.
444 if (!IT) break;
445 uint32_t BitWidth = IT->getBitWidth();
446 APInt KnownZero(BitWidth, 0);
447 APInt KnownOne(BitWidth, 0);
448 computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
449 unsigned LeadingZeros = KnownOne.countLeadingZeros();
450 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
451 if ((Mask & KnownZero) == Mask)
452 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
453 APInt(BitWidth, LeadingZeros)));
454
455 }
456 break;
457
458 case Intrinsic::uadd_with_overflow:
459 case Intrinsic::sadd_with_overflow:
460 case Intrinsic::umul_with_overflow:
461 case Intrinsic::smul_with_overflow:
462 if (isa<Constant>(II->getArgOperand(0)) &&
463 !isa<Constant>(II->getArgOperand(1))) {
464 // Canonicalize constants into the RHS.
465 Value *LHS = II->getArgOperand(0);
466 II->setArgOperand(0, II->getArgOperand(1));
467 II->setArgOperand(1, LHS);
468 return II;
469 }
470 // fall through
471
472 case Intrinsic::usub_with_overflow:
473 case Intrinsic::ssub_with_overflow: {
474 OverflowCheckFlavor OCF =
475 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
476 assert(OCF != OCF_INVALID && "unexpected!");
477
478 Value *OperationResult = nullptr;
479 Constant *OverflowResult = nullptr;
480 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
481 *II, OperationResult, OverflowResult))
482 return CreateOverflowTuple(II, OperationResult, OverflowResult);
483
484 break;
485 }
486
487 case Intrinsic::minnum:
488 case Intrinsic::maxnum: {
489 Value *Arg0 = II->getArgOperand(0);
490 Value *Arg1 = II->getArgOperand(1);
491
492 // fmin(x, x) -> x
493 if (Arg0 == Arg1)
494 return ReplaceInstUsesWith(CI, Arg0);
495
496 const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
497 const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
498
499 // Canonicalize constants into the RHS.
500 if (C0 && !C1) {
501 II->setArgOperand(0, Arg1);
502 II->setArgOperand(1, Arg0);
503 return II;
504 }
505
506 // fmin(x, nan) -> x
507 if (C1 && C1->isNaN())
508 return ReplaceInstUsesWith(CI, Arg0);
509
510 // This is the value because if undef were NaN, we would return the other
511 // value and cannot return a NaN unless both operands are.
512 //
513 // fmin(undef, x) -> x
514 if (isa<UndefValue>(Arg0))
515 return ReplaceInstUsesWith(CI, Arg1);
516
517 // fmin(x, undef) -> x
518 if (isa<UndefValue>(Arg1))
519 return ReplaceInstUsesWith(CI, Arg0);
520
521 Value *X = nullptr;
522 Value *Y = nullptr;
523 if (II->getIntrinsicID() == Intrinsic::minnum) {
524 // fmin(x, fmin(x, y)) -> fmin(x, y)
525 // fmin(y, fmin(x, y)) -> fmin(x, y)
526 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
527 if (Arg0 == X || Arg0 == Y)
528 return ReplaceInstUsesWith(CI, Arg1);
529 }
530
531 // fmin(fmin(x, y), x) -> fmin(x, y)
532 // fmin(fmin(x, y), y) -> fmin(x, y)
533 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
534 if (Arg1 == X || Arg1 == Y)
535 return ReplaceInstUsesWith(CI, Arg0);
536 }
537
538 // TODO: fmin(nnan x, inf) -> x
539 // TODO: fmin(nnan ninf x, flt_max) -> x
540 if (C1 && C1->isInfinity()) {
541 // fmin(x, -inf) -> -inf
542 if (C1->isNegative())
543 return ReplaceInstUsesWith(CI, Arg1);
544 }
545 } else {
546 assert(II->getIntrinsicID() == Intrinsic::maxnum);
547 // fmax(x, fmax(x, y)) -> fmax(x, y)
548 // fmax(y, fmax(x, y)) -> fmax(x, y)
549 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
550 if (Arg0 == X || Arg0 == Y)
551 return ReplaceInstUsesWith(CI, Arg1);
552 }
553
554 // fmax(fmax(x, y), x) -> fmax(x, y)
555 // fmax(fmax(x, y), y) -> fmax(x, y)
556 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
557 if (Arg1 == X || Arg1 == Y)
558 return ReplaceInstUsesWith(CI, Arg0);
559 }
560
561 // TODO: fmax(nnan x, -inf) -> x
562 // TODO: fmax(nnan ninf x, -flt_max) -> x
563 if (C1 && C1->isInfinity()) {
564 // fmax(x, inf) -> inf
565 if (!C1->isNegative())
566 return ReplaceInstUsesWith(CI, Arg1);
567 }
568 }
569 break;
570 }
571 case Intrinsic::ppc_altivec_lvx:
572 case Intrinsic::ppc_altivec_lvxl:
573 // Turn PPC lvx -> load if the pointer is known aligned.
574 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
575 16) {
576 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
577 PointerType::getUnqual(II->getType()));
578 return new LoadInst(Ptr);
579 }
580 break;
581 case Intrinsic::ppc_vsx_lxvw4x:
582 case Intrinsic::ppc_vsx_lxvd2x: {
583 // Turn PPC VSX loads into normal loads.
584 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
585 PointerType::getUnqual(II->getType()));
586 return new LoadInst(Ptr, Twine(""), false, 1);
587 }
588 case Intrinsic::ppc_altivec_stvx:
589 case Intrinsic::ppc_altivec_stvxl:
590 // Turn stvx -> store if the pointer is known aligned.
591 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
592 16) {
593 Type *OpPtrTy =
594 PointerType::getUnqual(II->getArgOperand(0)->getType());
595 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
596 return new StoreInst(II->getArgOperand(0), Ptr);
597 }
598 break;
599 case Intrinsic::ppc_vsx_stxvw4x:
600 case Intrinsic::ppc_vsx_stxvd2x: {
601 // Turn PPC VSX stores into normal stores.
602 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
603 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
604 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
605 }
606 case Intrinsic::ppc_qpx_qvlfs:
607 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
608 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
609 16) {
610 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
611 PointerType::getUnqual(II->getType()));
612 return new LoadInst(Ptr);
613 }
614 break;
615 case Intrinsic::ppc_qpx_qvlfd:
616 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
617 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
618 32) {
619 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
620 PointerType::getUnqual(II->getType()));
621 return new LoadInst(Ptr);
622 }
623 break;
624 case Intrinsic::ppc_qpx_qvstfs:
625 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
626 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
627 16) {
628 Type *OpPtrTy =
629 PointerType::getUnqual(II->getArgOperand(0)->getType());
630 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
631 return new StoreInst(II->getArgOperand(0), Ptr);
632 }
633 break;
634 case Intrinsic::ppc_qpx_qvstfd:
635 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
636 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
637 32) {
638 Type *OpPtrTy =
639 PointerType::getUnqual(II->getArgOperand(0)->getType());
640 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
641 return new StoreInst(II->getArgOperand(0), Ptr);
642 }
643 break;
644 case Intrinsic::x86_sse_storeu_ps:
645 case Intrinsic::x86_sse2_storeu_pd:
646 case Intrinsic::x86_sse2_storeu_dq:
647 // Turn X86 storeu -> store if the pointer is known aligned.
648 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
649 16) {
650 Type *OpPtrTy =
651 PointerType::getUnqual(II->getArgOperand(1)->getType());
652 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
653 return new StoreInst(II->getArgOperand(1), Ptr);
654 }
655 break;
656
657 case Intrinsic::x86_sse_cvtss2si:
658 case Intrinsic::x86_sse_cvtss2si64:
659 case Intrinsic::x86_sse_cvttss2si:
660 case Intrinsic::x86_sse_cvttss2si64:
661 case Intrinsic::x86_sse2_cvtsd2si:
662 case Intrinsic::x86_sse2_cvtsd2si64:
663 case Intrinsic::x86_sse2_cvttsd2si:
664 case Intrinsic::x86_sse2_cvttsd2si64: {
665 // These intrinsics only demand the 0th element of their input vectors. If
666 // we can simplify the input based on that, do so now.
667 unsigned VWidth =
668 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
669 APInt DemandedElts(VWidth, 1);
670 APInt UndefElts(VWidth, 0);
671 if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
672 DemandedElts, UndefElts)) {
673 II->setArgOperand(0, V);
674 return II;
675 }
676 break;
677 }
678
679 // Constant fold <A x Bi> << Ci.
680 // FIXME: We don't handle _dq because it's a shift of an i128, but is
681 // represented in the IR as <2 x i64>. A per element shift is wrong.
682 case Intrinsic::x86_sse2_psll_d:
683 case Intrinsic::x86_sse2_psll_q:
684 case Intrinsic::x86_sse2_psll_w:
685 case Intrinsic::x86_sse2_pslli_d:
686 case Intrinsic::x86_sse2_pslli_q:
687 case Intrinsic::x86_sse2_pslli_w:
688 case Intrinsic::x86_avx2_psll_d:
689 case Intrinsic::x86_avx2_psll_q:
690 case Intrinsic::x86_avx2_psll_w:
691 case Intrinsic::x86_avx2_pslli_d:
692 case Intrinsic::x86_avx2_pslli_q:
693 case Intrinsic::x86_avx2_pslli_w:
694 case Intrinsic::x86_sse2_psrl_d:
695 case Intrinsic::x86_sse2_psrl_q:
696 case Intrinsic::x86_sse2_psrl_w:
697 case Intrinsic::x86_sse2_psrli_d:
698 case Intrinsic::x86_sse2_psrli_q:
699 case Intrinsic::x86_sse2_psrli_w:
700 case Intrinsic::x86_avx2_psrl_d:
701 case Intrinsic::x86_avx2_psrl_q:
702 case Intrinsic::x86_avx2_psrl_w:
703 case Intrinsic::x86_avx2_psrli_d:
704 case Intrinsic::x86_avx2_psrli_q:
705 case Intrinsic::x86_avx2_psrli_w: {
706 // Simplify if count is constant. To 0 if >= BitWidth,
707 // otherwise to shl/lshr.
708 auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
709 auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
710 if (!CDV && !CInt)
711 break;
712 ConstantInt *Count;
713 if (CDV)
714 Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
715 else
716 Count = CInt;
717
718 auto Vec = II->getArgOperand(0);
719 auto VT = cast<VectorType>(Vec->getType());
720 if (Count->getZExtValue() >
721 VT->getElementType()->getPrimitiveSizeInBits() - 1)
722 return ReplaceInstUsesWith(
723 CI, ConstantAggregateZero::get(Vec->getType()));
724
725 bool isPackedShiftLeft = true;
726 switch (II->getIntrinsicID()) {
727 default : break;
728 case Intrinsic::x86_sse2_psrl_d:
729 case Intrinsic::x86_sse2_psrl_q:
730 case Intrinsic::x86_sse2_psrl_w:
731 case Intrinsic::x86_sse2_psrli_d:
732 case Intrinsic::x86_sse2_psrli_q:
733 case Intrinsic::x86_sse2_psrli_w:
734 case Intrinsic::x86_avx2_psrl_d:
735 case Intrinsic::x86_avx2_psrl_q:
736 case Intrinsic::x86_avx2_psrl_w:
737 case Intrinsic::x86_avx2_psrli_d:
738 case Intrinsic::x86_avx2_psrli_q:
739 case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
740 }
741
742 unsigned VWidth = VT->getNumElements();
743 // Get a constant vector of the same type as the first operand.
744 auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
745 if (isPackedShiftLeft)
746 return BinaryOperator::CreateShl(Vec,
747 Builder->CreateVectorSplat(VWidth, VTCI));
748
749 return BinaryOperator::CreateLShr(Vec,
750 Builder->CreateVectorSplat(VWidth, VTCI));
751 }
752
753 case Intrinsic::x86_sse41_pmovsxbw:
754 case Intrinsic::x86_sse41_pmovsxwd:
755 case Intrinsic::x86_sse41_pmovsxdq:
756 case Intrinsic::x86_sse41_pmovzxbw:
757 case Intrinsic::x86_sse41_pmovzxwd:
758 case Intrinsic::x86_sse41_pmovzxdq: {
759 // pmov{s|z}x ignores the upper half of their input vectors.
760 unsigned VWidth =
761 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
762 unsigned LowHalfElts = VWidth / 2;
763 APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
764 APInt UndefElts(VWidth, 0);
765 if (Value *TmpV = SimplifyDemandedVectorElts(
766 II->getArgOperand(0), InputDemandedElts, UndefElts)) {
767 II->setArgOperand(0, TmpV);
768 return II;
769 }
770 break;
771 }
772 case Intrinsic::x86_sse41_insertps:
773 if (Value *V = SimplifyX86insertps(*II, *Builder))
774 return ReplaceInstUsesWith(*II, V);
775 break;
776
777 case Intrinsic::x86_sse4a_insertqi: {
778 // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
779 // ones undef
780 // TODO: eventually we should lower this intrinsic to IR
781 if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
782 if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
783 unsigned Index = CIStart->getZExtValue();
784 // From AMD documentation: "a value of zero in the field length is
785 // defined as length of 64".
786 unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
787
788 // From AMD documentation: "If the sum of the bit index + length field
789 // is greater than 64, the results are undefined".
790
791 // Note that both field index and field length are 8-bit quantities.
792 // Since variables 'Index' and 'Length' are unsigned values
793 // obtained from zero-extending field index and field length
794 // respectively, their sum should never wrap around.
795 if ((Index + Length) > 64)
796 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
797
798 if (Length == 64 && Index == 0) {
799 Value *Vec = II->getArgOperand(1);
800 Value *Undef = UndefValue::get(Vec->getType());
801 const uint32_t Mask[] = { 0, 2 };
802 return ReplaceInstUsesWith(
803 CI,
804 Builder->CreateShuffleVector(
805 Vec, Undef, ConstantDataVector::get(
806 II->getContext(), makeArrayRef(Mask))));
807
808 } else if (auto Source =
809 dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
810 if (Source->hasOneUse() &&
811 Source->getArgOperand(1) == II->getArgOperand(1)) {
812 // If the source of the insert has only one use and it's another
813 // insert (and they're both inserting from the same vector), try to
814 // bundle both together.
815 auto CISourceWidth =
816 dyn_cast<ConstantInt>(Source->getArgOperand(2));
817 auto CISourceStart =
818 dyn_cast<ConstantInt>(Source->getArgOperand(3));
819 if (CISourceStart && CISourceWidth) {
820 unsigned Start = CIStart->getZExtValue();
821 unsigned Width = CIWidth->getZExtValue();
822 unsigned End = Start + Width;
823 unsigned SourceStart = CISourceStart->getZExtValue();
824 unsigned SourceWidth = CISourceWidth->getZExtValue();
825 unsigned SourceEnd = SourceStart + SourceWidth;
826 unsigned NewStart, NewWidth;
827 bool ShouldReplace = false;
828 if (Start <= SourceStart && SourceStart <= End) {
829 NewStart = Start;
830 NewWidth = std::max(End, SourceEnd) - NewStart;
831 ShouldReplace = true;
832 } else if (SourceStart <= Start && Start <= SourceEnd) {
833 NewStart = SourceStart;
834 NewWidth = std::max(SourceEnd, End) - NewStart;
835 ShouldReplace = true;
836 }
837
838 if (ShouldReplace) {
839 Constant *ConstantWidth = ConstantInt::get(
840 II->getArgOperand(2)->getType(), NewWidth, false);
841 Constant *ConstantStart = ConstantInt::get(
842 II->getArgOperand(3)->getType(), NewStart, false);
843 Value *Args[4] = { Source->getArgOperand(0),
844 II->getArgOperand(1), ConstantWidth,
845 ConstantStart };
846 Module *M = CI.getParent()->getParent()->getParent();
847 Value *F =
848 Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
849 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
850 }
851 }
852 }
853 }
854 }
855 }
856 break;
857 }
858
859 case Intrinsic::x86_sse41_pblendvb:
860 case Intrinsic::x86_sse41_blendvps:
861 case Intrinsic::x86_sse41_blendvpd:
862 case Intrinsic::x86_avx_blendv_ps_256:
863 case Intrinsic::x86_avx_blendv_pd_256:
864 case Intrinsic::x86_avx2_pblendvb: {
865 // Convert blendv* to vector selects if the mask is constant.
866 // This optimization is convoluted because the intrinsic is defined as
867 // getting a vector of floats or doubles for the ps and pd versions.
868 // FIXME: That should be changed.
869 Value *Mask = II->getArgOperand(2);
870 if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
871 auto Tyi1 = Builder->getInt1Ty();
872 auto SelectorType = cast<VectorType>(Mask->getType());
873 auto EltTy = SelectorType->getElementType();
874 unsigned Size = SelectorType->getNumElements();
875 unsigned BitWidth =
876 EltTy->isFloatTy()
877 ? 32
878 : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
879 assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
880 "Wrong arguments for variable blend intrinsic");
881 SmallVector<Constant *, 32> Selectors;
882 for (unsigned I = 0; I < Size; ++I) {
883 // The intrinsics only read the top bit
884 uint64_t Selector;
885 if (BitWidth == 8)
886 Selector = C->getElementAsInteger(I);
887 else
888 Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
889 Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
890 }
891 auto NewSelector = ConstantVector::get(Selectors);
892 return SelectInst::Create(NewSelector, II->getArgOperand(1),
893 II->getArgOperand(0), "blendv");
894 } else {
895 break;
896 }
897 }
898
899 case Intrinsic::x86_avx_vpermilvar_ps:
900 case Intrinsic::x86_avx_vpermilvar_ps_256:
901 case Intrinsic::x86_avx_vpermilvar_pd:
902 case Intrinsic::x86_avx_vpermilvar_pd_256: {
903 // Convert vpermil* to shufflevector if the mask is constant.
904 Value *V = II->getArgOperand(1);
905 unsigned Size = cast<VectorType>(V->getType())->getNumElements();
906 assert(Size == 8 || Size == 4 || Size == 2);
907 uint32_t Indexes[8];
908 if (auto C = dyn_cast<ConstantDataVector>(V)) {
909 // The intrinsics only read one or two bits, clear the rest.
910 for (unsigned I = 0; I < Size; ++I) {
911 uint32_t Index = C->getElementAsInteger(I) & 0x3;
912 if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
913 II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
914 Index >>= 1;
915 Indexes[I] = Index;
916 }
917 } else if (isa<ConstantAggregateZero>(V)) {
918 for (unsigned I = 0; I < Size; ++I)
919 Indexes[I] = 0;
920 } else {
921 break;
922 }
923 // The _256 variants are a bit trickier since the mask bits always index
924 // into the corresponding 128 half. In order to convert to a generic
925 // shuffle, we have to make that explicit.
926 if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
927 II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
928 for (unsigned I = Size / 2; I < Size; ++I)
929 Indexes[I] += Size / 2;
930 }
931 auto NewC =
932 ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
933 auto V1 = II->getArgOperand(0);
934 auto V2 = UndefValue::get(V1->getType());
935 auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
936 return ReplaceInstUsesWith(CI, Shuffle);
937 }
938
939 case Intrinsic::x86_avx_vperm2f128_pd_256:
940 case Intrinsic::x86_avx_vperm2f128_ps_256:
941 case Intrinsic::x86_avx_vperm2f128_si_256:
942 case Intrinsic::x86_avx2_vperm2i128:
943 if (Value *V = SimplifyX86vperm2(*II, *Builder))
944 return ReplaceInstUsesWith(*II, V);
945 break;
946
947 case Intrinsic::ppc_altivec_vperm:
948 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
949 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
950 // a vectorshuffle for little endian, we must undo the transformation
951 // performed on vec_perm in altivec.h. That is, we must complement
952 // the permutation mask with respect to 31 and reverse the order of
953 // V1 and V2.
954 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
955 assert(Mask->getType()->getVectorNumElements() == 16 &&
956 "Bad type for intrinsic!");
957
958 // Check that all of the elements are integer constants or undefs.
959 bool AllEltsOk = true;
960 for (unsigned i = 0; i != 16; ++i) {
961 Constant *Elt = Mask->getAggregateElement(i);
962 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
963 AllEltsOk = false;
964 break;
965 }
966 }
967
968 if (AllEltsOk) {
969 // Cast the input vectors to byte vectors.
970 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
971 Mask->getType());
972 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
973 Mask->getType());
974 Value *Result = UndefValue::get(Op0->getType());
975
976 // Only extract each element once.
977 Value *ExtractedElts[32];
978 memset(ExtractedElts, 0, sizeof(ExtractedElts));
979
980 for (unsigned i = 0; i != 16; ++i) {
981 if (isa<UndefValue>(Mask->getAggregateElement(i)))
982 continue;
983 unsigned Idx =
984 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
985 Idx &= 31; // Match the hardware behavior.
986 if (DL.isLittleEndian())
987 Idx = 31 - Idx;
988
989 if (!ExtractedElts[Idx]) {
990 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
991 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
992 ExtractedElts[Idx] =
993 Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
994 Builder->getInt32(Idx&15));
995 }
996
997 // Insert this value into the result vector.
998 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
999 Builder->getInt32(i));
1000 }
1001 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
1002 }
1003 }
1004 break;
1005
1006 case Intrinsic::arm_neon_vld1:
1007 case Intrinsic::arm_neon_vld2:
1008 case Intrinsic::arm_neon_vld3:
1009 case Intrinsic::arm_neon_vld4:
1010 case Intrinsic::arm_neon_vld2lane:
1011 case Intrinsic::arm_neon_vld3lane:
1012 case Intrinsic::arm_neon_vld4lane:
1013 case Intrinsic::arm_neon_vst1:
1014 case Intrinsic::arm_neon_vst2:
1015 case Intrinsic::arm_neon_vst3:
1016 case Intrinsic::arm_neon_vst4:
1017 case Intrinsic::arm_neon_vst2lane:
1018 case Intrinsic::arm_neon_vst3lane:
1019 case Intrinsic::arm_neon_vst4lane: {
1020 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
1021 unsigned AlignArg = II->getNumArgOperands() - 1;
1022 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
1023 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
1024 II->setArgOperand(AlignArg,
1025 ConstantInt::get(Type::getInt32Ty(II->getContext()),
1026 MemAlign, false));
1027 return II;
1028 }
1029 break;
1030 }
1031
1032 case Intrinsic::arm_neon_vmulls:
1033 case Intrinsic::arm_neon_vmullu:
1034 case Intrinsic::aarch64_neon_smull:
1035 case Intrinsic::aarch64_neon_umull: {
1036 Value *Arg0 = II->getArgOperand(0);
1037 Value *Arg1 = II->getArgOperand(1);
1038
1039 // Handle mul by zero first:
1040 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1041 return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1042 }
1043
1044 // Check for constant LHS & RHS - in this case we just simplify.
1045 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
1046 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
1047 VectorType *NewVT = cast<VectorType>(II->getType());
1048 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1049 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1050 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1051 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1052
1053 return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1054 }
1055
1056 // Couldn't simplify - canonicalize constant to the RHS.
1057 std::swap(Arg0, Arg1);
1058 }
1059
1060 // Handle mul by one:
1061 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1062 if (ConstantInt *Splat =
1063 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1064 if (Splat->isOne())
1065 return CastInst::CreateIntegerCast(Arg0, II->getType(),
1066 /*isSigned=*/!Zext);
1067
1068 break;
1069 }
1070
1071 case Intrinsic::AMDGPU_rcp: {
1072 if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
1073 const APFloat &ArgVal = C->getValueAPF();
1074 APFloat Val(ArgVal.getSemantics(), 1.0);
1075 APFloat::opStatus Status = Val.divide(ArgVal,
1076 APFloat::rmNearestTiesToEven);
1077 // Only do this if it was exact and therefore not dependent on the
1078 // rounding mode.
1079 if (Status == APFloat::opOK)
1080 return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
1081 }
1082
1083 break;
1084 }
1085 case Intrinsic::stackrestore: {
1086 // If the save is right next to the restore, remove the restore. This can
1087 // happen when variable allocas are DCE'd.
1088 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1089 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1090 BasicBlock::iterator BI = SS;
1091 if (&*++BI == II)
1092 return EraseInstFromFunction(CI);
1093 }
1094 }
1095
1096 // Scan down this block to see if there is another stack restore in the
1097 // same block without an intervening call/alloca.
1098 BasicBlock::iterator BI = II;
1099 TerminatorInst *TI = II->getParent()->getTerminator();
1100 bool CannotRemove = false;
1101 for (++BI; &*BI != TI; ++BI) {
1102 if (isa<AllocaInst>(BI)) {
1103 CannotRemove = true;
1104 break;
1105 }
1106 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1107 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
1108 // If there is a stackrestore below this one, remove this one.
1109 if (II->getIntrinsicID() == Intrinsic::stackrestore)
1110 return EraseInstFromFunction(CI);
1111 // Otherwise, ignore the intrinsic.
1112 } else {
1113 // If we found a non-intrinsic call, we can't remove the stack
1114 // restore.
1115 CannotRemove = true;
1116 break;
1117 }
1118 }
1119 }
1120
1121 // If the stack restore is in a return, resume, or unwind block and if there
1122 // are no allocas or calls between the restore and the return, nuke the
1123 // restore.
1124 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1125 return EraseInstFromFunction(CI);
1126 break;
1127 }
1128 case Intrinsic::assume: {
1129 // Canonicalize assume(a && b) -> assume(a); assume(b);
1130 // Note: New assumption intrinsics created here are registered by
1131 // the InstCombineIRInserter object.
1132 Value *IIOperand = II->getArgOperand(0), *A, *B,
1133 *AssumeIntrinsic = II->getCalledValue();
1134 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
1135 Builder->CreateCall(AssumeIntrinsic, A, II->getName());
1136 Builder->CreateCall(AssumeIntrinsic, B, II->getName());
1137 return EraseInstFromFunction(*II);
1138 }
1139 // assume(!(a || b)) -> assume(!a); assume(!b);
1140 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
1141 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
1142 II->getName());
1143 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
1144 II->getName());
1145 return EraseInstFromFunction(*II);
1146 }
1147
1148 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1149 // (if assume is valid at the load)
1150 if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
1151 Value *LHS = ICmp->getOperand(0);
1152 Value *RHS = ICmp->getOperand(1);
1153 if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
1154 isa<LoadInst>(LHS) &&
1155 isa<Constant>(RHS) &&
1156 RHS->getType()->isPointerTy() &&
1157 cast<Constant>(RHS)->isNullValue()) {
1158 LoadInst* LI = cast<LoadInst>(LHS);
1159 if (isValidAssumeForContext(II, LI, DT)) {
1160 MDNode *MD = MDNode::get(II->getContext(), None);
1161 LI->setMetadata(LLVMContext::MD_nonnull, MD);
1162 return EraseInstFromFunction(*II);
1163 }
1164 }
1165 // TODO: apply nonnull return attributes to calls and invokes
1166 // TODO: apply range metadata for range check patterns?
1167 }
1168 // If there is a dominating assume with the same condition as this one,
1169 // then this one is redundant, and should be removed.
1170 APInt KnownZero(1, 0), KnownOne(1, 0);
1171 computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
1172 if (KnownOne.isAllOnesValue())
1173 return EraseInstFromFunction(*II);
1174
1175 break;
1176 }
1177 case Intrinsic::experimental_gc_relocate: {
1178 // Translate facts known about a pointer before relocating into
1179 // facts about the relocate value, while being careful to
1180 // preserve relocation semantics.
1181 GCRelocateOperands Operands(II);
1182 Value *DerivedPtr = Operands.derivedPtr();
1183
1184 // Remove the relocation if unused, note that this check is required
1185 // to prevent the cases below from looping forever.
1186 if (II->use_empty())
1187 return EraseInstFromFunction(*II);
1188
1189 // Undef is undef, even after relocation.
1190 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
1191 // most practical collectors, but there was discussion in the review thread
1192 // about whether it was legal for all possible collectors.
1193 if (isa<UndefValue>(DerivedPtr))
1194 return ReplaceInstUsesWith(*II, DerivedPtr);
1195
1196 // The relocation of null will be null for most any collector.
1197 // TODO: provide a hook for this in GCStrategy. There might be some weird
1198 // collector this property does not hold for.
1199 if (isa<ConstantPointerNull>(DerivedPtr))
1200 return ReplaceInstUsesWith(*II, DerivedPtr);
1201
1202 // isKnownNonNull -> nonnull attribute
1203 if (isKnownNonNull(DerivedPtr))
1204 II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1205
1206 // isDereferenceablePointer -> deref attribute
1207 if (DerivedPtr->isDereferenceablePointer(DL)) {
1208 if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
1209 uint64_t Bytes = A->getDereferenceableBytes();
1210 II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
1211 }
1212 }
1213
1214 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
1215 // Canonicalize on the type from the uses to the defs
1216
1217 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
1218 }
1219 }
1220
1221 return visitCallSite(II);
1222 }
1223
1224 // InvokeInst simplification
1225 //
visitInvokeInst(InvokeInst & II)1226 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
1227 return visitCallSite(&II);
1228 }
1229
1230 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
1231 /// passed through the varargs area, we can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)1232 static bool isSafeToEliminateVarargsCast(const CallSite CS,
1233 const DataLayout &DL,
1234 const CastInst *const CI,
1235 const int ix) {
1236 if (!CI->isLosslessCast())
1237 return false;
1238
1239 // If this is a GC intrinsic, avoid munging types. We need types for
1240 // statepoint reconstruction in SelectionDAG.
1241 // TODO: This is probably something which should be expanded to all
1242 // intrinsics since the entire point of intrinsics is that
1243 // they are understandable by the optimizer.
1244 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
1245 return false;
1246
1247 // The size of ByVal or InAlloca arguments is derived from the type, so we
1248 // can't change to a type with a different size. If the size were
1249 // passed explicitly we could avoid this check.
1250 if (!CS.isByValOrInAllocaArgument(ix))
1251 return true;
1252
1253 Type* SrcTy =
1254 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
1255 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
1256 if (!SrcTy->isSized() || !DstTy->isSized())
1257 return false;
1258 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
1259 return false;
1260 return true;
1261 }
1262
1263 // Try to fold some different type of calls here.
1264 // Currently we're only working with the checking functions, memcpy_chk,
1265 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
1266 // strcat_chk and strncat_chk.
tryOptimizeCall(CallInst * CI)1267 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
1268 if (!CI->getCalledFunction()) return nullptr;
1269
1270 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
1271 ReplaceInstUsesWith(*From, With);
1272 };
1273 LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
1274 if (Value *With = Simplifier.optimizeCall(CI)) {
1275 ++NumSimplified;
1276 return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
1277 }
1278
1279 return nullptr;
1280 }
1281
FindInitTrampolineFromAlloca(Value * TrampMem)1282 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
1283 // Strip off at most one level of pointer casts, looking for an alloca. This
1284 // is good enough in practice and simpler than handling any number of casts.
1285 Value *Underlying = TrampMem->stripPointerCasts();
1286 if (Underlying != TrampMem &&
1287 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
1288 return nullptr;
1289 if (!isa<AllocaInst>(Underlying))
1290 return nullptr;
1291
1292 IntrinsicInst *InitTrampoline = nullptr;
1293 for (User *U : TrampMem->users()) {
1294 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1295 if (!II)
1296 return nullptr;
1297 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
1298 if (InitTrampoline)
1299 // More than one init_trampoline writes to this value. Give up.
1300 return nullptr;
1301 InitTrampoline = II;
1302 continue;
1303 }
1304 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
1305 // Allow any number of calls to adjust.trampoline.
1306 continue;
1307 return nullptr;
1308 }
1309
1310 // No call to init.trampoline found.
1311 if (!InitTrampoline)
1312 return nullptr;
1313
1314 // Check that the alloca is being used in the expected way.
1315 if (InitTrampoline->getOperand(0) != TrampMem)
1316 return nullptr;
1317
1318 return InitTrampoline;
1319 }
1320
FindInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)1321 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
1322 Value *TrampMem) {
1323 // Visit all the previous instructions in the basic block, and try to find a
1324 // init.trampoline which has a direct path to the adjust.trampoline.
1325 for (BasicBlock::iterator I = AdjustTramp,
1326 E = AdjustTramp->getParent()->begin(); I != E; ) {
1327 Instruction *Inst = --I;
1328 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1329 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
1330 II->getOperand(0) == TrampMem)
1331 return II;
1332 if (Inst->mayWriteToMemory())
1333 return nullptr;
1334 }
1335 return nullptr;
1336 }
1337
1338 // Given a call to llvm.adjust.trampoline, find and return the corresponding
1339 // call to llvm.init.trampoline if the call to the trampoline can be optimized
1340 // to a direct call to a function. Otherwise return NULL.
1341 //
FindInitTrampoline(Value * Callee)1342 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
1343 Callee = Callee->stripPointerCasts();
1344 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
1345 if (!AdjustTramp ||
1346 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
1347 return nullptr;
1348
1349 Value *TrampMem = AdjustTramp->getOperand(0);
1350
1351 if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
1352 return IT;
1353 if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
1354 return IT;
1355 return nullptr;
1356 }
1357
1358 // visitCallSite - Improvements for call and invoke instructions.
1359 //
visitCallSite(CallSite CS)1360 Instruction *InstCombiner::visitCallSite(CallSite CS) {
1361 if (isAllocLikeFn(CS.getInstruction(), TLI))
1362 return visitAllocSite(*CS.getInstruction());
1363
1364 bool Changed = false;
1365
1366 // If the callee is a pointer to a function, attempt to move any casts to the
1367 // arguments of the call/invoke.
1368 Value *Callee = CS.getCalledValue();
1369 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1370 return nullptr;
1371
1372 if (Function *CalleeF = dyn_cast<Function>(Callee))
1373 // If the call and callee calling conventions don't match, this call must
1374 // be unreachable, as the call is undefined.
1375 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1376 // Only do this for calls to a function with a body. A prototype may
1377 // not actually end up matching the implementation's calling conv for a
1378 // variety of reasons (e.g. it may be written in assembly).
1379 !CalleeF->isDeclaration()) {
1380 Instruction *OldCall = CS.getInstruction();
1381 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1382 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1383 OldCall);
1384 // If OldCall does not return void then replaceAllUsesWith undef.
1385 // This allows ValueHandlers and custom metadata to adjust itself.
1386 if (!OldCall->getType()->isVoidTy())
1387 ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1388 if (isa<CallInst>(OldCall))
1389 return EraseInstFromFunction(*OldCall);
1390
1391 // We cannot remove an invoke, because it would change the CFG, just
1392 // change the callee to a null pointer.
1393 cast<InvokeInst>(OldCall)->setCalledFunction(
1394 Constant::getNullValue(CalleeF->getType()));
1395 return nullptr;
1396 }
1397
1398 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1399 // If CS does not return void then replaceAllUsesWith undef.
1400 // This allows ValueHandlers and custom metadata to adjust itself.
1401 if (!CS.getInstruction()->getType()->isVoidTy())
1402 ReplaceInstUsesWith(*CS.getInstruction(),
1403 UndefValue::get(CS.getInstruction()->getType()));
1404
1405 if (isa<InvokeInst>(CS.getInstruction())) {
1406 // Can't remove an invoke because we cannot change the CFG.
1407 return nullptr;
1408 }
1409
1410 // This instruction is not reachable, just remove it. We insert a store to
1411 // undef so that we know that this code is not reachable, despite the fact
1412 // that we can't modify the CFG here.
1413 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1414 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1415 CS.getInstruction());
1416
1417 return EraseInstFromFunction(*CS.getInstruction());
1418 }
1419
1420 if (IntrinsicInst *II = FindInitTrampoline(Callee))
1421 return transformCallThroughTrampoline(CS, II);
1422
1423 PointerType *PTy = cast<PointerType>(Callee->getType());
1424 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1425 if (FTy->isVarArg()) {
1426 int ix = FTy->getNumParams();
1427 // See if we can optimize any arguments passed through the varargs area of
1428 // the call.
1429 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
1430 E = CS.arg_end(); I != E; ++I, ++ix) {
1431 CastInst *CI = dyn_cast<CastInst>(*I);
1432 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
1433 *I = CI->getOperand(0);
1434 Changed = true;
1435 }
1436 }
1437 }
1438
1439 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1440 // Inline asm calls cannot throw - mark them 'nounwind'.
1441 CS.setDoesNotThrow();
1442 Changed = true;
1443 }
1444
1445 // Try to optimize the call if possible, we require DataLayout for most of
1446 // this. None of these calls are seen as possibly dead so go ahead and
1447 // delete the instruction now.
1448 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1449 Instruction *I = tryOptimizeCall(CI);
1450 // If we changed something return the result, etc. Otherwise let
1451 // the fallthrough check.
1452 if (I) return EraseInstFromFunction(*I);
1453 }
1454
1455 return Changed ? CS.getInstruction() : nullptr;
1456 }
1457
1458 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
1459 // attempt to move the cast to the arguments of the call/invoke.
1460 //
transformConstExprCastCall(CallSite CS)1461 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1462 Function *Callee =
1463 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1464 if (!Callee)
1465 return false;
1466 // The prototype of thunks are a lie, don't try to directly call such
1467 // functions.
1468 if (Callee->hasFnAttribute("thunk"))
1469 return false;
1470 Instruction *Caller = CS.getInstruction();
1471 const AttributeSet &CallerPAL = CS.getAttributes();
1472
1473 // Okay, this is a cast from a function to a different type. Unless doing so
1474 // would cause a type conversion of one of our arguments, change this call to
1475 // be a direct call with arguments casted to the appropriate types.
1476 //
1477 FunctionType *FT = Callee->getFunctionType();
1478 Type *OldRetTy = Caller->getType();
1479 Type *NewRetTy = FT->getReturnType();
1480
1481 // Check to see if we are changing the return type...
1482 if (OldRetTy != NewRetTy) {
1483
1484 if (NewRetTy->isStructTy())
1485 return false; // TODO: Handle multiple return values.
1486
1487 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
1488 if (Callee->isDeclaration())
1489 return false; // Cannot transform this return value.
1490
1491 if (!Caller->use_empty() &&
1492 // void -> non-void is handled specially
1493 !NewRetTy->isVoidTy())
1494 return false; // Cannot transform this return value.
1495 }
1496
1497 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1498 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1499 if (RAttrs.
1500 hasAttributes(AttributeFuncs::
1501 typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1502 AttributeSet::ReturnIndex))
1503 return false; // Attribute not compatible with transformed value.
1504 }
1505
1506 // If the callsite is an invoke instruction, and the return value is used by
1507 // a PHI node in a successor, we cannot change the return type of the call
1508 // because there is no place to put the cast instruction (without breaking
1509 // the critical edge). Bail out in this case.
1510 if (!Caller->use_empty())
1511 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1512 for (User *U : II->users())
1513 if (PHINode *PN = dyn_cast<PHINode>(U))
1514 if (PN->getParent() == II->getNormalDest() ||
1515 PN->getParent() == II->getUnwindDest())
1516 return false;
1517 }
1518
1519 unsigned NumActualArgs = CS.arg_size();
1520 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1521
1522 // Prevent us turning:
1523 // declare void @takes_i32_inalloca(i32* inalloca)
1524 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
1525 //
1526 // into:
1527 // call void @takes_i32_inalloca(i32* null)
1528 //
1529 // Similarly, avoid folding away bitcasts of byval calls.
1530 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
1531 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
1532 return false;
1533
1534 CallSite::arg_iterator AI = CS.arg_begin();
1535 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1536 Type *ParamTy = FT->getParamType(i);
1537 Type *ActTy = (*AI)->getType();
1538
1539 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
1540 return false; // Cannot transform this parameter value.
1541
1542 if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
1543 hasAttributes(AttributeFuncs::
1544 typeIncompatible(ParamTy, i + 1), i + 1))
1545 return false; // Attribute not compatible with transformed value.
1546
1547 if (CS.isInAllocaArgument(i))
1548 return false; // Cannot transform to and from inalloca.
1549
1550 // If the parameter is passed as a byval argument, then we have to have a
1551 // sized type and the sized type has to have the same size as the old type.
1552 if (ParamTy != ActTy &&
1553 CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
1554 Attribute::ByVal)) {
1555 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1556 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
1557 return false;
1558
1559 Type *CurElTy = ActTy->getPointerElementType();
1560 if (DL.getTypeAllocSize(CurElTy) !=
1561 DL.getTypeAllocSize(ParamPTy->getElementType()))
1562 return false;
1563 }
1564 }
1565
1566 if (Callee->isDeclaration()) {
1567 // Do not delete arguments unless we have a function body.
1568 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1569 return false;
1570
1571 // If the callee is just a declaration, don't change the varargsness of the
1572 // call. We don't want to introduce a varargs call where one doesn't
1573 // already exist.
1574 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1575 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1576 return false;
1577
1578 // If both the callee and the cast type are varargs, we still have to make
1579 // sure the number of fixed parameters are the same or we have the same
1580 // ABI issues as if we introduce a varargs call.
1581 if (FT->isVarArg() &&
1582 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1583 FT->getNumParams() !=
1584 cast<FunctionType>(APTy->getElementType())->getNumParams())
1585 return false;
1586 }
1587
1588 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1589 !CallerPAL.isEmpty())
1590 // In this case we have more arguments than the new function type, but we
1591 // won't be dropping them. Check that these extra arguments have attributes
1592 // that are compatible with being a vararg call argument.
1593 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1594 unsigned Index = CallerPAL.getSlotIndex(i - 1);
1595 if (Index <= FT->getNumParams())
1596 break;
1597
1598 // Check if it has an attribute that's incompatible with varargs.
1599 AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
1600 if (PAttrs.hasAttribute(Index, Attribute::StructRet))
1601 return false;
1602 }
1603
1604
1605 // Okay, we decided that this is a safe thing to do: go ahead and start
1606 // inserting cast instructions as necessary.
1607 std::vector<Value*> Args;
1608 Args.reserve(NumActualArgs);
1609 SmallVector<AttributeSet, 8> attrVec;
1610 attrVec.reserve(NumCommonArgs);
1611
1612 // Get any return attributes.
1613 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1614
1615 // If the return value is not being used, the type may not be compatible
1616 // with the existing attributes. Wipe out any problematic attributes.
1617 RAttrs.
1618 removeAttributes(AttributeFuncs::
1619 typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1620 AttributeSet::ReturnIndex);
1621
1622 // Add the new return attributes.
1623 if (RAttrs.hasAttributes())
1624 attrVec.push_back(AttributeSet::get(Caller->getContext(),
1625 AttributeSet::ReturnIndex, RAttrs));
1626
1627 AI = CS.arg_begin();
1628 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1629 Type *ParamTy = FT->getParamType(i);
1630
1631 if ((*AI)->getType() == ParamTy) {
1632 Args.push_back(*AI);
1633 } else {
1634 Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
1635 }
1636
1637 // Add any parameter attributes.
1638 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1639 if (PAttrs.hasAttributes())
1640 attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
1641 PAttrs));
1642 }
1643
1644 // If the function takes more arguments than the call was taking, add them
1645 // now.
1646 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1647 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1648
1649 // If we are removing arguments to the function, emit an obnoxious warning.
1650 if (FT->getNumParams() < NumActualArgs) {
1651 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
1652 if (FT->isVarArg()) {
1653 // Add all of the arguments in their promoted form to the arg list.
1654 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1655 Type *PTy = getPromotedType((*AI)->getType());
1656 if (PTy != (*AI)->getType()) {
1657 // Must promote to pass through va_arg area!
1658 Instruction::CastOps opcode =
1659 CastInst::getCastOpcode(*AI, false, PTy, false);
1660 Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1661 } else {
1662 Args.push_back(*AI);
1663 }
1664
1665 // Add any parameter attributes.
1666 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1667 if (PAttrs.hasAttributes())
1668 attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
1669 PAttrs));
1670 }
1671 }
1672 }
1673
1674 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
1675 if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
1676 attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
1677
1678 if (NewRetTy->isVoidTy())
1679 Caller->setName(""); // Void type should not have a name.
1680
1681 const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
1682 attrVec);
1683
1684 Instruction *NC;
1685 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1686 NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1687 II->getUnwindDest(), Args);
1688 NC->takeName(II);
1689 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1690 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1691 } else {
1692 CallInst *CI = cast<CallInst>(Caller);
1693 NC = Builder->CreateCall(Callee, Args);
1694 NC->takeName(CI);
1695 if (CI->isTailCall())
1696 cast<CallInst>(NC)->setTailCall();
1697 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1698 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1699 }
1700
1701 // Insert a cast of the return type as necessary.
1702 Value *NV = NC;
1703 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1704 if (!NV->getType()->isVoidTy()) {
1705 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
1706 NC->setDebugLoc(Caller->getDebugLoc());
1707
1708 // If this is an invoke instruction, we should insert it after the first
1709 // non-phi, instruction in the normal successor block.
1710 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1711 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1712 InsertNewInstBefore(NC, *I);
1713 } else {
1714 // Otherwise, it's a call, just insert cast right after the call.
1715 InsertNewInstBefore(NC, *Caller);
1716 }
1717 Worklist.AddUsersToWorkList(*Caller);
1718 } else {
1719 NV = UndefValue::get(Caller->getType());
1720 }
1721 }
1722
1723 if (!Caller->use_empty())
1724 ReplaceInstUsesWith(*Caller, NV);
1725 else if (Caller->hasValueHandle()) {
1726 if (OldRetTy == NV->getType())
1727 ValueHandleBase::ValueIsRAUWd(Caller, NV);
1728 else
1729 // We cannot call ValueIsRAUWd with a different type, and the
1730 // actual tracked value will disappear.
1731 ValueHandleBase::ValueIsDeleted(Caller);
1732 }
1733
1734 EraseInstFromFunction(*Caller);
1735 return true;
1736 }
1737
1738 // transformCallThroughTrampoline - Turn a call to a function created by
1739 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1740 // underlying function.
1741 //
1742 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)1743 InstCombiner::transformCallThroughTrampoline(CallSite CS,
1744 IntrinsicInst *Tramp) {
1745 Value *Callee = CS.getCalledValue();
1746 PointerType *PTy = cast<PointerType>(Callee->getType());
1747 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1748 const AttributeSet &Attrs = CS.getAttributes();
1749
1750 // If the call already has the 'nest' attribute somewhere then give up -
1751 // otherwise 'nest' would occur twice after splicing in the chain.
1752 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1753 return nullptr;
1754
1755 assert(Tramp &&
1756 "transformCallThroughTrampoline called with incorrect CallSite.");
1757
1758 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1759 PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1760 FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1761
1762 const AttributeSet &NestAttrs = NestF->getAttributes();
1763 if (!NestAttrs.isEmpty()) {
1764 unsigned NestIdx = 1;
1765 Type *NestTy = nullptr;
1766 AttributeSet NestAttr;
1767
1768 // Look for a parameter marked with the 'nest' attribute.
1769 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1770 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1771 if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
1772 // Record the parameter type and any other attributes.
1773 NestTy = *I;
1774 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1775 break;
1776 }
1777
1778 if (NestTy) {
1779 Instruction *Caller = CS.getInstruction();
1780 std::vector<Value*> NewArgs;
1781 NewArgs.reserve(CS.arg_size() + 1);
1782
1783 SmallVector<AttributeSet, 8> NewAttrs;
1784 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1785
1786 // Insert the nest argument into the call argument list, which may
1787 // mean appending it. Likewise for attributes.
1788
1789 // Add any result attributes.
1790 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1791 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1792 Attrs.getRetAttributes()));
1793
1794 {
1795 unsigned Idx = 1;
1796 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1797 do {
1798 if (Idx == NestIdx) {
1799 // Add the chain argument and attributes.
1800 Value *NestVal = Tramp->getArgOperand(2);
1801 if (NestVal->getType() != NestTy)
1802 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1803 NewArgs.push_back(NestVal);
1804 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1805 NestAttr));
1806 }
1807
1808 if (I == E)
1809 break;
1810
1811 // Add the original argument and attributes.
1812 NewArgs.push_back(*I);
1813 AttributeSet Attr = Attrs.getParamAttributes(Idx);
1814 if (Attr.hasAttributes(Idx)) {
1815 AttrBuilder B(Attr, Idx);
1816 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1817 Idx + (Idx >= NestIdx), B));
1818 }
1819
1820 ++Idx, ++I;
1821 } while (1);
1822 }
1823
1824 // Add any function attributes.
1825 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1826 NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
1827 Attrs.getFnAttributes()));
1828
1829 // The trampoline may have been bitcast to a bogus type (FTy).
1830 // Handle this by synthesizing a new function type, equal to FTy
1831 // with the chain parameter inserted.
1832
1833 std::vector<Type*> NewTypes;
1834 NewTypes.reserve(FTy->getNumParams()+1);
1835
1836 // Insert the chain's type into the list of parameter types, which may
1837 // mean appending it.
1838 {
1839 unsigned Idx = 1;
1840 FunctionType::param_iterator I = FTy->param_begin(),
1841 E = FTy->param_end();
1842
1843 do {
1844 if (Idx == NestIdx)
1845 // Add the chain's type.
1846 NewTypes.push_back(NestTy);
1847
1848 if (I == E)
1849 break;
1850
1851 // Add the original type.
1852 NewTypes.push_back(*I);
1853
1854 ++Idx, ++I;
1855 } while (1);
1856 }
1857
1858 // Replace the trampoline call with a direct call. Let the generic
1859 // code sort out any function type mismatches.
1860 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1861 FTy->isVarArg());
1862 Constant *NewCallee =
1863 NestF->getType() == PointerType::getUnqual(NewFTy) ?
1864 NestF : ConstantExpr::getBitCast(NestF,
1865 PointerType::getUnqual(NewFTy));
1866 const AttributeSet &NewPAL =
1867 AttributeSet::get(FTy->getContext(), NewAttrs);
1868
1869 Instruction *NewCaller;
1870 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1871 NewCaller = InvokeInst::Create(NewCallee,
1872 II->getNormalDest(), II->getUnwindDest(),
1873 NewArgs);
1874 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1875 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1876 } else {
1877 NewCaller = CallInst::Create(NewCallee, NewArgs);
1878 if (cast<CallInst>(Caller)->isTailCall())
1879 cast<CallInst>(NewCaller)->setTailCall();
1880 cast<CallInst>(NewCaller)->
1881 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1882 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1883 }
1884
1885 return NewCaller;
1886 }
1887 }
1888
1889 // Replace the trampoline call with a direct call. Since there is no 'nest'
1890 // parameter, there is no need to adjust the argument list. Let the generic
1891 // code sort out any function type mismatches.
1892 Constant *NewCallee =
1893 NestF->getType() == PTy ? NestF :
1894 ConstantExpr::getBitCast(NestF, PTy);
1895 CS.setCalledFunction(NewCallee);
1896 return CS.getInstruction();
1897 }
1898