1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGeometry_DEFINED
9 #define SkGeometry_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkNx.h"
13 
from_point(const SkPoint & point)14 static inline Sk2s from_point(const SkPoint& point) {
15     return Sk2s::Load(&point.fX);
16 }
17 
to_point(const Sk2s & x)18 static inline SkPoint to_point(const Sk2s& x) {
19     SkPoint point;
20     x.store(&point.fX);
21     return point;
22 }
23 
sk2s_cubic_eval(const Sk2s & A,const Sk2s & B,const Sk2s & C,const Sk2s & D,const Sk2s & t)24 static inline Sk2s sk2s_cubic_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& D,
25                                    const Sk2s& t) {
26     return ((A * t + B) * t + C) * t + D;
27 }
28 
29 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
30     equation.
31 */
32 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
33 
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
37 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
38 
39 /** Set pt to the point on the src quadratic specified by t. t must be
40     0 <= t <= 1.0
41 */
42 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
43 
44 /**
45  *  output is : eval(t) == coeff[0] * t^2 + coeff[1] * t + coeff[2]
46  */
47 void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]);
48 
49 /**
50  *  output is : eval(t) == coeff[0] * t^3 + coeff[1] * t^2 + coeff[2] * t + coeff[3]
51  */
52 void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]);
53 
54 /** Given a src quadratic bezier, chop it at the specified t value,
55     where 0 < t < 1, and return the two new quadratics in dst:
56     dst[0..2] and dst[2..4]
57 */
58 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
59 
60 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
61     The new quads are returned in dst[0..2] and dst[2..4]
62 */
63 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
64 
65 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
66     for extrema, and return the number of t-values that are found that represent
67     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
68     function returns 0.
69     Returned count      tValues[]
70     0                   ignored
71     1                   0 < tValues[0] < 1
72 */
73 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
74 
75 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
76     the resulting beziers are monotonic in Y. This is called by the scan converter.
77     Depending on what is returned, dst[] is treated as follows
78     0   dst[0..2] is the original quad
79     1   dst[0..2] and dst[2..4] are the two new quads
80 */
81 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
82 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
83 
84 /** Given 3 points on a quadratic bezier, if the point of maximum
85     curvature exists on the segment, returns the t value for this
86     point along the curve. Otherwise it will return a value of 0.
87 */
88 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
89 
90 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
91     if the point of maximum curvature exists on the quad segment.
92     Depending on what is returned, dst[] is treated as follows
93     1   dst[0..2] is the original quad
94     2   dst[0..2] and dst[2..4] are the two new quads
95     If dst == null, it is ignored and only the count is returned.
96 */
97 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
98 
99 /** Given 3 points on a quadratic bezier, use degree elevation to
100     convert it into the cubic fitting the same curve. The new cubic
101     curve is returned in dst[0..3].
102 */
103 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
104 
105 ///////////////////////////////////////////////////////////////////////////////
106 
107 /** Set pt to the point on the src cubic specified by t. t must be
108     0 <= t <= 1.0
109 */
110 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
111                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
112 
113 /** Given a src cubic bezier, chop it at the specified t value,
114     where 0 < t < 1, and return the two new cubics in dst:
115     dst[0..3] and dst[3..6]
116 */
117 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
118 
119 /** Given a src cubic bezier, chop it at the specified t values,
120     where 0 < t < 1, and return the new cubics in dst:
121     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
122 */
123 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
124                    int t_count);
125 
126 /** Given a src cubic bezier, chop it at the specified t == 1/2,
127     The new cubics are returned in dst[0..3] and dst[3..6]
128 */
129 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
130 
131 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
132     for extrema, and return the number of t-values that are found that represent
133     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
134     function returns 0.
135     Returned count      tValues[]
136     0                   ignored
137     1                   0 < tValues[0] < 1
138     2                   0 < tValues[0] < tValues[1] < 1
139 */
140 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
141                        SkScalar tValues[2]);
142 
143 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
144     the resulting beziers are monotonic in Y. This is called by the scan converter.
145     Depending on what is returned, dst[] is treated as follows
146     0   dst[0..3] is the original cubic
147     1   dst[0..3] and dst[3..6] are the two new cubics
148     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
149     If dst == null, it is ignored and only the count is returned.
150 */
151 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
152 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
153 
154 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
155     inflection points.
156 */
157 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
158 
159 /** Return 1 for no chop, 2 for having chopped the cubic at a single
160     inflection point, 3 for having chopped at 2 inflection points.
161     dst will hold the resulting 1, 2, or 3 cubics.
162 */
163 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
164 
165 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
166 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
167                               SkScalar tValues[3] = NULL);
168 
169 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
170 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
171 
172 enum SkCubicType {
173     kSerpentine_SkCubicType,
174     kCusp_SkCubicType,
175     kLoop_SkCubicType,
176     kQuadratic_SkCubicType,
177     kLine_SkCubicType,
178     kPoint_SkCubicType
179 };
180 
181 /** Returns the cubic classification. Pass scratch storage for computing inflection data,
182     which can be used with additional work to find the loop intersections and so on.
183 */
184 SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar inflection[3]);
185 
186 ///////////////////////////////////////////////////////////////////////////////
187 
188 enum SkRotationDirection {
189     kCW_SkRotationDirection,
190     kCCW_SkRotationDirection
191 };
192 
193 /** Maximum number of points needed in the quadPoints[] parameter for
194     SkBuildQuadArc()
195 */
196 #define kSkBuildQuadArcStorage  17
197 
198 /** Given 2 unit vectors and a rotation direction, fill out the specified
199     array of points with quadratic segments. Return is the number of points
200     written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
201 
202     matrix, if not null, is appled to the points before they are returned.
203 */
204 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
205                    SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
206 
207 struct SkConic {
SkConicSkConic208     SkConic() {}
SkConicSkConic209     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
210         fPts[0] = p0;
211         fPts[1] = p1;
212         fPts[2] = p2;
213         fW = w;
214     }
SkConicSkConic215     SkConic(const SkPoint pts[3], SkScalar w) {
216         memcpy(fPts, pts, sizeof(fPts));
217         fW = w;
218     }
219 
220     SkPoint  fPts[3];
221     SkScalar fW;
222 
setSkConic223     void set(const SkPoint pts[3], SkScalar w) {
224         memcpy(fPts, pts, 3 * sizeof(SkPoint));
225         fW = w;
226     }
227 
setSkConic228     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
229         fPts[0] = p0;
230         fPts[1] = p1;
231         fPts[2] = p2;
232         fW = w;
233     }
234 
235     /**
236      *  Given a t-value [0...1] return its position and/or tangent.
237      *  If pos is not null, return its position at the t-value.
238      *  If tangent is not null, return its tangent at the t-value. NOTE the
239      *  tangent value's length is arbitrary, and only its direction should
240      *  be used.
241      */
242     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
243     void chopAt(SkScalar t, SkConic dst[2]) const;
244     void chop(SkConic dst[2]) const;
245 
246     SkPoint evalAt(SkScalar t) const;
247     SkVector evalTangentAt(SkScalar t) const;
248 
249     void computeAsQuadError(SkVector* err) const;
250     bool asQuadTol(SkScalar tol) const;
251 
252     /**
253      *  return the power-of-2 number of quads needed to approximate this conic
254      *  with a sequence of quads. Will be >= 0.
255      */
256     int computeQuadPOW2(SkScalar tol) const;
257 
258     /**
259      *  Chop this conic into N quads, stored continguously in pts[], where
260      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
261      */
262     int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
263 
264     bool findXExtrema(SkScalar* t) const;
265     bool findYExtrema(SkScalar* t) const;
266     bool chopAtXExtrema(SkConic dst[2]) const;
267     bool chopAtYExtrema(SkConic dst[2]) const;
268 
269     void computeTightBounds(SkRect* bounds) const;
270     void computeFastBounds(SkRect* bounds) const;
271 
272     /** Find the parameter value where the conic takes on its maximum curvature.
273      *
274      *  @param t   output scalar for max curvature.  Will be unchanged if
275      *             max curvature outside 0..1 range.
276      *
277      *  @return  true if max curvature found inside 0..1 range, false otherwise
278      */
279     bool findMaxCurvature(SkScalar* t) const;
280 
281     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
282 
283     enum {
284         kMaxConicsForArc = 5
285     };
286     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
287                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
288 };
289 
290 #include "SkTemplates.h"
291 
292 /**
293  *  Help class to allocate storage for approximating a conic with N quads.
294  */
295 class SkAutoConicToQuads {
296 public:
SkAutoConicToQuads()297     SkAutoConicToQuads() : fQuadCount(0) {}
298 
299     /**
300      *  Given a conic and a tolerance, return the array of points for the
301      *  approximating quad(s). Call countQuads() to know the number of quads
302      *  represented in these points.
303      *
304      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
305      *  there will be 9 points allocated as follows
306      *      quad[0] == pts[0..2]
307      *      quad[1] == pts[2..4]
308      *      quad[2] == pts[4..6]
309      *      quad[3] == pts[6..8]
310      */
computeQuads(const SkConic & conic,SkScalar tol)311     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
312         int pow2 = conic.computeQuadPOW2(tol);
313         fQuadCount = 1 << pow2;
314         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
315         conic.chopIntoQuadsPOW2(pts, pow2);
316         return pts;
317     }
318 
computeQuads(const SkPoint pts[3],SkScalar weight,SkScalar tol)319     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
320                                 SkScalar tol) {
321         SkConic conic;
322         conic.set(pts, weight);
323         return computeQuads(conic, tol);
324     }
325 
countQuads()326     int countQuads() const { return fQuadCount; }
327 
328 private:
329     enum {
330         kQuadCount = 8, // should handle most conics
331         kPointCount = 1 + 2 * kQuadCount,
332     };
333     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
334     int fQuadCount; // #quads for current usage
335 };
336 
337 #endif
338