1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkDistanceFieldGen.h"
9 #include "SkPoint.h"
10
11 struct DFData {
12 float fAlpha; // alpha value of source texel
13 float fDistSq; // distance squared to nearest (so far) edge texel
14 SkPoint fDistVector; // distance vector to nearest (so far) edge texel
15 };
16
17 enum NeighborFlags {
18 kLeft_NeighborFlag = 0x01,
19 kRight_NeighborFlag = 0x02,
20 kTopLeft_NeighborFlag = 0x04,
21 kTop_NeighborFlag = 0x08,
22 kTopRight_NeighborFlag = 0x10,
23 kBottomLeft_NeighborFlag = 0x20,
24 kBottom_NeighborFlag = 0x40,
25 kBottomRight_NeighborFlag = 0x80,
26 kAll_NeighborFlags = 0xff,
27
28 kNeighborFlagCount = 8
29 };
30
31 // We treat an "edge" as a place where we cross from >=128 to <128, or vice versa, or
32 // where we have two non-zero pixels that are <128.
33 // 'neighborFlags' is used to limit the directions in which we test to avoid indexing
34 // outside of the image
found_edge(const unsigned char * imagePtr,int width,int neighborFlags)35 static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) {
36 // the order of these should match the neighbor flags above
37 const int kNum8ConnectedNeighbors = 8;
38 const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 };
39 SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount);
40
41 // search for an edge
42 unsigned char currVal = *imagePtr;
43 unsigned char currCheck = (currVal >> 7);
44 for (int i = 0; i < kNum8ConnectedNeighbors; ++i) {
45 unsigned char neighborVal;
46 if ((1 << i) & neighborFlags) {
47 const unsigned char* checkPtr = imagePtr + offsets[i];
48 neighborVal = *checkPtr;
49 } else {
50 neighborVal = 0;
51 }
52 unsigned char neighborCheck = (neighborVal >> 7);
53 SkASSERT(currCheck == 0 || currCheck == 1);
54 SkASSERT(neighborCheck == 0 || neighborCheck == 1);
55 // if sharp transition
56 if (currCheck != neighborCheck ||
57 // or both <128 and >0
58 (!currCheck && !neighborCheck && currVal && neighborVal)) {
59 return true;
60 }
61 }
62
63 return false;
64 }
65
init_glyph_data(DFData * data,unsigned char * edges,const unsigned char * image,int dataWidth,int dataHeight,int imageWidth,int imageHeight,int pad)66 static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image,
67 int dataWidth, int dataHeight,
68 int imageWidth, int imageHeight,
69 int pad) {
70 data += pad*dataWidth;
71 data += pad;
72 edges += (pad*dataWidth + pad);
73
74 for (int j = 0; j < imageHeight; ++j) {
75 for (int i = 0; i < imageWidth; ++i) {
76 if (255 == *image) {
77 data->fAlpha = 1.0f;
78 } else {
79 data->fAlpha = (*image)*0.00392156862f; // 1/255
80 }
81 int checkMask = kAll_NeighborFlags;
82 if (i == 0) {
83 checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag);
84 }
85 if (i == imageWidth-1) {
86 checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag);
87 }
88 if (j == 0) {
89 checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag);
90 }
91 if (j == imageHeight-1) {
92 checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag);
93 }
94 if (found_edge(image, imageWidth, checkMask)) {
95 *edges = 255; // using 255 makes for convenient debug rendering
96 }
97 ++data;
98 ++image;
99 ++edges;
100 }
101 data += 2*pad;
102 edges += 2*pad;
103 }
104 }
105
106 // from Gustavson (2011)
107 // computes the distance to an edge given an edge normal vector and a pixel's alpha value
108 // assumes that direction has been pre-normalized
edge_distance(const SkPoint & direction,float alpha)109 static float edge_distance(const SkPoint& direction, float alpha) {
110 float dx = direction.fX;
111 float dy = direction.fY;
112 float distance;
113 if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) {
114 distance = 0.5f - alpha;
115 } else {
116 // this is easier if we treat the direction as being in the first octant
117 // (other octants are symmetrical)
118 dx = SkScalarAbs(dx);
119 dy = SkScalarAbs(dy);
120 if (dx < dy) {
121 SkTSwap(dx, dy);
122 }
123
124 // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge
125 // to avoid the divide, we just consider the numerator
126 float a1num = 0.5f*dy;
127
128 // we now compute the approximate distance, depending where the alpha falls
129 // relative to the edge fractional area
130
131 // if 0 <= alpha < a1
132 if (alpha*dx < a1num) {
133 // TODO: find a way to do this without square roots?
134 distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha);
135 // if a1 <= alpha <= 1 - a1
136 } else if (alpha*dx < (dx - a1num)) {
137 distance = (0.5f - alpha)*dx;
138 // if 1 - a1 < alpha <= 1
139 } else {
140 // TODO: find a way to do this without square roots?
141 distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha));
142 }
143 }
144
145 return distance;
146 }
147
init_distances(DFData * data,unsigned char * edges,int width,int height)148 static void init_distances(DFData* data, unsigned char* edges, int width, int height) {
149 // skip one pixel border
150 DFData* currData = data;
151 DFData* prevData = data - width;
152 DFData* nextData = data + width;
153
154 for (int j = 0; j < height; ++j) {
155 for (int i = 0; i < width; ++i) {
156 if (*edges) {
157 // we should not be in the one-pixel outside band
158 SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1);
159 // gradient will point from low to high
160 // +y is down in this case
161 // i.e., if you're outside, gradient points towards edge
162 // if you're inside, gradient points away from edge
163 SkPoint currGrad;
164 currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha
165 + SK_ScalarSqrt2*(currData+1)->fAlpha
166 - SK_ScalarSqrt2*(currData-1)->fAlpha
167 + (nextData+1)->fAlpha - (nextData-1)->fAlpha;
168 currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha
169 + SK_ScalarSqrt2*nextData->fAlpha
170 - SK_ScalarSqrt2*prevData->fAlpha
171 + (nextData+1)->fAlpha - (prevData+1)->fAlpha;
172 currGrad.setLengthFast(1.0f);
173
174 // init squared distance to edge and distance vector
175 float dist = edge_distance(currGrad, currData->fAlpha);
176 currGrad.scale(dist, &currData->fDistVector);
177 currData->fDistSq = dist*dist;
178 } else {
179 // init distance to "far away"
180 currData->fDistSq = 2000000.f;
181 currData->fDistVector.fX = 1000.f;
182 currData->fDistVector.fY = 1000.f;
183 }
184 ++currData;
185 ++prevData;
186 ++nextData;
187 ++edges;
188 }
189 }
190 }
191
192 // Danielsson's 8SSEDT
193
194 // first stage forward pass
195 // (forward in Y, forward in X)
F1(DFData * curr,int width)196 static void F1(DFData* curr, int width) {
197 // upper left
198 DFData* check = curr - width-1;
199 SkPoint distVec = check->fDistVector;
200 float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f);
201 if (distSq < curr->fDistSq) {
202 distVec.fX -= 1.0f;
203 distVec.fY -= 1.0f;
204 curr->fDistSq = distSq;
205 curr->fDistVector = distVec;
206 }
207
208 // up
209 check = curr - width;
210 distVec = check->fDistVector;
211 distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f;
212 if (distSq < curr->fDistSq) {
213 distVec.fY -= 1.0f;
214 curr->fDistSq = distSq;
215 curr->fDistVector = distVec;
216 }
217
218 // upper right
219 check = curr - width+1;
220 distVec = check->fDistVector;
221 distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f);
222 if (distSq < curr->fDistSq) {
223 distVec.fX += 1.0f;
224 distVec.fY -= 1.0f;
225 curr->fDistSq = distSq;
226 curr->fDistVector = distVec;
227 }
228
229 // left
230 check = curr - 1;
231 distVec = check->fDistVector;
232 distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
233 if (distSq < curr->fDistSq) {
234 distVec.fX -= 1.0f;
235 curr->fDistSq = distSq;
236 curr->fDistVector = distVec;
237 }
238 }
239
240 // second stage forward pass
241 // (forward in Y, backward in X)
F2(DFData * curr,int width)242 static void F2(DFData* curr, int width) {
243 // right
244 DFData* check = curr + 1;
245 float distSq = check->fDistSq;
246 SkPoint distVec = check->fDistVector;
247 distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
248 if (distSq < curr->fDistSq) {
249 distVec.fX += 1.0f;
250 curr->fDistSq = distSq;
251 curr->fDistVector = distVec;
252 }
253 }
254
255 // first stage backward pass
256 // (backward in Y, forward in X)
B1(DFData * curr,int width)257 static void B1(DFData* curr, int width) {
258 // left
259 DFData* check = curr - 1;
260 SkPoint distVec = check->fDistVector;
261 float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
262 if (distSq < curr->fDistSq) {
263 distVec.fX -= 1.0f;
264 curr->fDistSq = distSq;
265 curr->fDistVector = distVec;
266 }
267 }
268
269 // second stage backward pass
270 // (backward in Y, backwards in X)
B2(DFData * curr,int width)271 static void B2(DFData* curr, int width) {
272 // right
273 DFData* check = curr + 1;
274 SkPoint distVec = check->fDistVector;
275 float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
276 if (distSq < curr->fDistSq) {
277 distVec.fX += 1.0f;
278 curr->fDistSq = distSq;
279 curr->fDistVector = distVec;
280 }
281
282 // bottom left
283 check = curr + width-1;
284 distVec = check->fDistVector;
285 distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f);
286 if (distSq < curr->fDistSq) {
287 distVec.fX -= 1.0f;
288 distVec.fY += 1.0f;
289 curr->fDistSq = distSq;
290 curr->fDistVector = distVec;
291 }
292
293 // bottom
294 check = curr + width;
295 distVec = check->fDistVector;
296 distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f;
297 if (distSq < curr->fDistSq) {
298 distVec.fY += 1.0f;
299 curr->fDistSq = distSq;
300 curr->fDistVector = distVec;
301 }
302
303 // bottom right
304 check = curr + width+1;
305 distVec = check->fDistVector;
306 distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f);
307 if (distSq < curr->fDistSq) {
308 distVec.fX += 1.0f;
309 distVec.fY += 1.0f;
310 curr->fDistSq = distSq;
311 curr->fDistVector = distVec;
312 }
313 }
314
315 // enable this to output edge data rather than the distance field
316 #define DUMP_EDGE 0
317
318 #if !DUMP_EDGE
pack_distance_field_val(float dist,float distanceMagnitude)319 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) {
320 if (dist <= -distanceMagnitude) {
321 return 255;
322 } else if (dist > distanceMagnitude) {
323 return 0;
324 } else {
325 return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude);
326 }
327 }
328 #endif
329
330 // assumes a padded 8-bit image and distance field
331 // width and height are the original width and height of the image
generate_distance_field_from_image(unsigned char * distanceField,const unsigned char * copyPtr,int width,int height)332 static bool generate_distance_field_from_image(unsigned char* distanceField,
333 const unsigned char* copyPtr,
334 int width, int height) {
335 SkASSERT(distanceField);
336 SkASSERT(copyPtr);
337
338 // we expand our temp data by one more on each side to simplify
339 // the scanning code -- will always be treated as infinitely far away
340 int pad = SK_DistanceFieldPad + 1;
341
342 // set params for distance field data
343 int dataWidth = width + 2*pad;
344 int dataHeight = height + 2*pad;
345
346 // create temp data
347 size_t dataSize = dataWidth*dataHeight*sizeof(DFData);
348 SkAutoSMalloc<1024> dfStorage(dataSize);
349 DFData* dataPtr = (DFData*) dfStorage.get();
350 sk_bzero(dataPtr, dataSize);
351
352 SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char));
353 unsigned char* edgePtr = (unsigned char*) edgeStorage.get();
354 sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char));
355
356 // copy glyph into distance field storage
357 init_glyph_data(dataPtr, edgePtr, copyPtr,
358 dataWidth, dataHeight,
359 width+2, height+2, SK_DistanceFieldPad);
360
361 // create initial distance data, particularly at edges
362 init_distances(dataPtr, edgePtr, dataWidth, dataHeight);
363
364 // now perform Euclidean distance transform to propagate distances
365
366 // forwards in y
367 DFData* currData = dataPtr+dataWidth+1; // skip outer buffer
368 unsigned char* currEdge = edgePtr+dataWidth+1;
369 for (int j = 1; j < dataHeight-1; ++j) {
370 // forwards in x
371 for (int i = 1; i < dataWidth-1; ++i) {
372 // don't need to calculate distance for edge pixels
373 if (!*currEdge) {
374 F1(currData, dataWidth);
375 }
376 ++currData;
377 ++currEdge;
378 }
379
380 // backwards in x
381 --currData; // reset to end
382 --currEdge;
383 for (int i = 1; i < dataWidth-1; ++i) {
384 // don't need to calculate distance for edge pixels
385 if (!*currEdge) {
386 F2(currData, dataWidth);
387 }
388 --currData;
389 --currEdge;
390 }
391
392 currData += dataWidth+1;
393 currEdge += dataWidth+1;
394 }
395
396 // backwards in y
397 currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer
398 currEdge = edgePtr+dataWidth*(dataHeight-2) - 1;
399 for (int j = 1; j < dataHeight-1; ++j) {
400 // forwards in x
401 for (int i = 1; i < dataWidth-1; ++i) {
402 // don't need to calculate distance for edge pixels
403 if (!*currEdge) {
404 B1(currData, dataWidth);
405 }
406 ++currData;
407 ++currEdge;
408 }
409
410 // backwards in x
411 --currData; // reset to end
412 --currEdge;
413 for (int i = 1; i < dataWidth-1; ++i) {
414 // don't need to calculate distance for edge pixels
415 if (!*currEdge) {
416 B2(currData, dataWidth);
417 }
418 --currData;
419 --currEdge;
420 }
421
422 currData -= dataWidth-1;
423 currEdge -= dataWidth-1;
424 }
425
426 // copy results to final distance field data
427 currData = dataPtr + dataWidth+1;
428 currEdge = edgePtr + dataWidth+1;
429 unsigned char *dfPtr = distanceField;
430 for (int j = 1; j < dataHeight-1; ++j) {
431 for (int i = 1; i < dataWidth-1; ++i) {
432 #if DUMP_EDGE
433 float alpha = currData->fAlpha;
434 float edge = 0.0f;
435 if (*currEdge) {
436 edge = 0.25f;
437 }
438 // blend with original image
439 float result = alpha + (1.0f-alpha)*edge;
440 unsigned char val = sk_float_round2int(255*result);
441 *dfPtr++ = val;
442 #else
443 float dist;
444 if (currData->fAlpha > 0.5f) {
445 dist = -SkScalarSqrt(currData->fDistSq);
446 } else {
447 dist = SkScalarSqrt(currData->fDistSq);
448 }
449 *dfPtr++ = pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
450 #endif
451 ++currData;
452 ++currEdge;
453 }
454 currData += 2;
455 currEdge += 2;
456 }
457
458 return true;
459 }
460
461 // assumes an 8-bit image and distance field
SkGenerateDistanceFieldFromA8Image(unsigned char * distanceField,const unsigned char * image,int width,int height,size_t rowBytes)462 bool SkGenerateDistanceFieldFromA8Image(unsigned char* distanceField,
463 const unsigned char* image,
464 int width, int height, size_t rowBytes) {
465 SkASSERT(distanceField);
466 SkASSERT(image);
467
468 // create temp data
469 SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char));
470 unsigned char* copyPtr = (unsigned char*) copyStorage.get();
471
472 // we copy our source image into a padded copy to ensure we catch edge transitions
473 // around the outside
474 const unsigned char* currSrcScanLine = image;
475 sk_bzero(copyPtr, (width+2)*sizeof(char));
476 unsigned char* currDestPtr = copyPtr + width + 2;
477 for (int i = 0; i < height; ++i) {
478 *currDestPtr++ = 0;
479 memcpy(currDestPtr, currSrcScanLine, rowBytes);
480 currSrcScanLine += rowBytes;
481 currDestPtr += width;
482 *currDestPtr++ = 0;
483 }
484 sk_bzero(currDestPtr, (width+2)*sizeof(char));
485
486 return generate_distance_field_from_image(distanceField, copyPtr, width, height);
487 }
488
489 // assumes a 1-bit image and 8-bit distance field
SkGenerateDistanceFieldFromBWImage(unsigned char * distanceField,const unsigned char * image,int width,int height,size_t rowBytes)490 bool SkGenerateDistanceFieldFromBWImage(unsigned char* distanceField,
491 const unsigned char* image,
492 int width, int height, size_t rowBytes) {
493 SkASSERT(distanceField);
494 SkASSERT(image);
495
496 // create temp data
497 SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char));
498 unsigned char* copyPtr = (unsigned char*) copyStorage.get();
499
500 // we copy our source image into a padded copy to ensure we catch edge transitions
501 // around the outside
502 const unsigned char* currSrcScanLine = image;
503 sk_bzero(copyPtr, (width+2)*sizeof(char));
504 unsigned char* currDestPtr = copyPtr + width + 2;
505 for (int i = 0; i < height; ++i) {
506 *currDestPtr++ = 0;
507 int rowWritesLeft = width;
508 const unsigned char *maskPtr = currSrcScanLine;
509 while (rowWritesLeft > 0) {
510 unsigned mask = *maskPtr++;
511 for (int i = 7; i >= 0 && rowWritesLeft; --i, --rowWritesLeft) {
512 *currDestPtr++ = (mask & (1 << i)) ? 0xff : 0;
513 }
514 }
515 currSrcScanLine += rowBytes;
516 *currDestPtr++ = 0;
517 }
518 sk_bzero(currDestPtr, (width+2)*sizeof(char));
519
520 return generate_distance_field_from_image(distanceField, copyPtr, width, height);
521 }
522