1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11
12 #if 0
13 static Sk2s from_point(const SkPoint& point) {
14 return Sk2s::Load(&point.fX);
15 }
16
17 static SkPoint to_point(const Sk2s& x) {
18 SkPoint point;
19 x.store(&point.fX);
20 return point;
21 }
22 #endif
23
to_vector(const Sk2s & x)24 static SkVector to_vector(const Sk2s& x) {
25 SkVector vector;
26 x.store(&vector.fX);
27 return vector;
28 }
29
30 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
31 involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
32 May also introduce overflow of fixed when we compute our setup.
33 */
34 // #define DIRECT_EVAL_OF_POLYNOMIALS
35
36 ////////////////////////////////////////////////////////////////////////
37
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)38 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
39 SkScalar ab = a - b;
40 SkScalar bc = b - c;
41 if (ab < 0) {
42 bc = -bc;
43 }
44 return ab == 0 || bc < 0;
45 }
46
47 ////////////////////////////////////////////////////////////////////////
48
is_unit_interval(SkScalar x)49 static bool is_unit_interval(SkScalar x) {
50 return x > 0 && x < SK_Scalar1;
51 }
52
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)53 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
54 SkASSERT(ratio);
55
56 if (numer < 0) {
57 numer = -numer;
58 denom = -denom;
59 }
60
61 if (denom == 0 || numer == 0 || numer >= denom) {
62 return 0;
63 }
64
65 SkScalar r = numer / denom;
66 if (SkScalarIsNaN(r)) {
67 return 0;
68 }
69 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
70 if (r == 0) { // catch underflow if numer <<<< denom
71 return 0;
72 }
73 *ratio = r;
74 return 1;
75 }
76
77 /** From Numerical Recipes in C.
78
79 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
80 x1 = Q / A
81 x2 = C / Q
82 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])83 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
84 SkASSERT(roots);
85
86 if (A == 0) {
87 return valid_unit_divide(-C, B, roots);
88 }
89
90 SkScalar* r = roots;
91
92 SkScalar R = B*B - 4*A*C;
93 if (R < 0 || SkScalarIsNaN(R)) { // complex roots
94 return 0;
95 }
96 R = SkScalarSqrt(R);
97
98 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
99 r += valid_unit_divide(Q, A, r);
100 r += valid_unit_divide(C, Q, r);
101 if (r - roots == 2) {
102 if (roots[0] > roots[1])
103 SkTSwap<SkScalar>(roots[0], roots[1]);
104 else if (roots[0] == roots[1]) // nearly-equal?
105 r -= 1; // skip the double root
106 }
107 return (int)(r - roots);
108 }
109
110 ///////////////////////////////////////////////////////////////////////////////
111 ///////////////////////////////////////////////////////////////////////////////
112
quad_poly_eval(const Sk2s & A,const Sk2s & B,const Sk2s & C,const Sk2s & t)113 static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
114 return (A * t + B) * t + C;
115 }
116
eval_quad(const SkScalar src[],SkScalar t)117 static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
118 SkASSERT(src);
119 SkASSERT(t >= 0 && t <= SK_Scalar1);
120
121 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
122 SkScalar C = src[0];
123 SkScalar A = src[4] - 2 * src[2] + C;
124 SkScalar B = 2 * (src[2] - C);
125 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
126 #else
127 SkScalar ab = SkScalarInterp(src[0], src[2], t);
128 SkScalar bc = SkScalarInterp(src[2], src[4], t);
129 return SkScalarInterp(ab, bc, t);
130 #endif
131 }
132
eval_quad_derivative(const SkScalar src[],SkScalar t)133 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
134 SkScalar A = src[4] - 2 * src[2] + src[0];
135 SkScalar B = src[2] - src[0];
136
137 return 2 * SkScalarMulAdd(A, t, B);
138 }
139
SkQuadToCoeff(const SkPoint pts[3],SkPoint coeff[3])140 void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
141 Sk2s p0 = from_point(pts[0]);
142 Sk2s p1 = from_point(pts[1]);
143 Sk2s p2 = from_point(pts[2]);
144
145 Sk2s p1minus2 = p1 - p0;
146
147 coeff[0] = to_point(p2 - p1 - p1 + p0); // A * t^2
148 coeff[1] = to_point(p1minus2 + p1minus2); // B * t
149 coeff[2] = pts[0]; // C
150 }
151
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)152 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
153 SkASSERT(src);
154 SkASSERT(t >= 0 && t <= SK_Scalar1);
155
156 if (pt) {
157 pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
158 }
159 if (tangent) {
160 tangent->set(eval_quad_derivative(&src[0].fX, t),
161 eval_quad_derivative(&src[0].fY, t));
162 }
163 }
164
SkEvalQuadAt(const SkPoint src[3],SkScalar t)165 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
166 SkASSERT(src);
167 SkASSERT(t >= 0 && t <= SK_Scalar1);
168
169 const Sk2s t2(t);
170
171 Sk2s P0 = from_point(src[0]);
172 Sk2s P1 = from_point(src[1]);
173 Sk2s P2 = from_point(src[2]);
174
175 Sk2s B = P1 - P0;
176 Sk2s A = P2 - P1 - B;
177
178 return to_point((A * t2 + B+B) * t2 + P0);
179 }
180
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)181 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
182 SkASSERT(src);
183 SkASSERT(t >= 0 && t <= SK_Scalar1);
184
185 Sk2s P0 = from_point(src[0]);
186 Sk2s P1 = from_point(src[1]);
187 Sk2s P2 = from_point(src[2]);
188
189 Sk2s B = P1 - P0;
190 Sk2s A = P2 - P1 - B;
191 Sk2s T = A * Sk2s(t) + B;
192
193 return to_vector(T + T);
194 }
195
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)196 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
197 return v0 + (v1 - v0) * t;
198 }
199
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)200 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
201 SkASSERT(t > 0 && t < SK_Scalar1);
202
203 Sk2s p0 = from_point(src[0]);
204 Sk2s p1 = from_point(src[1]);
205 Sk2s p2 = from_point(src[2]);
206 Sk2s tt(t);
207
208 Sk2s p01 = interp(p0, p1, tt);
209 Sk2s p12 = interp(p1, p2, tt);
210
211 dst[0] = to_point(p0);
212 dst[1] = to_point(p01);
213 dst[2] = to_point(interp(p01, p12, tt));
214 dst[3] = to_point(p12);
215 dst[4] = to_point(p2);
216 }
217
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])218 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
219 SkChopQuadAt(src, dst, 0.5f); return;
220 }
221
222 /** Quad'(t) = At + B, where
223 A = 2(a - 2b + c)
224 B = 2(b - a)
225 Solve for t, only if it fits between 0 < t < 1
226 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])227 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
228 /* At + B == 0
229 t = -B / A
230 */
231 return valid_unit_divide(a - b, a - b - b + c, tValue);
232 }
233
flatten_double_quad_extrema(SkScalar coords[14])234 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
235 coords[2] = coords[6] = coords[4];
236 }
237
238 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
239 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
240 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])241 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
242 SkASSERT(src);
243 SkASSERT(dst);
244
245 SkScalar a = src[0].fY;
246 SkScalar b = src[1].fY;
247 SkScalar c = src[2].fY;
248
249 if (is_not_monotonic(a, b, c)) {
250 SkScalar tValue;
251 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
252 SkChopQuadAt(src, dst, tValue);
253 flatten_double_quad_extrema(&dst[0].fY);
254 return 1;
255 }
256 // if we get here, we need to force dst to be monotonic, even though
257 // we couldn't compute a unit_divide value (probably underflow).
258 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
259 }
260 dst[0].set(src[0].fX, a);
261 dst[1].set(src[1].fX, b);
262 dst[2].set(src[2].fX, c);
263 return 0;
264 }
265
266 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
267 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
268 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])269 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
270 SkASSERT(src);
271 SkASSERT(dst);
272
273 SkScalar a = src[0].fX;
274 SkScalar b = src[1].fX;
275 SkScalar c = src[2].fX;
276
277 if (is_not_monotonic(a, b, c)) {
278 SkScalar tValue;
279 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
280 SkChopQuadAt(src, dst, tValue);
281 flatten_double_quad_extrema(&dst[0].fX);
282 return 1;
283 }
284 // if we get here, we need to force dst to be monotonic, even though
285 // we couldn't compute a unit_divide value (probably underflow).
286 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
287 }
288 dst[0].set(a, src[0].fY);
289 dst[1].set(b, src[1].fY);
290 dst[2].set(c, src[2].fY);
291 return 0;
292 }
293
294 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
295 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
296 // F''(t) = 2 (a - 2b + c)
297 //
298 // A = 2 (b - a)
299 // B = 2 (a - 2b + c)
300 //
301 // Maximum curvature for a quadratic means solving
302 // Fx' Fx'' + Fy' Fy'' = 0
303 //
304 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
305 //
SkFindQuadMaxCurvature(const SkPoint src[3])306 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
307 SkScalar Ax = src[1].fX - src[0].fX;
308 SkScalar Ay = src[1].fY - src[0].fY;
309 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
310 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
311 SkScalar t = 0; // 0 means don't chop
312
313 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
314 return t;
315 }
316
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])317 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
318 SkScalar t = SkFindQuadMaxCurvature(src);
319 if (t == 0) {
320 memcpy(dst, src, 3 * sizeof(SkPoint));
321 return 1;
322 } else {
323 SkChopQuadAt(src, dst, t);
324 return 2;
325 }
326 }
327
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])328 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
329 Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
330 Sk2s s0 = from_point(src[0]);
331 Sk2s s1 = from_point(src[1]);
332 Sk2s s2 = from_point(src[2]);
333
334 dst[0] = src[0];
335 dst[1] = to_point(s0 + (s1 - s0) * scale);
336 dst[2] = to_point(s2 + (s1 - s2) * scale);
337 dst[3] = src[2];
338 }
339
340 //////////////////////////////////////////////////////////////////////////////
341 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
342 //////////////////////////////////////////////////////////////////////////////
343
eval_cubic(const SkScalar src[],SkScalar t)344 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
345 SkASSERT(src);
346 SkASSERT(t >= 0 && t <= SK_Scalar1);
347
348 if (t == 0) {
349 return src[0];
350 }
351
352 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
353 SkScalar D = src[0];
354 SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
355 SkScalar B = 3*(src[4] - src[2] - src[2] + D);
356 SkScalar C = 3*(src[2] - D);
357
358 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
359 #else
360 SkScalar ab = SkScalarInterp(src[0], src[2], t);
361 SkScalar bc = SkScalarInterp(src[2], src[4], t);
362 SkScalar cd = SkScalarInterp(src[4], src[6], t);
363 SkScalar abc = SkScalarInterp(ab, bc, t);
364 SkScalar bcd = SkScalarInterp(bc, cd, t);
365 return SkScalarInterp(abc, bcd, t);
366 #endif
367 }
368
369 /** return At^2 + Bt + C
370 */
eval_quadratic(SkScalar A,SkScalar B,SkScalar C,SkScalar t)371 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
372 SkASSERT(t >= 0 && t <= SK_Scalar1);
373
374 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
375 }
376
eval_cubic_derivative(const SkScalar src[],SkScalar t)377 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
378 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
379 SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
380 SkScalar C = src[2] - src[0];
381
382 return eval_quadratic(A, B, C, t);
383 }
384
eval_cubic_2ndDerivative(const SkScalar src[],SkScalar t)385 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
386 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
387 SkScalar B = src[4] - 2 * src[2] + src[0];
388
389 return SkScalarMulAdd(A, t, B);
390 }
391
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)392 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
393 SkVector* tangent, SkVector* curvature) {
394 SkASSERT(src);
395 SkASSERT(t >= 0 && t <= SK_Scalar1);
396
397 if (loc) {
398 loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
399 }
400 if (tangent) {
401 tangent->set(eval_cubic_derivative(&src[0].fX, t),
402 eval_cubic_derivative(&src[0].fY, t));
403 }
404 if (curvature) {
405 curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
406 eval_cubic_2ndDerivative(&src[0].fY, t));
407 }
408 }
409
410 /** Cubic'(t) = At^2 + Bt + C, where
411 A = 3(-a + 3(b - c) + d)
412 B = 6(a - 2b + c)
413 C = 3(b - a)
414 Solve for t, keeping only those that fit betwee 0 < t < 1
415 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])416 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
417 SkScalar tValues[2]) {
418 // we divide A,B,C by 3 to simplify
419 SkScalar A = d - a + 3*(b - c);
420 SkScalar B = 2*(a - b - b + c);
421 SkScalar C = b - a;
422
423 return SkFindUnitQuadRoots(A, B, C, tValues);
424 }
425
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)426 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
427 SkASSERT(t > 0 && t < SK_Scalar1);
428
429 Sk2s p0 = from_point(src[0]);
430 Sk2s p1 = from_point(src[1]);
431 Sk2s p2 = from_point(src[2]);
432 Sk2s p3 = from_point(src[3]);
433 Sk2s tt(t);
434
435 Sk2s ab = interp(p0, p1, tt);
436 Sk2s bc = interp(p1, p2, tt);
437 Sk2s cd = interp(p2, p3, tt);
438 Sk2s abc = interp(ab, bc, tt);
439 Sk2s bcd = interp(bc, cd, tt);
440 Sk2s abcd = interp(abc, bcd, tt);
441
442 dst[0] = src[0];
443 dst[1] = to_point(ab);
444 dst[2] = to_point(abc);
445 dst[3] = to_point(abcd);
446 dst[4] = to_point(bcd);
447 dst[5] = to_point(cd);
448 dst[6] = src[3];
449 }
450
SkCubicToCoeff(const SkPoint pts[4],SkPoint coeff[4])451 void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
452 Sk2s p0 = from_point(pts[0]);
453 Sk2s p1 = from_point(pts[1]);
454 Sk2s p2 = from_point(pts[2]);
455 Sk2s p3 = from_point(pts[3]);
456
457 const Sk2s three(3);
458 Sk2s p1minusp2 = p1 - p2;
459
460 Sk2s D = p0;
461 Sk2s A = p3 + three * p1minusp2 - D;
462 Sk2s B = three * (D - p1minusp2 - p1);
463 Sk2s C = three * (p1 - D);
464
465 coeff[0] = to_point(A);
466 coeff[1] = to_point(B);
467 coeff[2] = to_point(C);
468 coeff[3] = to_point(D);
469 }
470
471 /* http://code.google.com/p/skia/issues/detail?id=32
472
473 This test code would fail when we didn't check the return result of
474 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
475 that after the first chop, the parameters to valid_unit_divide are equal
476 (thanks to finite float precision and rounding in the subtracts). Thus
477 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
478 up with 1.0, hence the need to check and just return the last cubic as
479 a degenerate clump of 4 points in the sampe place.
480
481 static void test_cubic() {
482 SkPoint src[4] = {
483 { 556.25000, 523.03003 },
484 { 556.23999, 522.96002 },
485 { 556.21997, 522.89001 },
486 { 556.21997, 522.82001 }
487 };
488 SkPoint dst[10];
489 SkScalar tval[] = { 0.33333334f, 0.99999994f };
490 SkChopCubicAt(src, dst, tval, 2);
491 }
492 */
493
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)494 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
495 const SkScalar tValues[], int roots) {
496 #ifdef SK_DEBUG
497 {
498 for (int i = 0; i < roots - 1; i++)
499 {
500 SkASSERT(is_unit_interval(tValues[i]));
501 SkASSERT(is_unit_interval(tValues[i+1]));
502 SkASSERT(tValues[i] < tValues[i+1]);
503 }
504 }
505 #endif
506
507 if (dst) {
508 if (roots == 0) { // nothing to chop
509 memcpy(dst, src, 4*sizeof(SkPoint));
510 } else {
511 SkScalar t = tValues[0];
512 SkPoint tmp[4];
513
514 for (int i = 0; i < roots; i++) {
515 SkChopCubicAt(src, dst, t);
516 if (i == roots - 1) {
517 break;
518 }
519
520 dst += 3;
521 // have src point to the remaining cubic (after the chop)
522 memcpy(tmp, dst, 4 * sizeof(SkPoint));
523 src = tmp;
524
525 // watch out in case the renormalized t isn't in range
526 if (!valid_unit_divide(tValues[i+1] - tValues[i],
527 SK_Scalar1 - tValues[i], &t)) {
528 // if we can't, just create a degenerate cubic
529 dst[4] = dst[5] = dst[6] = src[3];
530 break;
531 }
532 }
533 }
534 }
535 }
536
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])537 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
538 SkChopCubicAt(src, dst, 0.5f);
539 }
540
flatten_double_cubic_extrema(SkScalar coords[14])541 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
542 coords[4] = coords[8] = coords[6];
543 }
544
545 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
546 the resulting beziers are monotonic in Y. This is called by the scan
547 converter. Depending on what is returned, dst[] is treated as follows:
548 0 dst[0..3] is the original cubic
549 1 dst[0..3] and dst[3..6] are the two new cubics
550 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
551 If dst == null, it is ignored and only the count is returned.
552 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])553 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
554 SkScalar tValues[2];
555 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
556 src[3].fY, tValues);
557
558 SkChopCubicAt(src, dst, tValues, roots);
559 if (dst && roots > 0) {
560 // we do some cleanup to ensure our Y extrema are flat
561 flatten_double_cubic_extrema(&dst[0].fY);
562 if (roots == 2) {
563 flatten_double_cubic_extrema(&dst[3].fY);
564 }
565 }
566 return roots;
567 }
568
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])569 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
570 SkScalar tValues[2];
571 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
572 src[3].fX, tValues);
573
574 SkChopCubicAt(src, dst, tValues, roots);
575 if (dst && roots > 0) {
576 // we do some cleanup to ensure our Y extrema are flat
577 flatten_double_cubic_extrema(&dst[0].fX);
578 if (roots == 2) {
579 flatten_double_cubic_extrema(&dst[3].fX);
580 }
581 }
582 return roots;
583 }
584
585 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
586
587 Inflection means that curvature is zero.
588 Curvature is [F' x F''] / [F'^3]
589 So we solve F'x X F''y - F'y X F''y == 0
590 After some canceling of the cubic term, we get
591 A = b - a
592 B = c - 2b + a
593 C = d - 3c + 3b - a
594 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
595 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])596 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
597 SkScalar Ax = src[1].fX - src[0].fX;
598 SkScalar Ay = src[1].fY - src[0].fY;
599 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
600 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
601 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
602 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
603
604 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
605 Ax*Cy - Ay*Cx,
606 Ax*By - Ay*Bx,
607 tValues);
608 }
609
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])610 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
611 SkScalar tValues[2];
612 int count = SkFindCubicInflections(src, tValues);
613
614 if (dst) {
615 if (count == 0) {
616 memcpy(dst, src, 4 * sizeof(SkPoint));
617 } else {
618 SkChopCubicAt(src, dst, tValues, count);
619 }
620 }
621 return count + 1;
622 }
623
624 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
625 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
626 // Classification:
627 // discr(I) > 0 Serpentine
628 // discr(I) = 0 Cusp
629 // discr(I) < 0 Loop
630 // d0 = d1 = 0 Quadratic
631 // d0 = d1 = d2 = 0 Line
632 // p0 = p1 = p2 = p3 Point
classify_cubic(const SkPoint p[4],const SkScalar d[3])633 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
634 if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
635 return kPoint_SkCubicType;
636 }
637 const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
638 if (discr > SK_ScalarNearlyZero) {
639 return kSerpentine_SkCubicType;
640 } else if (discr < -SK_ScalarNearlyZero) {
641 return kLoop_SkCubicType;
642 } else {
643 if (0.f == d[0] && 0.f == d[1]) {
644 return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
645 } else {
646 return kCusp_SkCubicType;
647 }
648 }
649 }
650
651 // Assumes the third component of points is 1.
652 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)653 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
654 const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
655 const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
656 const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
657 return (xComp + yComp + wComp);
658 }
659
660 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
661 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
662 // d0 = a1 - 2*a2+3*a3
663 // d1 = -a2 + 3*a3
664 // d2 = 3*a3
665 // a1 = p0 . (p3 x p2)
666 // a2 = p1 . (p0 x p3)
667 // a3 = p2 . (p1 x p0)
668 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],SkScalar d[3])669 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
670 SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
671 SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
672 SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
673
674 // need to scale a's or values in later calculations will grow to high
675 SkScalar max = SkScalarAbs(a1);
676 max = SkMaxScalar(max, SkScalarAbs(a2));
677 max = SkMaxScalar(max, SkScalarAbs(a3));
678 max = 1.f/max;
679 a1 = a1 * max;
680 a2 = a2 * max;
681 a3 = a3 * max;
682
683 d[2] = 3.f * a3;
684 d[1] = d[2] - a2;
685 d[0] = d[1] - a2 + a1;
686 }
687
SkClassifyCubic(const SkPoint src[4],SkScalar d[3])688 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
689 calc_cubic_inflection_func(src, d);
690 return classify_cubic(src, d);
691 }
692
bubble_sort(T array[],int count)693 template <typename T> void bubble_sort(T array[], int count) {
694 for (int i = count - 1; i > 0; --i)
695 for (int j = i; j > 0; --j)
696 if (array[j] < array[j-1])
697 {
698 T tmp(array[j]);
699 array[j] = array[j-1];
700 array[j-1] = tmp;
701 }
702 }
703
704 /**
705 * Given an array and count, remove all pair-wise duplicates from the array,
706 * keeping the existing sorting, and return the new count
707 */
collaps_duplicates(SkScalar array[],int count)708 static int collaps_duplicates(SkScalar array[], int count) {
709 for (int n = count; n > 1; --n) {
710 if (array[0] == array[1]) {
711 for (int i = 1; i < n; ++i) {
712 array[i - 1] = array[i];
713 }
714 count -= 1;
715 } else {
716 array += 1;
717 }
718 }
719 return count;
720 }
721
722 #ifdef SK_DEBUG
723
724 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
725
test_collaps_duplicates()726 static void test_collaps_duplicates() {
727 static bool gOnce;
728 if (gOnce) { return; }
729 gOnce = true;
730 const SkScalar src0[] = { 0 };
731 const SkScalar src1[] = { 0, 0 };
732 const SkScalar src2[] = { 0, 1 };
733 const SkScalar src3[] = { 0, 0, 0 };
734 const SkScalar src4[] = { 0, 0, 1 };
735 const SkScalar src5[] = { 0, 1, 1 };
736 const SkScalar src6[] = { 0, 1, 2 };
737 const struct {
738 const SkScalar* fData;
739 int fCount;
740 int fCollapsedCount;
741 } data[] = {
742 { TEST_COLLAPS_ENTRY(src0), 1 },
743 { TEST_COLLAPS_ENTRY(src1), 1 },
744 { TEST_COLLAPS_ENTRY(src2), 2 },
745 { TEST_COLLAPS_ENTRY(src3), 1 },
746 { TEST_COLLAPS_ENTRY(src4), 2 },
747 { TEST_COLLAPS_ENTRY(src5), 2 },
748 { TEST_COLLAPS_ENTRY(src6), 3 },
749 };
750 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
751 SkScalar dst[3];
752 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
753 int count = collaps_duplicates(dst, data[i].fCount);
754 SkASSERT(data[i].fCollapsedCount == count);
755 for (int j = 1; j < count; ++j) {
756 SkASSERT(dst[j-1] < dst[j]);
757 }
758 }
759 }
760 #endif
761
SkScalarCubeRoot(SkScalar x)762 static SkScalar SkScalarCubeRoot(SkScalar x) {
763 return SkScalarPow(x, 0.3333333f);
764 }
765
766 /* Solve coeff(t) == 0, returning the number of roots that
767 lie withing 0 < t < 1.
768 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
769
770 Eliminates repeated roots (so that all tValues are distinct, and are always
771 in increasing order.
772 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])773 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
774 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
775 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
776 }
777
778 SkScalar a, b, c, Q, R;
779
780 {
781 SkASSERT(coeff[0] != 0);
782
783 SkScalar inva = SkScalarInvert(coeff[0]);
784 a = coeff[1] * inva;
785 b = coeff[2] * inva;
786 c = coeff[3] * inva;
787 }
788 Q = (a*a - b*3) / 9;
789 R = (2*a*a*a - 9*a*b + 27*c) / 54;
790
791 SkScalar Q3 = Q * Q * Q;
792 SkScalar R2MinusQ3 = R * R - Q3;
793 SkScalar adiv3 = a / 3;
794
795 SkScalar* roots = tValues;
796 SkScalar r;
797
798 if (R2MinusQ3 < 0) { // we have 3 real roots
799 SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
800 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
801
802 r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
803 if (is_unit_interval(r)) {
804 *roots++ = r;
805 }
806 r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
807 if (is_unit_interval(r)) {
808 *roots++ = r;
809 }
810 r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
811 if (is_unit_interval(r)) {
812 *roots++ = r;
813 }
814 SkDEBUGCODE(test_collaps_duplicates();)
815
816 // now sort the roots
817 int count = (int)(roots - tValues);
818 SkASSERT((unsigned)count <= 3);
819 bubble_sort(tValues, count);
820 count = collaps_duplicates(tValues, count);
821 roots = tValues + count; // so we compute the proper count below
822 } else { // we have 1 real root
823 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
824 A = SkScalarCubeRoot(A);
825 if (R > 0) {
826 A = -A;
827 }
828 if (A != 0) {
829 A += Q / A;
830 }
831 r = A - adiv3;
832 if (is_unit_interval(r)) {
833 *roots++ = r;
834 }
835 }
836
837 return (int)(roots - tValues);
838 }
839
840 /* Looking for F' dot F'' == 0
841
842 A = b - a
843 B = c - 2b + a
844 C = d - 3c + 3b - a
845
846 F' = 3Ct^2 + 6Bt + 3A
847 F'' = 6Ct + 6B
848
849 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
850 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])851 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
852 SkScalar a = src[2] - src[0];
853 SkScalar b = src[4] - 2 * src[2] + src[0];
854 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
855
856 coeff[0] = c * c;
857 coeff[1] = 3 * b * c;
858 coeff[2] = 2 * b * b + c * a;
859 coeff[3] = a * b;
860 }
861
862 /* Looking for F' dot F'' == 0
863
864 A = b - a
865 B = c - 2b + a
866 C = d - 3c + 3b - a
867
868 F' = 3Ct^2 + 6Bt + 3A
869 F'' = 6Ct + 6B
870
871 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
872 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])873 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
874 SkScalar coeffX[4], coeffY[4];
875 int i;
876
877 formulate_F1DotF2(&src[0].fX, coeffX);
878 formulate_F1DotF2(&src[0].fY, coeffY);
879
880 for (i = 0; i < 4; i++) {
881 coeffX[i] += coeffY[i];
882 }
883
884 SkScalar t[3];
885 int count = solve_cubic_poly(coeffX, t);
886 int maxCount = 0;
887
888 // now remove extrema where the curvature is zero (mins)
889 // !!!! need a test for this !!!!
890 for (i = 0; i < count; i++) {
891 // if (not_min_curvature())
892 if (t[i] > 0 && t[i] < SK_Scalar1) {
893 tValues[maxCount++] = t[i];
894 }
895 }
896 return maxCount;
897 }
898
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])899 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
900 SkScalar tValues[3]) {
901 SkScalar t_storage[3];
902
903 if (tValues == NULL) {
904 tValues = t_storage;
905 }
906
907 int count = SkFindCubicMaxCurvature(src, tValues);
908
909 if (dst) {
910 if (count == 0) {
911 memcpy(dst, src, 4 * sizeof(SkPoint));
912 } else {
913 SkChopCubicAt(src, dst, tValues, count);
914 }
915 }
916 return count + 1;
917 }
918
919 #include "../pathops/SkPathOpsCubic.h"
920
921 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
922
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)923 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
924 InterceptProc method) {
925 SkDCubic cubic;
926 double roots[3];
927 int count = (cubic.set(src).*method)(intercept, roots);
928 if (count > 0) {
929 SkDCubicPair pair = cubic.chopAt(roots[0]);
930 for (int i = 0; i < 7; ++i) {
931 dst[i] = pair.pts[i].asSkPoint();
932 }
933 return true;
934 }
935 return false;
936 }
937
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])938 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
939 return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
940 }
941
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])942 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
943 return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
944 }
945
946 ///////////////////////////////////////////////////////////////////////////////
947
948 /* Find t value for quadratic [a, b, c] = d.
949 Return 0 if there is no solution within [0, 1)
950 */
quad_solve(SkScalar a,SkScalar b,SkScalar c,SkScalar d)951 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
952 // At^2 + Bt + C = d
953 SkScalar A = a - 2 * b + c;
954 SkScalar B = 2 * (b - a);
955 SkScalar C = a - d;
956
957 SkScalar roots[2];
958 int count = SkFindUnitQuadRoots(A, B, C, roots);
959
960 SkASSERT(count <= 1);
961 return count == 1 ? roots[0] : 0;
962 }
963
964 /* given a quad-curve and a point (x,y), chop the quad at that point and place
965 the new off-curve point and endpoint into 'dest'.
966 Should only return false if the computed pos is the start of the curve
967 (i.e. root == 0)
968 */
truncate_last_curve(const SkPoint quad[3],SkScalar x,SkScalar y,SkPoint * dest)969 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
970 SkPoint* dest) {
971 const SkScalar* base;
972 SkScalar value;
973
974 if (SkScalarAbs(x) < SkScalarAbs(y)) {
975 base = &quad[0].fX;
976 value = x;
977 } else {
978 base = &quad[0].fY;
979 value = y;
980 }
981
982 // note: this returns 0 if it thinks value is out of range, meaning the
983 // root might return something outside of [0, 1)
984 SkScalar t = quad_solve(base[0], base[2], base[4], value);
985
986 if (t > 0) {
987 SkPoint tmp[5];
988 SkChopQuadAt(quad, tmp, t);
989 dest[0] = tmp[1];
990 dest[1].set(x, y);
991 return true;
992 } else {
993 /* t == 0 means either the value triggered a root outside of [0, 1)
994 For our purposes, we can ignore the <= 0 roots, but we want to
995 catch the >= 1 roots (which given our caller, will basically mean
996 a root of 1, give-or-take numerical instability). If we are in the
997 >= 1 case, return the existing offCurve point.
998
999 The test below checks to see if we are close to the "end" of the
1000 curve (near base[4]). Rather than specifying a tolerance, I just
1001 check to see if value is on to the right/left of the middle point
1002 (depending on the direction/sign of the end points).
1003 */
1004 if ((base[0] < base[4] && value > base[2]) ||
1005 (base[0] > base[4] && value < base[2])) // should root have been 1
1006 {
1007 dest[0] = quad[1];
1008 dest[1].set(x, y);
1009 return true;
1010 }
1011 }
1012 return false;
1013 }
1014
1015 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1016 // The mid point of the quadratic arc approximation is half way between the two
1017 // control points. The float epsilon adjustment moves the on curve point out by
1018 // two bits, distributing the convex test error between the round rect
1019 // approximation and the convex cross product sign equality test.
1020 #define SK_MID_RRECT_OFFSET \
1021 (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1022 { SK_Scalar1, 0 },
1023 { SK_Scalar1, SK_ScalarTanPIOver8 },
1024 { SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
1025 { SK_ScalarTanPIOver8, SK_Scalar1 },
1026
1027 { 0, SK_Scalar1 },
1028 { -SK_ScalarTanPIOver8, SK_Scalar1 },
1029 { -SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
1030 { -SK_Scalar1, SK_ScalarTanPIOver8 },
1031
1032 { -SK_Scalar1, 0 },
1033 { -SK_Scalar1, -SK_ScalarTanPIOver8 },
1034 { -SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
1035 { -SK_ScalarTanPIOver8, -SK_Scalar1 },
1036
1037 { 0, -SK_Scalar1 },
1038 { SK_ScalarTanPIOver8, -SK_Scalar1 },
1039 { SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
1040 { SK_Scalar1, -SK_ScalarTanPIOver8 },
1041
1042 { SK_Scalar1, 0 }
1043 #undef SK_MID_RRECT_OFFSET
1044 };
1045
SkBuildQuadArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkPoint quadPoints[])1046 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1047 SkRotationDirection dir, const SkMatrix* userMatrix,
1048 SkPoint quadPoints[]) {
1049 // rotate by x,y so that uStart is (1.0)
1050 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1051 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1052
1053 SkScalar absX = SkScalarAbs(x);
1054 SkScalar absY = SkScalarAbs(y);
1055
1056 int pointCount;
1057
1058 // check for (effectively) coincident vectors
1059 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1060 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1061 if (absY <= SK_ScalarNearlyZero && x > 0 &&
1062 ((y >= 0 && kCW_SkRotationDirection == dir) ||
1063 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1064
1065 // just return the start-point
1066 quadPoints[0].set(SK_Scalar1, 0);
1067 pointCount = 1;
1068 } else {
1069 if (dir == kCCW_SkRotationDirection) {
1070 y = -y;
1071 }
1072 // what octant (quadratic curve) is [xy] in?
1073 int oct = 0;
1074 bool sameSign = true;
1075
1076 if (0 == y) {
1077 oct = 4; // 180
1078 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1079 } else if (0 == x) {
1080 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1081 oct = y > 0 ? 2 : 6; // 90 : 270
1082 } else {
1083 if (y < 0) {
1084 oct += 4;
1085 }
1086 if ((x < 0) != (y < 0)) {
1087 oct += 2;
1088 sameSign = false;
1089 }
1090 if ((absX < absY) == sameSign) {
1091 oct += 1;
1092 }
1093 }
1094
1095 int wholeCount = oct << 1;
1096 memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1097
1098 const SkPoint* arc = &gQuadCirclePts[wholeCount];
1099 if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
1100 wholeCount += 2;
1101 }
1102 pointCount = wholeCount + 1;
1103 }
1104
1105 // now handle counter-clockwise and the initial unitStart rotation
1106 SkMatrix matrix;
1107 matrix.setSinCos(uStart.fY, uStart.fX);
1108 if (dir == kCCW_SkRotationDirection) {
1109 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1110 }
1111 if (userMatrix) {
1112 matrix.postConcat(*userMatrix);
1113 }
1114 matrix.mapPoints(quadPoints, pointCount);
1115 return pointCount;
1116 }
1117
1118
1119 ///////////////////////////////////////////////////////////////////////////////
1120 //
1121 // NURB representation for conics. Helpful explanations at:
1122 //
1123 // http://citeseerx.ist.psu.edu/viewdoc/
1124 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
1125 // and
1126 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1127 //
1128 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1129 // ------------------------------------------
1130 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1131 //
1132 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1133 // ------------------------------------------------
1134 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1135 //
1136
conic_eval_pos(const SkScalar src[],SkScalar w,SkScalar t)1137 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
1138 SkASSERT(src);
1139 SkASSERT(t >= 0 && t <= SK_Scalar1);
1140
1141 SkScalar src2w = SkScalarMul(src[2], w);
1142 SkScalar C = src[0];
1143 SkScalar A = src[4] - 2 * src2w + C;
1144 SkScalar B = 2 * (src2w - C);
1145 SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1146
1147 B = 2 * (w - SK_Scalar1);
1148 C = SK_Scalar1;
1149 A = -B;
1150 SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1151
1152 return numer / denom;
1153 }
1154
1155 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1156 //
1157 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1158 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1159 // t^0 : -2 P0 w + 2 P1 w
1160 //
1161 // We disregard magnitude, so we can freely ignore the denominator of F', and
1162 // divide the numerator by 2
1163 //
1164 // coeff[0] for t^2
1165 // coeff[1] for t^1
1166 // coeff[2] for t^0
1167 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])1168 static void conic_deriv_coeff(const SkScalar src[],
1169 SkScalar w,
1170 SkScalar coeff[3]) {
1171 const SkScalar P20 = src[4] - src[0];
1172 const SkScalar P10 = src[2] - src[0];
1173 const SkScalar wP10 = w * P10;
1174 coeff[0] = w * P20 - P20;
1175 coeff[1] = P20 - 2 * wP10;
1176 coeff[2] = wP10;
1177 }
1178
conic_eval_tan(const SkScalar coord[],SkScalar w,SkScalar t)1179 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
1180 SkScalar coeff[3];
1181 conic_deriv_coeff(coord, w, coeff);
1182 return t * (t * coeff[0] + coeff[1]) + coeff[2];
1183 }
1184
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)1185 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1186 SkScalar coeff[3];
1187 conic_deriv_coeff(src, w, coeff);
1188
1189 SkScalar tValues[2];
1190 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1191 SkASSERT(0 == roots || 1 == roots);
1192
1193 if (1 == roots) {
1194 *t = tValues[0];
1195 return true;
1196 }
1197 return false;
1198 }
1199
1200 struct SkP3D {
1201 SkScalar fX, fY, fZ;
1202
setSkP3D1203 void set(SkScalar x, SkScalar y, SkScalar z) {
1204 fX = x; fY = y; fZ = z;
1205 }
1206
projectDownSkP3D1207 void projectDown(SkPoint* dst) const {
1208 dst->set(fX / fZ, fY / fZ);
1209 }
1210 };
1211
1212 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1213 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1214 SkScalar ab = SkScalarInterp(src[0], src[3], t);
1215 SkScalar bc = SkScalarInterp(src[3], src[6], t);
1216 dst[0] = ab;
1217 dst[3] = SkScalarInterp(ab, bc, t);
1218 dst[6] = bc;
1219 }
1220
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkP3D dst[])1221 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1222 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1223 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1224 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1225 }
1226
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1227 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1228 SkASSERT(t >= 0 && t <= SK_Scalar1);
1229
1230 if (pt) {
1231 pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1232 conic_eval_pos(&fPts[0].fY, fW, t));
1233 }
1234 if (tangent) {
1235 tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1236 conic_eval_tan(&fPts[0].fY, fW, t));
1237 }
1238 }
1239
chopAt(SkScalar t,SkConic dst[2]) const1240 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1241 SkP3D tmp[3], tmp2[3];
1242
1243 ratquad_mapTo3D(fPts, fW, tmp);
1244
1245 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1246 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1247 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1248
1249 dst[0].fPts[0] = fPts[0];
1250 tmp2[0].projectDown(&dst[0].fPts[1]);
1251 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1252 tmp2[2].projectDown(&dst[1].fPts[1]);
1253 dst[1].fPts[2] = fPts[2];
1254
1255 // to put in "standard form", where w0 and w2 are both 1, we compute the
1256 // new w1 as sqrt(w1*w1/w0*w2)
1257 // or
1258 // w1 /= sqrt(w0*w2)
1259 //
1260 // However, in our case, we know that for dst[0]:
1261 // w0 == 1, and for dst[1], w2 == 1
1262 //
1263 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1264 dst[0].fW = tmp2[0].fZ / root;
1265 dst[1].fW = tmp2[2].fZ / root;
1266 }
1267
times_2(const Sk2s & value)1268 static Sk2s times_2(const Sk2s& value) {
1269 return value + value;
1270 }
1271
evalAt(SkScalar t) const1272 SkPoint SkConic::evalAt(SkScalar t) const {
1273 Sk2s p0 = from_point(fPts[0]);
1274 Sk2s p1 = from_point(fPts[1]);
1275 Sk2s p2 = from_point(fPts[2]);
1276 Sk2s tt(t);
1277 Sk2s ww(fW);
1278 Sk2s one(1);
1279
1280 Sk2s p1w = p1 * ww;
1281 Sk2s C = p0;
1282 Sk2s A = p2 - times_2(p1w) + p0;
1283 Sk2s B = times_2(p1w - C);
1284 Sk2s numer = quad_poly_eval(A, B, C, tt);
1285
1286 B = times_2(ww - one);
1287 A = -B;
1288 Sk2s denom = quad_poly_eval(A, B, one, tt);
1289
1290 return to_point(numer / denom);
1291 }
1292
evalTangentAt(SkScalar t) const1293 SkVector SkConic::evalTangentAt(SkScalar t) const {
1294 Sk2s p0 = from_point(fPts[0]);
1295 Sk2s p1 = from_point(fPts[1]);
1296 Sk2s p2 = from_point(fPts[2]);
1297 Sk2s ww(fW);
1298
1299 Sk2s p20 = p2 - p0;
1300 Sk2s p10 = p1 - p0;
1301
1302 Sk2s C = ww * p10;
1303 Sk2s A = ww * p20 - p20;
1304 Sk2s B = p20 - C - C;
1305
1306 return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
1307 }
1308
subdivide_w_value(SkScalar w)1309 static SkScalar subdivide_w_value(SkScalar w) {
1310 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1311 }
1312
twice(const Sk2s & value)1313 static Sk2s twice(const Sk2s& value) {
1314 return value + value;
1315 }
1316
chop(SkConic * SK_RESTRICT dst) const1317 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1318 Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1319 SkScalar newW = subdivide_w_value(fW);
1320
1321 Sk2s p0 = from_point(fPts[0]);
1322 Sk2s p1 = from_point(fPts[1]);
1323 Sk2s p2 = from_point(fPts[2]);
1324 Sk2s ww(fW);
1325
1326 Sk2s wp1 = ww * p1;
1327 Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
1328
1329 dst[0].fPts[0] = fPts[0];
1330 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1331 dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1332 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1333 dst[1].fPts[2] = fPts[2];
1334
1335 dst[0].fW = dst[1].fW = newW;
1336 }
1337
1338 /*
1339 * "High order approximation of conic sections by quadratic splines"
1340 * by Michael Floater, 1993
1341 */
1342 #define AS_QUAD_ERROR_SETUP \
1343 SkScalar a = fW - 1; \
1344 SkScalar k = a / (4 * (2 + a)); \
1345 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1346 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1347
computeAsQuadError(SkVector * err) const1348 void SkConic::computeAsQuadError(SkVector* err) const {
1349 AS_QUAD_ERROR_SETUP
1350 err->set(x, y);
1351 }
1352
asQuadTol(SkScalar tol) const1353 bool SkConic::asQuadTol(SkScalar tol) const {
1354 AS_QUAD_ERROR_SETUP
1355 return (x * x + y * y) <= tol * tol;
1356 }
1357
1358 // Limit the number of suggested quads to approximate a conic
1359 #define kMaxConicToQuadPOW2 5
1360
computeQuadPOW2(SkScalar tol) const1361 int SkConic::computeQuadPOW2(SkScalar tol) const {
1362 if (tol < 0 || !SkScalarIsFinite(tol)) {
1363 return 0;
1364 }
1365
1366 AS_QUAD_ERROR_SETUP
1367
1368 SkScalar error = SkScalarSqrt(x * x + y * y);
1369 int pow2;
1370 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1371 if (error <= tol) {
1372 break;
1373 }
1374 error *= 0.25f;
1375 }
1376 // float version -- using ceil gives the same results as the above.
1377 if (false) {
1378 SkScalar err = SkScalarSqrt(x * x + y * y);
1379 if (err <= tol) {
1380 return 0;
1381 }
1382 SkScalar tol2 = tol * tol;
1383 if (tol2 == 0) {
1384 return kMaxConicToQuadPOW2;
1385 }
1386 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1387 int altPow2 = SkScalarCeilToInt(fpow2);
1388 if (altPow2 != pow2) {
1389 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1390 }
1391 pow2 = altPow2;
1392 }
1393 return pow2;
1394 }
1395
subdivide(const SkConic & src,SkPoint pts[],int level)1396 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1397 SkASSERT(level >= 0);
1398
1399 if (0 == level) {
1400 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1401 return pts + 2;
1402 } else {
1403 SkConic dst[2];
1404 src.chop(dst);
1405 --level;
1406 pts = subdivide(dst[0], pts, level);
1407 return subdivide(dst[1], pts, level);
1408 }
1409 }
1410
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1411 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1412 SkASSERT(pow2 >= 0);
1413 *pts = fPts[0];
1414 SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1415 SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1416 return 1 << pow2;
1417 }
1418
findXExtrema(SkScalar * t) const1419 bool SkConic::findXExtrema(SkScalar* t) const {
1420 return conic_find_extrema(&fPts[0].fX, fW, t);
1421 }
1422
findYExtrema(SkScalar * t) const1423 bool SkConic::findYExtrema(SkScalar* t) const {
1424 return conic_find_extrema(&fPts[0].fY, fW, t);
1425 }
1426
chopAtXExtrema(SkConic dst[2]) const1427 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1428 SkScalar t;
1429 if (this->findXExtrema(&t)) {
1430 this->chopAt(t, dst);
1431 // now clean-up the middle, since we know t was meant to be at
1432 // an X-extrema
1433 SkScalar value = dst[0].fPts[2].fX;
1434 dst[0].fPts[1].fX = value;
1435 dst[1].fPts[0].fX = value;
1436 dst[1].fPts[1].fX = value;
1437 return true;
1438 }
1439 return false;
1440 }
1441
chopAtYExtrema(SkConic dst[2]) const1442 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1443 SkScalar t;
1444 if (this->findYExtrema(&t)) {
1445 this->chopAt(t, dst);
1446 // now clean-up the middle, since we know t was meant to be at
1447 // an Y-extrema
1448 SkScalar value = dst[0].fPts[2].fY;
1449 dst[0].fPts[1].fY = value;
1450 dst[1].fPts[0].fY = value;
1451 dst[1].fPts[1].fY = value;
1452 return true;
1453 }
1454 return false;
1455 }
1456
computeTightBounds(SkRect * bounds) const1457 void SkConic::computeTightBounds(SkRect* bounds) const {
1458 SkPoint pts[4];
1459 pts[0] = fPts[0];
1460 pts[1] = fPts[2];
1461 int count = 2;
1462
1463 SkScalar t;
1464 if (this->findXExtrema(&t)) {
1465 this->evalAt(t, &pts[count++]);
1466 }
1467 if (this->findYExtrema(&t)) {
1468 this->evalAt(t, &pts[count++]);
1469 }
1470 bounds->set(pts, count);
1471 }
1472
computeFastBounds(SkRect * bounds) const1473 void SkConic::computeFastBounds(SkRect* bounds) const {
1474 bounds->set(fPts, 3);
1475 }
1476
findMaxCurvature(SkScalar * t) const1477 bool SkConic::findMaxCurvature(SkScalar* t) const {
1478 // TODO: Implement me
1479 return false;
1480 }
1481
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1482 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1483 const SkMatrix& matrix) {
1484 if (!matrix.hasPerspective()) {
1485 return w;
1486 }
1487
1488 SkP3D src[3], dst[3];
1489
1490 ratquad_mapTo3D(pts, w, src);
1491
1492 matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1493
1494 // w' = sqrt(w1*w1/w0*w2)
1495 SkScalar w0 = dst[0].fZ;
1496 SkScalar w1 = dst[1].fZ;
1497 SkScalar w2 = dst[2].fZ;
1498 w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1499 return w;
1500 }
1501
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1502 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1503 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1504 // rotate by x,y so that uStart is (1.0)
1505 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1506 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1507
1508 SkScalar absY = SkScalarAbs(y);
1509
1510 // check for (effectively) coincident vectors
1511 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1512 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1513 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1514 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1515 return 0;
1516 }
1517
1518 if (dir == kCCW_SkRotationDirection) {
1519 y = -y;
1520 }
1521
1522 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1523 // 0 == [0 .. 90)
1524 // 1 == [90 ..180)
1525 // 2 == [180..270)
1526 // 3 == [270..360)
1527 //
1528 int quadrant = 0;
1529 if (0 == y) {
1530 quadrant = 2; // 180
1531 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1532 } else if (0 == x) {
1533 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1534 quadrant = y > 0 ? 1 : 3; // 90 : 270
1535 } else {
1536 if (y < 0) {
1537 quadrant += 2;
1538 }
1539 if ((x < 0) != (y < 0)) {
1540 quadrant += 1;
1541 }
1542 }
1543
1544 const SkPoint quadrantPts[] = {
1545 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1546 };
1547 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1548
1549 int conicCount = quadrant;
1550 for (int i = 0; i < conicCount; ++i) {
1551 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1552 }
1553
1554 // Now compute any remaing (sub-90-degree) arc for the last conic
1555 const SkPoint finalP = { x, y };
1556 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1557 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1558 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1559
1560 if (dot < 1) {
1561 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1562 // compute the bisector vector, and then rescale to be the off-curve point.
1563 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1564 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1565 // This is nice, since our computed weight is cos(theta/2) as well!
1566 //
1567 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1568 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1569 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1570 conicCount += 1;
1571 }
1572
1573 // now handle counter-clockwise and the initial unitStart rotation
1574 SkMatrix matrix;
1575 matrix.setSinCos(uStart.fY, uStart.fX);
1576 if (dir == kCCW_SkRotationDirection) {
1577 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1578 }
1579 if (userMatrix) {
1580 matrix.postConcat(*userMatrix);
1581 }
1582 for (int i = 0; i < conicCount; ++i) {
1583 matrix.mapPoints(dst[i].fPts, 3);
1584 }
1585 return conicCount;
1586 }
1587